JP5254529B2 - レーダーの干渉信号を除去するシステムおよび方法 - Google Patents

レーダーの干渉信号を除去するシステムおよび方法 Download PDF

Info

Publication number
JP5254529B2
JP5254529B2 JP2005361136A JP2005361136A JP5254529B2 JP 5254529 B2 JP5254529 B2 JP 5254529B2 JP 2005361136 A JP2005361136 A JP 2005361136A JP 2005361136 A JP2005361136 A JP 2005361136A JP 5254529 B2 JP5254529 B2 JP 5254529B2
Authority
JP
Japan
Prior art keywords
array
value
sample
threshold
time sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005361136A
Other languages
English (en)
Other versions
JP2006171001A (ja
Inventor
ケリー トーマス
ゴードン ウッディングトン ウォルター
グレゴリー アエダー アール
Original Assignee
ヴァレオ レイテオン システムズ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヴァレオ レイテオン システムズ インコーポレイテッド filed Critical ヴァレオ レイテオン システムズ インコーポレイテッド
Publication of JP2006171001A publication Critical patent/JP2006171001A/ja
Application granted granted Critical
Publication of JP5254529B2 publication Critical patent/JP5254529B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/356Receivers involving particularities of FFT processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

本発明は、レーダーシステム、およびこのレーダーシステムで用いられる方法に係り、特に、レーダーの反射信号に見られる干渉信号を除去するレーダーシステム、およびこのための方法に関する。
すでに知られているように、周波数変調された連続波(FMCW)レーダーは、連続的に変化する周波数をもつレーダー信号を送信する。FMCWレーダーは、観測対象の存在する範囲を同定するため、送信信号と、観測対象からエコーとして戻ってくる受信信号との周波数の差を測定する。周波数の差は、送信信号を発してから受信信号を受け取るまでの時間の遅れ、すなわち送信信号が観測対象へ到達してからレーダーに戻ってくるまでの時間と関連づけられている。
典型的なFMCWレーダーにおいては、送信信号の周波数は、いわゆる「チャープ(chirp)信号」の第1の所定周波数から第2の所定周波数へ直線的に増加する。チャープ信号は、所定の時間間隔で繰り返し送信される。FMCWレーダーは、高感度で、送信出力が比較的小さく、方位分解能が良好であるという利点を有する。これまでのFMCWレーダーにおいては、チャープ信号の周波数は、24.05GHzから24.25GHzまで、概ね直線的に変化する。
これまでのFMCWレーダーは、送信信号と受信信号を混合(重畳)するミキサを用いている。ミキサの出力の1つは、上述の送信信号と、受信信号(ここでは、「逓降信号」または「ビデオ信号」と呼ぶこともある。)における周波数の差である。「逓降信号」または「ビデオ信号」は、「うなり周波数」を有する場合がある。うなりは、概ね、送信信号または受信信号の周波数よりも、低い周波数領域で生ずる。
逓降信号は、例えばアナログ−デジタル(A/D)コンバータを用い、所定の時間間隔でサンプリングすることができる。得られたサンプルは、周波数領域に高速フーリエ変換(FFT)し、周波数スペクトルを得ることができる。この周波数スペクトルから、種々の方法を用いて、観測対象が存在する範囲と関連づけられた逓降信号を同定することができる。この方法は、特許文献1に記載されている。
周波数スペクトルは、観測対象が存在する範囲に対応する逓降信号だけでなく、ノイズも含んでいる。このノイズは、FMCWレーダーが用いられる環境に存在する電気的(すなわち熱による)ノイズ源およびレーダー信号のノイズ源と関連づけられている。レーダーシステムの観測領域には2つ以上の観測対象が存在する場合もある。したがって、逓降信号の時間サンプルは、2つ以上のうなり周波数を含むこともある。
周波数スペクトルから観測対象の存在範囲を決定するためには、周波数スペクトルの範囲内で、観測対象の存在範囲を示す周波数信号が同定されなければならない。しかし、ある種の干渉信号は、このような観測対象の存在範囲を示す周波数信号の同定を著しく阻害する。例えば、FMCWレーダーの十分に高い出力の下で掃引帯域に存在する干渉信号は、周波数スペクトルを圧倒して、逓降信号の時間サンプルに悪影響を及ぼすため、観測対象の存在範囲を示す周波数信号は、周波数スペクトルの範囲内で見出すことができなくなる。
図1に示すグラフ10において、水平軸は、FFTによる周波数を表し、垂直軸は、dB単位でFFTの計数値(逓降信号の時間サンプルのFFT処理によって得られる)を表す。
曲線12には、うなり周波数f1、および対応する観測対象の範囲を示すピーク14が存在する。また、曲線12には、ノイズのバックグラウンド16も見られる。
曲線18には、明瞭に観測対象を示すようなピークは存在しない。曲線18は、曲線12によって表される信号が干渉信号を含むときに、FFTによって周波数領域を処理したときの出力を示す。
干渉信号が単一の周波数を示す場合、FMCWレーダーシステムにおいて、上述のミキシングとFFTを含む処理を施しても、上記単一の周波数は、周波数スペクトルに残存する。これは、ミキシング処理が、きわめて短時間の干渉信号に対応するミキシング出力信号を与えるからである。周波数スペクトルの一部または全体にわたってノイズのレベルが上昇すると、ピーク14(すなわち観測対象のS/N比)が低下し、FMCWレーダーの検知能力が著しく低下する。曲線18においては、ピーク14は、正確には見出すことができない。
FMCWレーダーの用途の1つに、自動車の死角に位置する観測対象を検知するための車両用レーダーシステムがある。車両用レーダーは、上述の24.05GHzから24.25GHzまでのチャープ周波数を採用していることが多い。自動車の速度を検知する警察のレーダーは、この周波数帯を用いている(例えば24.197GHz)。
車両用レーダーにおいては、干渉信号の影響を最小にとどめ、対象(例えば他の車両)を、正確に、かつ高い信頼性の下に検知しうるレーダーシステムを用いることが必要である。
レーダーシステムの正確さと信頼性は、非常に重要である。車両用レーダーシステムの正確さと信頼性に貢献する特性には、センサのノイズ(干渉信号を含む)に対する感度、および受信される高周波(RF)信号を、ノイズと干渉信号の存在下で、対象を検知すべく処理するときの全般的な精度が含まれる。ノイズ(干渉信号を含む)に対する感度が高いと、車両用レーダーシステムが、対象を誤って検知することとなり(すなわち、警告の頻度が高まる)、また、対象の検知をのがす(検知の確率が低下する)ことにもなる。
米国特許第6577269号明細書
本発明は、上記事情に鑑みてなされたものであり、レーダー戻り信号における干渉信号を除去する、周波数変調連続波(FMCW)レーダー用のシステムと方法を提供することを目的としている。
本発明によれば、レーダー戻り信号と関連づけられた時間サンプルを抽出する過程と、前記時間サンプルにおいて干渉信号を検知するために、この時間サンプルを処理する過程とを含むレーダー戻り信号を処理する方法が提供される。本発明の方法は、干渉信号の範囲を決定する過程と、前記時間サンプルから干渉信号を除去する過程とをさらに含むのが好ましい。
本発明の他の様相に係る方法は、前記時間サンプルと関連づけられた複数のアレー値を有するアレーを生成する過程と、前記複数のアレー値と関連づけられた少なくとも1つの閾値を生成する過程と、前記複数のアレー値と前記少なくとも1つの閾値とを比較する過程と、少なくとも所定の数のアレー値が前記少なくとも1つの閾値を上回った場合に、干渉信号が存在すると検知する過程とをさらに含む。この場合、前記複数のアレー値は、勾配(1次導関数)値、高次導関数の値、時間サンプルの絶対値、および時間サンプルと関連づけられた冪の値のいずれかを含む。
