JP5252207B2 - リアクトル、及びコンバータ - Google Patents

リアクトル、及びコンバータ Download PDF

Info

Publication number
JP5252207B2
JP5252207B2 JP2009012423A JP2009012423A JP5252207B2 JP 5252207 B2 JP5252207 B2 JP 5252207B2 JP 2009012423 A JP2009012423 A JP 2009012423A JP 2009012423 A JP2009012423 A JP 2009012423A JP 5252207 B2 JP5252207 B2 JP 5252207B2
Authority
JP
Japan
Prior art keywords
reactor
core
coil
detection element
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009012423A
Other languages
English (en)
Other versions
JP2009267360A (ja
Inventor
伸一郎 山本
雅幸 加藤
卓司 神頭
睦 伊藤
肇 川口
和彦 二井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009012423A priority Critical patent/JP5252207B2/ja
Publication of JP2009267360A publication Critical patent/JP2009267360A/ja
Application granted granted Critical
Publication of JP5252207B2 publication Critical patent/JP5252207B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ハイブリッド自動車や電気自動車といった車両に載置されるDC-DCコンバータの構成部品などに利用されるリアクトルに関する。特に、設置面積が小さいリアクトルに関する。
従来、図7に示すように磁性材料からなるO字状のコア110と、このコア110に配置されるリアクトルコイル120とを具えるリアクトルLが知られている(特許文献1)。コア110は、複数のコア片を組み合わせて形成される。例えば、直方体片112間にギャップ材gを挟んで接合したコア片組を用意し、これらコア片組を離間して並列させて一対のU字片113間で挟む。コイル120は、例えば、平角銅線をエッジワイズ巻きしたものが利用される。コイル120の端部には、別途、電力供給用のバスバが接続される。
通常、バスバに電流センサを配置して、このセンサによりリアクトルコイルに流れる電流を検出する。また、コンバータに具える制御装置は、検出結果によりリアクトルの運転状態を把握することができる。電流センサは、C字状の磁性コアと、磁性コアの切欠に配置されるホール素子とを具えるものが利用されている。
特開2007-116066号公報
車載部品に利用されるリアクトルは、車両内の設置スペースが限られているため、できるだけ設置面積が小さいことが望まれる。しかし、従来のリアクトルは、電流センサを配置するためのスペースが別途必要であるため、電流センサをも含めた設置面積が大きい。
そこで、本発明の目的は、電流の検出が可能でありながら、設置面積が小さいリアクトルを提供することにある。
本発明は、リアクトルに電流検出部を一体に具えることで、上記目的を達成する。本発明リアクトルは、リアクトルコイルと、このコイルが配置されるコイル巻回部を有する環状のコアとを具え、上記リアクトルコイルに流れる電流を検出する電流検出部を上記コアに一体に具えることを特徴とする。
この構成によれば、リアクトルと電流検出部とが一体化しているため、従来のリアクトルに必要であった電流センサのための配置スペースを省略できる。従って、本発明リアクトルは、電流センサをも含めた従来のリアクトルと比較して、設置面積が小さい。
電流検出部は、リアクトルコイルに流れる電流に基づく物理量を検出する検出素子と、上記物理量に基づく電気信号を処理する処理装置に当該電気信号を伝送するための配線とを具える構成が挙げられる。本発明リアクトルは、少なくとも検出素子がコアに一体に設けられている。
検出素子として、例えば、ホール効果を利用して磁界を電圧に変換するホール素子が挙げられる。リアクトルに具えるコアは、磁性材料から構成されることから、このコアにホール素子を配置した構成は、上述した従来の電流センサ(ホール素子を有するもの)と同様の構成である。従って、ホール素子を具える本発明リアクトルは、電流センサを内蔵するリアクトルとなる。ホール素子は、交流電流でも直流電流でも検出可能である上に、広いダイナミックレンジを有するため、利用し易い。
