JP2011051834A - Method of producing high purity vaterite-type spherical calcium carbonate - Google Patents

Method of producing high purity vaterite-type spherical calcium carbonate Download PDF

Info

Publication number
JP2011051834A
JP2011051834A JP2009202312A JP2009202312A JP2011051834A JP 2011051834 A JP2011051834 A JP 2011051834A JP 2009202312 A JP2009202312 A JP 2009202312A JP 2009202312 A JP2009202312 A JP 2009202312A JP 2011051834 A JP2011051834 A JP 2011051834A
Authority
JP
Japan
Prior art keywords
calcium carbonate
vaterite
type spherical
solution
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009202312A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Kojima
芳行 小嶋
Kazuhisa Tsukada
和久 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2009202312A priority Critical patent/JP2011051834A/en
Publication of JP2011051834A publication Critical patent/JP2011051834A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing vaterite-type spherical calcium carbonate having spherical shape, small particle diameter and high purity. <P>SOLUTION: In a method of synthesizing the vaterite-type calcium carbonate by carbonating CaCl<SB>2</SB>or Ca(NO<SB>3</SB>)<SB>2</SB>in an aqueous solution, in a solid-liquid separating step after reaction, the solid is cleaned with lower alcohol or di-lower alkyl ketone and dried to produce the vaterite-type spherical calcium carbonate having ≥3N purity. The vaterite-type spherical calcium carbonate is also produced by the method. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、蛍光体、電子材料、セラミックス等の原料、インキ、ゴム、合成樹脂、紙、医薬品、食品、化粧品等の充填剤等に利用可能な純度の高いバテライト型球状炭酸カルシウムの製造方法に関する。   The present invention relates to a method for producing a highly pure vaterite-type spherical calcium carbonate that can be used as a filler for phosphors, electronic materials, ceramics, etc., inks, rubbers, synthetic resins, papers, pharmaceuticals, foods, cosmetics, etc. .

炭酸カルシウムは、蛍光体、電子材料、セラミックス等の原料や、インキ、ゴム、合成樹脂、紙、医薬品、食品、化粧品等の充填剤などの配合材料に利用されている。炭酸カルシウムの結晶系には、カルサイト、アラゴナイト、バテライトの3種がある。カルサイトは紡錘形や立方形、アラゴナイトは柱状形、バテライトは球状の粒子形態を持つとされている。このうち、上記の原料や配合材料として用いる場合、光沢性や平滑性、反応性に優れているものはバテライトであり、その粒子径はできるだけ小さく、凝集のない粒子が好ましい。   Calcium carbonate is used as a blending material for raw materials such as phosphors, electronic materials, ceramics, and fillers for ink, rubber, synthetic resin, paper, pharmaceuticals, foods, cosmetics, and the like. There are three crystal systems of calcium carbonate: calcite, aragonite, and vaterite. Calcite has a spindle shape or cubic shape, aragonite has a columnar shape, and vaterite has a spherical particle shape. Among these, when used as the above-mentioned raw materials and blended materials, those that are excellent in gloss, smoothness and reactivity are vaterites, and particles having the smallest possible particle size and no aggregation are preferred.

従来、バテライト型球状炭酸カルシウムを製造する方法としては、次のような方法が知られている。まず、水溶性カルシウム塩と炭酸塩との水溶液反応によって炭酸カルシウムを製造する際に、カルシウム以外の2価カチオンを添加し、カルサイトへの転移を遅くする方法が知られている(特許文献1)。この場合、2価カチオンの添加量が少量の場合には、立方形カルサイトが生成し、添加量が多くなると、粒子同士が合体し、粒度分布がブロードになる問題、カルシウム以外の金属塩の添加により純度が低下する等の問題がある。   Conventionally, the following methods are known as methods for producing vaterite-type spherical calcium carbonate. First, when producing calcium carbonate by an aqueous solution reaction between a water-soluble calcium salt and a carbonate, a method of adding a divalent cation other than calcium to slow the transition to calcite is known (Patent Document 1). ). In this case, when the addition amount of the divalent cation is small, cubic calcite is formed, and when the addition amount is large, the particles are coalesced and the particle size distribution becomes broad. There is a problem that the purity is lowered by the addition.

さらに、塩化カルシウム水溶液と重炭酸ソーダ水溶液との反応により炭酸カルシウムを製造する方法において、反応終了後のスラリーのpHが少なくとも6.8となるようにアンモニアを添加し45度以下の温度で反応させる方法がある(特許文献2)。この方法では、重炭酸ソーダ中のソーダ分が炭酸カルシウムに残存し、純度を低下させる問題がある。   Furthermore, in a method for producing calcium carbonate by a reaction between a calcium chloride aqueous solution and a sodium bicarbonate aqueous solution, there is a method in which ammonia is added so that the pH of the slurry after the reaction is at least 6.8 and reacted at a temperature of 45 ° C. or less ( Patent Document 2). In this method, there is a problem that the soda content in the sodium bicarbonate remains in the calcium carbonate and the purity is lowered.

このように、従来技術による方法では、製品の純度、粒子形状、粒子径などの粉体物性について万全とは言い難く、その改善策が強く望まれていた。   As described above, in the method according to the prior art, it is difficult to say that the powder physical properties such as the purity of the product, the particle shape, and the particle diameter are perfect.