また、レーダー戻り信号と関連づけられた干渉信号の範囲を決定する過程は、レーダー戻り信号と関連づけられた時間サンプルを抽出する過程と、時間サンプルおよび干渉信号と関連づけられた下方アレーサンプル境界および上方アレーサンプル境界を同定する過程と、第1のサンプル保護帯値を決定する過程と、第2のサンプル保護帯値を決定する過程と、干渉信号下方アレーサンプル範囲を定めるため、前記下方アレーサンプル境界から第1のサンプル保護帯値を差し引く過程と、干渉信号上方アレーサンプル範囲を定めるため、前記上方アレーサンプル境界に第2のサンプル保護帯値を加える過程と、干渉信号下方アレーサンプル範囲と干渉信号上方アレーサンプル範囲に従って、干渉信号下方時間サンプル範囲と干渉信号上方時間サンプル範囲の少なくとも一方を同定する過程とを含む。
本発明のさらに他の様相に係るレーダー戻り信号から干渉信号を除去する方法は、レーダー戻り信号と関連づけられた時間サンプルを抽出する過程と、前記時間サンプルおよび干渉信号と関連づけられた下方アレーサンプル境界および上方アレーサンプル境界の同定する過程と、第1のサンプル保護帯値を決定する過程と、第2のサンプル保護帯値を決定する過程と、干渉信号下方アレーサンプル範囲を定めるために、前記下方アレーサンプル境界から第1のサンプル保護帯値を差し引く過程と、干渉信号上方アレーサンプル範囲を定めるために、前記上方アレーサンプル境界に第2のサンプル保護帯値を加える過程と、干渉信号下方アレーサンプル範囲と干渉信号上方アレーサンプル範囲に従って、干渉信号下方時間サンプル範囲と干渉信号上方時間サンプル範囲の少なくとも一方を同定する過程とを含む。また、この方法は、(a)干渉信号下方時間サンプル範囲と干渉信号上方時間サンプル範囲との間にある時間サンプルを除外して、勾配が連続的な時間サンプルのグループを選び出す過程、および(b)干渉信号下方時間サンプル範囲と干渉信号上方時間サンプル範囲に従って加重関数を生成し、この加重関数を時間サンプルに適用する過程のいずれか一方を含む。
本発明のさらに他の様相によれば、レーダー受信モジュールと、このレーダー受信モジュールに接続されて、逓降信号と関連づけられた時間サンプルを抽出するレーダー信号サンプリングモジュールと、前記時間サンプルを受け取り、かつこの時間サンプルにおいて干渉信号を検知する干渉検知器とを含む、レーダー戻り信号の処理システムが提供される。このシステムは、干渉信号の範囲を決定するために、前記干渉検知器に接続された干渉範囲プロセッサと、この干渉範囲プロセッサに接続されて、前記時間サンプルから干渉信号を除去する干渉除去プロセッサとをさらに含むのが好ましい。
本発明によれば、FMCWレーダーによって受信される信号において、干渉信号を検知するためのシステムと方法が提供される。干渉信号が検知されると、直ちに干渉信号の範囲が決定され、干渉信号と関連づけられた時間サンプルが、逓降信号から除去される。したがって、FMCWレーダーは、干渉信号が存在しても、観測対象を検知、追跡、または分類することができる。本発明のシステムと方法は、このシステムを搭載したFMCWレーダーと同一の周波数で作動する干渉信号を生成する他のシステム(例えばもう1つのFMCWレーダー、警察のレーダーガン、パルスレーダー等)の存在下で用いられるFMCWレーダーにも効果をもたらす。
本発明に係る、レーダーの干渉信号を除去するシステムと方法を説明する前に、いくつかの用語と概念を定義する。
「周波数変調された連続波(FMCW)によるレーダーシステム」とは、初期の周波数から最終的な周波数まで、周波数が経時的に変化するFMCW信号(ここでは「チャープ」信号とも呼ぶ)を送信するタイプのレーダーシステムをいう。FMCWレーダーは、観測対象から戻ってくる反射信号(これも、チャープ特性を有する)を受信して処理する。
「逓降信号」および「ビデオ信号」は、FMCWレーダーシステムの受信部に用いられるミキサ回路の出力を意味する。逓降信号は、送信レーダー信号と、観測対象から戻ってくる反射信号との周波数の差を表す。反射信号は、ただ1つの観測対象から受信される場合が多い。一方、逓降信号は、ミキシング処理時に生成する、振幅がきわめて大きい「うなり周波数」を含む。
以下に説明する各実施形態においては、信号の複数の勾配値(1次導関数)を有する勾配アレー(配列)を生成する。勾配アレーは、レーダーの反射逓降信号の時間サンプルを処理し、干渉信号を検知してその範囲を決定するのに用いられる。また、以下の実施形態においては、信号の勾配値を絶対値で示す。「勾配値」とは、勾配の絶対値と関連づけられた値、または勾配の非絶対値と関連づけられた値のいずれかを意味する。
いくつかの信号の勾配値は、サンプルの勾配値の上限および下限、ならびにサンプルの勾配値の上限範囲および下限範囲(図4参照)と関連づけられている。
以下の実施形態においては、干渉信号を検知し、その範囲を決定する手段として勾配値を用いるが、他のパラメータを用いて干渉信号を検知し、その範囲を決定するタイプのアレーも用いうることに留意すべきである。例えば、時間サンプルを処理して、代わりに、サンプルの上限および下限の冪の値、ならびにサンプルの上限および下限の冪の範囲を出力する、複数の出力値をもつ冪アレーを用いる実施形態も可能である。これ以外のタイプのアレーについては、後述する。
図2に示すように、FMCWレーダーシステム50は、送信アンテナ54に接続されたFMCW送信システム64、および受信アンテナ56に接続されたFMCW受信システム66を有している。FMCW受信システム66は、逓降信号73を与えるレーダー受信モジュール68、および逓降信号73と関連づけられた時間サンプル76を与えるレーダー信号サンプリングモジュール(A/Dコンバータ)74を備えている。
FMCWレーダー50は、時間サンプル76を受け取って処理することにより干渉信号を同定する干渉検知器78(アレープロセッサ78aを具備する)を備えている。また、レーダーシステム50は、干渉信号の範囲を決定する干渉範囲プロセッサ88(リミットプロセッサ88aを具備する)、およびレーダーの反射信号と関連づけられた時間サンプルから干渉信号を除去した信号94を与える干渉除去プロセッサ92(選択プロセッサ92aと加重プロセッサ92bの少なくとも一方を具備する)を備えている。
FMCWレーダーシステム50は、送信アンテナ54を介して、チャープ信号58を送信する。チャープ信号58は、観測対象52によって反射され、エコー60として戻り、受信アンテナ56によって受信される。受信アンテナ56は、送信アンテナと同一でも、別個のものでもよい。この実施形態においては、受信アンテナによって受信される干渉レーダー信号62を生成する干渉器53が設けられている。
エコー60と干渉レーダー信号62は、ミキサ70によって、逓降信号73とされる。逓降信号73は、A/Dコンバータ74によってサンプリングされ、時間サンプル76として、干渉検知器78に送られる。時間サンプル76は、干渉レーダー信号62と関連づけられた干渉信号を含んでいる。
干渉検知器78の動作については、図4、図8、および図9を参照して詳細に説明するが、干渉検知器78は、時間サンプル76を処理して、これと関連づけられた複数の勾配アレー値を有する勾配アレーを生成し、この勾配アレー値を少なくとも一方の閾値と比較することによって、時間サンプル76に含まれている干渉信号を検知する。
干渉範囲プロセッサ88の動作については、図4A、図8、および図10を参照して詳細に説明するが、干渉範囲プロセッサ88は、少なくとも一方の閾値を超える信号の勾配アレー値と関連づけられた勾配サンプルの下限と上限を同定する。干渉範囲プロセッサ88は、干渉信号の範囲(例えば信号が存在する時間の範囲)を決定するため、サンプルガード保護帯値を用いて、これらの上限と下限の範囲を拡張する。
干渉除去プロセッサ92の動作については、図5、図8、図10、および図10Aを参照して詳細に説明するが、干渉除去プロセッサは、複数の時間サンプル76から、干渉範囲プロセッサ88によって同定された干渉信号の範囲内における時間サンプルを除き、近接している一群の時間サンプルを選択する。干渉除去プロセッサ92は、所定の時間サンプルを補間(例えばゼロ補間)する。近接している一群の時間サンプルは、除去されることはない。
干渉検知器が干渉信号を検知する一方で、レーダー反射信号プロセッサは、信号94を処理する。しかし、干渉検知器78が干渉信号を検知しないときは、レーダー反射信号プロセッサは、時間サンプル76と同じ信号80を処理する。
図3に示すように、グラフ100の水平軸は、dBsm(1m2当りのdB)単位で、種々の大きさの観測対象のレーダー断面積をとったものである。一方、垂直軸は、逓降信号の時間サンプル(例えば図2に示す時間サンプル76)と関連づけられた最大予想勾配をとったものである。曲線102は、所定の範囲内で種々のレーダー断面積を有する観測対象に対する信号の最大予想勾配を示す。
各時間サンプルj(j=1,,,N−1;Nはチャープ信号と関連づけられた時間サンプルの数)に対して、時間サンプル76(図2参照)と関連づけられた勾配の絶対値が、次式に従って与えられる。
勾配(j)=時間サンプル(j+1)−時間サンプル(j)
勾配(j)は、複数のアレー値を有するアレー、より詳しくは、それぞれが時間サンプル76と関連づけられた複数の勾配値をもつ勾配アレーである。勾配(j)における勾配値の数は、時間サンプル76(図2参照)の数と同じであることも、異なることもあり、勾配(j)における勾配値の数が、時間サンプル76(図2参照)の数よりも小さい場合もある。
曲線102は、次のようにして得られる。時間サンプルと関連づけられた最大周波数(最大の観測対象範囲に対応する)は、下記数1のようにして算出される。
Figure 0005254529