別の検出素子として、例えば、磁気抵抗素子(MR素子)や磁気インピーダンス素子(MI素子)が挙げられる。MR素子は、磁界によって抵抗値が変化する磁気抵抗効果を利用した素子であり、MI素子は、アモルファス磁性体に高周波の電流を流した状態で外部から磁界を加えると、上記磁性体の両端のインピーダンスが鋭く変化する磁気インピーダンス効果(MI効果)を利用した素子である。リアクトルに具えるコアにMR素子やMI素子を配置することで、リアクトルコイルへの通電により生じる磁界がこれらの素子に加わり、これらの素子により電流を測定することができる。MR素子は、交流電流でも直流電流でも検出可能である上に、広いダイナミックレンジを有する。また、磁気に対する抵抗変化率が素子の大きさに依存しないことから、MR素子は、非常に小型にすることができる。MI素子は、交流電流の測定に利用することができる。また、MI素子は、ホール素子やMR素子よりも高感度である。
別の検出素子として、例えば、サーチコイルが挙げられる。サーチコイルは、交流電流の測定に利用することができる。
検出素子は、一つのリアクトルに一つだけ具えてもよいし、複数具えてもよい。複数の検出素子を具える場合、種類の異なる素子を組み合わせて具えてもよい。
本発明リアクトルの一形態として、コイル巻回部が複数のコア片を組み合わせて構成され、上記検出素子がコア片間に配置された構成が挙げられる。
この構成によれば、磁束の変化が生じ易いコイル巻回部を構成するコア片間に検出素子が配置されていることで、電流を精度よく検出できる。また、検出素子がコア片に挟持されることで、検出素子の配置位置のずれが生じ難い。
本発明リアクトルの一形態として、コイル巻回部が複数のコア片を組み合わせて構成され、隣り合うコア片間にギャップ材を有するコア片組を具えており、上記検出素子が上記コア片組に挟まれたギャップ材の周面に配置された構成が挙げられる。
この構成によれば、漏れ磁束が生じ易いギャップ材の周面に検出素子が配置されていることで、電流を精度よく検出できる。また、コア片間から露出したギャップ材の周面に検出素子が配置された構成は、検出素子の配置が容易であり、リアクトルの組立作業性に優れる。
本発明リアクトルの一形態として、上記検出素子が、コアにおいてコイル巻回部以外の箇所に配置された構成が挙げられる。
この構成は、コアにおいてコイルが配置されていない露出箇所に検出素子が配置された構成であるため、検出素子の配置が容易である。また、この構成によれば、検出素子に接続された配線の取り回し(処理装置側への引き出し)も容易であるため、リアクトルの組立作業性に優れる。
本発明リアクトルの一形態として、上記検出素子が、コアに設けられた素子用穴に配置された構成が挙げられる。
この構成によれば、磁束が通過するコア自体に検出素子が配置されていることで、電流を精度よく検出できる。また、この構成によれば、検出素子が素子用穴に保持されることで、検出素子の配置位置のずれが生じ難い。
本発明リアクトルは、電流を測定可能でありながら、設置面積が小さい。
実施形態1のリアクトルを模式的に示す概略構成図である。 実施形態1のリアクトルに具える電流検出部の配線をコイルのターン間からケース側に引き出す状態を説明する部分断面図である。 実施形態2のリアクトルに具える電流検出部の配線をコイル端部の開口部からケース側に引き出す状態を説明する部分断面図である。 実施形態3,4,5のリアクトルを模式的に示す概略構成図であり、(I)は実施形態3、(II)は実施形態4、(III)は実施形態5を示す。 実施形態4のリアクトルに具える電流検出部の配線をケース側に引き出す状態を説明する部分断面図である。 実施形態5のリアクトルに具える電流検出部の配線をケース側に引き出す状態を説明する部分断面図である。 従来のリアクトルの斜視図である。
以下に、図面を参照して、本発明の実施形態に係るリアクトルを詳細に説明する。
(実施形態1)
図1は、本発明リアクトルを模式的に説明する概略構成図であり、図2は、ケースに収納された本発明リアクトルの部分断面図である。図において同一符号は同一物を示す。リアクトル1は、磁性材料からなる環状のコア11と、コア11の外周に配置されるリアクトルコイル120とを主要構成部材とする。このリアクトル1は、内部に冷媒の循環路(図示せず)を有する冷却ベースB(図2)に載置されて利用される。