特開昭57-92520号公報JP 57-92520 A 特開昭54-150397号公報JP 54-150397 A

本発明の目的は、粒子径が小さく、純度の高いバテライト型球状炭酸カルシウムを製造する方法を提供することにある。   An object of the present invention is to provide a method for producing vaterite spherical calcium carbonate having a small particle size and high purity.

本発明者は、水溶液中でバテライト型炭酸カルシウムを合成する方法において、反応後の固液分離工程で、固体を低級アルコール又はジ低級アルキルケトンで洗浄し乾燥することにより、粒子径が小さく、純度の高いバテライト型球状炭酸カルシウムを製造できることを見出した。   In the method for synthesizing vaterite-type calcium carbonate in an aqueous solution, the solid was washed with a lower alcohol or di-lower alkyl ketone and dried in a solid-liquid separation step after the reaction, thereby reducing the particle size and purity. It has been found that a vaterite-type spherical calcium carbonate having a high thickness can be produced.

本発明は、水溶液中でCaCl2又はCa(NO3)2を炭酸化してバテライト型炭酸カルシウムを合成する方法において、反応後の固液分離工程で、固体を低級アルコール又はジ低級アルキルケトンで洗浄し乾燥することを特徴とする3N以上の純度を有するバテライト型球状炭酸カルシウムの製造方法、及び当該方法により製造されるバテライト型球状炭酸カルシウムを提供するものである。 The present invention relates to a method for synthesizing vaterite-type calcium carbonate by carbonating CaCl 2 or Ca (NO 3 ) 2 in an aqueous solution. In the solid-liquid separation step after the reaction, the solid is washed with a lower alcohol or a di-lower alkyl ketone. The present invention provides a method for producing a vaterite-type spherical calcium carbonate having a purity of 3N or higher, which is characterized by being dried, and a vaterite-type spherical calcium carbonate produced by the method.

本発明によれば、粒子径が小さく、純度の高いバテライト型球状炭酸カルシウムを、簡便に製造することができる。   According to the present invention, vaterite spherical calcium carbonate having a small particle size and high purity can be easily produced.

平均粒子径1.3μmのバテライト型炭酸カルシウムをアセトン中で加熱した後の結晶形態の顕微鏡写真である(参考例1)。It is a microscope picture of the crystal form after heating vaterite type calcium carbonate with an average particle diameter of 1.3 micrometers in acetone (reference example 1). 平均粒子径1.3μmのバテライト型炭酸カルシウムをエタノール中で加熱した後の結晶形態の顕微鏡写真である(参考例2)。It is the microscope picture of the crystal form after heating the vaterite type | mold calcium carbonate with an average particle diameter of 1.3 micrometers in ethanol (reference example 2). 平均粒子径1.3μmのバテライト型炭酸カルシウムを水中で加熱した後の結晶形態の顕微鏡写真である(比較参考例1)。It is a microscope picture of the crystal form after heating vaterite type calcium carbonate with an average particle diameter of 1.3 micrometers in water (comparative reference example 1). 平均粒子径3.2μmのバテライト型炭酸カルシウムを水中で加熱した後の結晶形態の顕微鏡写真である(比較参考例2)。It is a microscope picture of the crystal form after heating vaterite type calcium carbonate with an average particle diameter of 3.2 micrometers in water (comparative reference example 2).

本発明において、原料として使用するCaCl2又はCa(NO3)2は、純度の高いものが好ましく、例えば、特開昭62-36021号公報、特開昭63-156012号公報等に記載の方法に従って製造することができる。前者は、生石灰を消化し、その溶液を比較的高い温度でろ過することによりSrを除き、得られた石灰乳を塩化アンモニウム又は硝酸アンモニウムなどに溶解して不溶物を除去し、純度の高いCaCl2又はCa(NO3)2を調製する方法であり、後者は、石灰石をHCl又は硝酸に溶解し、CaCl2又はCa(NO3)2のpHを調整することで、不純物を析出させて分離し、純度の高いCaCl2又はCa(NO3)2を調製する方法である。 In the present invention, CaCl 2 or Ca (NO 3 ) 2 used as a raw material preferably has a high purity. For example, the methods described in JP-A-62-236021 and JP-A-63-156012 Can be manufactured according to. The former digests quicklime, removes Sr by filtering the solution at a relatively high temperature, dissolves the obtained lime milk in ammonium chloride or ammonium nitrate, etc. to remove insoluble matters, and high purity CaCl 2 or a process for preparing a Ca (NO 3) 2, the latter can be prepared by dissolving the limestone HCl or nitric acid, by adjusting the pH of CaCl 2 or Ca (NO 3) 2, and separated by precipitation of impurities This is a method for preparing highly pure CaCl 2 or Ca (NO 3 ) 2 .