ここで、Rmaxは最大観測対象範囲、cは光速、Δtは周波数掃引時間、fmaxは最大受信周波数、Bは周波数掃引の帯域幅である。
逆に、fmaxよりも小さい各周波数に対応する観測対象範囲は、下記数2によって算出される。
Figure 0005254529
各観測対象範囲(すなわち各周波数範囲)における自由空間範囲の損失rangeloss(f)は、下記数3によって算出される。
Figure 0005254529
受信増幅器、例えば図2のダウンコンバータ68に関連づけられた、受信増幅器の周波数に係る利得ampgain(f)は、システムに依存する。受信増幅器の利得ampgain(f)が、上記自由空間範囲の損失の補償を反転させるように選択される場合もある。
時間サンプルと関連づけられた最大予想勾配 maximum expected slope(j)は、可能な周波数全域(すなわち可能な観測対象範囲の全域)にわたって、次の数4に示す式に従って計算することができる。
Figure 0005254529
ここで、jは1から最大周波数(FFTによる周波数ライン)までの値をとる。RangeFreqSlope(j)は、サンプル間隔とサンプル時間のシステムパラメータに基づくj番目の観測対象範囲に対応する受信信号の最大勾配である。RangeFreqSlope(j)を見つけるために用いられる周波数は、上記数1の方程式におけるRmaxをj番目の観測対象範囲の値で置き換えることによって得られる。RCSは、観測対象のレーダー断面積である。
上記最大予想勾配(j)についての方程式は、複数の最大予想勾配値をもつ最大予想勾配アレーを与える。種々の範囲における勾配を代表する最大予想勾配値は、いずれも、曲線102に示される所与のレーダー断面積に関連づけられた最大勾配値maxslopevalueとなりうる。maxslopevalueは、増幅器の利得ampgain(f)に依存しているため、必ずしも最も近い観測対象に生じるわけではなく、いかなる観測対象範囲(すなわち、いかなる周波数)にある観測対象にも生じうる。
以下では、アレーから選択されたmaxslopevalueは、勾配アレー値と比較するための閾値として用いうることを説明する。
図4に示すように、グラフ120の水平軸は勾配サンプルの数を示している。勾配サンプルの数は、上述の最大予想勾配(j)の方程式に従う時間サンプル76(図2参照)と関連づけられている。このグラフに示す実施形態においては、255個の勾配サンプル(および256個の時間サンプル(図4A参照))を用いている。しかし、255個よりも少ない勾配サンプル、またはこれよりも多い勾配サンプル、および256個よりも少ない時間サンプル、またはこれよりも多い時間サンプルを用いることも可能である。グラフ120の垂直軸は、上述のmaximum expected slope (j)の方程式に従う勾配の絶対値を示している。
曲線126は、最大予想勾配(j)の方程式に従う時間サンプル76(図2参照)と関連づけられた勾配の絶対値を表す。曲線126は、個別には示されていない個々の勾配サンプルslope(j)をつなぎ合わせたものである。曲線126の一部126aと126bは、勾配が比較的小さい時間サンプル76を表している。曲線126の他の一部126cは、勾配が比較的大きい時間サンプル76を表している。この一部126cが干渉信号を示していることは明らかである。
第1の閾値122(ここでは最大勾配閾値と呼ぶ)は、上述の最大勾配値maxslopevalueに相当する。すでに説明したように、最大勾配値maxslopevalueとは、いかなる範囲においても最大勾配が得られる所定のレーダー断面積をもつ観測対象の最大予想勾配である。したがって、干渉信号が存在する場合を除き、曲線126が最大勾配閾値122を超えることはほとんどない。
第2の閾値124(ここでは平均勾配閾値と呼ぶ)は、曲線126全体の平均勾配に定数Kを乗じたものを表す。平均勾配閾値は、下記数4に従って算出される。
Figure 0005254529
この実施形態においては、Kを3とする。定数Kは、誤った警告の回数、すなわち、曲線126が第2の閾値124と交差する回数を減らすように設定される。定数Kは、検知の確率を高めるためのものである。すなわち、干渉信号が存在する場合には、以下の方法によってほぼ確実に検知される。曲線126は、干渉信号が存在する場合を除いて、平均勾配閾値を超えることはほとんどない。
平均勾配閾値124は、最大勾配閾値122よりも小さいが、両者の関係を反対にすることもできる。この場合には、例えば、サンプルが最大勾配閾値と交差する範囲において、曲線の一部126cを除外して平均勾配閾値を算出する。
干渉信号は、例えば、曲線126、ならびに第1および第2の閾値122,124を生成する干渉検知器7(図2参照)によって同定される。干渉信号は、曲線126が、最大勾配閾値122と平均勾配閾値124の両方と交差した(超えた)場合に検知される。この外、曲線126が最大勾配閾値122と交差した(超えた)だけをもって、干渉信号を検知するようにシステムを設計することもできる。
干渉信号の検知は、最大勾配閾値122と平均勾配閾値124を超える所定の数の勾配を用いて行うこともできる。ここでいう所定の数とは、1よりも大きい数ならば何でもよい。干渉信号を検知するためには、少なくとも2つの勾配値(第1の勾配値と最後の勾配値)が、2つの閾値を超えなければならない。閾値を超える所定の数の勾配値は、経時的に求めることもできる。
干渉信号が、曲線126と、最大勾配閾値122および平均勾配閾値124の一方または両方との交差から検知されると、干渉信号の範囲が、例えば干渉範囲プロセッサ88(図2参照)によって決定される。この決定を行うために、平均勾配閾値124と交差する曲線126の勾配が同定される。
干渉信号の勾配を表す曲線126の一部126cは、2つの点130と132において、平均閾値124と交差している。両者の間の複数の中間点において交差する場合もある(図4においては、点143が唯一の例である)。点130(ここでは、下方勾配サンプル境界と呼ぶ)は、時間の早い段階での勾配サンプルと関連づけられている。同様に、点132は、時間の遅い段階での勾配サンプルと関連づけられている(ここでは、点132を上方勾配サンプル境界と呼ぶ)。
所定の数の勾配サンプルポイントを含む第1の保護帯値は、点136(ここでは、下方勾配サンプル範囲と呼ぶ)を得るため、下方勾配サンプル境界130から差し引かれる。他方、所定の数の勾配サンプルポイントを含む第2の保護帯値は、点138(ここでは、上方勾配サンプル範囲と呼ぶ)を得るため、上方勾配サンプル境界132に加算される。
第1と第2の保護帯は、同数、例えば5個の勾配サンプルポイントを含むこともあれば、5個よりも多いサンプル、またはこれよりも少ないサンプルを含むこともある。また、第1と第2の保護帯が、例えば曲線の一部126cの形状にしたがって、経時的に決定される場合もある。
第1および第2の保護帯の値は、点136と点138の間にある勾配サンプルと関連づけられた時間サンプルを、次々と除去しうるように選択する。また、第1および第2の保護帯値は、曲線の一部126cの残留部分と関連づけられた時間サンプルが、以下に説明するように、時間サンプルから除去された状態にとどまることのないように選択する。
以上、点130,132,136,138,143を、平均勾配閾値124との交差を前提に説明してきたが、最大勾配閾値122との交差に基づくものとすることもできる。
曲線126は、アレー値として勾配値(とりわけ勾配の絶対値)をもつ勾配アレーを表しているが、他のアレー値をもつタイプの勾配アレーも用いることができる。以下に説明するように、アレーと、これに関連するアレー値は、複数の勾配値(図4に示す勾配の絶対値)をもつ勾配(一次導関数)アレー、複数の高次導関数の値をもつ高次導関数アレー、複数の冪の値をもつ冪アレー、および複数の時間サンプルの絶対値をもつ時間サンプル絶対値アレー等でもよい。これらのタイプのアレーにおいては、最大勾配閾値122と平均勾配閾値124に相当する閾値が設けられ、この閾値が、上述の要領で使用される。
例えば、高次導関数アレーを用いる場合には、最大勾配閾値122と平均勾配閾値124に替えて、最大高次導関数閾値と平均高次導関数閾値が用いられる。また、冪アレーを用いる場合には、最大勾配閾値122と平均勾配閾値124に替えて、最大冪閾値と平均冪閾値が用いられる。時間サンプル絶対値アレーを用いる場合には、最大勾配閾値122と平均勾配閾値124に替えて、最大時間サンプルの絶対値の閾値と平均時間サンプルの絶対値の閾値が用いられる。したがって、いかなるタイプのアレーにおいても、上方勾配サンプル境界132および下方勾配サンプル境界130と比較しうるサンプルの境界、ならびに上方勾配サンプル範囲138および下方勾配サンプル範囲136と比較しうるサンプルの境界を、それぞれ同定することができる。
上記の曲線126は、勾配の絶対値に対応するものであるが、絶対値でない勾配値を用いることできる。この場合、勾配値は、正負の値をとりうる。
図4Aに示すグラフ150の水平軸は、時間サンプルの個数を表す。時間サンプルの数は、時間サンプル76(図2参照)と関連づけられている。グラフ150には、256個の時間サンプルをとってある。しかし、時間サンプルの個数は、256個よりも多くても少なくてもよい。グラフ150の垂直軸は、時間サンプルの振幅を、A/Dコンバータ74(図2参照)により与えられるデジタル計数値76(図2参照)によって表している。
曲線152は、逓降信号73(図2参照)と関連づけられた時間サンプル76を表す。曲線152は、個別には示されていない複数個の時間サンプルをつなぎ合わせたものである。曲線152は、干渉信号を含まない時間サンプルを表す部分152a,152bと、干渉信号を含む時間サンプルを表す部分152cとを有している。
曲線の一部152cは、図4に示す曲線の一部126cと位置が揃っている。すなわち、曲線の一部152cによって経時的に表される干渉信号は、曲線の一部126cによって表される比較的大きな勾配を有している。したがって、勾配サンプルの数に対応する干渉信号の下方勾配境界の範囲136と上方勾配境界の範囲138は、時間サンプルの数に対応する点162,164とそれぞれ関連づけられている。ここでは、それぞれ、点162は、干渉信号の下方時間サンプル範囲と、点164は、干渉信号の上方時間サンプル範囲と呼ぶ。
すでに説明したように、点136と138には、保護帯値が適用される。したがって、点162と164は、干渉信号を取り囲む境界160aと160bを有する領域160を形成する。この領域160の外側に、干渉信号の一部が残存することはない。
以下の説明から明らかとなるように、干渉信号の下方時間サンプル範囲162と下方時間サンプル範囲164との間にある時間サンプルは、この後の処理を行う前に、256個の時間サンプルのグループから除去することができる。
図5に示すグラフ180(この図において、図4と同様の要素には同一の符号を付してある)の水平軸には、時間サンプルの数をとってある。時間サンプルの数は、時間サンプル76(図2参照)と関連づけられている。ここでは、時間サンプルの個数は、256である。しかし、これよりも少ないかまたは多い時間サンプルをサンプリングすることもできる。グラフ180の垂直軸は、時間サンプルの振幅を、A/Dコンバータ74(図2参照)により与えられるデジタル計数値76(図2参照)によって表している。
曲線152は、概ね水平な部分152aのみからなる。点162によって表される下方時間サンプル範囲は、境界160aにおいて曲線152を途切れさせている。また、曲線152は、下方時間サンプル範囲162から、時間サンプルの数である少なくとも255まで、ゼロの値182をとって延びている。曲線152は、FFT処理のためのデータポイントをより多く提供するために、ゼロの値をとったまま、さらに延長されることもある。ここでは、曲線152に加えられるゼロの値を、「ゼロ・パッド」と呼ぶ。曲線152は、ゼロ以外の値を加えられることもある。この場合には、その値を「パッディング」と呼ぶ。
図6に示す(この図において、図1と同様の要素には同一の符号を付してある)グラフ200の水平軸には、周波数ラインの数(bin)をとってある。また、グラフ200の垂直軸には、逓降信号73(図2参照)の時間サンプル76のFFT処理によって与えられるFFT計数をdB単位でとってある。すでに説明したように、曲線12は、うなり周波数f1を示すピーク14を有する周波数領域信号および観測対象に対応する観測対象範囲を表している。曲線12は、ノイズのバックグラウンド16も有している。
一方、曲線18には、顕著なピークはみられない。曲線18は、曲線12によって表される受信信号が干渉信号を含む場合に、FFTによる周波数領域処理を行ったときの出力を示す周波数領域信号を表している。曲線18においては、ピーク14を正確に見出すことはできない。
曲線204は、上記図4〜図6に示す方法を用いて得られた周波数領域信号を表している。曲線204を作成するために用いられた複数の時間サンプルは、曲線18を作成するために用いられた複数の時間サンプルと同じである。曲線204においては、干渉信号に関連づけられた時間サンプルは、上記の方法によってすでに除去されている。
曲線204には、ピーク208が存在する。また、曲線204には、ノイズ領域212も存在する。観測対象は存在するが、干渉信号は存在しない状況下で得られる曲線12と、観測対象と干渉信号(上記の方法によって除去される)の存在下で得られる曲線204とを比較すると、ピーク208は、ピーク14と概ね整列しており、かつピーク204は、ピーク14よりも幅が大きいことが見てとれる。また、曲線204のノイズバックグラウンド212は、曲線12のノイズバックグラウンド16よりも、値が大きい。
観測対象と干渉信号(すでに除去されている)の存在下で得られる幅の広いピーク208と、高い値をもつノイズバックグラウンド212は、観測対象は存在するが、干渉信号が存在しない状況下でFMCWレーダーシステムによって得られる曲線12におけるピークおよびノイズバックグラウンドと比べて、FMCWレーダーシステムの正確さを損なうこととなる。
しかし、観測対象範囲を示すピーク208は、観測対象、および上記の方法によっては除去されない干渉信号の存在下で得られる曲線18において対応するピークが同定されない場合でも、同定することができる。したがって、上記の方法は、観測対象と干渉信号の両方が存在する場合におけるレーダーシステムの正確さを顕著に改善することができる。