コア11は、対向し合う一対のコイル巻回部11cを有し、閉ループ状に形成された環状の部材であり、磁性体部11mとギャップ部11gとからなる。磁性体部11mは、軟磁性粉末の圧粉成形体からなり、複数のコア片(直方体片12,U字片13)を組み合わせて構成される。ギャップ部11gは、インダクタンスの調整のために各コア片間に設けられる隙間である。この例では、二つの直方体片12を一纏まりとした直方体組を一対用意し、一対のU字片13の間に、直方体組を離間して並列配置し、これらコア片を接着することで閉ループ状のコア11としている。各直方体組がそれぞれコイル巻回部11cを構成する。各ギャップ部11g(但し、検出素子10dが配置されたギャップ部を除く)には、ギャップ材(図示せず)が配置されている。各ギャップ材は、アルミナなどの非磁性材料からなる矩形板が利用でき、接着剤などでコア片に接合されている。コア片の分割数やギャップ材の個数は適宜選択することができる。
リアクトルコイル120は、平角銅線の表面にエナメル被覆を具える巻線をエッジワイズ巻きして形成された一対のコイルから構成され、一続きの巻線で構成される。両コイルは、各軸方向が並列するように横並びに配置され、巻き返し部(図示せず)を介して連結され、溶接などによる接続箇所を有さない構成である。両コイルはそれぞれコイル巻回部11cに配置される。両コイルの巻線の端部(図示せず)は、端子として利用され、電力供給用のバスバが接続される。平角線以外に、断面が円形状、多角形状などの種々の巻線を利用できる。また、一対のコイルを別個に作製し、両コイルの巻線の端部を溶接などで接続してもよい。
リアクトル1の最も特徴とするところは、リアクトルコイル120に流れる電流を検出する電流検出部10をコア11に一体に具える点にある。電流検出部10は、検出素子10dと、検出素子10dに接続される配線10w(図2)とを具える。
検出素子10dは、ギャップ部11gの一つをつくる直方体片12間に配置されている。この例では、直方体片12に接着剤で検出素子10dを接合して、直方体片12間で検出素子10dを挟持している。検出素子10dは、ギャップ部11gにおいて磁束を十分に感知可能な位置に配置されることが好ましい。
この例では、検出素子10dとして、ホール素子を用いている。ホール素子は、シリコン(Si),ゲルマニウム(Ge),ガリウム・ヒ素(GaAs),インジウム・ヒ素(InAs),インジウム・アンチモン(InSb)といった半導体からなるもの、窒化ガリウム(GaN),窒化インジウム(InN),窒化インジウム・ガリウム(InGaN),窒化アルミニウム・ガリウム(AlGaN)などの化合物半導体、あるいはGaN/AlGaNのようなヘテロ接合構造から構成されるものが挙げられる。検出素子10dは、コア11やコイル120の最高到達温度において使用可能な耐熱性に優れるものが好ましい。化合物半導体やヘテロ接合構造からなるホール素子は、耐熱性に優れる。耐熱性を向上するための耐熱性樹脂で被覆した検出素子を用いてもよい。市販のホール素子を利用してもよい。
配線10w(図2)は、検出素子10dからの電気信号を伝送可能な導体を具えるものが利用でき、コア11及びコイル120と確実に絶縁されるように絶縁被覆を具えることが好ましい。例えば、被覆銅線やFPC(フレキシブルプリント配線板)などが利用できる。FPCは薄い板状であるため、コイル120のターン間に配線10wを配置させた状態でもコイル120を押し縮められることから、リアクトル1を小型にできて好ましい。配線10wの端部は、端子10tを具える。端子10tは、検出素子10dが取得した物理量に基づく電気信号を処理する処理装置(図示せず)に接続される。この配線10wの端部側は、例えば、図2に示すようにコア11のギャップ部11gからコイル120のターン間を経て、処理装置側に引き出す。ここで、リアクトル1の組み立ては、以下のように行う。まず、コイル巻回部11c(直方体組)を組み立てて並列に配置し、コイル120に挿入する。このとき、コイル120は、スプリングバックにより隣り合うターンの間が広がった状態であるため、配線10wの端部側を処理装置側に容易に引き出せる。配線10wをターン間から引き出したら、隣接するターン同士が接触するようにコイル120を押し縮めて、直方体片12の端面にU字片13を接合する。
組み立てたリアクトル1は、アルミニウムやアルミニウム合金からなるケース20に収納し、ウレタン樹脂やエポキシ樹脂などのポッティング樹脂(図示せず)をケース20内に充填して、コイル120とコア11との組立体を封止する。このとき、検出素子10dを挟持する直方体片12間にもポッティング樹脂が充填されることで、検出素子10dがこの樹脂によってコア11に確実に固定される。なお、ケース20は、その底部においてU字片13が接触する箇所に、U字片13を保持する保持部21を具える。また、ケース20は、ケース20を冷却ベースBに固定するためのボルト(図示せず)が貫通する貫通孔(図示せず)を具える。
上記構成を具えるリアクトル1は、電流検出部10をコア11に一体に具えることで、電流センサを設置するためのスペースが不要である。特に、リアクトル1の設置面積は、電流検出部10を有していない状態とほぼ同様である。従って、電流センサ用のスペースを別途必要とした従来のリアクトルと比較して、リアクトル1は、電流が検出可能でありながら、設置面積が小さい。