CaCl2又はCa(NO3)2の炭酸化は、炭酸塩を使用する方法、又はアルカリ剤を添加しながら炭酸ガスを用いる方法を利用することができる。炭酸塩としては、一般的な原料である、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、炭酸アンモニウム、炭酸水素アンモニウム等を使用することができる。中でも、不純物として金属を含まない、炭酸アンモニウム、炭酸水素アンモニウム等が好ましい。炭酸塩は、そのまま使用しても、水溶液として使用してもよい。炭酸ガスは、市販のボンベ、石灰石の熱分解工程で生成する炭酸ガスを生成したものを利用することができる。中でも、塩化カルシウム溶液又は硝酸カルシウム溶液にアンモニア水を添加して、炭酸アンモニウムで炭酸化する方法が、粒子径の小さい、凝集の少ない球状粒子を得ることができるため、好ましい。 Carbonation of CaCl 2 or Ca (NO 3 ) 2 can utilize a method using a carbonate or a method using carbon dioxide gas while adding an alkali agent. As the carbonate, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, ammonium carbonate, ammonium hydrogen carbonate and the like, which are general raw materials, can be used. Among these, ammonium carbonate, ammonium hydrogen carbonate and the like that do not contain a metal as an impurity are preferable. The carbonate may be used as it is or as an aqueous solution. As the carbon dioxide gas, a commercially available cylinder or one produced with carbon dioxide gas generated in the thermal decomposition process of limestone can be used. Among them, a method of adding ammonia water to a calcium chloride solution or a calcium nitrate solution and carbonating with ammonium carbonate is preferable because spherical particles having a small particle diameter and little aggregation can be obtained.

炭酸化により生成したバテライト型球状炭酸カルシウムは、固液分離工程で、固体を低級アルコール又はジ低級アルキルケトンで洗浄し、乾燥する。   The vaterite spherical calcium carbonate produced by carbonation is washed with a lower alcohol or di-lower alkyl ketone and dried in a solid-liquid separation step.

低級アルコールとしては、炭素数1〜4の脂肪族アルコール、例えばエタノール、メタノール、プロパノール等が好ましく、特に、エタノール、メタノールは汎用溶剤として安価であり最適である。   The lower alcohol is preferably an aliphatic alcohol having 1 to 4 carbon atoms, such as ethanol, methanol, propanol, etc. In particular, ethanol and methanol are inexpensive and optimal as general-purpose solvents.

ジ低級アルキルケトンとしては、総炭素数3〜6のジアルキルケトン、例えばアセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン等が好ましく、特に、アセトン、メチルエチルケトンは汎用溶剤として安価であり最適である。   The di-lower alkyl ketone is preferably a dialkyl ketone having 3 to 6 carbon atoms, such as acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, etc. In particular, acetone and methyl ethyl ketone are inexpensive and optimal as general-purpose solvents.

固体の洗浄方法としては、固体の上から低級アルコール又はジ低級アルキルケトンにより洗浄する貫通洗浄、固体を低級アルコール又はジ低級アルキルケトンと混合攪拌してから固液分離するリパルプ洗浄を利用することができる。なかでも、固体を貫通洗浄した後にリパルプ洗浄する、2段階で行うと、効率よく洗浄できるため、好ましい。   As a method for washing a solid, it is possible to use through-washing in which the solid is washed with a lower alcohol or di-lower alkyl ketone from above, and repulp washing in which the solid is mixed and stirred with the lower alcohol or di-lower alkyl ketone and then solid-liquid separated. it can. Especially, since it can wash | clean efficiently, it is preferable if it carries out in two steps which carry out the repulp washing | cleaning after penetrating the solid.

固体に対する低級アルコール又はジ低級アルキルケトンの使用量は、0.5〜3.0mL/gが好ましく、1.0〜2.0mL/gがより好ましい。   The amount of the lower alcohol or di-lower alkyl ketone used relative to the solid is preferably 0.5 to 3.0 mL / g, more preferably 1.0 to 2.0 mL / g.

洗浄後の固体は、熱風乾燥器、真空乾燥機、振動乾燥機などにより乾燥する。洗浄固体は、安定であるため、比較的高い温度で乾燥しても、カルサイトに転移しない。   The washed solid is dried by a hot air dryer, a vacuum dryer, a vibration dryer or the like. Since the washed solid is stable, it does not transfer to calcite even when dried at a relatively high temperature.

以上のような方法に従ってバテライトを製造すれば、例えば粒径0.5〜3.0μm、好ましくは0.8〜1.8μmという粒子径が小さく、3N以上の純度のバテライト型球状炭酸カルシウムを簡単に製造することができる。   If vaterite is produced according to the above-described method, for example, a vaterite spherical calcium carbonate having a small particle size of 0.5 to 3.0 μm, preferably 0.8 to 1.8 μm and a purity of 3N or more can be easily produced. .

以下に、実施例を挙げて、さらに具体的に説明する。   Hereinafter, examples will be described in more detail.

《洗浄溶媒の選定》
参考例1
平均粒子径1.3μmのバテライト型炭酸カルシウム0.7gとアセトン7gをサンプル缶瓶に入れ、50℃で3時間加熱した。加熱後の炭酸カルシウムスラリーから、固体を分離し、結晶形態を電子顕微鏡で確認した。試験結果を表1に示す。
<< Selection of cleaning solvent >>
Reference example 1
0.7 g of vaterite-type calcium carbonate having an average particle size of 1.3 μm and 7 g of acetone were placed in a sample can and heated at 50 ° C. for 3 hours. The solid was separated from the heated calcium carbonate slurry, and the crystal form was confirmed with an electron microscope. The test results are shown in Table 1.

参考例2
アセトンの代わりにエタノールを使用し、参考例1と同様の方法で試験を行った。試験結果を表1に示す。
Reference example 2
The test was conducted in the same manner as in Reference Example 1 using ethanol instead of acetone. The test results are shown in Table 1.