図7に示すグラフ220(この図において、図4Aと同様の要素には同一の符号を付してある)の水平軸には、時間サンプルの数をとってある。時間サンプルの数は、時間サンプル76(図2参照)と関連づけられている。また、グラフ220の垂直軸は、時間サンプルの振幅を、A/Dコンバータ74(図2参照)により与えられるデジタル計数値76(図2参照)によって表している。
すでに説明したように、曲線152は、逓降信号73(図2参照)と関連づけられた時間サンプル76を表している。曲線152は、3つの部分152a,152b,152cを含んでおり、このうち部分152bは干渉信号を含まない時間サンプル76を表し、部分152cは干渉信号を含む時間サンプル76を表している。
干渉信号の下方時間サンプル範囲162と上方時間サンプル範囲164は、領域160を区画している。
大きな切込み部分222aを有する曲線222は、時間サンプルに適用される加重関数を表している。加重関数が、曲線152によって表される時間サンプルに適用されると、領域160にある時間サンプルは減少する。すなわち、干渉信号152bは減少し、ウィンドーで囲まれた256個の時間サンプルは残る。256個の時間サンプルには、例えば、さらに256個の値でパッドが付され、続くFFT処理で用いられる追加のサンプルとされる。
曲線222は、加重関数の一例を示すにすぎない。他の加重関数を用いることもできる。例えば、加重関数は、複数の囲み機能を組み合わせに基づいて、つくり出すことができる。256個の時間サンプル(例えば図2に示す時間サンプル76)のグループが、干渉信号を含ム50個のサンプルを有する場合には、干渉信号を含ム50個のサンプルの領域において1つの余弦を用いて加重を行うハミング囲み機能を、256個のサンプルに適用する加重関数を用いる。また、加重関数は、50個のサンプルの干渉領域において、もう1つの囲み機能と組み合わせない、1つの余弦を用いるものとすることもできる。
図8〜図10Bは、FMCWレーダーシステム50(図2参照)において実施される方法を表す流れ図である。方形の枠(例えば、図8の符号252で示す枠。ここでは「処理ブロック」と呼ぶ。)は、コンピュータのソフトウエアによる指示を示す。菱形の枠は、(例えば、図8の符号258で示す枠。ここでは「判断ブロック」と呼ぶ。)は、処理ブロックによって表されるコンピュータソフトウエアの指示の実行に影響を与える判断を示す。
処理ブロックと判断ブロックは、デジタル信号処理回路や、特定用途向けの集積回路(ASIC)のような、機能が等価な種々の回路によって実行されるステップを表す。流れ図は、特定のプログラミング言語の文法を表すものではない。むしろ、流れ図は、特定の装置に要求される処理を行わせるための回路設計やソフトウエア開発用に当業者が必要とする機能的な情報を表す。
ループや変数の初期化等の多くのルーチンプログラム、および一時的な変数の使用は、示していないことに留意すべきである。当業者ならば、特に断らない限り、一連のブロックは例示にすぎず、本発明の要旨を逸脱しない範囲で変更しうることは理解できると思う。したがって、特に断らない限り、以下で説明する各ブロックは、特定の順序を示すものではない。すなわち、各ステップは、可能であるならば、好ましい順序で実行することができる。
図8に示すように、一連の処理250は、符号252で示すブロックから始まる。ブロック252においては、レーダー信号を、例えば図2に示すFMCW受信システム66によって受信する。
ブロック253においては、受信されたレーダー信号に基づいて、逓降レーダー信号(例えば図2に示す逓降レーダー信号73)を与える。
ブロック254においては、例えば時間サンプル76を提供するA/Dコンバータ74(図2参照)によって、逓降レーダー信号73の時間サンプルを抽出する。
すでに説明したように、時間サンプルの中に干渉信号が存在することもある。ブロック256においては、時間サンプルは、例えば図2に示す干渉検知器78によって、干渉信号を検知するために処理される。この時間サンプルの処理は、例えば図4と図4Aを参照して説明した方法によって行うことができる。時間サンプルの処理については、図9を参照して詳しく説明する。
ブロック258においては、干渉信号が検知されたか否かの判断を行う。ブロック258において干渉信号が検知された場合には、処理は、ブロック260に移行し、例えば図2に示す干渉範囲プロセッサ88によって、干渉信号の範囲を決定する。この干渉信号の範囲の決定については、図10を参照して詳しく説明する。
ブロック262においては、例えば図2に示す干渉除去プロセッサ92を用いて、ブロック254において抽出された時間サンプルから、同定された干渉信号を除去する。除去は、例えば図5または図7を参照して説明した方法によって行うことができる。この外、除去については、以下に図10Aと図10Bを参照しても説明する。
ブロック264においては、干渉信号を除去することとなっている信号94(図2参照)を、例えば図2に示すレーダー戻り信号プロセッサ82を用いて処理し、図2に示す信号84のような、観測対象のレーダーシステムによる検知または分類を行った信号を生成する。ブロック264における処理には、例えば、FFT等の周波数領域変換が含まれる。
観測対象のレーダーシステムによる検知または分類は、例えば米国特許第6577269号明細書に記載されているような、自動車の横方向にある観測対象を検知するシステムと関連づけられている。しかし、これまでに説明したシステムと方法は、車両用に限定されるものではない。
図9に示すように、例えば図2における干渉検知器78によって実行される処理300は、ブロック302から始まる。ブロック302においては、複数の勾配アレー値をもつ勾配アレーが、図8のブロック254において抽出される時間サンプルに従って生成される。勾配アレーは、例えば図4に示す曲線126のようなものである。
ブロック304においては、第1の閾値が設定される。第1の閾値は、図4に示す最大勾配閾値122に相当する。ブロック306においては、第2の閾値が設定される。第2の閾値は、図4に示す平均勾配閾値124に相当する。
ブロック308においては、ブロック302における複数の勾配アレー値が、ブロック304と306においてそれぞれ設定された第1および第2の閾値と対比される。
判断ブロック310においては、ブロック302において生成された勾配アレー値のうち少なくとも所定の数の勾配アレー値が、第1および第2の閾値と交差する(すなわち、これらの閾値を超える)と判断された場合には、ブロック312において、干渉信号の存在が認定される(すなわち、干渉信号が検知される)。上記所定の数は、1よりも大きければ、何でもよい。この実施形態においては、この数は2である。また、この所定の数は、経時的に変化させることもできる。
図4を参照して説明したように、干渉信号の検知は、第1および第2の閾値(最大勾配閾値122と平均勾配閾値124)と交差する複数の勾配アレー値(図4に示す曲線126)と関連づけて行われる。干渉信号の検知は、第1の閾値(最大勾配閾値122)と交差する勾配アレー値のみと関連づけて行うことも、第2の閾値(平均勾配閾値124)と交差する勾配アレー値のみと関連づけて行うこともできる。
判断ブロック310において、勾配アレー値のうち、第1および第2の閾値と交差するものがないと判断された場合には、ブロック314において、干渉信号は検知されないとの処理がなされる。
処理300は、例えば、1つのチャープ信号に対応するデータに基づいて実行される。処理300は、連続する各チャープ信号、または連続するチャープ信号のうちの所定の数について繰り返される。
以上、処理300を、複数の勾配アレー値を有する勾配アレー、対応する最大勾配閾値、および平均勾配閾値と関連づけて説明してきたが、処理300を行うに当たっては、図4を参照して説明したように、対応する最大閾値および平均閾値とともに用いられる他のタイプのアレー値を有する他のタイプのアレーを用いることもできる。
図10に示すように、例えば図2に示す干渉範囲プロセッサ88によって実行される処理350は、ブロック352から始まる。ブロック352においては、干渉信号に従って、下方勾配サンプル境界が同定される。次に、ブロック354においては、上方勾配サンプル境界が同定される。上方勾配サンプル境界および下方勾配サンプル境界は、例えば、図に示す点130,132に相当する。
ブロック356においては、第1のサンプル保護帯値が決定され、ついで、ブロック358においては、第2のサンプル保護帯値が決定される。サンプル保護帯値を決定する方法は、すでに図4と図4Aを参照して説明した。サンプル保護帯値は、一定の値にすることも、経時的に変化する値にすることもできる。
ブロック360においては、干渉信号下方勾配サンプル範囲を定めるため、第1のサンプル保護帯値を、干渉信号下方勾配サンプル境界から差し引く。同様に、ブロック362においては、干渉信号上方勾配サンプル範囲を定めるため、第2のサンプル保護帯値を、干渉信号上方勾配サンプル境界に加える。干渉信号上方勾配サンプル境界と干渉信号下方勾配サンプル境界は、それぞれ、例えば図4に示す点138と136に相当する。
ブロック364においては、干渉信号下方時間サンプル範囲が、干渉信号下方勾配範囲に基づいて同定される。同様に、次のブロック366においては、干渉信号上方時間サンプル範囲が、干渉信号上方勾配範囲に基づいて同定される。干渉信号上方時間サンプル範囲と干渉信号下方時間サンプル範囲は、それぞれ、図4Aに示す点164と162に相当する。これらの点164と162は、それぞれ、図4に示す上方および下方勾配サンプル範囲138,136に相当する。
処理350は、例えば、1つのチャープ信号に対応するデータに基づいて実行される。処理350は、連続する各チャープ信号、または連続するチャープ信号のうちの所定の数について繰り返される。
以上、処理350を、2つの勾配サンプル境界および勾配サンプル範囲と関連づけて説明してきたが、処理350を行うに当たっては、例えば図4を参照して説明したように、他のタイプのアレーと関連づけられた、他のアレーサンプル境界およびアレーサンプル範囲を用いることもできる。
図10Aに示すように、例えば図2に示す干渉除去プロセッサ92によって実行される処理400は、ブロック402から始まる。ブロック402においては、時間サンプル(例えば図2に示す時間サンプル76)から、図10におけるブロック362と364において同定される干渉信号下方時間サンプル範囲と干渉信号上方時間サンプル範囲との間にある時間サンプルを除いて、連続した時間サンプル群を選択する。
選択された時間サンプル群は、例えば、図4Aと図5に示す曲線の一部152a、または曲線の一部152bに相当する。選択された時間サンプル群は、干渉信号下方時間サンプル範囲(例えば曲線の一部152a)にある時間サンプルを除いて、連続する時間サンプルの中で最大のグループを形成するように選択する。
ブロック404においては、選択された時間サンプル群に、例えば図5に示すゼロパッディング182を用いて、パッドが付される。しかし、選択された時間サンプル群に付すパッドは、ゼロ以外の値によってもよい。
ゼロパッドを付された時間サンプルは、ついで、例えば図2に示すレーダー戻り信号プロセッサ82によって処理される。レーダー戻り信号プロセッサ82は、ゼロパッドを付された時間サンプルに対して、例えばFFTを実行することができる。ゼロパッドを付された時間サンプルは、FFT処理に先立って、ブロック406において、ハニングまたはハミング囲み機能のような、公知の囲み機能を用いて加重することができる。
処理400は、例えば、1つのチャープ信号に対応するデータに基づいて実行される。処理400は、連続する各チャープ信号、または連続するチャープ信号のうちの所定の数について繰り返される。
以上、処理400を、勾配アレーと関連づけて説明してきたが、例えば図4を参照して説明したように、他のタイプのアレーを用いることもできる。
例えば図2に示す干渉除去プロセッサ92によって実行される処理450は、図10Aに示す処理の代替的方法である。処理450は、ブロック452から始まる。ブロック452においては、図10におけるブロック362と364においてそれぞれ同定される干渉信号下方時間サンプル範囲と干渉信号上方時間サンプル範囲に基づいて、公知または非公知の加重関数がつくり出される。この加重関数は、例えば図7に示す加重関数222のようなものである。加重関数は、時間サンプル(例えば、図2に示す時間サンプル76)に適用されたときに、干渉信号を減少させうるものが選択される。
ブロック454においては、干渉信号下方時間範囲と干渉信号上方時間範囲との間にある時間サンプルを含めて、時間サンプルに、加重関数が適用される(すなわち、時間サンプルが加重関数によって何倍かにされる)。
加重された時間サンプルは、ついで、例えば図2に示すレーダー戻り信号プロセッサ82によって処理される。レーダー戻り信号プロセッサ82は、ブロック454において得られた加重済み時間サンプルに対して、例えばFFTを実行する。
処理450は、例えば、1つのチャープ信号に対応するデータに基づいて実行される。処理450は、連続する各チャープ信号、または連続するチャープ信号のうちの所定の数について繰り返される。
以上、処理450を、勾配アレーと関連づけて説明してきたが、例えば図4を参照して説明したように、他のタイプのアレーを用いることもできる。
これまでに説明してきた干渉信号を除去するための方法は、勾配が連続的な干渉信号を有するレーダー戻り信号に適用しうるだけでなく、バンド形状の干渉信号を有するレーダー戻り信号にも適用することができる。上述のシステムと方法は、いかなる周波数およびいかなるバンド幅の下でも作動する、どのようなFMCWレーダーにおけるレーダー戻り信号の時間サンプルからも、望ましくないデータサンプルを除去しうるものである。本発明のシステムと方法によれば、チャープ戻り信号において干渉信号を同定し、これを除去することができるため、干渉信号は、各チャープ戻り信号において、同じ周波数である必要はなく、また同じ特性を有しなければならないというものでもない。1つのチャープ戻り信号に、2つ以上の干渉信号が存在する場合もある。
上述の実施形態においては、複数の勾配アレー値を有する勾配アレーを説明してきたが、アレーとこれに関連するアレー値は、例えば下記の数6に示す式によって表される複数の勾配値(図4に示すような勾配の絶対値)をもつ勾配(すなわち1次導関数)アレー、複数の高次導関数値をもつ高次導関数アレー、下記の数7に示す式によって表される複数の冪アレー値をもつ冪アレー、および下記の数8に示す式によって表される複数の時間サンプルの絶対値をもつ時間サンプル絶対値アレーを含むことができる。
Figure 0005254529

