JP5260163B2 - Measuring apparatus and measuring method - Google Patents

Measuring apparatus and measuring method Download PDF

Info

Publication number
JP5260163B2
JP5260163B2 JP2008173429A JP2008173429A JP5260163B2 JP 5260163 B2 JP5260163 B2 JP 5260163B2 JP 2008173429 A JP2008173429 A JP 2008173429A JP 2008173429 A JP2008173429 A JP 2008173429A JP 5260163 B2 JP5260163 B2 JP 5260163B2
Authority
JP
Japan
Prior art keywords
contact
measurement
contact terminal
conductor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008173429A
Other languages
Japanese (ja)
Other versions
JP2010014479A (en
Inventor
浩 山嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2008173429A priority Critical patent/JP5260163B2/en
Publication of JP2010014479A publication Critical patent/JP2010014479A/en
Application granted granted Critical
Publication of JP5260163B2 publication Critical patent/JP5260163B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、測定対象体についての所定の物理量を測定する測定装置および測定方法に関するものである。   The present invention relates to a measuring apparatus and a measuring method for measuring a predetermined physical quantity of a measurement object.

この種の測定装置として、特開2008−8773号公報に開示された基板検査装置が知られている。この基板検査装置は、制御部、第一・第二電流供給部、第一・第二電圧計測部、第一・第二切替部、および第一・第二接触部等を備えて構成されている。この場合、第一・第二接触部は、検査対象の基板の各端子にそれぞれ接触するように配置された複数の接触子を備えて構成されている。また、各接触子は、一対の接触端子を備えてそれぞれ構成されている。この基板検査装置では、各切替部が、制御部の制御に従い、各接触部の各接触端子と各電流供給部との接続切替え、および各接触端子と各電圧計測部との接続切替えを行うことで、基板の表面側の端子に対する導通検査(抵抗測定)と、基板の裏面側の端子に対する導通検査とを並行して行っている。
特開2008−8773号公報(第5−12頁、第2図)
A substrate inspection apparatus disclosed in Japanese Patent Application Laid-Open No. 2008-8773 is known as this type of measurement apparatus. The substrate inspection apparatus includes a control unit, a first / second current supply unit, a first / second voltage measurement unit, a first / second switching unit, a first / second contact unit, and the like. Yes. In this case, the first and second contact portions are configured to include a plurality of contacts arranged to come into contact with the respective terminals of the board to be inspected. Moreover, each contactor is each provided with a pair of contact terminal. In this board inspection apparatus, each switching unit performs connection switching between each contact terminal of each contact unit and each current supply unit and connection switching between each contact terminal and each voltage measurement unit in accordance with the control of the control unit. Thus, the continuity test (resistance measurement) for the terminal on the front surface side of the substrate and the continuity test for the terminal on the back surface side of the substrate are performed in parallel.
Japanese Patent Laid-Open No. 2008-8773 (page 5-12, FIG. 2)

ところが、上記の基板検査装置には、以下の問題点がある。すなわち、この基板検査装置では、各切替部が各接触端子と各電流供給部との接続切り替え、および各接触端子と各電圧計測部との接続切り替えを行うことで、基板の表面側の端子および裏面側の端子に対する検査を並行して行っている。この場合、一般的に、接触端子と電流供給部との接続切り替え時には、電流が印加(供給)された瞬間に両端子間に大きな過渡電圧が生じる。このため、上記の基板検査装置には、この過渡電圧の影響によって導通検査(抵抗測定)の精度が低下するおそれがあるという問題点が存在する。この場合、過渡電圧が低下するまで所定時間待機することで導通検査の精度を向上させることが可能ではあるが、数多くの端子に対する導通検査を行う際には、各接触端子と各電圧計測部との接続切替えを行う度に所定時間待機する必要がある。このため、上記の基板検査装置では、この方法を採用したときには、基板の表面側の端子および裏面側の端子に対する導通検査を並行して行ったとしても、接続切替えを行う度に所定時間だけ待機する分、検査に長い時間を要するという不都合が生じることとなる。   However, the above substrate inspection apparatus has the following problems. That is, in this substrate inspection apparatus, each switching unit performs connection switching between each contact terminal and each current supply unit, and connection switching between each contact terminal and each voltage measurement unit, so that the terminals on the surface side of the substrate and Inspects the terminals on the back side in parallel. In this case, generally, at the time of switching the connection between the contact terminal and the current supply unit, a large transient voltage is generated between both terminals at the moment when the current is applied (supplied). For this reason, the substrate inspection apparatus has a problem that the accuracy of the continuity inspection (resistance measurement) may be lowered due to the influence of the transient voltage. In this case, it is possible to improve the accuracy of the continuity test by waiting for a predetermined time until the transient voltage decreases, but when conducting the continuity test for many terminals, each contact terminal, each voltage measuring unit, It is necessary to wait for a predetermined time each time the connection is switched. For this reason, in the above-described substrate inspection apparatus, when this method is adopted, even if a continuity inspection is performed in parallel on the front-side terminal and the back-side terminal of the substrate, it waits for a predetermined time each time connection switching is performed. As a result, the inspection takes a long time.

本発明は、かかる問題点に鑑みてなされたものであり、所定の物理量を正確かつ効率的に測定し得る測定装置および測定方法を提供することを主目的とする。   The present invention has been made in view of such problems, and a main object of the present invention is to provide a measuring apparatus and a measuring method capable of accurately and efficiently measuring a predetermined physical quantity.

上記目的を達成すべく請求項1記載の測定装置は、測定用電流を生成する電源部と、測定対象体の被接触部に前記測定用電流を出力するための第1接触端子および当該測定用電流の出力によって当該被接触部に生じる電圧を入力するための第2接触端子を対にした接触端子対を複数有する端子部と、前記電源部に接続されて前記測定用電流を供給する一対の第1導電体と、前記電圧を検出する電圧検出部と、当該電圧検出部に接続された一対の第2導電体と、前記各第1導電体および前記各第2導電体とは別体に設けられて前記測定用電流を通電させるための1つ以上の第3導電体と、前記各接触端子と前記各導電体との接断を行う接断部と、前記接断部を制御する制御部とを備えて、前記電圧の値に基づく前記測定対象体についての所定の物理量を測定可能に構成され、前記制御部は、前記物理量の測定時において、前記接断部を制御することにより、複数の前記測定対象体における前記各被接触部に前記接触端子対がそれぞれ接触している状態において、当該各接触端子対のうちの所定の2つを除く当該各接触端子対の各々における前記各第1接触端子と前記第3導電体とをそれぞれ接続させることによって複数の前記測定対象体を直列接続させると共に、当該直列接続されている各測定対象体の両端に位置する前記各被接触部にそれぞれ接触している前記除いた2つの接触端子対の各々における前記各第1接触端子と前記各第1導電体とをそれぞれ接続させ、かつ前記複数の測定対象体のうちのいずれか1つの前記各被接触部にそれぞれ接触している前記各接触端子対の各々における前記各第2接触端子と前記各第2導電体とをそれぞれ接続させる接続処理を実行する。 Measuring device according to claim 1 to achieve the above object includes a power supply unit for generating a measuring current, for the first contact terminals and the measurement for outputting the current for measurement in the contacted portion of the measured object A pair of contact terminals each having a pair of second contact terminals for inputting a voltage generated in the contacted part by the output of the current; and a pair of terminals connected to the power supply part to supply the measurement current a first conductor, a voltage detection unit for detecting the voltage, the voltage sensing and a pair of second conductors connected to the output portion, wherein separate from the respective first conductor and the respective second conductor controlling one or more third conductors for energizing the measuring current provided, wherein the disconnection unit which performs disconnection of the contact terminal and the the respective conductor, the disconnection portion A predetermined control unit for measuring the object based on the voltage value. Is measurably constituting the physical quantities, wherein, at the time of measurement of the physical quantity, by controlling the disconnection unit, the contact terminals to said each contacted portion of the plurality of the measured object is A plurality of contact terminals are connected by connecting each of the first contact terminals and the third conductor in each of the contact terminal pairs excluding a predetermined two of the contact terminal pairs. The measurement object bodies are connected in series, and each of the removed two contact terminal pairs in contact with the contacted parts located at both ends of the measurement object bodies connected in series, respectively. Each of the contact terminal pairs each connecting the first contact terminal and each of the first conductors and contacting each of the contacted parts of the plurality of measurement objects. Wherein executing a connection process of connecting the second contact terminal wherein a respective second electrical conductor respectively definitive.