比較参考例1
アセトンの代わりに水(蒸留水)を使用し、参考例1と同様の方法で試験を行った。試験結果を表1に示す。
Comparative Reference Example 1
The test was conducted in the same manner as in Reference Example 1 using water (distilled water) instead of acetone. The test results are shown in Table 1.

比較参考例2
平均粒子径3.2μmのバテライト型炭酸カルシウム0.7gと水(蒸留水)7gをサンプル缶瓶に入れ、50℃で3時間加熱した。加熱後の炭酸カルシウムスラリーから、固体を分離し、結晶形態を電子顕微鏡で確認した。試験結果を表1に示す。
Comparative Reference Example 2
0.7 g of vaterite-type calcium carbonate having an average particle size of 3.2 μm and 7 g of water (distilled water) were placed in a sample can and heated at 50 ° C. for 3 hours. The solid was separated from the heated calcium carbonate slurry, and the crystal form was confirmed with an electron microscope. The test results are shown in Table 1.

原料製造例 《高純度CaCl2溶液の調製方法》
石灰石1.7kgと蒸留水1.5kgに35%HCl3.1kgを添加して石灰石を溶かし、不溶物をろ過し、CaCl2溶液を得た。このCaCl2溶液に、CaO37.5gと蒸留水1.5Lから調製した石灰乳を添加し、沈殿物を除去した後、蒸留水を添加し、0.75mol/Lと2mol/Lの精製CaCl2溶液を調製した。
Raw material production example << Preparation method of high purity CaCl 2
3.1 kg of 35% HCl was added to 1.7 kg of limestone and 1.5 kg of distilled water to dissolve the limestone, and the insoluble matter was filtered to obtain a CaCl 2 solution. To this CaCl 2 solution, add lime milk prepared from 37.5 g of CaO and 1.5 L of distilled water, remove the precipitate, add distilled water, and add purified 0.75 mol / L and 2 mol / L of purified CaCl 2 solution. Prepared.

実施例1
2Lのガラス製フラスコに0.75mol/LのCaCl2溶液500mLと29%のアンモニア水11gを添加し、マグネチックスターラーで攪拌しながら、0.75mol/Lの炭酸アンモニウム溶液500mLを一度に添加し、15℃で5分間反応させた。次に、ガラスろ過器を用いて、反応溶液をろ過し、ガラスロート上の炭酸カルシウムをアセトン50mLで洗浄(貫通洗浄)し、100℃の乾燥器で乾燥した。
乾燥後の炭酸カルシウムの結晶形態、粒子径をそれぞれ、XRD、SEM、マイクロトラックで確認した。その結果を表2に示す。また、炭酸カルシウムの不純分をICPで分析し、純度を計算した。その試験結果を表3に示す。
Example 1
Add 500 mL of a 0.75 mol / L CaCl 2 solution and 11 g of 29% ammonia water to a 2 L glass flask, add 500 mL of a 0.75 mol / L ammonium carbonate solution at one time while stirring with a magnetic stirrer, The reaction was carried out at 5 ° C. for 5 minutes. Next, the reaction solution was filtered using a glass filter, and the calcium carbonate on the glass funnel was washed with 50 mL of acetone (through-cleaning) and dried with a dryer at 100 ° C.
The crystal form and particle size of calcium carbonate after drying were confirmed by XRD, SEM and Microtrac, respectively. The results are shown in Table 2. Further, the impurity content of calcium carbonate was analyzed by ICP, and the purity was calculated. The test results are shown in Table 3.

実施例2
2Lのガラス製フラスコに0.75mol/LのCaCl2溶液500mLと29%のアンモニア水11gを添加し、マグネチックスターラーで攪拌しながら、0.75mol/Lの炭酸アンモニウム溶液500mLを一度に添加し、15℃で5分間反応させた。次に、ガラスろ過器を用いて、反応溶液をろ過し、ガラスロート上の炭酸カルシウムをエタノール50mLで洗浄(貫通洗浄)し、100℃の乾燥器で乾燥した。
乾燥後の炭酸カルシウムの結晶形態、粒子径をそれぞれ、XRD、SEM、マイクロトラックで確認した。その結果を表2に示す。また、炭酸カルシウムの不純分をICPで分析し、純度を計算した。その試験結果を表3に示す。
Example 2
Add 500 mL of a 0.75 mol / L CaCl 2 solution and 11 g of 29% ammonia water to a 2 L glass flask, add 500 mL of a 0.75 mol / L ammonium carbonate solution at one time while stirring with a magnetic stirrer, The reaction was carried out at 5 ° C. for 5 minutes. Next, the reaction solution was filtered using a glass filter, and the calcium carbonate on the glass funnel was washed with 50 mL of ethanol (through-cleaning) and dried with a dryer at 100 ° C.
The crystal form and particle size of calcium carbonate after drying were confirmed by XRD, SEM and Microtrac, respectively. The results are shown in Table 2. Further, the impurity content of calcium carbonate was analyzed by ICP, and the purity was calculated. The test results are shown in Table 3.

