JPS5969428A - Manufacture of ultrafine powder of zirconium oxide - Google Patents

Manufacture of ultrafine powder of zirconium oxide

Info

Publication number
JPS5969428A
JPS5969428A JP57175321A JP17532182A JPS5969428A JP S5969428 A JPS5969428 A JP S5969428A JP 57175321 A JP57175321 A JP 57175321A JP 17532182 A JP17532182 A JP 17532182A JP S5969428 A JPS5969428 A JP S5969428A
Authority
JP
Japan
Prior art keywords
zirconium oxide
zirconium
solvent
powder
ultrafine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57175321A
Other languages
Japanese (ja)
Inventor
Tsutomu Tominaga
力 冨永
Hideo Miyazaki
英男 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP57175321A priority Critical patent/JPS5969428A/en
Publication of JPS5969428A publication Critical patent/JPS5969428A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture ultrafine powder of zirconium oxide in simple stages, by heating an alkaline aqueous soln. contg. zirconium carbonate under pressure, adding an org. solvent to the resulting zirconium oxide, removing water by distillation under heating, and carrying out drying. CONSTITUTION:An alkaline aqueous soln. contg. zirconium carbonate or a slightly acidic or alkaline soln. prepared by suspending or partially dissolving zirconium hydroxide in said aqueous soln. is reacted in an autoclave at >=130 deg.C, preferably about 170-220 deg.C under >=2kg/cm<2>, preferably about 5-40kg/cm<2> gauge pressure to form zirconium oxide. An org. solvent is added to the zirconium oxide, and water is removed by distillation under heating. The preferred org. solvent is xylene or the like having >=about 110 deg.C b.p. The solvent is separated after the distillation, and the residue is dried to obtain ultrafine powder of zirconium oxide having <=about 200Angstrom uniform particle size.

Description

【発明の詳細な説明】 本発明は、酸化ジルコニウム超微粉の製造方法に関する
ものであり、tpyには磁器としての焼結後に高い強度
を発現しうる酸化ジルコニウム超微粉の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing ultrafine zirconium oxide powder, and TPY relates to a method for producing ultrafine zirconium oxide powder that can exhibit high strength after sintering into porcelain.

酸化ジルコニウムは、切削工具、固体電解質、耐熱耐摩
耗部品その他に広く使用されつつありまた内燃機関機構
部品、例えば自動車用エンジンのヘッドフェイス、ピス
トンキャップ、シリンダライナー等において従来材料に
代替しうるものとして大きな関心が寄せられている。磁
器材としての性質が更に向上しうるなら、更に広い用途
が開発されるものと予想される。従来から用いられてい
ル酸化ジルコニウム磁器においてまた尚多くの点でその
性質の改善が望まれているが、一番基本的には焼結後強
度水準の向上化が1袈である。
Zirconium oxide is being widely used in cutting tools, solid electrolytes, heat-resistant and wear-resistant parts, etc., and is also being used as a substitute for conventional materials in internal combustion engine mechanical parts, such as automobile engine head faces, piston caps, cylinder liners, etc. There is a lot of interest. If its properties as a porcelain material can be further improved, it is expected that even wider uses will be developed. Although it is desired to improve the properties of the conventionally used zirconium oxide porcelain in many respects, the most basic one is to improve the strength level after sintering.