また、請求項2記載の測定装置は、請求項1記載の測定装置において、前記端子部は、回路基板の内部に形成された内部配線によって接続されると共に当該回路基板の一面側および他面側にそれぞれ形成された前記被接触部としての各配線パターンに前記各接触端子対がそれぞれ接触可能に構成され、前記制御部は、前記接続処理において、前記測定対象体としての前記内部配線および前記各配線パターンが直列接続されるように前記接断部を制御する。   The measuring device according to claim 2 is the measuring device according to claim 1, wherein the terminal portion is connected by an internal wiring formed inside the circuit board, and one side and the other side of the circuit board are connected. Each of the contact terminal pairs is configured to be able to contact each wiring pattern as the contacted part formed in each, and in the connection process, the control unit is configured to connect the internal wiring as the measurement object and the respective wiring patterns. The connection / disconnection part is controlled so that the wiring patterns are connected in series.

また、請求項3記載の測定装置は、請求項2記載の測定装置において、前記回路基板の前記一面側に形成された前記配線パターンに接触させる前記各接触端子対と前記接断部との間の配線が束ねられると共に、前記回路基板の他面側に形成された前記配線パターンに接触させる各接触端子対と前記接断部との間の配線が束ねられている。   A measuring device according to a third aspect is the measuring device according to the second aspect, wherein the contact terminal pair brought into contact with the wiring pattern formed on the one surface side of the circuit board and the connection / disconnection portion Are bundled, and the wiring between each contact terminal pair brought into contact with the wiring pattern formed on the other surface side of the circuit board and the connection / disconnection part is bundled.

また、請求項4記載の測定方法は、第1接触端子および第2接触端子を対にした接触端子対を複数有する端子部における当該第1接触端子と測定用電流を生成する電源部に接続されて当該測定用電流を供給する一対の第1導電体との接断を行って当該第1接触端子を介して測定対象体の被接触部に測定用電流を出力し、電圧検出部に接続された一対の第2導電体と前記各接触端子との接断を行って当該測定用電流の出力によって前記被接触部に生じる電圧を検出し、当該検出した電圧の値に基づく前記測定対象体についての所定の物理量を測定する測定時において、複数の前記測定対象体における前記各被接触部に前記接触端子対をそれぞれ接触させ、その状態における当該各接触端子対のうちの所定の2つを除く当該各接触端子対の各々における前記各第1接触端子と前記各第1導電体および前記各第2導電体とは別体に設けられて前記測定用電流を通電させるための第3導電体とをそれぞれ接続させることによって複数の前記測定対象体を直列接続させると共に、当該直列接続させた各測定対象体の両端に位置する前記各被接触部にそれぞれ接触している前記除いた2つの接触端子対の各々における前記各第1接触端子と前記各第1導電体とをそれぞれ接続させ、かつ前記複数の測定対象体のうちのいずれか1つの前記各被接触部にそれぞれ接触している前記各接触端子対の各々における前記各第2接触端子と前記各第2導電体とをそれぞれ接続させる接続処理を実行する。 Further, the measuring method according to claim 4 is connected to the first contact terminal in the terminal portion having a plurality of contact terminal pairs in which the first contact terminal and the second contact terminal are paired and a power supply unit that generates a measurement current. performing disconnection of the first conductor pair and supplies the current for measurement and outputs a measured current to the contacted portion of the measured object through the first contact terminal Te is connected to the voltage detection unit About the measurement object based on the value of the detected voltage by detecting the voltage generated in the contacted part by the output of the measurement current by making a connection between the pair of second conductors and the contact terminals. in the measurement you measure the predetermined physical quantity scheduled, said contacting each of the contact portions on the contact terminal pairs each of a plurality of said measured object, two predetermined among the respective contact terminal pair at that state Except for each contact terminal pair Multiple by connecting takes said third conductor for the respective first contact terminals and each of the first conductor and the respective second conductors energizing the measuring current provided separately each The measurement object bodies are connected in series, and each of the removed two contact terminal pairs that are in contact with the contacted parts located at both ends of the measurement object bodies connected in series are respectively connected to the measurement object bodies. 1 contact terminal and each said 1st electric conductor are connected, respectively, and each said contact terminal pair in each said contacted part which is contacting each one said to-be-contacted part among these measurement object bodies respectively A connection process for connecting each second contact terminal and each second conductor is executed.

また、請求項5記載の測定方法は、請求項4記載の測定方法において、回路基板の内部に形成された内部配線によって接続されると共に当該回路基板の一面側および他面側にそれぞれ形成された前記被接触部としての各配線パターンに前記各接触端子対を接続させて、前記測定対象体としての前記内部配線および前記各配線パターンについての前記物理量を測定する際に、前記接続処理において、前記内部配線および前記各配線パターンが直列接続されるように前記各第1接触端子と前記第3導電体とを接続する。   Further, the measurement method according to claim 5 is the measurement method according to claim 4, wherein the measurement method is connected by an internal wiring formed inside the circuit board and formed on one side and the other side of the circuit board, respectively. In the connection process, when measuring the physical quantity of the internal wiring and the wiring patterns as the measurement object by connecting the contact terminal pairs to the wiring patterns as the contacted parts, The first contact terminals and the third conductor are connected so that the internal wiring and the wiring patterns are connected in series.

請求項1記載の測定装置および請求項4記載の測定方法によれば、複数の測定対象体の各被接触部に接触している各接触端子対のうちの所定の2つを除く各接触端子対の各々における各第1接触端子と第3導電体とをそれぞれ接続して複数の測定対象体を直列接続させる接続処理を実行することにより、直列接続した各測定対象体に測定用電流を流したときに大きな過渡電圧が発生したとしても、各測定対象体の直列接続および測定用電流の出力を継続することで、過渡電圧が収まった後における新たな過渡電圧の発生を確実に防止することができる。したがって、この測定装置によれば、各測定対象体の直列接続および測定用電流の出力を継続した状態で、各測定対象体の各被接触部に接触している各接触端子対の各第2接触端子と各第2導電体との接続を切り替えるだけで、各被接触部に生じる電圧の値を過渡電圧の影響のない状態で連続して測定することができる結果、その電圧の値に基づく測定対象体についての物理量を正確かつ効率的に測定することができる。   According to the measuring apparatus according to claim 1 and the measuring method according to claim 4, each contact terminal excluding a predetermined two of each contact terminal pair in contact with each contacted part of a plurality of measurement objects. By connecting each first contact terminal and the third conductor in each pair and connecting a plurality of measurement objects in series, a measurement current is passed to each measurement object connected in series. Even if a large transient voltage is generated, it is possible to reliably prevent the generation of a new transient voltage after the transient voltage has settled by continuing the series connection of each measurement object and output of the measurement current. Can do. Therefore, according to this measuring apparatus, each second of each contact terminal pair that is in contact with each contacted portion of each measurement object while the serial connection of each measurement object and the output of the measurement current are continued. By simply switching the connection between the contact terminal and each second conductor, the voltage value generated at each contacted part can be continuously measured without being affected by the transient voltage. As a result, based on the voltage value The physical quantity of the measurement object can be measured accurately and efficiently.