また、リアクトル1は、電流検出部10の検出素子10dによって、コア片間の間隔が保持される。従って、検出素子10dが所定のギャップ距離を満たす大きさである場合、検出素子10dは、ギャップ材として機能する。なお、検出素子10dを嵌め込み可能な溝や孔を具えるギャップ材を用意し、同溝などに検出素子10dを嵌め込んだギャップ材をコア片に接合してもよい。
更に、リアクトル1は、コイル120のターン間から電流検出部10の配線10wを引き出す構成である。この構成では、コイル120のターン間に隙間を設けておくことでリアクトル組立後(樹脂封止前)でも、検出素子10dを設置したり、配線10wの引き回しが可能である。また、この構成によれば、配線10wの配置にあたり、配線10wに急激な曲げ(曲げ半径が小さい曲げ)を与え難い。
なお、リアクトル1は、コイル120とコア11とを絶縁するために、インシュレータ(図示せず)を具える。インシュレータは、コイル巻回部11cの外周を覆う筒状部と、コイル120の端面(ターンが環状に見える面)に当接される板状の鍔部とを具える。筒状部は、半割れの角筒片同士を係合することでコイル巻回部11cの外周を覆う。鍔部は筒状部の両端部に対向配置され、コイル120の各端面に当接する一対の矩形枠である。インシュレータは、ポリフェニレンサルファイド(PPS)樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、液晶ポリマー(LCP)などの絶縁材料から構成されるものが利用できる。矩形枠をケース20に固定してコイル120のスプリングバックを押えることで、コイル120は、押し縮められた状態に保持される。このインシュレータに関する点は、後述する実施形態2〜8についても同様である。
上述のリアクトル1は、直方体片12間のギャップ部11gに検出素子10dが配置された構成であるが、直方体片12とU字片13との間のギャップ部11gに検出素子10dが配置された構成とすることができる。このとき、直方体片12とU字片13との間に配置される上記インシュレータの矩形枠に検出素子10dを取り付け、矩形枠の配置と同時に検出素子10dの配置を行える構成とすると、リアクトルの組立作業性に優れる。
また、リアクトル1は、ケース20に収納してもよいが、ケースを省略すると更に小型になる。ケースを省略する場合、コア11とコイル120との組立体の外周を覆う樹脂被覆部を具えるリアクトルとすると、(1)リアクトルを強化でき、特に、圧粉成形体からなるコアであっても、機械的に保護できる、(2)樹脂被覆部により電流検出部(検出素子)をコアに確実に固定できる、(3)樹脂被覆部によりコア及びコイルを一体化することができ、ハンドリング性に優れる、(4)樹脂被覆部によりコアやコイルなどを腐食や粉塵などの外部環境から保護できる、といった効果を奏する。樹脂被覆部は、絶縁性樹脂、具体的には、エポキシ樹脂やウレタン樹脂、ポリフェニレンサルファイド(PPS)樹脂、ポリブチレンテレフタレート(PBT)樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂などが利用できる。樹脂被覆部を具えるリアクトルを冷却ベースに固定するには、固定用のボルトが貫通する貫通孔を具える樹脂被覆部を用いたり、固定用のボルトが貫通する貫通孔を具える一対の脚部と、脚部を連結すると共に、コイル120やコア11を冷却ベース側に押え付けられる連結部とを有する[状の固定用部材を用いることが挙げられる。この樹脂被覆部に関する点は、後述する実施形態2〜8についても同様である。
更に、この例では、図2に示すようにコア片の厚さがいずれも等しい構成としたが、コイル巻回部11c(直方体片12)の厚さと、コイル巻回部11c以外の箇所を構成するコア片(U字片13)の厚さとが異なった構成とすることができる。例えば、U字片13において冷却ベースB側の面が、コイル120の冷却ベースB側の面に面一となるように、U字片13を直方体片12よりも厚くしてもよい。また、U字片13において冷却ベースB側の面と対向する面が、コイル120の冷却ベースB側の面と対向する面に面一となるように、U字片13を直方体片12よりも厚くしてもよい。このようにコイル巻回部11c以外の箇所を構成するコア片を厚くすることで、コア11とコイル120との組合体の投影面積がより小さくなり、リアクトルが小型になる。或いは、U字片13において冷却ベースB側の面が、コイル120の冷却ベースB側の面よりも突出するように、U字片13を直方体片12よりも厚くし、冷却ベースBとコイル120との間の空間に放熱板を配置させた構成とすると、放熱性を高められる。放熱板は、窒化珪素、アルミナ、窒化アルミニウム、窒化ほう素、炭化珪素といったセラミックスなどの放熱性、電気絶縁性に優れ、非磁性である材料で構成されたものが利用できる。コイル120の冷却ベース側の面は、放熱板に接触させることが好ましい。このコアの形状及び放熱板に関する点は、後述する実施形態2〜8についても同様である。