本件出願人は、酸化ジルコニウム超微粉の製造法を確立
した。この方法は、数+X〜20 (1″Aの範囲の非
常に小さ℃・粒径な有し且つ粒度が整って℃゛る斜方晶
−正方品混合型酸化ジルコニウム超微粉を製造すること
ができるので、磁器製造の出発原料として好適な酸化ジ
ルコニウムを製造する方法として大きなMJJ待が持た
れている。この方法は、炭酸ジルコニウムを含むアルカ
リ性の水溶液もしくはこれに水酸化ジルコニウムが懸濁
あるいは一部溶解している微酸性ないしアルカリ性溶液
を出発物質とし、これを加熱可能な耐圧容器内で温度1
30°C以」ユ及びゲージ圧2kg/cm2以上の条件
で反応させることにより酸化ジルコニウムを直接生成す
るものである。この方法は、それまで酸化シルコニウド
がジルコニウムを含む酸性水溶液の中和、ジルコニウム
水酸化物の沈殿、沈殿物の洗浄および沖過、得られたケ
ーキの乾燥および高温焙焼という段階を経て生成され、
非常に工程数が多くしかも得られた酸fEジルコニウム
の粒度が粗くかつ粒度分布も広いという難点を解決した
ものである。
The applicant has established a method for producing ultrafine zirconium oxide powder. This method can produce ultrafine orthorhombic-tetragonal mixed zirconium oxide powder having a very small particle size in the range of several + Therefore, there is great interest in MJJ as a method for producing zirconium oxide, which is suitable as a starting material for porcelain production. A dissolved slightly acidic or alkaline solution is used as the starting material, and this is heated to a temperature of 1
Zirconium oxide is directly produced by reacting at a temperature of 30°C or higher and a gauge pressure of 2kg/cm2 or higher. In this method, silconium oxide is produced through the following steps: neutralization of an acidic aqueous solution containing zirconium, precipitation of zirconium hydroxide, washing and filtration of the precipitate, drying of the resulting cake, and high-temperature roasting.
This method solves the problems that the number of steps is very large and the particle size of the obtained acid fE zirconium is coarse and the particle size distribution is wide.

上記方法で得られた酸化ジルコニウムな単味で或いはY
、08のような安定化剤その他の添加剤と混合した状態
で磁器製品を作製した場合、従来の粗い酸化ジルコニウ
ム粉を使用した場合よりも高い水準の強度を得ることが
できる。
Zirconium oxide obtained by the above method or Y
, 08, when mixed with stabilizers and other additives, higher levels of strength can be obtained than when using conventional coarse zirconium oxide powders.

酸化ジルコニウム粉から成る磁器は、粉末の乾燥、80
0〜1000 ’Cの温度での仮焼、プレス成形および
焼結の工程を経由して作製されそしてY2O3等の添加
剤が加えられる場合には仮焼前にボールミル混合が行わ
れる。これら工程の詳細な検討の結果、上記方法で得ら
れた酸化ジルコニウム超微粉を有機溶媒を加え、加熱蒸
留により脱水乾燥したものを出発物質として使用するこ
とにより強度の白土が引りうることが見出された。、有
機溶媒による加熱蒸留によって、酸化ジルコニウム超微
粉の一次粒子凝集が効果的に抑制されると共に、加熱蒸
留後有機溶媒の薄い皮膜が残存しそして焼結後に分解炭
素が存在することが強度上昇につながるものと推測され
る。
Porcelain made of zirconium oxide powder is made by drying the powder,
It is produced via the steps of calcination, press forming and sintering at a temperature of 0-1000'C, and when additives such as Y2O3 are added, ball mill mixing is performed before calcination. As a result of a detailed study of these processes, it was found that strong clay could be obtained by adding an organic solvent to the ultrafine zirconium oxide powder obtained by the above method and dehydrating and drying it by heating distillation as a starting material. Served. , heating distillation using an organic solvent effectively suppresses the aggregation of primary particles of ultrafine zirconium oxide powder, and the fact that a thin film of organic solvent remains after heating distillation and the presence of decomposed carbon after sintering increases strength. It is assumed that they are connected.

斯くして、本発明は、前記した方法に従って酸化ジルコ
ニウムを生成させた後、それを母液から分離1.、有機
溶媒を加え、加熱蒸留により脱水乾燥することを特徴と
する酸化ジルコニウム超微粉の製造方法を提供する。
Thus, the present invention provides the following steps: 1. After producing zirconium oxide according to the method described above, it is separated from the mother liquor. , provides a method for producing ultrafine zirconium oxide powder, which comprises adding an organic solvent and dehydrating and drying by heating distillation.