また、請求項2記載の測定装置および請求項5記載の測定方法によれば、内部配線によって接続された回路基板の一面側および他面側の各配線パターンに各接触端子対を接続させて内部配線および各配線パターンについての物理量を測定する際に、内部配線および各配線パターンが直列接続されるように各第1接触端子と第3導電体とを接続することにより、この種の回路基板における内部配線および各配線パターンについての物理量を正確かつ効率的に測定することができる。   Moreover, according to the measuring apparatus of Claim 2, and the measuring method of Claim 5, each contact terminal pair is connected to each wiring pattern of the one surface side of the circuit board connected by the internal wiring, and the other surface side, and the inside. When measuring the physical quantities of the wiring and each wiring pattern, by connecting each first contact terminal and the third conductor so that the internal wiring and each wiring pattern are connected in series, in this type of circuit board Physical quantities for the internal wiring and each wiring pattern can be accurately and efficiently measured.

また、請求項3記載の測定装置によれば、回路基板の一面側に形成された配線パターンに接触させる各接触端子対と接断部との間の配線を束ねると共に、回路基板の他面側に形成された配線パターンに接触させる各接触端子対と接断部との間の配線を束ねたことにより、各接触端子対と接断部との間の配線がループを構成したときに生じるノイズの影響を少なく抑えることができる結果、測定対象体についての物理量をより正確に測定することができる。   According to the measuring device of claim 3, the wiring between each contact terminal pair to be brought into contact with the wiring pattern formed on the one surface side of the circuit board and the connection portion is bundled, and the other surface side of the circuit board Noise generated when the wiring between each contact terminal pair and the connection part forms a loop by bundling the wiring between each contact terminal pair and the connection part that contacts the wiring pattern formed on As a result, the physical quantity of the measurement object can be measured more accurately.

以下、本発明に係る測定装置および測定方法の最良の形態について、添付図面を参照して説明する。   Hereinafter, the best mode of a measuring apparatus and a measuring method according to the present invention will be described with reference to the accompanying drawings.

最初に、測定装置1の構成について、図面を参照して説明する。   First, the configuration of the measuring apparatus 1 will be described with reference to the drawings.

図1に示す測定装置1は、本発明に係る測定装置の一例であって、例えば、回路基板100の一面側に配設された複数の配線パターンや複数の素子101(いずれも本発明における測定対象体の一例であって、同図では3つの素子101a〜101cを図示している)の抵抗値R(本発明における物理量の一例)を本発明に係る測定方法に従って4端子法で測定すると共に、測定した抵抗値Rに基づいて配線パターンや各素子101の良否を検査可能に構成されている。具体的には、測定装置1は、プローブユニット2および本体部3を備えて構成されている。   A measuring apparatus 1 shown in FIG. 1 is an example of a measuring apparatus according to the present invention, and includes, for example, a plurality of wiring patterns and a plurality of elements 101 (all of which are measured according to the present invention) disposed on one surface side of a circuit board 100. While measuring the resistance value R (an example of a physical quantity in the present invention) of an object, which is an example of a physical quantity in the present invention, in a four-terminal method, the three elements 101a to 101c are shown in FIG. Based on the measured resistance value R, the wiring pattern and the quality of each element 101 can be inspected. Specifically, the measuring apparatus 1 includes a probe unit 2 and a main body 3.

プローブユニット2は、本発明における端子部に相当し、図1に示すように、図外の支持部に配設(植設)された複数のプローブ21(本発明における接触端子対に相当し、同図では6本のプローブ21a〜21fのみを図示している)を備えて構成されている。この場合、各プローブ21は、図外の移動機構によってプローブユニット2が回路基板100に近接させられたときに、回路基板100における各素子101の端子(本発明における被接触部であって、同図に示す端子111a〜111f(以下、区別しないときには「端子111」ともいう))に先端部が接触するようにその配設パターンが規定されている。また、プローブ21は、後述する電流Im(本発明における測定用電流の一例)を端子111に出力するための第1接触端子31aと、電流Imの出力によって端子111に生じる電圧Vmを入力するための第2接触端子31b(以下、第1接触端子31aおよび第2接触端子31bを区別しないときには「接触端子31」ともいう)とを備えて構成されている。また、プローブ21は、第1接触端子31aおよび第2接触端子31bを互いに絶縁して対にした状態で、接触端子31の先端部を端子111に接触させることが可能に構成されている。   The probe unit 2 corresponds to a terminal portion in the present invention, and as shown in FIG. 1, a plurality of probes 21 (corresponding to contact terminal pairs in the present invention) arranged (planted) on a support portion outside the drawing, In the figure, only six probes 21a to 21f are shown). In this case, when the probe unit 2 is brought close to the circuit board 100 by a moving mechanism (not shown), each probe 21 is a terminal of each element 101 on the circuit board 100 (a contacted part in the present invention, The arrangement pattern is defined such that the tip portion contacts the terminals 111a to 111f (hereinafter also referred to as “terminal 111” when not distinguished) shown in the figure. Further, the probe 21 inputs a first contact terminal 31a for outputting a current Im (an example of a measurement current in the present invention), which will be described later, to the terminal 111, and a voltage Vm generated at the terminal 111 by the output of the current Im. The second contact terminal 31b (hereinafter also referred to as “contact terminal 31” when the first contact terminal 31a and the second contact terminal 31b are not distinguished from each other). The probe 21 is configured such that the tip of the contact terminal 31 can be brought into contact with the terminal 111 in a state where the first contact terminal 31a and the second contact terminal 31b are insulated and paired with each other.

本体部3は、図1に示すように、電源部11、電圧検出部12、電流Imを供給するための一対の第1導線13a,13b(本発明における第1導電体であって、以下区別しないときには「第1導線13」ともいう)、電圧検出部12に接続された一対の第2導線14a,14b(本発明における第2導電体であって、以下区別しないときには「第2導線14」ともいう)、電流Imを通電させるための一対の第3導線15a,15b(本発明における第3導電体であって、以下区別しないときには「第3導線15」ともいう)、スキャナユニット16および制御部17を備えて構成されている。電源部11は、測定用の電流Im(一例として、定電流)を生成可能に構成されている。この場合、電源部11によって生成された電流Imは、第1導線13a,13b、プローブユニット2におけるプローブ21の第1接触端子31a、および第3導線15a,15bを介して回路基板100における素子101の端子111に出力される。   As shown in FIG. 1, the main body 3 includes a power supply unit 11, a voltage detection unit 12, and a pair of first conductive wires 13a and 13b for supplying a current Im (the first conductor in the present invention. If not, also referred to as “first conductor 13”, a pair of second conductors 14a, 14b connected to the voltage detector 12 (the second conductor in the present invention, and hereinafter referred to as “second conductor 14” when not distinguished from each other). Also, a pair of third conductors 15a and 15b (the third conductor in the present invention, which will also be referred to as “third conductor 15” unless otherwise distinguished) for energizing the current Im, scanner unit 16 and control A portion 17 is provided. The power supply unit 11 is configured to be able to generate a measurement current Im (as an example, a constant current). In this case, the current Im generated by the power supply unit 11 is supplied to the element 101 in the circuit board 100 via the first conductors 13a and 13b, the first contact terminal 31a of the probe 21 in the probe unit 2, and the third conductors 15a and 15b. Are output to the terminal 111.

電圧検出部12は、電流Imの出力によって素子101の端子111,111間に生じる電圧Vmを、プローブユニット2におけるプローブ21の第2接触端子31bおよび第2導線14a,14bを介して入力して検出する。スキャナユニット16は、本発明における接断部の一例であって、複数のスイッチを備えて構成され、制御部17の制御に従い、各プローブ21の各接触端子31と各導線13,14,15との接断(接続および切断)を行う。制御部17は、電源部11によって生成される電流Imの値と、電圧検出部12によって検出された電圧Vmの値とに基づいて回路基板100における素子101の抵抗値Rを測定すると共に、測定した抵抗値Rに基づいて素子101の良否を検査する。また、制御部17は、抵抗値Rの測定時において、スキャナユニット16を制御することにより、各プローブ21の各接触端子31と各導線13,14,15とを所定の接続パターンで接続させる接続処理を実行する。   The voltage detection unit 12 inputs a voltage Vm generated between the terminals 111 and 111 of the element 101 by the output of the current Im via the second contact terminal 31b of the probe 21 and the second conductors 14a and 14b in the probe unit 2. To detect. The scanner unit 16 is an example of a connection / disconnection unit according to the present invention, and includes a plurality of switches. Under the control of the control unit 17, the contact terminals 31 of the probes 21 and the conductive wires 13, 14, 15 are provided. Disconnect (connect and disconnect). The control unit 17 measures the resistance value R of the element 101 in the circuit board 100 based on the value of the current Im generated by the power supply unit 11 and the value of the voltage Vm detected by the voltage detection unit 12, and measures Based on the resistance value R, the quality of the element 101 is inspected. Further, the control unit 17 controls the scanner unit 16 when measuring the resistance value R, thereby connecting each contact terminal 31 of each probe 21 and each of the conductive wires 13, 14, 15 with a predetermined connection pattern. Execute the process.