(実施形態2)
上記実施形態1では、コイルのターン間を介してコイルの内側から外側に電流検出部の配線を引き出す構成を説明した。実施形態2では、コイル端部の開口部(ターンがつくる環状の空間)から配線を引き出す構成を説明する。図3は、電流検出部の配線をコイル端部の開口部から引き出す状態を説明する部分断面図である。図3に示すリアクトル2は、電流検出部10の配線10wの引き出し構造が異なる点以外の点は、実施形態1に示すリアクトル1と同様な構成であるため、ここでは、引き出し構造を中心に説明し、その他の点は、説明を省略する。
リアクトル2の組み立てにあたり、コイル巻回部11c(直方体組)を形成して並列に配置し、コイル120に挿入する際、コア11のギャップ部11gから引き出した配線10wの端部側をコア11の表面に沿わせて、コイル120端部の開口部から引き出す。このとき、コイル120の内周面とコア11の表面との間には、若干の隙間があるため、配線10wをコイル120の開口部から容易に引き出せる。配線10wを引き出したら、コイル120を押し縮めて、直方体片12の端面にU字片13を接合する。
コア11の外周にインシュレータを配置する場合、筒状部に配線用孔を設けておき、コア11のギャップ部11gから引き出した配線10wの端部側を配線用孔から引き出し、筒状部の表面を沿わせてコイル120の端部から引き出すことができる。この構成により、コア11と配線10wとの間の絶縁性を高められる。或いは、筒状部の内周面とコアの表面との隙間から配線10wを引き出してもよい。
このリアクトル2は、配線10wの引き出し作業が容易に行える。また、このリアクトル2は、コイル120のターン間に配線10wを引き出すための隙間を設ける必要がなく、コイルの寸法が小さくてすむ。
(実施形態3)
上記実施形態1では、電流検出部の検出素子をコアのギャップ部に具える構成を説明した。実施形態3〜5では、検出素子の配置箇所が異なる構成を説明する。図4(I)は、電流検出部の検出素子がギャップ部の外側に配置された構成を示す概略構成図、(II)は、検出素子がコアに設けられた穴に配置された構成を示す概略構成図、(III)は、検出素子がコアの外周面に取り付けられた構成を示す概略構成図である。図4に示すリアクトル3,4,5は、電流検出部10の検出素子10dの配置箇所が異なる点以外の点は、実施形態1に示すリアクトル1と概ね同様な構成であるため、ここでは、配置箇所を中心に説明し、その他の点は説明を省略する。
リアクトル3〜5はいずれも、ギャップ部11gに板状のギャップ材(図示せず)が接合されている。各ギャップ材は、その周面がコア片の外周面と面一になるようにコア片間に配置されている。
リアクトル3は、漏れ磁束が生じ易いギャップ材の周面に検出素子10dが配置されている。このため、リアクトル3は、検出素子10dが磁束を感知し易く、電流を精度よく検出できる。検出素子10dをギャップ材の周面に配置するには、検出素子10dを接着剤などで周面に接合することが挙げられる。コア11のコイル巻回部11cの外周にインシュレータ(筒状部)を配置する場合、筒状部の内周側に検出素子10dを接着剤などで接合しておいてもよい。検出素子10dは、筒状部をコイル巻回部11cに配置したとき、ギャップ材の周面近傍に位置するように筒状部に接合する。或いは、ギャップ部11gをつくるコア片(直方体片12)の外周面に検出素子10dが位置するように検出素子10dを筒状部に内蔵させてもよい。更に、コア11とコイル120との組合体がポッティング樹脂や樹脂被覆部などでモールドされる場合、検出素子10dは、コア11に確実に固定される。
リアクトル3において電流検出部10の配線の引き出し構造は、図2,3に示す構造のいずれも適用できる。リアクトル3は、コア11の表面に検出素子10dが配置される構成であるため、検出素子10dを容易に配置できる。
(実施形態4)
リアクトル4は、検出素子10dを挿入可能な素子用穴40をコア片に具える。検出素子10dは、この素子用穴40に挿入配置される。この例では、コア11においてコイル120が配置されず露出されたU字片13に素子用穴40を具える。素子用穴40の深さは、検出素子10dが磁束を十分に感知できるように適宜調整するとよい。素子用穴40は、検出素子10dが挿入されたままの状態でもよいが、接着剤、ポッティング樹脂や樹脂被覆部の樹脂などが充填されると、検出素子10dの位置ずれや組立時の脱落などを防止できる。