炭酸ジルコニウムはpH8〜9の溶液中では)、5Zr
O(Co8)iの形で存在し、これを加圧下で加熱すれ
ば次式に従って直接酸化ジルコニウムを生成する: HQZrO(Co、、) Q −) ZrO2+200
2 +l−120TIQZrO(COJs+は弁筒に不
安定であるため比較的低温で上式が進行し、分解後のZ
r0Qは粒度が非′ホに小さいものが一様にできる。以
上のような原理に基いて、炭酸ジルコニウムから直接酸
化ジルコニウム微粉を生成することに成功したものであ
る。
Zirconium carbonate (in a solution with pH 8-9), 5Zr
It exists in the form of O(Co8)i, which when heated under pressure directly produces zirconium oxide according to the following formula: HQZrO(Co,,) Q −) ZrO2+200
2 +l-120TIQZrO (COJs+ is unstable in the valve cylinder, so the above equation proceeds at a relatively low temperature, and the ZrO after decomposition
r0Q can uniformly have extremely small particle size. Based on the principle described above, we succeeded in directly producing zirconium oxide fine powder from zirconium carbonate.

炭酸ジルコニウムのアルカリ性水溶液に水酸化ジルコニ
ウムを混入した状態でも分解反応は進行する。温度が1
30°C以上キ)れば反応は進行するが、一般に170
〜220°Cの範囲が使用される。圧力はゲージ圧2k
g/c−以上、好ましくは5〜40に!7/cm2であ
る。反応は、慣、拌を継続しながら30分〜3時間程度
実施される。出発溶液のpH,温度。
The decomposition reaction proceeds even when zirconium hydroxide is mixed in an alkaline aqueous solution of zirconium carbonate. temperature is 1
The reaction will proceed at temperatures above 30°C, but generally at temperatures above 170°C.
A range of ˜220° C. is used. Pressure is gauge pressure 2k
g/c- or more, preferably 5-40! 7/cm2. The reaction is usually carried out for about 30 minutes to 3 hours while stirring is continued. pH and temperature of starting solution.

Iモ、力等に依存はするが、一般に200X以下、好ま
しく(主10〜100スの酸化ジルコニウム粉末が得ら
れる。
Although it depends on the power, force, etc., it is generally 200X or less, preferably (mainly 10 to 100X) zirconium oxide powder can be obtained.

C1うして生成された酸化ジルコニウム粉が母液から分
離された後、これに有機溶媒が加えられる。
After the zirconium oxide powder thus produced is separated from the mother liquor, an organic solvent is added thereto.

41機溶媒としては沸点110℃以上のものの使用が、
完全な脱水のために好ましい。水沸点より高い沸点を有
する有機溶媒でなければ、完全な脱水が不+J能だから
である。例を挙げると、キシレン(b、p、144°C
)、) ルエy (b、p、110”C)、ヘプクノー
ル(b、p、176°C)、ノニルアルコール(b、p
、213°C)等が使用し5る。充分ソZる加熱蒸留後
、冷却し、有機溶媒を分離しそして乾燥することによっ
て最終酸化ジルコニウム超微粉が得られる。
41 The use of a solvent with a boiling point of 110°C or higher is
Preferred for complete dehydration. This is because complete dehydration cannot be achieved unless the organic solvent has a boiling point higher than the boiling point of water. For example, xylene (b, p, 144°C
),) Luey (b, p, 110”C), hepknol (b, p, 176°C), nonyl alcohol (b, p
, 213°C) etc. are used. After sufficiently heated distillation, the final ultrafine zirconium oxide powder is obtained by cooling, separating the organic solvent, and drying.

得られる粉末は単独であるいはそこにY、08その他の
添加剤を加えた状態で磁器製造のための出発原料として
使用される。本方法で製造された酸化ジルコニウムは2
00ス以下の超微粉にもかかわらず、仮焼の際−次粒子
の凝集を生じない。これは、−次粒子凝集の原因となる
水が完全に拮除されるためである。
The resulting powder is used alone or with Y, 08 and other additives as a starting material for the production of porcelain. The zirconium oxide produced by this method is 2
Despite being an ultrafine powder with a particle size of less than 0.00 s, no agglomeration of secondary particles occurs during calcination. This is because water, which causes secondary particle aggregation, is completely eliminated.