次に、測定装置1を用いて、回路基板100における各素子101の抵抗値Rを測定する方法(本発明に係る測定方法)、および各素子101の良否を検査する方法について、図面を参照して説明する。   Next, with reference to the drawings, a method for measuring the resistance value R of each element 101 on the circuit board 100 using the measuring apparatus 1 (a measuring method according to the present invention) and a method for inspecting the quality of each element 101 will be described. I will explain.

この測定装置1では、測定(検査)開始の指示操作がされたときに、制御部17が、図外の移動機構を制御してプローブユニット2を回路基板100に近接させる。この際に、図1に示すように、プローブユニット2の各プローブ21における各接触端子31の先端部が回路基板100における各素子101の端子111,111にそれぞれ接触する。また、電源部11が測定用の電流Imを生成する。   In this measuring apparatus 1, when a measurement (inspection) start instruction operation is performed, the control unit 17 controls a moving mechanism (not shown) to bring the probe unit 2 close to the circuit board 100. At this time, as shown in FIG. 1, the tips of the contact terminals 31 of the probes 21 of the probe unit 2 come into contact with the terminals 111 and 111 of the elements 101 of the circuit board 100, respectively. Further, the power supply unit 11 generates a measurement current Im.

次いで、制御部17は、回路基板100における各素子101のうちの1つの素子101(例えば、図1に示す素子101a)の抵抗値Rを測定する。この場合、制御部17は、まず、スキャナユニット16を制御することにより、プローブユニット2における各プローブ21の各接触端子31と各導線13,14,15とを所定の接続パターンで接続させる接続処理を実行する。この接続処理では、制御部17は、各プローブ21のうちの所定の2つ(本例では、プローブ21a,21f)を除く各プローブ21(プローブ21b〜21e)の各々における第1接触端子31aと第3導線15とをそれぞれ接続させることにより、各素子101a〜101cを直列接続させる。   Next, the control unit 17 measures the resistance value R of one element 101 (for example, the element 101a shown in FIG. 1) among the elements 101 in the circuit board 100. In this case, the control unit 17 first controls the scanner unit 16 to connect the contact terminals 31 of the probes 21 in the probe unit 2 and the conductive wires 13, 14, 15 with a predetermined connection pattern. Execute. In this connection process, the control unit 17 includes the first contact terminal 31a in each of the probes 21 (probes 21b to 21e) excluding a predetermined two of the probes 21 (probes 21a and 21f in this example). Each element 101a-101c is connected in series by connecting with the 3rd conducting wire 15, respectively.

この場合、スキャナユニット16は、素子101aにおける一方(同図における右側)の端子111bに接触しているプローブ21bの第1接触端子31aと第3導線15aとを接続すると共に、素子101bにおける一方(同図における左側)の端子111cに接触しているプローブ21cの第1接触端子31aと第3導線15aとを接続する。また、スキャナユニット16は、素子101bにおける他方(同図における右側)の端子111dに接触しているプローブ21dの第1接触端子31aと第3導線15bとを接続すると共に、素子101cの一方(同図における左側)の端子111eに接触しているプローブ21eにおける第1接触端子31aと第3導線15bとを接続する。これにより、各素子101a〜101cが各第1接触端子31aおよび第3導線15a,15bを介して直列接続される。   In this case, the scanner unit 16 connects the first contact terminal 31a of the probe 21b that is in contact with one terminal (right side in the figure) 111b of the element 101a and the third conductor 15a, and one of the elements 101b ( The first contact terminal 31a of the probe 21c that is in contact with the terminal 111c on the left side in the figure is connected to the third conductor 15a. Further, the scanner unit 16 connects the first contact terminal 31a of the probe 21d that is in contact with the other terminal 111d (right side in the figure) of the element 101b and the third conductor 15b, and also connects one of the elements 101c (same as above). The first contact terminal 31a in the probe 21e that is in contact with the terminal 111e on the left side in the drawing is connected to the third conductor 15b. Thereby, each element 101a-101c is connected in series via each 1st contact terminal 31a and 3rd conducting wire 15a, 15b.

続いて、制御部17は、スキャナユニット16を制御して、直列接続された各素子101a〜101cの両端に位置する端子111a,111fにそれぞれ接触している上記の2つのプローブ21a,21fの各々における第1接触端子31aと第1導線13a,13bとをそれぞれ接続させる。これにより、図1に破線で示すように、電源部11によって生成された電流Imが、各第1接触端子31aおよび第3導線15a,15bを介して直列接続された各素子101a〜101cに出力される(流れる)。   Subsequently, the control unit 17 controls the scanner unit 16 to each of the two probes 21a and 21f that are in contact with the terminals 111a and 111f located at both ends of each of the elements 101a to 101c connected in series. The first contact terminal 31a and the first conductors 13a and 13b are connected to each other. As a result, as indicated by a broken line in FIG. 1, the current Im generated by the power supply unit 11 is output to the elements 101a to 101c connected in series via the first contact terminals 31a and the third conductors 15a and 15b. (Flowing).

次いで、制御部17は、スキャナユニット16を制御して、素子101a(本発明におけるいずれか1つの測定対象体)の端子111a,111bに接触している各プローブ21a,21bの各々における第2接触端子31bを第2導線14a,14bにそれぞれ接続させる。これにより、プローブ21a,21bの各第2接触端子31bと電圧検出部12とが第2導線14a,14bを介して接続される。   Next, the control unit 17 controls the scanner unit 16 to perform second contact on each of the probes 21a and 21b that are in contact with the terminals 111a and 111b of the element 101a (any one measurement object in the present invention). The terminal 31b is connected to the second conducting wires 14a and 14b, respectively. Thereby, each 2nd contact terminal 31b of probe 21a, 21b and the voltage detection part 12 are connected via 2nd conducting wire 14a, 14b.

続いて、電圧検出部12が、電流Imの出力によって素子101aの端子111a,111b間に生じた電圧Vmを入力して検出する。次いで、制御部17は、電源部11によって生成される電流Imの値と、電圧検出部12によって検出された電圧Vmの値とに基づいて素子101aの抵抗値Rを測定(算出)すると共に、測定した抵抗値Rを図外の記録部に記録する。   Subsequently, the voltage detector 12 receives and detects the voltage Vm generated between the terminals 111a and 111b of the element 101a by the output of the current Im. Next, the control unit 17 measures (calculates) the resistance value R of the element 101a based on the value of the current Im generated by the power supply unit 11 and the value of the voltage Vm detected by the voltage detection unit 12, and The measured resistance value R is recorded in a recording unit (not shown).