素子用穴40の設置箇所は適宜選択することができる。コア11のコイル巻回部11c(直方体片12)に素子用穴40が設けられている場合、検出素子10dが磁束を感知し易いことから精度よく電流を検出できる。この場合、電流検出部10の配線の引き出し構造は、図2に示すようにコイル120のターン間から引き出したり、図3に示すようにコイル120の端面から引き出す構成が適用できる。リアクトル4のようにコイル巻回部11c以外の箇所(U字片13)に素子用穴40を具える場合、検出素子10dを挿入し易い上に、電流検出部10の配線の取り回しが行い易い。図5に示すように、リアクトル4において電流検出部10の配線10wの端部側は、素子用穴40からコア11(U字片13)の表面を経て処理装置側(ケース20の外側)に容易に引き出せる。
素子用穴40は、検出素子10dが挿入可能な大きさを有していれば十分であり、過大であるとコア11の磁気特性の劣化を招く。
リアクトル4は、磁束が通過するコア11自体に検出素子10dが配置されているため、検出素子10dが磁束を感知し易く、電流を精度よく検出できる。また、リアクトル4は、コア11においてコイル120が配置されない箇所(コイル巻回部11c以外の箇所、以下、露出箇所と呼ぶ)に検出素子10dが配置されているため、配線10wを取り回し易い。更に、コア11は、圧粉成形体であることで、素子用穴40を有するといった複雑な三次元形状であっても、容易に製造することができる。
(実施形態5)
リアクトル5は、コア片の外周面に検出素子10dが接着剤により直接接合されている。この例では、コイル巻回部11c以外の箇所の外周面(U字片13の湾曲面)に検出素子10dが配置されている。検出素子10dは、磁束を十分に感知可能な位置に配置することが好ましい。コア11とコイル120との組合体がポッティング樹脂や樹脂被覆部などでモールドされる場合、検出素子10dは、コア11に確実に固定される。
リアクトル5において電流検出部10の配線10wの端部側は、図6に示すように、コア11の外周面、或いはケース20の内周面に沿って処理装置側(ケース20の外側)に容易に引き出せる。
リアクトル5は、コア11においてコイル120が配置されていない露出箇所に検出素子10dが直接取り付けられるため、検出素子10dの取り付け作業が行い易い上に、配線10wの取り回しが行い易い。
なお、リアクトル5は、環状のコア11の外周側の面に検出素子10dが配置されているが、内周側の面に検出素子10dが配置された構成としてもよい。この場合、配線10wの端部側は、U字片13の表面に沿って引き出して、ケース20側に引き出すとよい。
(実施形態6)
上述の実施形態1〜5では、電流検出部の検出素子としてホール素子を用いたが、ホール素子に代えて、サーチコイルを利用することができる。サーチコイルを用いる場合、サーチコイルのターンがつくる環状の空間に磁束が通過するように、サーチコイルをコアに配置する。検出素子の配置箇所や配線の引き出し構造は、上述した実施形態1〜5と同様である。
(実施形態7)
上述の実施形態1〜5では、電流検出部の検出素子としてホール素子を用いたが、ホール素子に代えて、磁気抵抗素子(MR素子)を利用することができる。MR素子は、InSb,GaAs,InAsといった半導体からなるものが挙げられる。特に、n-InSbからなるMR素子は、電子移動度が高いため、磁気抵抗効果が大きく、検知感度がよい。MR素子は、温度変化により出力値が変化するため、温度変化が生じ難いように耐熱性や断熱性に優れる樹脂で被覆したものを用いると、検知感度を高められる。市販のMR素子を利用してもよい。検出素子の配置箇所や配線の引き出し構造は、上述した実施形態1〜5と同様である。
(実施形態8)
上述の実施形態1〜5では、電流検出部の検出素子としてホール素子を用いたが、ホール素子に代えて、磁気インピーダンス素子(MI素子)を利用することができる。MI素子は、例えば、FeCoSiB,CoSiBといったアモルファス磁性ワイヤからなるもの、Cuなどの導体膜の上にCoSiBなどの薄膜を積層した積層構造体からなるものが挙げられる。市販のMI素子を利用してもよい。検出素子の配置箇所や配線の引き出し構造は、上述した実施形態1〜5と同様である。
なお、上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、コアは、複数の電磁鋼板を積層させた積層体を利用してもよい。また、同種の検出素子を複数具えてもよいし、複数の異なる検出素子を組み合わせて具えることもできる。
本発明のリアクトルは、設置面積が小さいため、例えば、ハイブリッド自動車や電気自動車、燃料電池車などの車両に配置される車載用コンバータといった車載部品の構成要素に好適に利用することができる。
1,2,3,4,5 リアクトル 10 電流検出部 10d 検出素子 10w 配線
10t 端子 11 コア 11c コイル巻回部 11m 磁性体部
11g ギャップ部 12 直方体片 13 U字片 20 ケース 21 保持部
40 素子用穴
110 コア 112 直方体片 113 U字片 120 リアクトルコイル
L リアクトル g ギャップ材 B 冷却ベース