上記方法で調製された一様性の良い超微粉と有機溶媒処
理とが糾合さって、この粉末を磁器として成形した際弁
筒に’Ptr ℃・強度が発現する。2〜3、5 モ#
%のY2O2の添加したものを冷間プレスしそして焼結
した場合7.Oi<g/m2以上の、そして3モル%前
後の最適敏を添加することにより130kg7m2もの
水準の抗折強度の発現が可能である。
The highly uniform ultrafine powder prepared by the above method is combined with the organic solvent treatment, and when this powder is molded into porcelain, the valve barrel exhibits 'Ptr °C strength. 2-3, 5 Mo#
When cold pressed and sintered with addition of % Y2O27. By adding an optimum strength of Oi<g/m2 or more and around 3 mol%, it is possible to develop a bending strength as high as 130 kg7m2.

同一粉末で有機溶媒処理をしたものはしないものより2
0〜30%高い強度水準を示す。従って、本発明によっ
て製造された酸化ジルコニウムtg (ty粉は、従来
用徐において一層大きな耐久性と安定性を示し、また強
度不足から従来酸化ジルコニウム・を使用できなかった
新たな用冷の開拓を可能ならしめる。例えば、先に挙げ
た内燃機関関i中部品、高性能バイト等に酸化ジルコニ
ウムを使用することを可R1で)、(、らしめる。
The same powder treated with organic solvent is 2 times better than the one without organic solvent treatment.
Shows 0-30% higher strength level. Therefore, the zirconium oxide TG (TY powder) produced according to the present invention exhibits greater durability and stability in conventional cooling, and also opens the door to new cooling applications where zirconium oxide could not be used due to lack of strength. For example, R1 makes it possible to use zirconium oxide in internal combustion engine parts, high-performance cutting tools, etc. mentioned above.

実施例1 100/lの炭酸ジルコニウムと、50り/lの芒硝お
よび5 q/lの炭酸ソーダを含む弱アルカリ性水溶液
1rを容凧約24のオートクレーブを用いて約30 k
g/c+n2の)11力および205℃の温度下で攪拌
しながら60時間反応させることにより酸化ジルコニウ
ムを生成せしめた。生成した酸化ジルコニウムを母液と
分離後、ノニルアルコールを加えて蒸留した。沸点が1
15°Cとブよった時点で蒸留を止め、冷却した。冷却
後、有機溶剤を分離し、95°Cで乾燥した。得られた
酸化ジルコニウムは100ス平均の超微粉のものであっ
た。
Example 1 1 liter of a weakly alkaline aqueous solution containing 100/l of zirconium carbonate, 50 l/l of Glauber's salt and 5 q/l of sodium carbonate was prepared in an autoclave with a capacity of about 24 kg to about 30 kg.
Zirconium oxide was produced by reacting for 60 hours with stirring at 11 g/c+n2) and a temperature of 205°C. After separating the generated zirconium oxide from the mother liquor, nonyl alcohol was added and distilled. boiling point is 1
Distillation was stopped when the temperature reached 15°C, and the mixture was cooled. After cooling, the organic solvent was separated and dried at 95°C. The obtained zirconium oxide was an ultrafine powder with an average size of 100 s.