続いて、制御部17は、次の(他の1つの)素子101(例えば、図1に示す素子101b)の抵抗値Rを測定する。この場合、制御部17は、スキャナユニット16を制御することにより、プローブ21b,21cの各第1接触端子31aと第3導線15aとの接続、プローブ21d,21eの各第1接触端子31aと第3導線15bとの接続、およびプローブ21a,21fの各々における第1接触端子31aと第1導線13a,13bとの接続を維持した状態、つまり各素子101a〜101cの直列接続および電流Imの出力を継続した状態で、素子101aにおける端子111a,111bに接触している各プローブ21a,21bの各々における第2接触端子31bと第2導線14a,14bとの接続を解除させると共に、素子101bにおける端子111c,111dに接触している各プローブ21c,21dの各々における第2接触端子31bと第2導線14a,14bとをそれぞれ接続させる。これにより、プローブ21c,21dの各第2接触端子31bと電圧検出部12とが第2導線14a,14bを介して接続される。   Subsequently, the control unit 17 measures the resistance value R of the next (other one) element 101 (for example, the element 101b shown in FIG. 1). In this case, the control unit 17 controls the scanner unit 16 to connect the first contact terminals 31a of the probes 21b and 21c and the third conductor 15a, and connect the first contact terminals 31a of the probes 21d and 21e to the first contact terminals 31a. The connection with the three conductors 15b and the connection between the first contact terminals 31a and the first conductors 13a and 13b in each of the probes 21a and 21f, that is, the series connection of the elements 101a to 101c and the output of the current Im In a continuous state, the connection between the second contact terminal 31b and the second conductors 14a and 14b in each of the probes 21a and 21b that are in contact with the terminals 111a and 111b in the element 101a is released, and the terminal 111c in the element 101b. , 111d, the second contact terminal 31 in each of the probes 21c, 21d. When the second conductor 14a, to connect the 14b respectively. Thereby, each 2nd contact terminal 31b of probe 21c, 21d and the voltage detection part 12 are connected via 2nd conducting wire 14a, 14b.

次いで、制御部17は、電流Imの値と、電圧検出部12によって検出された電圧Vmの値とに基づいて素子101bの抵抗値Rを算出すると共に、算出した抵抗値Rを図外の記録部に記録する。以下、制御部17は、同様にして、スキャナユニット16を制御して、各素子101a〜101cの直列接続および電流Imの出力を継続した状態で、素子101の各端子111に接触している各プローブ21の各第2接触端子31bと各第2導線14との接続を切り替えさせることで、各素子101の抵抗値Rを測定し、測定した抵抗値Rを図外の記録部に記録する。   Next, the control unit 17 calculates the resistance value R of the element 101b based on the value of the current Im and the value of the voltage Vm detected by the voltage detection unit 12, and records the calculated resistance value R outside the figure. To record. Hereinafter, the control unit 17 controls the scanner unit 16 in the same manner, and continues the serial connection of the elements 101a to 101c and the output of the current Im. By switching the connection between the second contact terminals 31b of the probe 21 and the second conductive wires 14, the resistance value R of each element 101 is measured, and the measured resistance value R is recorded in a recording unit (not shown).

この場合、この測定装置1および測定方法では、各素子101a〜101cの直列接続および電流Imの出力を継続した状態で、各素子101の各端子111に接触している各プローブ21の各第2接触端子31bと第2導線14との接続を切り替えさせて各素子101の抵抗値Rを測定している。このため、電流Imの出力の開始時点で大きな過渡電圧が発生したとしても、その過渡電圧が収まった後における新たな過渡電圧の発生を確実に防止することが可能となっている。このため、この測定装置1および測定方法では、電流Imの出力の開始時点における過渡電圧が収まるまで一度だけ待機した後においては、各第2接触端子31bを各第2導線14に接続した(切り替えた)直後に過渡電圧の影響のない電圧Vmの値を検出することが可能となっている。   In this case, in the measurement apparatus 1 and the measurement method, the second connection of each probe 21 that is in contact with each terminal 111 of each element 101 in a state where the series connection of the elements 101a to 101c and the output of the current Im are continued. The resistance value R of each element 101 is measured by switching the connection between the contact terminal 31 b and the second conductive wire 14. For this reason, even if a large transient voltage occurs at the start of the output of the current Im, it is possible to reliably prevent the generation of a new transient voltage after the transient voltage has settled. For this reason, in this measuring apparatus 1 and the measuring method, after waiting for the transient voltage at the time of starting the output of the current Im only once, the second contact terminals 31b are connected to the second conductive wires 14 (switching). It is possible to detect the value of the voltage Vm that is not affected by the transient voltage immediately after.

次に、制御部17は、全ての素子101についての抵抗値Rの算出、およびその抵抗値Rの記録部への記録が終了したときには、例えば、上下限値で規定される基準範囲と抵抗値Rとを比較することによって各素子101の良否を検査する。この場合、制御部17は、一例として、抵抗値Rが基準範囲内のときには、その素子101を良品と判別し、抵抗値Rが基準値範囲外のときには、その素子101を不良品と判別する。以上により、回路基板100の各素子101についての良否検査が終了する。   Next, when the calculation of the resistance value R for all the elements 101 and the recording of the resistance value R in the recording unit are finished, the control unit 17, for example, the reference range and the resistance value defined by the upper and lower limit values The quality of each element 101 is inspected by comparing with R. In this case, as an example, the control unit 17 determines that the element 101 is a non-defective product when the resistance value R is within the reference range, and determines that the element 101 is defective when the resistance value R is outside the reference value range. . Thus, the pass / fail inspection for each element 101 of the circuit board 100 is completed.

このように、この測定装置1および測定方法では、複数の素子101の各端子111にそれぞれ接触している複数のプローブ21のうちの所定の2つを除く各プローブ21の各々における各第1接触端子31aと各第3導線15とをそれぞれ接続させることによって各素子101を直列接続させる接続処理を実行する。このため、この測定装置1および測定方法では、直列接続した各素子101a〜101cに電流Imを流したときに大きな過渡電圧が発生したとしても、各素子101a〜101cの直列接続および電流Imの出力を継続することで、過渡電圧が収まった後における新たな過渡電圧の発生を確実に防止することができる。したがって、この測定装置1および測定方法によれば、各素子101a〜101cの直列接続および電流Imの出力を継続した状態で、各素子101の各端子111に接触している各プローブ21の各第2接触端子31bと各第2導線14との接続を切り替えるだけで、各端子111に生じる電圧Vmの値を過渡電圧の影響のない状態で連続して測定することができる結果、その電圧Vmの値に基づく抵抗値Rを正確かつ効率的に測定することができる。   As described above, in the measurement apparatus 1 and the measurement method, each first contact in each of the probes 21 excluding a predetermined two of the plurality of probes 21 that are in contact with the respective terminals 111 of the plurality of elements 101. A connection process for connecting the elements 101 in series by connecting the terminals 31a and the third conductive wires 15 is performed. For this reason, in this measuring apparatus 1 and the measuring method, even if a large transient voltage is generated when current Im flows through each of the elements 101a to 101c connected in series, the elements 101a to 101c are connected in series and the current Im is output. By continuing the above, generation of a new transient voltage after the transient voltage is settled can be surely prevented. Therefore, according to the measuring apparatus 1 and the measuring method, each of the probes 21 that are in contact with the terminals 111 of the elements 101 in a state where the series connection of the elements 101a to 101c and the output of the current Im are continued. The value of the voltage Vm generated at each terminal 111 can be continuously measured without being affected by the transient voltage by simply switching the connection between the two-contact terminal 31b and each of the second conductive wires 14. As a result, the voltage Vm The resistance value R based on the value can be measured accurately and efficiently.

なお、本発明は、上記の構成および方法に限定されない。例えば、回路基板100の一面に配設された複数の配線パターンや複数の素子101に対する検査を実行する測定装置1を例に挙げて説明したが、図2に示すように、両面に複数の配線パターン201が配設されると共に、各配線パターン201がビア202(本発明における内部配線)によって接続された回路基板200における各配線パターン201や各ビア202の抵抗値Rを本発明に係る測定方法に従って測定すると共に、その抵抗値Rに基づくこれらの良否検査を行う測定装置301に適用することもできる。なお、以下の説明において、上記した測定装置1と同じ構成要素については同一の符号付して、重複する説明を省略する。   In addition, this invention is not limited to said structure and method. For example, the measurement apparatus 1 that performs inspection on a plurality of wiring patterns and a plurality of elements 101 disposed on one surface of the circuit board 100 has been described as an example. However, as illustrated in FIG. A method of measuring the resistance value R of each wiring pattern 201 and each via 202 in the circuit board 200 in which the pattern 201 is disposed and each wiring pattern 201 is connected by a via 202 (internal wiring in the present invention). It is also possible to apply to the measuring device 301 that performs these quality checks based on the resistance value R. In addition, in the following description, the same code | symbol is attached | subjected about the same component as the above-mentioned measuring apparatus 1, and the overlapping description is abbreviate | omitted.