Figure 0005254529

Figure 0005254529
勾配アレー(例えば図4に示す曲線126)とは異なるタイプのアレーを用いる場合には、上述の第1および第2の閾値(例えば、図4に示す閾値122と124)が勾配値とは関連づけられることはない。また、勾配サンプル境界および干渉信号勾配サンプル範囲(例えば、図4における点136,130,132,138)も、勾配サンプルの数と関連づけられることはない。その代わりに、第1および第2の閾値は、用いられるアレーのタイプに応じて、それぞれ、最大アレー値および平均アレー値と関連づけられる。同様に、干渉信号アレーサンプル境界および干渉信号アレーサンプル範囲は、用いられるアレーのタイプに応じて、アレーサンプルの数と関連づけられる。
本明細書においては、引用した文献の全体を参考としている。以上、本発明を好ましい実施形態に即して説明してきたが、当業者にとっては、ここで説明した概念に基づく他の実施形態も明らかであると思う。本発明の技術的範囲は、本明細書において説明した実施形態に限られるべきではなく、特許請求の範囲の記載に基づいてのみ解釈されるべきである。
FMCWレーダーの周波数領域における、干渉信号が存在する逓降信号と、干渉信号が存在しない逓降信号を示すグラフである。 本発明に係る、干渉信号を除去するFMCWレーダーのブロック図である。 図2に示すFMCWレーダーシステムにより与えられる逓降信号の時間サンプルと関連づけられている観測対象の大きさに対する、最大限予測しうる信号の勾配を示すグラフである。 干渉信号の存在下で、図2に示すFMCWレーダーシステムにより与えられる逓降信号の時間サンプルと関連づけられている、信号の勾配の絶対値を示すグラフである。 干渉信号の存在下で、図2に示すFMCWレーダーシステムにより与えられる逓降信号の時間サンプルを示すグラフである。 干渉信号を除去した状態における、図2に示すFMCWレーダーシステムにより与えられる逓降信号の時間サンプルを示すグラフである。 周波数領域においてFMCWレーダーシステムにより与えられる、干渉信号が存在する逓降信号と存在しない逓降信号、および本発明のシステムと方法を用いた場合の逓降信号と用いない場合の逓降信号を示すグラフである。 図2に示す構成要素を有するもう1つのFMCWレーダーシステムにより与えられる、干渉信号に関連する加重関数、および干渉信号が存在する場合の逓降信号の時間サンプルを示すグラフである。 干渉信号を除去するプロセスを示す流れ図である。 図8のプロセスにおける第1の部分を詳細に示す流れ図である。 図8のプロセスにおける第2の部分を詳細に示す流れ図である。 図8のプロセスにおける第3の部分を詳細に示す流れ図である。 図8のプロセスにおける第4の部分を詳細に示す流れ図である。
符号の説明
50 FMCWレーダーシステム
53 干渉器
54 送信アンテナ
56 受信アンテナ
58 チャープ信号
60 エコー
62 干渉レーダー信号
64 FMCW送信システム
66 FMCW受信システム
68 レーダー受信モジュール
70 ミキサ
73 逓降信号
76 時間サンプル
74 A/Dコンバータ
78 干渉検知器
88 干渉範囲プロセッサ
92 干渉除去プロセッサ
92a 選択プロセッサ
92b 加重プロセッサ
122 最大勾配閾値
124 平均勾配閾値
130 下方勾配サンプル境界
132 上方勾配サンプル境界
136 下方勾配サンプル範囲
138 上方勾配サンプル範囲
208 ピーク
212 ノイズバックグラウンド

Claims (23)