この粉末を使用して得られる磁器の強度を見るために、
3モル%Y、108を加えた混合粉を調合し、SOO″
Cで仮焼し、粉砕後5.my+X5關×60閂の試片に
プレス成形し、その後2時間焼結したものの抗折強度を
測定した。比較目的で市販の500λ粒寸の荒い酸化ジ
ルコニウム(有機溶媒処理な1、 )および有機溶媒処
理を施さない点を除し・て前日[2ど同一・にして調製
された100人酸化ジルコニウムを使用して同様の試片
を作成した。結果を下表に示す。
To see the strength of porcelain obtained using this powder,
Blend a mixed powder with 3 mol% Y and 108 added, SOO''
After calcining at C and crushing 5. The specimen was press-molded into a specimen of my+X5 dimensions x 60 bars, and then sintered for 2 hours, and the bending strength of the specimen was measured. For comparison purposes, we used commercially available coarse zirconium oxide with a particle size of 500λ (organic solvent treatment) and 100-year-old zirconium oxide prepared the day before [2], except that it was not treated with an organic solvent. A similar specimen was prepared using the same method. The results are shown in the table below.

実施例2 炭酸ジルコニウム509/l、芒硝25り/eおよび炭
酸ソーダ25 g/lを含む水溶液5eを容量10//
のオートクレーブで圧力約25 kg7cm2および温
度200°CKお〜・て攪拌しながら60分間反応さ七
た。生成酸化ジルコニウムをヘプタツールによって加熱
蒸留した。得られた粉末を実施例1におりるようにして
抗折強度を測定したところ128ky/朋2の値を示し
た。
Example 2 Aqueous solution 5e containing 509 g/l of zirconium carbonate, 25 g/e of mirabilite and 25 g/l of soda carbonate was added in a volume of 10 g/l.
The reaction was carried out in an autoclave at a pressure of about 25 kg 7 cm 2 and a temperature of 200°C for 60 minutes with stirring. The produced zirconium oxide was heated and distilled using a heptatool. When the bending strength of the obtained powder was measured in the same manner as in Example 1, it showed a value of 128 ky/2.

このように、41機処理と超微粉との糾合ぜKよって非
常に高水準の強1■を持つ磁器の作製がn」能となる。
In this way, the combination of the 41-machine treatment and the ultrafine powder makes it possible to produce porcelain with a very high level of strength 1.

Claims (1)

【特許請求の範囲】[Claims] 1)炭酸ジルコニウムを含むアルカリ性の水溶液もしく
はこれに水酸化ジルコニウムを懸濁あるし・は一部溶解
せしめた微酸性ないしアルカリ性溶液を、耐圧容器内で
温度130°C以上そしてゲージ圧2kg/cm2以上
の条件の下で反応させることにより酸化ジルコニウムを
生成し、次いで該生成酸化ジルコニウムに有機溶媒を加
えて加熱蒸留により脱水乾燥することを特徴とする酸化
ジルコニウム超微粉の製造方法。
1) Heat an alkaline aqueous solution containing zirconium carbonate or a slightly acidic or alkaline solution in which zirconium hydroxide is suspended or partially dissolved in a pressure-resistant container at a temperature of 130°C or higher and a gauge pressure of 2kg/cm2 or higher. A method for producing ultrafine zirconium oxide powder, which comprises producing zirconium oxide by reacting under the following conditions, and then adding an organic solvent to the produced zirconium oxide and dehydrating and drying it by heating distillation.
JP57175321A 1982-10-07 1982-10-07 Manufacture of ultrafine powder of zirconium oxide Pending JPS5969428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57175321A JPS5969428A (en) 1982-10-07 1982-10-07 Manufacture of ultrafine powder of zirconium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57175321A JPS5969428A (en) 1982-10-07 1982-10-07 Manufacture of ultrafine powder of zirconium oxide

Publications (1)

Publication Number Publication Date
JPS5969428A true JPS5969428A (en) 1984-04-19

Family

ID=15994035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57175321A Pending JPS5969428A (en) 1982-10-07 1982-10-07 Manufacture of ultrafine powder of zirconium oxide

Country Status (1)