この測定装置301は、図2に示すように、2つのプローブユニット302a,302b(本発明における端子部)、および本体部3を備えて構成されている。この場合、プローブユニット302aは、図外の移動機構によって回路基板200に近接させられたときに、回路基板200の一面(同図における上面)側の各配線パターン201に先端部が接触するように、その配設パターンが規定された複数のプローブ21(同図では2本のプローブ21a,21cのみを図示している)を備えて構成されている。また、プローブユニット302bは、回路基板200に近接させられたときに、回路基板200の他面(同図における下面)側の各配線パターン201に先端部が接触するように、その配設パターンが規定された複数のプローブ21(同図では2本のプローブ21b,21dのみを図示している)を備えて構成されている。つまり、この測定装置301では、回路基板200の両面に配設された被接触部としての配線パターン201に各プローブ21が接触可能にプローブユニット302a,302bが構成されている。また、この測定装置301では、プローブユニット302aの各プローブ21とスキャナユニット16との間の配線が束ねると共に、プローブユニット302bの各プローブ21とスキャナユニット16との間の配線が束ねられている。   As shown in FIG. 2, the measuring apparatus 301 includes two probe units 302 a and 302 b (terminal portions in the present invention) and a main body portion 3. In this case, when the probe unit 302a is brought close to the circuit board 200 by a moving mechanism (not shown), the tip portion comes into contact with each wiring pattern 201 on the one surface (upper surface in the drawing) side of the circuit board 200. The plurality of probes 21 whose arrangement pattern is defined (only two probes 21a and 21c are shown in the figure) are provided. Also, the probe unit 302b has an arrangement pattern such that when the probe unit 302b is brought close to the circuit board 200, the tip portion comes into contact with each wiring pattern 201 on the other surface (the lower surface in the figure) of the circuit board 200. A plurality of defined probes 21 (only two probes 21b and 21d are shown in the figure) are provided. That is, in this measuring apparatus 301, the probe units 302a and 302b are configured so that each probe 21 can come into contact with the wiring pattern 201 as a contacted portion disposed on both surfaces of the circuit board 200. In the measuring apparatus 301, the wires between the probes 21 of the probe unit 302a and the scanner unit 16 are bundled, and the wires between the probes 21 of the probe unit 302b and the scanner unit 16 are bundled.

この測定装置301では、測定開始の指示操作がされたときに、制御部17が、図外の移動機構を制御してプローブユニット302a,302bを回路基板200に近接させて、図2に示すように、各プローブ21における各接触端子31の先端部を回路基板200における各配線パターン201にそれぞれ接触させる。続いて、制御部17は、スキャナユニット16を制御することにより(上記した接続処理を実行することにより)、同図に示すように、測定対象体としての各ビア202を、プローブ21b,21dの各第1接触端子31aおよび第3導線15aを介して直列接続させる。   In this measuring apparatus 301, when a measurement start instruction operation is performed, the control unit 17 controls a moving mechanism (not shown) to bring the probe units 302a and 302b close to the circuit board 200, as shown in FIG. In addition, the tip of each contact terminal 31 in each probe 21 is brought into contact with each wiring pattern 201 on the circuit board 200. Subsequently, the control unit 17 controls the scanner unit 16 (by executing the connection process described above), and as shown in the figure, each via 202 as a measurement object is connected to the probes 21b and 21d. The first contact terminals 31a and the third conductive wires 15a are connected in series.

次いで、制御部17は、図2に示すように、スキャナユニット16を制御して、直列接続された各ビア202の両端に位置する配線パターン201にそれぞれ接触している2つのプローブ21a,21cの各々における第1接触端子31aと第1導線13a,13bとをそれぞれ接続させる。これにより、同図に破線で示すように、電流Imが、各第1接触端子31aおよび第3導線15aを介して直列接続された各ビア202に出力される(流れる)。   Next, as shown in FIG. 2, the control unit 17 controls the scanner unit 16 so that the two probes 21 a and 21 c that are in contact with the wiring patterns 201 positioned at both ends of each of the vias 202 connected in series are connected. The first contact terminal 31a and the first conductive wires 13a and 13b in each are connected. As a result, as indicated by a broken line in the figure, the current Im is output (flows) to each via 202 connected in series via each first contact terminal 31a and the third conductor 15a.

続いて、制御部17は、スキャナユニット16を制御して、各ビア202の1つに接続されている一対の配線パターン201にそれぞれ接触している各プローブ21a,21bの各々における第2接触端子31bを第2導線14a,14bにそれぞれ接続させる。次いで、電圧検出部12が、電流Imの出力によってそのビア202に生じた電圧Vmを入力して検出し、制御部17が、電流Imの値と検出された電圧Vmの値とに基づいてビア202の抵抗値Rを測定して図外の記録部に記録する。続いて、制御部17は、各ビア202の直列接続および電流Imの出力を継続した状態で、ビア202に接続されている配線パターン201に接触している各プローブ21の各第2接触端子31bと各第2導線14との接続を切り替えさせることで、各ビア202の抵抗値Rを測定し、測定した抵抗値Rを図外の記録部に記録する。   Subsequently, the control unit 17 controls the scanner unit 16 so that the second contact terminals in each of the probes 21a and 21b that are in contact with the pair of wiring patterns 201 connected to one of the vias 202, respectively. 31b is connected to the second conductors 14a and 14b, respectively. Next, the voltage detection unit 12 inputs and detects the voltage Vm generated in the via 202 by the output of the current Im, and the control unit 17 detects the via based on the value of the current Im and the detected value of the voltage Vm. A resistance value R of 202 is measured and recorded in a recording unit (not shown). Subsequently, the control unit 17 continues the serial connection of the vias 202 and the output of the current Im, and the second contact terminals 31b of the probes 21 that are in contact with the wiring pattern 201 connected to the vias 202. By switching the connection between each of the second conductive wires 14, the resistance value R of each via 202 is measured, and the measured resistance value R is recorded in a recording unit (not shown).

次に、制御部17は、全てのビア202についての抵抗値Rの測定、およびその抵抗値Rの記録部への記録が終了したときに、例えば、上下限値で規定される基準範囲と抵抗値Rとを比較することによって各ビア202の良否を検査する。このように、この測定装置301および測定方法においても、直列接続した各ビア202に電流Imを流したときに大きな過渡電圧が発生したとしても、過渡電圧が収まった後における新たな過渡電圧の発生を確実に防止することができるため、各ビア202に接続されている配線パターン201に接触している各プローブ21の各第2接触端子31bと各第2導線14との接続を切り替えるだけで、各ビア202に生じる電圧Vmの値を過渡電圧の影響のない状態で連続して測定することができる結果、その電圧Vmの値に基づく抵抗値Rを正確かつ効率的に測定することができる。また、この測定装置301では、プローブユニット302aの各プローブ21とスキャナユニット16との間の配線が束ねられると共に、プローブユニット302bの各プローブ21とスキャナユニット16との間の配線が束ねられている。このため、この測定装置301によれば、各プローブ21とスキャナユニット16との間の配線がループを構成したときに生じるノイズの影響を少なく抑えることができる結果、抵抗値Rをより正確に測定することができる。   Next, when the measurement of the resistance value R for all the vias 202 and the recording of the resistance value R to the recording unit are completed, the control unit 17, for example, the reference range and resistance defined by the upper and lower limit values The quality of each via 202 is inspected by comparing with the value R. As described above, also in this measuring apparatus 301 and the measuring method, even if a large transient voltage is generated when the current Im is passed through each of the serially connected vias 202, a new transient voltage is generated after the transient voltage is settled. Therefore, by simply switching the connection between each second contact terminal 31b of each probe 21 in contact with the wiring pattern 201 connected to each via 202 and each second conductor 14, Since the value of the voltage Vm generated in each via 202 can be continuously measured without being affected by the transient voltage, the resistance value R based on the value of the voltage Vm can be accurately and efficiently measured. In the measuring apparatus 301, the wires between the probes 21 of the probe unit 302a and the scanner unit 16 are bundled, and the wires between the probes 21 of the probe unit 302b and the scanner unit 16 are bundled. . For this reason, according to this measuring apparatus 301, the influence of noise generated when the wiring between each probe 21 and the scanner unit 16 forms a loop can be suppressed to a low level. As a result, the resistance value R can be measured more accurately. can do.