実施例3
2Lのガラス製フラスコに0.75mol/LのCaCl2溶液500mLと29%のアンモニア水11gを添加し、マグネチックスターラーで攪拌しながら、0.75mol/Lの炭酸アンモニウム溶液500mLを一度に添加し、10℃で5分間反応させた。次に、ガラスろ過器を用いて、反応溶液をろ過し、ガラスロート上の炭酸カルシウムをアセトン50mLで洗浄(貫通洗浄)し、100℃の乾燥器で乾燥した。
乾燥後の炭酸カルシウムの結晶形態、粒子径をそれぞれ、XRD、SEM、マイクロトラックで確認した。その結果を表2に示す。また、炭酸カルシウムの不純分をICPで分析し、純度を計算した。その試験結果を表3に示す。
Example 3
Add 500 mL of a 0.75 mol / L CaCl 2 solution and 11 g of 29% ammonia water to a 2 L glass flask, add 500 mL of a 0.75 mol / L ammonium carbonate solution at one time while stirring with a magnetic stirrer, The reaction was carried out at 5 ° C. for 5 minutes. Next, the reaction solution was filtered using a glass filter, and the calcium carbonate on the glass funnel was washed with 50 mL of acetone (through-cleaning) and dried with a dryer at 100 ° C.
The crystal form and particle size of calcium carbonate after drying were confirmed by XRD, SEM and Microtrac, respectively. The results are shown in Table 2. Further, the impurity content of calcium carbonate was analyzed by ICP, and the purity was calculated. The test results are shown in Table 3.

実施例4
2Lのガラス製フラスコに0.75mol/LのCaCl2溶液500mLと29%のアンモニア水11gを添加し、マグネチックスターラーで攪拌しながら、0.75mol/Lの炭酸アンモニウム溶液500mLを一度に添加し、20℃で5分間反応させた。次に、ガラスろ過器を用いて、反応溶液をろ過し、ガラスロート上の炭酸カルシウムをアセトン50mLで洗浄(貫通洗浄)し、100℃の乾燥器で乾燥した。
乾燥後の炭酸カルシウムの結晶形態、粒子径をそれぞれ、XRD、SEM、マイクロトラックで確認した。その結果を表2に示す。また、炭酸カルシウムの不純分をICPで分析し、純度を計算した。その試験結果を表3に示す。
Example 4
To a 2 L glass flask, add 500 mL of a 0.75 mol / L CaCl 2 solution and 11 g of 29% ammonia water. While stirring with a magnetic stirrer, add 500 mL of a 0.75 mol / L ammonium carbonate solution all at once. The reaction was carried out at 5 ° C. for 5 minutes. Next, the reaction solution was filtered using a glass filter, and the calcium carbonate on the glass funnel was washed with 50 mL of acetone (through-cleaning) and dried with a dryer at 100 ° C.
The crystal form and particle size of calcium carbonate after drying were confirmed by XRD, SEM and Microtrac, respectively. The results are shown in Table 2. Further, the impurity content of calcium carbonate was analyzed by ICP, and the purity was calculated. The test results are shown in Table 3.

実施例5
2Lのガラス製フラスコに0.75mol/LのCaCl2溶液500mLと29%のアンモニア水11gを添加し、マグネチックスターラーで攪拌しながら、0.75mol/Lの炭酸アンモニウム溶液500mLを一度に添加し、25℃で5分間反応させた。次に、ガラスろ過器を用いて、反応溶液をろ過し、ガラスロート上の炭酸カルシウムをアセトン50mLで洗浄(貫通洗浄)し、100℃の乾燥器で乾燥した。
乾燥後の炭酸カルシウムの結晶形態、粒子径をそれぞれ、XRD、SEM、マイクロトラックで確認した。その結果を表2に示す。また、炭酸カルシウムの不純分をICPで分析し、純度を計算した。その試験結果を表3に示す。
Example 5
To a 2 L glass flask, add 500 mL of a 0.75 mol / L CaCl 2 solution and 11 g of 29% ammonia water. While stirring with a magnetic stirrer, add 500 mL of a 0.75 mol / L ammonium carbonate solution all at once. The reaction was carried out at 5 ° C. for 5 minutes. Next, the reaction solution was filtered using a glass filter, and the calcium carbonate on the glass funnel was washed with 50 mL of acetone (through-cleaning) and dried with a dryer at 100 ° C.
The crystal form and particle size of calcium carbonate after drying were confirmed by XRD, SEM and Microtrac, respectively. The results are shown in Table 2. Further, the impurity content of calcium carbonate was analyzed by ICP, and the purity was calculated. The test results are shown in Table 3.

実施例6
2Lのガラス製フラスコに0.75mol/LのCaCl2溶液500mLと29%のアンモニア水16.5gを添加し、マグネチックスターラーで攪拌しながら、0.75mol/Lの炭酸アンモニウム溶液500mLを一度に添加し、15℃で5分間反応させた。次に、ガラスろ過器を用いて、反応溶液をろ過し、ガラスロート上の炭酸カルシウムをアセトン50mLで洗浄(貫通洗浄)し、100℃の乾燥器で乾燥した。
乾燥後の炭酸カルシウムの結晶形態、粒子径をそれぞれ、XRD、SEM、マイクロトラックで確認した。その結果を表2に示す。また、炭酸カルシウムの不純分をICPで分析し、純度を計算した。その試験結果を表3に示す。
Example 6
Add 500 mL of a 0.75 mol / L CaCl 2 solution and 16.5 g of 29% ammonia water to a 2 L glass flask, add 500 mL of a 0.75 mol / L ammonium carbonate solution at a time while stirring with a magnetic stirrer, The reaction was carried out at 15 ° C. for 5 minutes. Next, the reaction solution was filtered using a glass filter, and the calcium carbonate on the glass funnel was washed with 50 mL of acetone (through-cleaning) and dried with a dryer at 100 ° C.
The crystal form and particle size of calcium carbonate after drying were confirmed by XRD, SEM and Microtrac, respectively. The results are shown in Table 2. Further, the impurity content of calcium carbonate was analyzed by ICP, and the purity was calculated. The test results are shown in Table 3.