Country Link
JP (1) JPS5969428A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0171736A2 (en) * 1984-08-07 1986-02-19 Nippon Shokubai Kagaku Kogyo Co., Ltd Micronized zirconia and method for production thereof
US6818196B2 (en) * 2000-11-28 2004-11-16 Renal Solutions, Inc. Zirconium phosphate and method of making the same
US7566432B2 (en) 2004-12-28 2009-07-28 Renal Solutions, Inc. Method of synthesizing zirconium phosphate particles
US8640887B2 (en) 2008-10-03 2014-02-04 Fresenius Medical Care Holdings, Inc. Zirconium phosphate particles having improved adsorption capacity and method of synthesizing the same
JP2017200857A (en) * 2016-05-02 2017-11-09 株式会社アイテック Method for producing zirconia particle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0171736A2 (en) * 1984-08-07 1986-02-19 Nippon Shokubai Kagaku Kogyo Co., Ltd Micronized zirconia and method for production thereof
US6818196B2 (en) * 2000-11-28 2004-11-16 Renal Solutions, Inc. Zirconium phosphate and method of making the same
US7101519B2 (en) 2000-11-28 2006-09-05 Renal Solutions, Inc. Zirconium basic carbonate and methods of making the same
US7566432B2 (en) 2004-12-28 2009-07-28 Renal Solutions, Inc. Method of synthesizing zirconium phosphate particles
US7736507B2 (en) 2004-12-28 2010-06-15 Renal Solutions, Inc. Method of synthesizing zirconium phosphate particles
US7906093B2 (en) 2004-12-28 2011-03-15 Renal Solutions, Inc. Method of synthesizing zirconium phosphate particles
US8640887B2 (en) 2008-10-03 2014-02-04 Fresenius Medical Care Holdings, Inc. Zirconium phosphate particles having improved adsorption capacity and method of synthesizing the same
US8733559B2 (en) 2008-10-03 2014-05-27 Fresenius Medical Care Holdings, Inc. Zirconium phosphate particles having improved adsorption capacity and method of synthesizing the same
US9296611B2 (en) 2008-10-03 2016-03-29 Fresenius Medical Care Holdings, Inc. Zirconium phosphate particles having improved adsorption capacity and method of synthesizing the same
JP2017200857A (en) * 2016-05-02 2017-11-09 株式会社アイテック Method for producing zirconia particle

Similar Documents

Publication Publication Date Title
JPS62260718A (en) Production of ultrafine powder of high-purity zirconia-alumina by hydrothermal process
JP4181777B2 (en) Boehmite production method
JP6016431B2 (en) Method for producing sodium niobate fine particles
JPS5969428A (en) Manufacture of ultrafine powder of zirconium oxide
RU2467983C1 (en) Method of producing nanocrystalline powder and ceramic materials based on mixed oxides of rare-earth elements and subgroup ivb metals
JPH03141115A (en) Production of fine yttrium oxide powder
CN104310992B (en) Molten-salt growth method synthesis La 2o 3-MgO-TiO 2be dielectric ceramic sintering powder and sintering method thereof
JPS60176968A (en) Manufacture of sno2-zro2-tio2 dielectric
JPS61132510A (en) Production of heat-resistant conjugated oxide powder
JPS5969429A (en) Manufacture of ultrafine powder of zro2
JP2001039716A (en) Production of zirconia fine powder
JPS5969471A (en) Manufacture of zirconia ceramic
CN104860344A (en) Preparation method of spherical strontium carbonate
KR20060102928A (en) Manufacturing method of barium titanate powder
JPH0558633A (en) Production of strontium titanate
JP4183539B2 (en) Niobium oxide and method for producing the same
JP3801275B2 (en) Method for producing yttrium aluminum garnet raw material powder
JPH0834613A (en) Production of high homogeneity and high purity yttrium-containing zirconia powder
CN109776040B (en) Cement composite material, preparation method thereof and peanut shell graphene grinding aid
JPS62128924A (en) Production of zirconium oxide series fine powder
US3004832A (en) Process for producing titanium carbide
CN108238609A (en) A kind of preparation method of four water, eight Boratex
JPH06171944A (en) Production of zirconium oxide powder
JPS62252324A (en) Production of fine barium ferrite powder
CN105967156A (en) H-BN powder specially used for synthesizing c-BN, and preparation method thereof