また、素子101やビア202の抵抗値Rに基づいて、素子101やビア202の良否を検査する例について上記したが、検査を行わずに抵抗値Rの測定のみを行う測定装置に適用することもできる。また、物理量としての抵抗値Rを測定する例について上記したが、本発明における物理量には、抵抗値Rに限らず、インダクタンス、容量、およびインピーダンス等が含まれ、これらの物理量を測定する測定装置に適用することができるのは勿論である。また、複数のプローブ21を有するプローブユニット2やプローブユニット302a,302bを移動させて、各プローブ21を一度に被接触部としての端子111や配線パターン201に接触させる構成例について上記したが、複数のプローブ21を個別的に移動させて被接触部に接触および離反させるフライングプローブタイプの測定装置に適用することもできる。さらに、一対の第3導線15を備えた例について上記したが、第3導線15の数はこれに限定されず、測定対象体の数に応じて変更することができる。具体的には、プローブ21を接触させる測定対象体の数がN個としたときには、第3導線15の数を(N−1)本以上の任意の数に規定する。   Further, the example in which the quality of the element 101 or the via 202 is inspected based on the resistance value R of the element 101 or the via 202 has been described above, but the present invention is applied to a measuring apparatus that only measures the resistance value R without performing the inspection. You can also. Further, the example of measuring the resistance value R as a physical quantity has been described above. However, the physical quantity in the present invention is not limited to the resistance value R, and includes an inductance, a capacity, an impedance, and the like, and a measuring device that measures these physical quantities. Of course, it can be applied to. Further, the configuration example in which the probe unit 2 having the plurality of probes 21 and the probe units 302a and 302b are moved so that each probe 21 is brought into contact with the terminal 111 and the wiring pattern 201 as the contacted portion at a time has been described above. It is also possible to apply to a flying probe type measuring apparatus that individually moves the probe 21 to contact and separate from the contacted part. Furthermore, although the example provided with a pair of 3rd conducting wire 15 was mentioned above, the number of the 3rd conducting wires 15 is not limited to this, It can change according to the number of measuring objects. Specifically, when the number of measurement objects to be brought into contact with the probe 21 is N, the number of the third conductive wires 15 is defined as an arbitrary number of (N−1) or more.

測定装置1の構成を示す構成図である。1 is a configuration diagram showing a configuration of a measuring device 1. FIG. 測定装置301の構成を示す構成図である。2 is a configuration diagram showing a configuration of a measuring apparatus 301. FIG.

符号の説明Explanation of symbols

1,301 測定装置
2,302a,302b プローブユニット
12 電圧検出部
13a,13b 第1導線
14a,14b 第2導線
15a,15b 第3導線
16 スキャナユニット
17 制御部
21a〜21f プローブ
31a 第1接触端子
31b 第2接触端子
100,200 回路基板
101a〜101c 素子
111a〜111f 端子
201 配線パターン
202 ビア
301 測定装置
Im 電流
R 抵抗値
Vm 電圧
DESCRIPTION OF SYMBOLS 1,301 Measuring apparatus 2,302a, 302b Probe unit 12 Voltage detection part 13a, 13b 1st conducting wire 14a, 14b 2nd conducting wire 15a, 15b 3rd conducting wire 16 Scanner unit 17 Control part 21a-21f Probe 31a 1st contact terminal 31b Second contact terminal 100, 200 Circuit board 101a to 101c Element 111a to 111f Terminal 201 Wiring pattern 202 Via 301 Measuring device Im Current R Resistance value Vm Voltage

Claims (5)