実施例7
2Lのガラス製フラスコに0.75mol/LのCaCl2溶液500mLと29%のアンモニア水22.0gを添加し、マグネチックスターラーで攪拌しながら、0.75mol/Lの炭酸アンモニウム溶液500mLを一度に添加し、15℃で5分間反応させた。次に、ガラスろ過器を用いて、反応溶液をろ過し、ガラスロート上の炭酸カルシウムをアセトン50mLで洗浄(貫通洗浄)し、100℃の乾燥器で乾燥した。
乾燥後の炭酸カルシウムの結晶形態、粒子径をそれぞれ、XRD、SEM、マイクロトラックで確認した。その結果を表2に示す。また、炭酸カルシウムの不純分をICPで分析し、純度を計算した。その試験結果を表3に示す。
Example 7
To a 2 L glass flask, add 500 mL of a 0.75 mol / L CaCl 2 solution and 22.0 g of 29% ammonia water. While stirring with a magnetic stirrer, add 500 mL of a 0.75 mol / L ammonium carbonate solution all at once. The reaction was carried out at 15 ° C. for 5 minutes. Next, the reaction solution was filtered using a glass filter, and the calcium carbonate on the glass funnel was washed with 50 mL of acetone (through-cleaning) and dried with a dryer at 100 ° C.
The crystal form and particle size of calcium carbonate after drying were confirmed by XRD, SEM and Microtrac, respectively. The results are shown in Table 2. Further, the impurity content of calcium carbonate was analyzed by ICP, and the purity was calculated. The test results are shown in Table 3.

実施例8
1Lのガラス製フラスコに2mol/LのCaCl2溶液188mLと29%のアンモニア水11gを添加し、マグネチックスターラーで攪拌しながら、2mol/Lの炭酸アンモニウム溶液188mLを一度に添加し、15℃で5分間反応させた。次に、ガラスろ過器を用いて、反応溶液をろ過し、ガラスロート上の炭酸カルシウムをアセトン50mLで洗浄(貫通洗浄)し、100℃の乾燥器で乾燥した。
乾燥後の炭酸カルシウムの結晶形態、粒子径をそれぞれ、XRD、SEM、マイクロトラックで確認した。その結果を表2に示す。また、炭酸カルシウムの不純分をICPで分析し、純度を計算した。その試験結果を表3に示す。
Example 8
To a 1 L glass flask, add 188 mL of a 2 mol / L CaCl 2 solution and 11 g of 29% ammonia water, add 188 mL of a 2 mol / L ammonium carbonate solution all at once while stirring with a magnetic stirrer, and at 15 ° C. The reaction was allowed for 5 minutes. Next, the reaction solution was filtered using a glass filter, and the calcium carbonate on the glass funnel was washed with 50 mL of acetone (through-cleaning) and dried with a dryer at 100 ° C.
The crystal form and particle size of calcium carbonate after drying were confirmed by XRD, SEM and Microtrac, respectively. The results are shown in Table 2. Further, the impurity content of calcium carbonate was analyzed by ICP, and the purity was calculated. The test results are shown in Table 3.

実施例9
20Lのガラス製反応容器に0.75mol/LのCaCl2溶液6666mLと29%のアンモニア水146.8gを添加し、攪拌しながら、0.75mol/Lの炭酸アンモニウム溶液6666mLを一度に添加し、15℃で5分間反応させた。次に、ガラスろ過器を用いて、反応溶液をろ過し、ガラスロート上の炭酸カルシウムをアセトン500mLで洗浄した(貫通洗浄)。さらに、固体を2Lのポリ容器に移し、500mLのアセトンを添加して、500rpmの速度で3分間攪拌し、炭酸カルシウムスラリーを得た(リパルプ洗浄)。このスラリーをガラスろ過器でろ過し、固体を100℃の乾燥器で乾燥した。
乾燥後の炭酸カルシウムの結晶形態、粒子径をそれぞれ、XRD、SEM、マイクロトラックで確認した。その結果を表2に示す。また、炭酸カルシウムの不純分をICPで分析し、純度を計算した。その試験結果を表3に示す。
Example 9
Add 6666 mL of a 0.75 mol / L CaCl 2 solution and 146.8 g of 29% ammonia water to a 20 L glass reaction vessel, and add 6666 mL of a 0.75 mol / L ammonium carbonate solution all at once with stirring. The reaction was allowed for 5 minutes. Next, the reaction solution was filtered using a glass filter, and the calcium carbonate on the glass funnel was washed with 500 mL of acetone (through-cleaning). Further, the solid was transferred to a 2 L plastic container, 500 mL of acetone was added, and the mixture was stirred at a speed of 500 rpm for 3 minutes to obtain a calcium carbonate slurry (repulp washing). This slurry was filtered with a glass filter, and the solid was dried with a dryer at 100 ° C.
The crystal form and particle size of calcium carbonate after drying were confirmed by XRD, SEM and Microtrac, respectively. The results are shown in Table 2. The impurity content of calcium carbonate was analyzed by ICP and the purity was calculated. The test results are shown in Table 3.