  1. レーダー戻り信号と関連づけられた時間サンプル値をそれぞれ伴う時間サンプルを有する第1のアレーを生成するステップと、
    前記時間サンプル要素にある干渉信号を検出するための前記第1のアレーを処理するステップと、
    前記時間サンプル要素、前記時間サンプル値を有する前記第1のアレーから、前記干渉信号を示す同定された時間サンプル要素を除去するステップとを備え、
    前記第1のアレーを処理するステップは、
    時間サンプルに関連した第2のアレー値をそれぞれ伴う第2のアレー要素を有する第2のアレーを生成するステップと、
    前記第2のアレー要素の中から、干渉信号を示す第2のアレー要素を決定するステップと、
    対応する少なくとも1つの前記時間サンプル値に対して前記干渉信号を示す少なくとも1つの第2のアレー要素を1対1マッピングすることによって、前記干渉信号を示す前記第1のアレーにおける前記時間サンプル要素を同定するステップとを備え、
    前記第2のアレー値は、前記時間サンプル値の偏差から生成される少なくとも1つの勾配値、前記時間サンプル値の偏差から生成される高次導関数又は時間サンプル値をそれぞれ2乗することによって生成される冪の値を備え、
    前記第2のアレー要素を決定するステップは、前記第2のアレー値に関連した少なくとも1つの閾値を生成するステップと、関第2のアレー値と少なくとも1つの閾値とを比較するステップと、少なくとも所定の数の前記第2のアレー値が少なくとも1つの閾値を超えた場合、前記干渉信号が存在することを検出するステップとを含み、
    前記マッピングは前記第1のアレーの前記時間サンプル値を変更しないことを特徴とするレーダー戻り信号を処理する方法。
  2. 前記干渉信号の範囲を決定する過程と、前記時間サンプルから干渉信号を除去する過程とをさらに含むことを特徴とする請求項1記載の方法。
  3. 前記時間サンプルと関連づけられた複数のアレー値を有するアレーを生成する過程と、前記複数のアレー値と関連づけられた少なくとも一方の閾値を生成する過程と、前記複数のアレー値と前記少なくとも一方の閾値とを比較する過程と、少なくとも所定の数のアレー値が前記少なくとも一方の閾値を上回った場合に、干渉信号が存在すると検知する過程とをさらに含むことを特徴とする請求項2記載の方法。
  4. 前記複数のアレー値は、勾配値、高次導関数の値、時間サンプルの絶対値、および時間サンプルと関連づけられた冪の値のいずれかを含むことを特徴とする請求項3記載の方法。
  5. 前記少なくとも一方の閾値を生成する過程は、最大予測アレー値に関連する少なくとも1つの第1の閾値と、複数のアレー値の平均値に関連する第2の閾値の少なくとも一方を生成する過程を含むことを特徴とする請求項3記載の方法。
  6. 前記複数のアレー値と前記少なくとも一方の閾値とを比較する過程は、複数のアレー値を前記第1の閾値と第2の閾値の少なくとも一方と比較する過程を含むことを特徴とする請求項5記載の方法。
  7. 前記干渉信号の存在を検知する過程は、少なくとも所定の数のアレー値が、前記第1の閾値と第2の閾値の少なくとも一方を上回ったときに、干渉信号を同定する過程を含むことを特徴とする請求項5記載の方法。
  8. 前記干渉信号の範囲を決定する過程は、前記少なくとも一方の閾値を上回る所定の数のアレー値のうちの1つと関連づけられた下方アレーサンプル境界を同定する過程と、前記少なくとも一方の閾値を上回る所定の数のアレー値のうちの他の1つと関連づけられた上方アレーサンプル境界を同定する過程と、第1のサンプル保護帯値を決定する過程と、第2のサンプル保護帯値を決定する過程と、干渉信号下方アレーサンプル範囲を定めるため、前記下方アレーサンプル境界から第1のサンプル保護帯値を差し引く過程と、干渉信号上方アレーサンプル範囲を定めるため、前記上方アレーサンプル境界に第2のサンプル保護帯値を加える過程と、干渉信号下方アレーサンプル範囲と干渉信号上方アレーサンプル範囲に従って、干渉信号下方時間サンプル範囲と干渉信号上方時間サンプル範囲の少なくとも一方を同定する過程とを含むことを特徴とする請求項3記載の方法。
  9. 前記時間サンプルから干渉信号を除去する過程は、干渉信号下方時間サンプル範囲と干渉信号上方時間サンプル範囲の間にある時間サンプルを除外して、勾配が連続的な時間サンプルのグループを選び出す過程を含むことを特徴とする請求項8記載の方法。
  10. 前記時間サンプルから干渉信号を除去する過程は、勾配が連続的な時間サンプルのグループにパッドを付す過程をさらに含むことを特徴とする請求項9記載の方法。
  11. 前記時間サンプルから干渉信号を除去する過程は、干渉信号下方時間サンプル範囲と干渉信号上方時間サンプル範囲に従って加重関数を生成する過程と、前記加重関数を時間サンプルに適用する過程とを含むことを特徴とする請求項8記載の方法。
  12. レーダー戻り信号と関連づけられた時間サンプル値をそれぞれ伴う時間サンプルを有する第1のアレーを生成するステップと、
    時間サンプルに関連した第2のアレー値をそれぞれ伴う第2のアレー要素を有する第2のアレーを生成するステップと、
    前記第2のアレー値に関連した少なくとも1つの閾値を生成するステップと、
    関第2のアレー値と少なくとも1つの閾値とを比較するステップと、
    少なくとも1つの所定の数の前記第2のアレー値が少なくとも1つの閾値を超えた場合、前記干渉信号が存在することを検出するステップと、
    対応する少なくとも1つの前記時間サンプル値に対して前記干渉信号を示す少なくとも1つの第2のアレー要素を1対1マッピングすることによって、前記干渉信号を示す前記第1のアレーにおける前記時間サンプル要素を同定するステップとを含み、
    前記第2のアレー値は、前記時間サンプル値の偏差から生成される少なくとも1つの勾配値、前記時間サンプル値の偏差から生成される高次導関数又は時間サンプル値をそれぞれ2乗することによって生成される冪の値を備え、
    前記マッピングは前記第1のアレーの前記時間サンプル値を変更しないことを特徴とするレーダー戻り信号における干渉信号を検知する方法。
  13. 前記複数のアレー値は、勾配値、高次導関数の値、時間サンプルの絶対値、および時間サンプルと関連づけられた冪の値のいずれかを含むことを特徴とする請求項12記載の方法。
  14. 前記少なくとも1つの閾値を生成する過程は、最大予測アレー値に関連する第1の閾値と、複数のアレー値の平均値に関連する第2の閾値の少なくとも一方を生成する過程を含むことを特徴とする請求項13記載の方法。
  15. 逓降信号を提供するレーダー受信モジュールと、
    前記レーダー受信モジュールに接続され、逓降信号と関連づけられた時間サンプル値を伴う時間サンプル要素を有する第1のアレーを提供するレーダー信号サンプリングモジュールと、
    前記第1のアレーを受信するように接続され、前記時間サンプル要素の中で干渉信号を検知するよう構成された干渉検知器と、
    前記干渉検知器に接続され、第2のアレー要素の中から、前記干渉信号を示す第2のアレー要素を決定することによって、前記干渉信号を示す前記第1のアレー要素における前記時間サンプル要素を特定するよう構成され、前記干渉信号を示す少なくとも1つの前記第2アレー要素を、対応する少なくとも1つの前記時間サンプル要素に1対1マッピングするように構成された干渉範囲プロセッサと、
    前記干渉範囲プロセッサに接続され、前記時間サンプル要素及び時間サンプル値を有する前記第1のアレーから、前記干渉信号を示す同定された時間サンプル要素を除去するよう構成された干渉除去プロセッサとを備え、
    前記干渉検知器は、時間サンプル値に関連した第2のアレー値をそれぞれ伴う第2のアレー要素を有する第2のアレーを生成するアレープロセッサを含み、前記第2のアレー値は、前記時間サンプル値の差分から生成される少なくとも1つの勾配値を備え、
    前記第2のアレー値は、前記時間サンプル値の偏差から生成される少なくとも1つの勾配値、前記時間サンプル値の偏差から生成される高次導関数又は時間サンプル値をそれぞれ2乗することによって生成される冪の値を備え、
    前記アレープロセッサは、更に、前記第2アレー値に関連づけられた少なくとも1つの閾値を生成し、前記第2アレー値と前記少なくとも1つの閾値を比較し、前記少なくとも1つの閾値を超える、少なくとも所定の数の前記第2アレー値に応じて前記干渉信号が存在することを決定するよう構成され、
    前記マッピングは前記第1のアレーの前記時間サンプル値を変更しないことを特徴とするレーダー戻り信号を処理するシステム。
  16. 干渉信号の範囲を決定するために、前記干渉検知器に接続された干渉範囲プロセッサと、この干渉範囲プロセッサに接続されて、前記時間サンプルから干渉信号を除去する干渉除去プロセッサとをさらに含むことを特徴とする請求項15記載のシステム。
  17. 前記干渉検知器は、前記時間サンプルと関連づけられた複数のアレー値の生成と、前記複数のアレー値と関連づけられた少なくとも1つの閾値の生成と、前記複数のアレー値と少なくとも1つの閾値との比較と、前記少なくとも1つの閾値を上回る所定の数のアレー値があるときに、干渉信号の存在の検知とを行うアレープロセッサを備えることを特徴とする請求項15記載のシステム。
  18. 前記複数のアレー値は、勾配値、高次導関数の値、時間サンプルの絶対値、および時間サンプルと関連づけられた冪の値のいずれかを含むことを特徴とする請求項17記載のシステム。
  19. 前記少なくとも一方の閾値を生成する過程は、最大予測アレー値に関連する少なくとも1つの第1の閾値と、複数のアレー値の平均値に関連する第2の閾値の少なくとも一方の閾値を生成する過程を含み、前記干渉検知器は、複数のアレー値を、前記第1の閾値および第2の閾値の少なくとも一方と比較することを特徴とする請求項17記載のシステム。
  20. 前記干渉検知器は、少なくとも所定の数のアレー値が、前記第1の閾値および第2の閾値の少なくとも一方を上回ったときに、干渉信号の存在を検知することとなっている閾値プロセッサを備えていることを特徴とする請求項19記載のシステム。
  21. 前記干渉範囲プロセッサは、前記少なくとも一方の閾値を上回る所定の数のアレー値のうちの1つと関連づけられた下方アレーサンプル境界の同定と、前記少なくとも一方の閾値を上回る所定の数のアレー値のうちの他の1つと関連づけられた上方アレーサンプル境界の同定と、第1のサンプル保護帯値の決定と、第2のサンプル保護帯値の決定と、干渉信号下方アレーサンプル範囲を定めるために行う前記下方アレーサンプル境界からの第1のサンプル保護帯値の減算と、干渉信号上方アレーサンプル範囲を定めるために行う前記上方アレーサンプル境界への第2のサンプル保護帯値の加算と、干渉信号下方アレーサンプル範囲と干渉信号上方アレーサンプル範囲に従って行う干渉信号下方時間サンプル範囲と干渉信号上方時間サンプル範囲の少なくとも一方の同定とを行う境界プロセッサを備えていることを特徴とする請求項17記載のシステム。
  22. 前記干渉除去プロセッサは、干渉信号下方時間サンプル範囲と干渉信号上方時間サンプル範囲との間にある時間サンプルを除外して、勾配が連続的な時間サンプルのグループを選び出す選択プロセッサを備えていることを特徴とする請求項21記載のシステム。
  23. 前記干渉除去プロセッサは、干渉信号下方時間サンプル範囲と干渉信号上方時間サンプル範囲に従って加重関数を生成し、この加重関数を時間サンプルに適用する加重プロセッサを備えていることを特徴とする請求項21記載のシステム。
JP2005361136A 2004-12-15 2005-12-15 レーダーの干渉信号を除去するシステムおよび方法 Active JP5254529B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/012,679 US7403153B2 (en) 2004-12-15 2004-12-15 System and method for reducing a radar interference signal
US11/012,679 2004-12-15

Publications (2)

Publication Number Publication Date
JP2006171001A JP2006171001A (ja) 2006-06-29
JP5254529B2 true JP5254529B2 (ja) 2013-08-07

Family

ID=36051557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005361136A Active JP5254529B2 (ja) 2004-12-15 2005-12-15 レーダーの干渉信号を除去するシステムおよび方法

Country Status (3)

Country Link
US (1) US7403153B2 (ja)
EP (1) EP1672379B1 (ja)
JP (1) JP5254529B2 (ja)