Claims (6)

  1. リアクトルコイルと、このコイルが配置されるコイル巻回部を有する環状のコアとを具えるリアクトルであって、
    前記コイル巻回部は、複数のコア片を組み合わせて構成され、隣り合うコア片間にギャップ板を有するコア片組を具え、
    前記リアクトルコイルに流れる電流を検出する検出素子を有する電流検出部を前記コアに一体に具え
    前記検出素子は、前記コア片組に挟まれたギャップ板の周面に配置されていることを特徴とするリアクトル。
  2. 記検出素子は、ホール素子を具えることを特徴とする請求項1に記載のリアクトル。
  3. 記検出素子は、サーチコイルを具えることを特徴とする請求項1又は2に記載のリアクトル。
  4. 記検出素子は、磁気抵抗素子を具えることを特徴とする請求項1〜3のいずれか1項に記載のリアクトル。
  5. 記検出素子は、磁気インピーダンス素子を具えることを特徴とする請求項1〜4のいずれか1項に記載のリアクトル。
  6. 請求項1〜5のいずれか1項に記載のリアクトルを具えることを特徴とするコンバータ。
JP2009012423A 2008-03-31 2009-01-22 リアクトル、及びコンバータ Active JP5252207B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009012423A JP5252207B2 (ja) 2008-03-31 2009-01-22 リアクトル、及びコンバータ