比較例1
2Lのガラス製フラスコに0.75mol/LのCaCl2溶液500mLと29%のアンモニア水11gを添加し、マグネチックスターラーで攪拌しながら、0.75mol/Lの炭酸アンモニウム溶液500mLを一度に添加し、15℃で5分間反応させた。次に、ガラスろ過器を用いて、反応溶液をろ過し、ガラスロート上の炭酸カルシウムを水50mLで洗浄(貫通洗浄)し、100℃の乾燥器で乾燥した。
乾燥後の炭酸カルシウムの結晶形態、粒子径をそれぞれ、XRD、SEM、マイクロトラックで確認した。その結果を表2に示す。
Comparative Example 1
To a 2 L glass flask, add 500 mL of a 0.75 mol / L CaCl 2 solution and 11 g of 29% ammonia water. While stirring with a magnetic stirrer, add 500 mL of a 0.75 mol / L ammonium carbonate solution all at once. The reaction was carried out at 5 ° C. for 5 minutes. Next, the reaction solution was filtered using a glass filter, and the calcium carbonate on the glass funnel was washed with 50 mL of water (through-cleaning) and dried with a dryer at 100 ° C.
The crystal form and particle size of calcium carbonate after drying were confirmed by XRD, SEM and Microtrac, respectively. The results are shown in Table 2.

Claims (7)

水溶液中でCaCl2又はCa(NO3)2を炭酸化してバテライト型炭酸カルシウムを合成する方法において、反応後の固液分離工程で、固体を低級アルコール又はジ低級アルキルケトンで洗浄し乾燥することを特徴とする3N以上の純度を有するバテライト型球状炭酸カルシウムの製造方法。 In a method of synthesizing vaterite calcium carbonate by carbonating CaCl 2 or Ca (NO 3 ) 2 in an aqueous solution, the solid is washed with a lower alcohol or di-lower alkyl ketone and dried in a solid-liquid separation step after the reaction. A method for producing a vaterite-type spherical calcium carbonate having a purity of 3N or higher. 低級アルコールが、炭素数1〜4の脂肪族アルコールである請求項1記載のバテライト型球状炭酸カルシウムの製造方法。   The method for producing vaterite-type spherical calcium carbonate according to claim 1, wherein the lower alcohol is an aliphatic alcohol having 1 to 4 carbon atoms. ジ低級アルキルケトンが、総炭素数3〜6のジアルキルケトンである請求項1記載のバテライト型球状炭酸カルシウムの製造方法。   The method for producing a vaterite-type spherical calcium carbonate according to claim 1, wherein the di-lower alkyl ketone is a dialkyl ketone having 3 to 6 carbon atoms in total. 固体の低級アルコール又はジ低級アルキルケトンによる洗浄が、貫通洗浄した後にリパルプ洗浄する2段階で行われるものである請求項1〜3のいずれかに記載のバテライト型球状炭酸カルシウムの製造方法。   The method for producing a vaterite-type spherical calcium carbonate according to any one of claims 1 to 3, wherein the washing with the solid lower alcohol or di-lower alkyl ketone is performed in two stages of through-washing and then repulping. CaCl2又はCa(NO3)2の炭酸化反応が、塩化カルシウム溶液又は硝酸カルシウム溶液にアンモニア水を添加して、炭酸アンモニウムで炭酸化するものである請求項1記載のバテライト型球状炭酸カルシウムの製造方法。 The carbonated reaction of CaCl 2 or Ca (NO 3 ) 2 is performed by adding ammonia water to a calcium chloride solution or a calcium nitrate solution, and carbonated with ammonium carbonate. Production method. 請求項1〜5のいずれかに記載の方法により製造されるバテライト型球状炭酸カルシウ   Vaterite-type spherical carbonate produced by the method according to claim 1 平均粒子径0.5μm〜3.0μmである請求項6記載のバテライト型球状炭酸カルシウム。   The vaterite-type spherical calcium carbonate according to claim 6, which has an average particle size of 0.5 µm to 3.0 µm.
JP2009202312A 2009-09-02 2009-09-02 Method of producing high purity vaterite-type spherical calcium carbonate Pending JP2011051834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009202312A JP2011051834A (en) 2009-09-02 2009-09-02 Method of producing high purity vaterite-type spherical calcium carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009202312A JP2011051834A (en) 2009-09-02 2009-09-02 Method of producing high purity vaterite-type spherical calcium carbonate

Publications (1)

Publication Number Publication Date
JP2011051834A true JP2011051834A (en) 2011-03-17

Family

ID=43941250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009202312A Pending JP2011051834A (en) 2009-09-02 2009-09-02 Method of producing high purity vaterite-type spherical calcium carbonate

Country Status (1)