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004019651A1 (de) * 2004-04-22 2005-11-17 Siemens Ag Blindspot-Sensorsystem
US7683827B2 (en) * 2004-12-15 2010-03-23 Valeo Radar Systems, Inc. System and method for reducing the effect of a radar interference signal
US7403153B2 (en) * 2004-12-15 2008-07-22 Valeo Raytheon Systems, Inc. System and method for reducing a radar interference signal
US7680464B2 (en) * 2004-12-30 2010-03-16 Valeo Radar Systems, Inc. Waveguide—printed wiring board (PWB) interconnection
US7603097B2 (en) * 2004-12-30 2009-10-13 Valeo Radar Systems, Inc. Vehicle radar sensor assembly
US7248215B2 (en) * 2004-12-30 2007-07-24 Valeo Raytheon Systems, Inc Beam architecture for improving angular resolution
JP4747652B2 (ja) * 2005-04-15 2011-08-17 株式会社デンソー Fmcwレーダ
JP4507968B2 (ja) * 2005-04-20 2010-07-21 株式会社デンソー レーダ装置
JP4544304B2 (ja) * 2005-05-16 2010-09-15 株式会社村田製作所 レーダ
US7400290B2 (en) * 2005-12-30 2008-07-15 Valeo Raytheon Systems, Inc. Vehicle radar system having multiple operating modes
US7336219B1 (en) 2005-12-30 2008-02-26 Valeo Raytheon Systems, Inc. System and method for generating a radar detection threshold
US20070152869A1 (en) * 2005-12-30 2007-07-05 Woodington Walter G Multichannel processing of signals in a radar system
US20100238066A1 (en) * 2005-12-30 2010-09-23 Valeo Raytheon Systems, Inc. Method and system for generating a target alert
US7345619B2 (en) * 2005-12-30 2008-03-18 Valeo Raytheon Systems, Inc. Generating event signals in a radar system
US7379018B1 (en) 2005-12-30 2008-05-27 Valeo Raytheon Systems, Inc. System and method for verifying a radar detection
US20070152872A1 (en) * 2005-12-30 2007-07-05 Woodington Walter G Reducing undesirable coupling of signal(s) between two or more signal paths in a radar system
US20070156799A1 (en) * 2005-12-30 2007-07-05 Gilbert Michael J Multi-stage finite impulse response filter processing
US20070152874A1 (en) * 2005-12-30 2007-07-05 Woodington Walter G Reducing undesirable coupling of signal(s) between two or more signal paths in a radar system
US20080001809A1 (en) * 2006-06-30 2008-01-03 Walter Gordon Woodington Detecting signal interference in a vehicle system
JP4492628B2 (ja) * 2007-03-20 2010-06-30 株式会社デンソー 干渉判定方法,fmcwレーダ
US7800529B2 (en) * 2008-02-05 2010-09-21 ARETé ASSOCIATES Method and apparatus for creating and processing universal radar waveforms
IT1391472B1 (it) * 2008-09-26 2011-12-23 Mbda italia spa Procedimento di elaborazione di un segnale di eco radar, prodotto da un bersaglio, per compensare effetti di degradazione di detto segnale dovuti al moto di detto bersaglio.
WO2010132538A1 (en) 2009-05-12 2010-11-18 Schering Corporation Fused tricyclic aryl compounds useful for the treatment of viral diseases
DE102009030318B4 (de) * 2009-06-24 2012-09-06 Opticom Dipl.-Ing. Michael Keyhl Gmbh Vorrichtung und Verfahren zur Bestimmung eines Abtastratenunterschiedes
EP2391022B1 (en) 2010-05-27 2012-10-24 Mitsubishi Electric R&D Centre Europe B.V. Classification of interference
EP2390679B1 (en) * 2010-05-27 2012-10-03 Mitsubishi Electric R&D Centre Europe B.V. Automotive radar with radio-frequency interference avoidance
US8378878B2 (en) 2010-08-05 2013-02-19 ARETé ASSOCIATES Creating and processing universal radar waveforms
DE102011079615A1 (de) * 2011-07-22 2013-01-24 Robert Bosch Gmbh FMCW-Radarsystem und Interferenzerkennungsverfahren für FMCW-Radarsysteme
NO335171B1 (no) * 2011-10-07 2014-10-13 3D Radar As Adaptiv interferensundertrykkelse for georadar
DE102012021240A1 (de) 2012-10-27 2014-04-30 Valeo Schalter Und Sensoren Gmbh Verfahren zum Unterdrücken einer Interferenz in einem Empfangssignal einesRadarsensors eines Kraftfahrzeugs und entsprechende Fahrerassistenzeinrichtung
DE102012021239A1 (de) 2012-10-27 2014-04-30 Valeo Schalter Und Sensoren Gmbh Verfahren zur Detektion einer Interferenz in einem Empfangssignal eines Radarsensors, Fahrassistenzeinrichtung und Kraftfahrzeug
DE102012021212A1 (de) 2012-10-27 2014-04-30 Valeo Schalter Und Sensoren Gmbh Verfahren zur Detektion einer Interferenz in einem Empfangssignal eines Radarsensors, Fahrerassistenzeinrichtung und Kraftfahrzeug
KR101303769B1 (ko) 2012-12-17 2013-09-04 국방과학연구소 주파수 변조 연속파 레이더에서 간섭 신호 탐지 및 억제 방법
US9279883B2 (en) * 2013-02-19 2016-03-08 Infineon Technologies Ag Method and device for radar applications
US9279881B2 (en) * 2013-03-12 2016-03-08 Escort Inc. Radar false alert reduction
US9653796B2 (en) 2013-12-16 2017-05-16 Valeo Radar Systems, Inc. Structure and technique for antenna decoupling in a vehicle mounted sensor
DE102014114107A1 (de) 2014-09-29 2016-03-31 Hella Kgaa Hueck & Co. Radarsensor
KR102216134B1 (ko) * 2014-10-02 2021-02-16 현대모비스 주식회사 Cfar 검파방법 및 이를 적용한 레이더 시스템
DE102014226073A1 (de) 2014-12-16 2016-06-16 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Radarsystems eines Kraftfahrzeugs
WO2017058906A1 (en) 2015-09-28 2017-04-06 Escort Inc. Radar detector with multi-band directional display and enhanced detection of false alerts
EP3173812B1 (en) 2015-11-24 2021-01-06 Veoneer Sweden AB A vehicle radar system arranged for reducing interference
US10401485B2 (en) * 2016-11-30 2019-09-03 GM Global Technology Operations LLC Method to resolve interfering targets jointly at multiple dimensions
KR102662229B1 (ko) * 2016-12-05 2024-05-02 주식회사 에이치엘클레무브 타켓 물체 감지 방법 및 그 장치
US11061108B1 (en) 2017-12-18 2021-07-13 Escort Inc. Sliding window discrete Fourier transform (SWDFT) police signal warning receiver
DE102018200753A1 (de) * 2018-01-18 2019-07-18 Robert Bosch Gmbh Verfahren und Vorrichtung zum Korrigieren eines Radarsignals und Radarvorrichtung
US11644529B2 (en) 2018-03-26 2023-05-09 Qualcomm Incorporated Using a side-communication channel for exchanging radar information to improve multi-radar coexistence
US11280876B2 (en) 2018-06-18 2022-03-22 Qualcomm Incorporated Multi-radar coexistence using phase-coded frequency modulated continuous wave waveforms
CN109061576B (zh) * 2018-06-22 2022-11-04 西安电子科技大学 一种射频掩护信号下的阵列雷达信号发射接收方法
US11385323B2 (en) * 2018-06-25 2022-07-12 Qualcomm Incorporated Selection of frequency modulated continuous wave (FMWC) waveform parameters for multi-radar coexistence
US11585889B2 (en) 2018-07-25 2023-02-21 Qualcomm Incorporated Methods for radar coexistence
EP3637127A1 (en) * 2018-10-12 2020-04-15 Axis AB Method, device, and system for interference reduction in a frequency-modulated continuous-wave radar unit
DE102018126034A1 (de) * 2018-10-19 2020-04-23 Infineon Technologies Ag Fmcw radar mit störsignalunterdrückung
DE102018221285A1 (de) * 2018-12-10 2020-06-10 Zf Friedrichshafen Ag Verfahren zur Interferenzunterdrückung und Verfahren zur Signalwiederherstellung
DE102018132745B4 (de) * 2018-12-18 2022-05-05 Infineon Technologies Ag Fmcw radar mit störsignalunterdrückung im zeitbereich
EP3683596B1 (en) 2019-01-16 2022-09-21 NXP USA, Inc. Method and processor for determining spatial information regarding a vehicle
KR102192762B1 (ko) * 2019-04-29 2020-12-18 주식회사 만도 레이더 간섭 제거 장치 및 방법
EP3770628A1 (en) * 2019-07-24 2021-01-27 Veoneer Sweden AB A method for radar interference mitigation
EP3822663B1 (en) 2019-11-15 2022-02-23 Axis AB A method, a computer program product, an apparatus and a frequency-modulated continuous-wave radar system
DE112020006709T5 (de) 2020-02-12 2022-12-01 Denso Corporation Radarvorrichtung
US20210333396A1 (en) * 2020-04-23 2021-10-28 Duke University 3d sensing depth camera
US11474199B2 (en) 2020-09-03 2022-10-18 Vaisala, Inc. RFI mitigation in weather radar data
US20240069152A1 (en) * 2021-01-22 2024-02-29 Symeo Gmbh Techniques for mitigating interference in radar signals
US11796663B2 (en) 2021-02-20 2023-10-24 International Business Machines Corporation Automatic image rejection calibration for radar systems using quadrature transceivers
EP4325240A1 (en) * 2022-08-18 2024-02-21 Infineon Technologies AG Apparatus, electronic device and method for target motion detection