測定用電流を生成する電源部と、測定対象体の被接触部に前記測定用電流を出力するための第1接触端子および当該測定用電流の出力によって当該被接触部に生じる電圧を入力するための第2接触端子を対にした接触端子対を複数有する端子部と、前記電源部に接続されて前記測定用電流を供給する一対の第1導電体と、前記電圧を検出する電圧検出部と、当該電圧検出部に接続された一対の第2導電体と、前記各第1導電体および前記各第2導電体とは別体に設けられて前記測定用電流を通電させるための1つ以上の第3導電体と、前記各接触端子と前記各導電体との接断を行う接断部と、前記接断部を制御する制御部とを備えて、前記電圧の値に基づく前記測定対象体についての所定の物理量を測定可能に構成され、
前記制御部は、前記物理量の測定時において、前記接断部を制御することにより、複数の前記測定対象体における前記各被接触部に前記接触端子対がそれぞれ接触している状態において、当該各接触端子対のうちの所定の2つを除く当該各接触端子対の各々における前記各第1接触端子と前記第3導電体とをそれぞれ接続させることによって複数の前記測定対象体を直列接続させると共に、当該直列接続されている各測定対象体の両端に位置する前記各被接触部にそれぞれ接触している前記除いた2つの接触端子対の各々における前記各第1接触端子と前記各第1導電体とをそれぞれ接続させ、かつ前記複数の測定対象体のうちのいずれか1つの前記各被接触部にそれぞれ接触している前記各接触端子対の各々における前記各第2接触端子と前記各第2導電体とをそれぞれ接続させる接続処理を実行する測定装置。
A power supply unit for generating a measuring current, for inputting a voltage generated in the driven element by the output of the first contact terminals and the current for measurement for outputting the current for measurement in the contacted portion of the measured object A terminal section having a plurality of contact terminal pairs each having a pair of second contact terminals, a pair of first conductors connected to the power supply section for supplying the measurement current, and a voltage detection section for detecting the voltage , one for energizing a pair of second conductors connected to the electric pressure detector, the said measurement current provided separately and each first conductor and the respective second conductor The measurement based on the value of the voltage, comprising the third conductor described above, a connection part for connecting and disconnecting each contact terminal and each conductor, and a control unit for controlling the connection part. It is configured to be able to measure a predetermined physical quantity about the object ,
In the state in which the contact terminal pairs are in contact with the respective contacted parts in the plurality of measurement objects by controlling the connection / disconnection parts during the measurement of the physical quantity, the control unit While connecting each said 1st contact terminal and each said 3rd conductor in each of each said contact terminal pair except the predetermined two of contact terminal pairs, while connecting the said several measuring object in series The respective first contact terminals and the respective first conductives in each of the removed two contact terminal pairs that are in contact with the respective contacted parts located at both ends of the respective measurement objects connected in series. The second contact terminals in each of the contact terminal pairs, each of which is in contact with the contacted part of any one of the plurality of measurement objects. Serial measurement device for performing a connection process of connecting respectively with each second conductor.
前記端子部は、回路基板の内部に形成された内部配線によって接続されると共に当該回路基板の一面側および他面側にそれぞれ形成された前記被接触部としての各配線パターンに前記各接触端子対がそれぞれ接触可能に構成され、
前記制御部は、前記接続処理において、前記測定対象体としての前記内部配線および前記各配線パターンが直列接続されるように前記接断部を制御する請求項1記載の測定装置。
The terminal portions are connected by internal wiring formed inside the circuit board, and each contact terminal pair is connected to each wiring pattern as the contacted portion formed on one side and the other side of the circuit board. Each configured to be contactable,
The measurement apparatus according to claim 1, wherein the control unit controls the connection / disconnection unit so that the internal wiring as the measurement object and the wiring patterns are connected in series in the connection process.
前記回路基板の前記一面側に形成された前記配線パターンに接触させる前記各接触端子対と前記接断部との間の配線が束ねられると共に、前記回路基板の他面側に形成された前記配線パターンに接触させる各接触端子対と前記接断部との間の配線が束ねられている請求項2記載の測定装置。   The wires formed between the contact terminal pairs to be brought into contact with the wiring pattern formed on the one surface side of the circuit board and the connection portion are bundled, and the wiring formed on the other surface side of the circuit substrate. The measuring device according to claim 2, wherein wiring between each contact terminal pair brought into contact with a pattern and the connection / disconnection part is bundled. 第1接触端子および第2接触端子を対にした接触端子対を複数有する端子部における当該第1接触端子と測定用電流を生成する電源部に接続されて当該測定用電流を供給する一対の第1導電体との接断を行って当該第1接触端子を介して測定対象体の被接触部に測定用電流を出力し、電圧検出部に接続された一対の第2導電体と前記各接触端子との接断を行って当該測定用電流の出力によって前記被接触部に生じる電圧を検出し、当該検出した電圧の値に基づく前記測定対象体についての所定の物理量を測定する測定時において、
複数の前記測定対象体における前記各被接触部に前記接触端子対をそれぞれ接触させ、その状態における当該各接触端子対のうちの所定の2つを除く当該各接触端子対の各々における前記各第1接触端子と前記各第1導電体および前記各第2導電体とは別体に設けられて前記測定用電流を通電させるための第3導電体とをそれぞれ接続させることによって複数の前記測定対象体を直列接続させると共に、当該直列接続させた各測定対象体の両端に位置する前記各被接触部にそれぞれ接触している前記除いた2つの接触端子対の各々における前記各第1接触端子と前記各第1導電体とをそれぞれ接続させ、かつ前記複数の測定対象体のうちのいずれか1つの前記各被接触部にそれぞれ接触している前記各接触端子対の各々における前記各第2接触端子と前記各第2導電体とをそれぞれ接続させる接続処理を実行する測定方法。
A pair supplies connected to the measurement current to the power supply unit for generating the current for measurement from the first contact terminal of the terminal section having a plurality of contact terminals pair of a pair of the first contact terminal and the second contact terminal No. A contact with one conductor is performed, and a current for measurement is output to the contacted part of the measurement object via the first contact terminal, and the pair of second conductors connected to the voltage detection part and the respective contacts performing disconnection of the terminal detects a voltage generated in the contact portions by the output of the current for measurement, the measurement scheduled you measure the predetermined physical quantity for said measured object based on the value of the detected voltage ,
The contact terminal pairs are brought into contact with the contacted parts of the plurality of measurement objects, respectively, and each of the contact terminal pairs in each of the contact terminal pairs excluding a predetermined two of the contact terminal pairs in the state is used. A plurality of measurement objects are provided by connecting one contact terminal and a third conductor that is provided separately from each of the first conductors and the second conductors and that allows the measurement current to flow therethrough. The first contact terminals in each of the two removed contact terminal pairs that are connected in series, and are in contact with the contacted parts located at both ends of the measurement target bodies connected in series, respectively. Each said 2nd contact in each of said each contact terminal pair which is each connected with each said 1st conductor, and is each contacting each said to-be-contacted part of any one of said several measurement object. Measurement method for performing a connection process of connecting the terminal and the second conductor, respectively.
回路基板の内部に形成された内部配線によって接続されると共に当該回路基板の一面側および他面側にそれぞれ形成された前記被接触部としての各配線パターンに前記各接触端子対を接続させて、前記測定対象体としての前記内部配線および前記各配線パターンについての前記物理量を測定する際に、
前記接続処理において、前記内部配線および前記各配線パターンが直列接続されるように前記各第1接触端子と前記第3導電体とを接続する請求項4記載の測定方法。
The contact terminal pairs are connected to each wiring pattern as the contacted part formed on the one side and the other side of the circuit board and connected by internal wiring formed inside the circuit board, When measuring the physical quantity for the internal wiring and the wiring patterns as the measurement object,
The measurement method according to claim 4, wherein, in the connection process, the first contact terminals and the third conductor are connected so that the internal wiring and the wiring patterns are connected in series.
JP2008173429A 2008-07-02 2008-07-02 Measuring apparatus and measuring method Active JP5260163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008173429A JP5260163B2 (en) 2008-07-02 2008-07-02 Measuring apparatus and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008173429A JP5260163B2 (en) 2008-07-02 2008-07-02 Measuring apparatus and measuring method

Publications (2)

Publication Number Publication Date
JP2010014479A JP2010014479A (en) 2010-01-21
JP5260163B2 true JP5260163B2 (en) 2013-08-14

Family

ID=41700729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008173429A Active JP5260163B2 (en) 2008-07-02 2008-07-02 Measuring apparatus and measuring method

Country Status (1)

Country Link
JP (1) JP5260163B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10742620B2 (en) 2015-09-29 2020-08-11 Tencent Technology (Shenzhen) Company Limited Method for dynamic encryption and signing, terminal and server
US11067658B2 (en) 2018-09-13 2021-07-20 Samsung Electronics Co., Ltd. Probe card inspection wafer, probe card inspection system, and method of inspecting probe card

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252825A (en) * 2010-06-03 2011-12-15 Hioki Ee Corp Circuit board inspection device
JP5961410B2 (en) * 2012-03-07 2016-08-02 中国電力株式会社 Contact resistance measuring method and contact resistance measuring auxiliary device used in the method
JP7147838B2 (en) * 2018-03-23 2022-10-05 日本電産リード株式会社 Resistance measuring device and resistance measuring jig
JP7371532B2 (en) 2020-02-28 2023-10-31 ニデックアドバンステクノロジー株式会社 Calibration jig

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122959U (en) * 1980-02-20 1981-09-18
JP4757630B2 (en) * 2005-12-28 2011-08-24 日本発條株式会社 Probe card
JP2008008773A (en) * 2006-06-29 2008-01-17 Nidec-Read Corp Substrate inspection method and substrate inspecting device
JP4833766B2 (en) * 2006-08-21 2011-12-07 日置電機株式会社 measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10742620B2 (en) 2015-09-29 2020-08-11 Tencent Technology (Shenzhen) Company Limited Method for dynamic encryption and signing, terminal and server
US11329965B2 (en) 2015-09-29 2022-05-10 Tencent Technology (Shenzhen) Company Limited Method for dynamic encryption and signing, terminal, and server
US11067658B2 (en) 2018-09-13 2021-07-20 Samsung Electronics Co., Ltd. Probe card inspection wafer, probe card inspection system, and method of inspecting probe card

Also Published As

Publication number Publication date
JP2010014479A (en) 2010-01-21

Similar Documents

Publication Publication Date Title
JP5260163B2 (en) Measuring apparatus and measuring method
JP4532570B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP5507430B2 (en) Circuit board inspection equipment
JP2009244077A (en) Substrate inspection device and method
JP4833766B2 (en) measuring device
JP5260164B2 (en) Measuring apparatus and measuring method
JP5057949B2 (en) Circuit board inspection method and circuit board inspection apparatus
JP4949947B2 (en) Circuit board inspection method and circuit board inspection apparatus
JP5317554B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP2002048833A (en) Circuit board inspecting device
CN109997046B (en) Resistance measuring device and resistance measuring method
JP5208787B2 (en) Circuit board inspection apparatus and circuit board inspection method
WO2007138831A1 (en) Board examination method and board examination device
JP6618826B2 (en) Circuit board inspection equipment
JP2007155640A (en) Method and system for inspecting integrated circuit
JP5415134B2 (en) Inspection apparatus and inspection method
WO2008001651A1 (en) Board inspecting method and board inspecting device
JP5420303B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP4588941B2 (en) Resistance measuring device and circuit board inspection device
JP5844096B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP6918659B2 (en) Circuit board inspection equipment
JP5988557B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP5329160B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP5474658B2 (en) Insulation inspection equipment
JP5323502B2 (en) Substrate inspection apparatus and substrate inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121227

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5260163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250