Country Link
JP (1) JP2011051834A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100403555C (en) * 2001-12-28 2008-07-16 株式会社东芝 Light-emitting component and its manufacturing method
CN102249281A (en) * 2011-06-16 2011-11-23 山东大学 Lensing spherical vaterite calcium carbonate crystal with high purity and preparation method thereof
CN102424415A (en) * 2011-09-14 2012-04-25 陕西科技大学 Preparation method for needle cluster-like micrometer-scale calcium carbonate
CN106698494B (en) * 2017-02-28 2019-03-26 广西民族大学 A kind of preparation method of spherical shape micro/nano level calcium carbonate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417719B1 (en) * 1971-06-10 1979-07-02
JPS5792520A (en) * 1980-11-25 1982-06-09 Lion Corp Preparation of spherical calcium carbonate
JPS5760294B2 (en) * 1978-05-19 1982-12-18 Central Glass Co Ltd
JPH01301511A (en) * 1988-05-31 1989-12-05 Nippon Sekkai Kogyo Kk Production of spherical calcium carbonate
JPH02153819A (en) * 1988-09-12 1990-06-13 Sanyo Kokusaku Pulp Co Ltd Production of hollow and spherical vaterite type calcium carbide and stabilization thereof
JPH035317A (en) * 1987-12-25 1991-01-11 Oita Pref Gov Method for stabilizing vaterite-derived calcium carbonate
JPH0431319A (en) * 1990-05-28 1992-02-03 Maruo Calcium Co Ltd Stabilization of vaterize-type calcium carbonate
JP2008081766A (en) * 2006-09-26 2008-04-10 Dowa Holdings Co Ltd Wet treatment method for zinc leaching residue

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417719B1 (en) * 1971-06-10 1979-07-02
JPS5760294B2 (en) * 1978-05-19 1982-12-18 Central Glass Co Ltd
JPS5792520A (en) * 1980-11-25 1982-06-09 Lion Corp Preparation of spherical calcium carbonate
JPH035317A (en) * 1987-12-25 1991-01-11 Oita Pref Gov Method for stabilizing vaterite-derived calcium carbonate
JPH01301511A (en) * 1988-05-31 1989-12-05 Nippon Sekkai Kogyo Kk Production of spherical calcium carbonate
JPH054342B2 (en) * 1988-05-31 1993-01-19 Karushiido Kk
JPH02153819A (en) * 1988-09-12 1990-06-13 Sanyo Kokusaku Pulp Co Ltd Production of hollow and spherical vaterite type calcium carbide and stabilization thereof
JPH0431319A (en) * 1990-05-28 1992-02-03 Maruo Calcium Co Ltd Stabilization of vaterize-type calcium carbonate
JP2008081766A (en) * 2006-09-26 2008-04-10 Dowa Holdings Co Ltd Wet treatment method for zinc leaching residue

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100403555C (en) * 2001-12-28 2008-07-16 株式会社东芝 Light-emitting component and its manufacturing method
CN102249281A (en) * 2011-06-16 2011-11-23 山东大学 Lensing spherical vaterite calcium carbonate crystal with high purity and preparation method thereof
CN102424415A (en) * 2011-09-14 2012-04-25 陕西科技大学 Preparation method for needle cluster-like micrometer-scale calcium carbonate
CN106698494B (en) * 2017-02-28 2019-03-26 广西民族大学 A kind of preparation method of spherical shape micro/nano level calcium carbonate

Similar Documents

Publication Publication Date Title
AU2010228846B2 (en) Process for simultaneous production of potassium sulphate, ammonium sulfate, magnesium hydroxide and/or magnesium oxide from kainite mixed salt and ammonia
JP6289412B2 (en) Method for producing monovalent succinate
CN1194898C (en) Process for preparing both barium sulfate and calcium chloride from waste ardealite dregs
CA2939418C (en) Process for producing high grade hydromagnesite and magnesium oxide
JP5387809B2 (en) Vaterite-type spherical calcium carbonate and method for producing the same
KR101870619B1 (en) Manufacturing method of calcium compound and silicon compound from steel slag
JP2011051834A (en) Method of producing high purity vaterite-type spherical calcium carbonate
US9056781B2 (en) Method of producing calcite capable of controlling a grain size thereof
CN107446158A (en) Enhanced complex phase crystal preparation method based on calcite and aragonite
JP2003221227A (en) Method for producing boehmite
CZ298664B6 (en) Method of obtaining a solution of calcium ions from lime and method of producing lime-containing products
CN1083398C (en) Method for producing calcium borate
JP2006335578A (en) Leaflet-like gypsum dihydrate and its manufacturing method
JP5081438B2 (en) Method for producing magnesium oxide
JP2001270713A (en) Method for producing calcium carbonate having aragonite crystal system
JP2010222161A (en) Vaterite-type spherical calcium carbonate and method for producing the same
KR20180099517A (en) Method for manufacturing magnesium hydroxide
JP2001354416A (en) Method for manufacturing aragonite type calcium carbonate
JP5537238B2 (en) Method for producing high purity calcium salt solution
JP2002235295A (en) Method for producing calcium carbonate whisker
WO2023007882A1 (en) Calcium carbonate particle group, resin composition, and method for producing calcium carbonate particle group
KR101656035B1 (en) A method for the synthesis of precipitated calcium carbonate from dolomite kiln dust
CN102976352B (en) Method for synthesizing 4A zeolite from kaolin
CN116119701B (en) Method for preparing nano calcium carbonate from carbide slag
CN112760483B (en) Method for metal smelting separation and co-production of high-purity calcium product and high-purity calcium product prepared by method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150120