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2540839A (en) * 1940-07-18 1951-02-06 Bell Telephone Labor Inc Wave guide system
US2676214A (en) * 1950-03-08 1954-04-20 Hartford Nat Bank & Trust Co Pulse amplifier
DE2726981C2 (de) * 1977-06-15 1984-11-22 Fried. Krupp Gmbh, 4300 Essen Vorrichtung zur Zeitmessung zwischen Impulsen
DE2835751C2 (de) * 1978-08-16 1980-07-03 Standard Elektrik Lorenz Ag, 7000 Stuttgart HF-Leistungsverstärker mit einer Modulationseinrichtung
US4733237A (en) * 1985-01-07 1988-03-22 Sanders Associates, Inc. FM/chirp detector/analyzer and method
DE3509118C2 (de) * 1985-03-14 1994-03-24 Bosch Gmbh Robert Verfahren und Vorrichtung zur Messung des Durchsatzes eines ein Rohr durchströmenden Mediums
BE1001440A4 (fr) * 1988-02-12 1989-10-31 Nationale Herstal Fn Sa Fab Procede de mesure de longueurs par camera a reseau photosensible.
US5343499A (en) * 1990-06-12 1994-08-30 Motorola, Inc. Quadrature amplitude modulation synchronization method
US5271038A (en) * 1990-09-10 1993-12-14 Hughes Aircraft Company Distortion suppression using thresholding techniques
EP0475188B1 (de) * 1990-09-11 1995-11-08 Stefan Brinkhaus Verfahren und Vorrichtung zur Minimierung von Störungen beim FM- oder PM-Empfang
EP0489276B1 (de) * 1990-12-03 1995-06-28 Siemens Aktiengesellschaft Modulationseinrichtung für einen Hf-Leistungsverstärker
US6164540A (en) * 1996-05-22 2000-12-26 Symbol Technologies, Inc. Optical scanners
US5280288A (en) * 1992-08-14 1994-01-18 Vorad Safety Systems, Inc. Interference avoidance system for vehicular radar system
US5727023A (en) * 1992-10-27 1998-03-10 Ericsson Inc. Apparatus for and method of speech digitizing
US5365328A (en) * 1993-05-21 1994-11-15 Tektronix, Inc. Locating the position of an event in acquired digital data at sub-sample spacing
GB9318238D0 (en) * 1993-09-02 1993-10-20 B & W Loudspeakers Digital converter
US5592178A (en) * 1994-06-01 1997-01-07 Raytheon Company Wideband interference suppressor in a phased array radar
CA2157139A1 (en) * 1994-09-01 1996-03-02 Thomas C. Weakley Multiple beam antenna system for simultaneously receiving multiple satellite signals
US5563604A (en) * 1995-02-08 1996-10-08 Alliedsignal Inc. Weather radar using spectral gaussian envelope discrimination for clutter rejection
KR100488028B1 (ko) * 1996-10-17 2005-05-09 사브테크 일렉트로닉스 아베 Fmcw형 레이더 유닛에서의 간섭 제거 방법
SE509278C2 (sv) * 1997-05-07 1999-01-11 Ericsson Telefon Ab L M Radioantennanordning och förfarande för samtidig alstring av bred lob och smal peklob
US6167286A (en) * 1997-06-05 2000-12-26 Nortel Networks Corporation Multi-beam antenna system for cellular radio base stations
US5872540A (en) * 1997-06-26 1999-02-16 Electro-Radiation Incorporated Digital interference suppression system for radio frequency interference cancellation
AT410873B (de) * 1997-07-10 2003-08-25 Efkon Entwicklung Forschung & Konstruktion Von Sondermaschinen Gmbh Daten-empfangsschaltung für infrarotsignale
US5870022A (en) * 1997-09-30 1999-02-09 Interactive Technologies, Inc. Passive infrared detection system and method with adaptive threshold and adaptive sampling
US6219376B1 (en) * 1998-02-21 2001-04-17 Topcon Positioning Systems, Inc. Apparatuses and methods of suppressing a narrow-band interference with a compensator and adjustment loops
DE19822957C1 (de) * 1998-05-22 2000-05-25 Deutsch Zentr Luft & Raumfahrt Verfahren zur Detektion und Unterdrückung von Störsignalen in SAR-Daten und Einrichtung zur Durchführung des Verfahrens
JP3970428B2 (ja) * 1998-06-09 2007-09-05 三菱電機株式会社 レーダ装置及びfmcw測距・測速度方法
US6242900B1 (en) * 1998-06-10 2001-06-05 Hubble Incorporated System for measuring partial discharge using digital peak detection
US6243652B1 (en) * 1998-06-10 2001-06-05 Hubbell Incorporated System for concurrent digital measurement of peak voltage and RMS voltage in high voltage system
US6239586B1 (en) * 1998-06-10 2001-05-29 Hubbell Incorporated System for digital measurement of breakdown voltage of high voltage samples
US6039580A (en) * 1998-07-16 2000-03-21 Raytheon Company RF connector having a compliant contact
US6314055B1 (en) * 1998-10-16 2001-11-06 Intersense, Inc. Range measuring system
US6559657B1 (en) * 1999-01-13 2003-05-06 Endress+Hauser Gmbh+Co. Probe mapping diagnostic methods
US6807405B1 (en) * 1999-04-28 2004-10-19 Isco International, Inc. Method and a device for maintaining the performance quality of a code-division multiple access system in the presence of narrow band interference
US6094160A (en) * 1999-06-10 2000-07-25 Delco Electronics Corp. Interference rejection method for an automotive radar CW/ICC system
US6324755B1 (en) * 1999-06-17 2001-12-04 Raytheon Company Solid interface module
US6335905B1 (en) * 1999-12-17 2002-01-01 Garmin Corporation Method for elimination of passive noise interference in sonar
US6463303B1 (en) * 2000-01-11 2002-10-08 Metawave Communications Corporation Beam forming and switching architecture
US6577879B1 (en) * 2000-06-21 2003-06-10 Telefonaktiebolaget Lm Ericsson (Publ) System and method for simultaneous transmission of signals in multiple beams without feeder cable coherency
US6707419B2 (en) * 2000-08-16 2004-03-16 Raytheon Company Radar transmitter circuitry and techniques
EP1879045A3 (en) * 2000-08-16 2011-03-30 Valeo Radar Systems, Inc. Automotive radar systems and techniques
KR100767543B1 (ko) * 2000-08-16 2007-10-17 레이던 컴퍼니 스위치형 빔 안테나 구조
DE60119335T2 (de) * 2000-08-16 2007-04-12 Raytheon Company, Waltham Hochintegrierter mehrstrahliger millimeterwellensensor auf einem einzelnem träger
US6489927B2 (en) * 2000-08-16 2002-12-03 Raytheon Company System and technique for mounting a radar system on a vehicle
EP1202468A3 (en) * 2000-10-27 2004-01-14 Hitachi Kokusai Electric Inc. Interference-signal removing apparatus
JP2002168947A (ja) * 2000-11-30 2002-06-14 Matsushita Electric Works Ltd Fm−cwレーダ装置
JP2002185011A (ja) * 2000-12-19 2002-06-28 Seiko Epson Corp 半導体装置
US6577265B2 (en) * 2001-01-10 2003-06-10 University Corporation For Atmospheric Research Multi-stage processing for efficient and accurate spectral moment estimation
US6868114B2 (en) * 2001-01-18 2005-03-15 The Titan Corporation Interference suppression in a spread spectrum communications system using non-linear frequency domain excision
JP4548954B2 (ja) * 2001-03-09 2010-09-22 株式会社日立国際電気 干渉信号除去装置
JP2002296329A (ja) * 2001-03-30 2002-10-09 Agilent Technologies Japan Ltd 集積回路の試験装置
DE10119289A1 (de) 2001-04-20 2002-10-24 Adc Automotive Dist Control Verfahren zum Betreiben eines Radarsystems
JP2002374179A (ja) * 2001-06-12 2002-12-26 Hitachi Kokusai Electric Inc 干渉信号除去装置
US6995730B2 (en) * 2001-08-16 2006-02-07 Raytheon Company Antenna configurations for reduced radar complexity
US7183995B2 (en) * 2001-08-16 2007-02-27 Raytheon Company Antenna configurations for reduced radar complexity
CA2466655A1 (en) * 2001-11-09 2003-05-22 Ems Technologies, Inc. Beamformer for multi-beam receive antenna
US6750810B2 (en) * 2001-12-18 2004-06-15 Hitachi, Ltd. Monopulse radar system
DE10207465B4 (de) * 2002-02-22 2006-01-05 Eads Deutschland Gmbh Verfahren zur Reduzierung der Falschalarmrate in Radarbildern
CA2478940C (en) * 2002-03-13 2008-07-08 Raytheon Canada Limited A noise suppression system and method for phased-array based systems
JP3855829B2 (ja) * 2002-04-11 2006-12-13 株式会社デンソー レーダ装置,レーダ用信号処理装置,プログラム
JP4077449B2 (ja) * 2002-05-31 2008-04-16 富士通株式会社 テーブル参照型プリディストータ
US6738017B2 (en) * 2002-08-06 2004-05-18 Lockheed Martin Corporation Modular phased array with improved beam-to-beam isolation
JP2004158911A (ja) * 2002-11-01 2004-06-03 Murata Mfg Co Ltd セクタアンテナ装置および車載用送受信装置
US20040130482A1 (en) * 2003-01-02 2004-07-08 Yu-Shan Lin Digital controlled linear sweep frequency mode for FMCW radar altimeter
US7894536B2 (en) * 2003-04-15 2011-02-22 Texas Instruments Incorporated Calibration model to mitigate data conversion errors
US20060009916A1 (en) * 2004-07-06 2006-01-12 Xitong Li Quantitative PCR data analysis system (QDAS)
US7236123B2 (en) * 2004-09-03 2007-06-26 American Systems Corporation System for enhanced detection of a target
US7403153B2 (en) * 2004-12-15 2008-07-22 Valeo Raytheon Systems, Inc. System and method for reducing a radar interference signal
US7038608B1 (en) * 2004-12-16 2006-05-02 Valeo Raytheon Systems, Inc. Digital to analog converter
JP4462060B2 (ja) * 2005-02-14 2010-05-12 株式会社デンソー Fmcwレーダ装置

Also Published As

Publication number Publication date
JP2006171001A (ja) 2006-06-29
US7403153B2 (en) 2008-07-22
EP1672379A3 (en) 2009-10-07
EP1672379A2 (en) 2006-06-21
US20060125682A1 (en) 2006-06-15
EP1672379B1 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
JP5254529B2 (ja) レーダーの干渉信号を除去するシステムおよび方法
US11313943B2 (en) Vehicle radar system arranged for reducing interference
EP2097769B1 (en) System and method for reducing the effect of a radar interference signal
KR102186191B1 (ko) 간섭이 억제된 레이더 감지
JP2642294B2 (ja) マルチスロープ周波数変調波形レーダシステムの距離測定、検知、および解像方法
EP3489710A1 (en) Radar interference suppression
CN112630768B (zh) 一种改进调频连续波雷达目标检测的降噪方法
US6094160A (en) Interference rejection method for an automotive radar CW/ICC system
JP5130844B2 (ja) クラッタ判別方法およびレーダ装置
JP2008232832A (ja) 干渉判定方法,fmcwレーダ
JP2014002085A (ja) 信号処理装置、レーダ装置、信号処理方法、およびプログラム
JP4668198B2 (ja) レーダ装置
CN106908794A (zh) 用于检测目标物体的方法和设备
JP2006292476A (ja) レーダ信号処理装置及びドップラ気象レーダ
JP3983158B2 (ja) 電波レーダの信号処理方法
JP2006226779A (ja) レーダ装置
JP6970307B2 (ja) レーダ信号を補正する方法および装置ならびにレーダ装置
JP2009198363A (ja) 電波探知装置および方法
CN113325421B (zh) 用于提供所述至少一个目标信息的方法和计算机可读介质
KR102049402B1 (ko) 레이더 시스템의 씨파를 기반으로 하는 신호 처리 방법 및 그 장치
CN111638508B (zh) 一种用于高效速度解模糊的汽车毫米波雷达波形设计方法
JP2008045939A (ja) 目標検出装置
JP4046713B2 (ja) 周波数変調レーダの信号処理装置
CN111033297A (zh) 用于运行车辆的雷达系统的方法
JP2022108639A (ja) Fmcwレーダ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111213

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111220

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120113

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130418

R150 Certificate of patent or registration of utility model

Ref document number: 5254529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250