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008093923 2008-03-31
JP2008093923 2008-03-31
JP2009012423A JP5252207B2 (ja) 2008-03-31 2009-01-22 リアクトル、及びコンバータ

Publications (2)

Publication Number Publication Date
JP2009267360A JP2009267360A (ja) 2009-11-12
JP5252207B2 true JP5252207B2 (ja) 2013-07-31

Family

ID=41392766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009012423A Active JP5252207B2 (ja) 2008-03-31 2009-01-22 リアクトル、及びコンバータ

Country Status (1)

Country Link
JP (1) JP5252207B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123790A1 (ja) * 2017-12-18 2019-06-27 株式会社タムラ製作所 電流センサ付きリアクトル

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5120679B1 (ja) 2011-05-10 2013-01-16 住友電気工業株式会社 リアクトル
JP5120678B2 (ja) 2011-05-10 2013-01-16 住友電気工業株式会社 リアクトル
AP2014007591A0 (en) 2011-09-23 2014-04-30 Bonifacio J Eyales Electromagnetic energy-flux reactor
JP2014530500A (ja) * 2011-09-23 2014-11-17 ボニファシオ ジェイ. イヤルズ、 電磁エネルギー流束リアクター
JP5950246B2 (ja) * 2012-01-19 2016-07-13 住友電気工業株式会社 リアクトル
JP5617888B2 (ja) * 2012-09-24 2014-11-05 トヨタ自動車株式会社 リアクトル
JP5692203B2 (ja) 2012-11-12 2015-04-01 トヨタ自動車株式会社 リアクトルとその製造方法、及び、リアクトルを備えた電力変換装置とその製造方法
JP6478108B2 (ja) * 2015-04-03 2019-03-06 株式会社オートネットワーク技術研究所 リアクトル

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2690898B2 (ja) * 1987-06-17 1997-12-17 株式会社日立製作所 力率改善回路
JPH01179424U (ja) * 1988-06-06 1989-12-22
JP3314908B2 (ja) * 1996-04-15 2002-08-19 株式会社安川電機 直流リアクトル
JP3729666B2 (ja) * 1997-11-29 2005-12-21 日置電機株式会社 電流センサ
JP3691386B2 (ja) * 2000-12-12 2005-09-07 株式会社デンソー チョークコイル内蔵回路の電流検出装置
JP4590110B2 (ja) * 2001-01-16 2010-12-01 株式会社エス・エッチ・ティ 電流検出機能を具えたコイル装置
JP2004153020A (ja) * 2002-10-30 2004-05-27 Asahi Kasei Electronics Co Ltd トランス
JP2006308521A (ja) * 2005-05-02 2006-11-09 Toyota Motor Corp リアクトル応用機器および車両

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123790A1 (ja) * 2017-12-18 2019-06-27 株式会社タムラ製作所 電流センサ付きリアクトル
JP2019110202A (ja) * 2017-12-18 2019-07-04 株式会社タムラ製作所 電流センサ付きリアクトル
JP7049749B2 (ja) 2017-12-18 2022-04-07 株式会社タムラ製作所 電流センサ付きリアクトル

Also Published As

Publication number Publication date
JP2009267360A (ja) 2009-11-12

Similar Documents

Publication Publication Date Title
JP5252207B2 (ja) リアクトル、及びコンバータ
JP6113792B2 (ja) トロイダルフラックスゲート電流変換器
US9318250B2 (en) Reactor, converter, and power converter apparatus
JP5263494B2 (ja) 電流センサ
US10141102B2 (en) Reactor
US9336942B2 (en) Reactor, converter, and power conversion device
KR101795834B1 (ko) 배터리 전류 센서
US20140085026A1 (en) Reactor, converter, and power converter apparatus
US20160313374A1 (en) Electric current detector
JP2013222802A (ja) リアクトル、リアクトル用ケース、コンバータ、及び電力変換装置
JP5316872B2 (ja) リアクトル、及びコンバータ
US11031176B2 (en) Reactor
US20190385776A1 (en) Reactor
JP5316871B2 (ja) リアクトル、及びコンバータ
JP5970164B2 (ja) トランスモジュール及びdc−dcコンバータ装置
JP2016092200A (ja) リアクトル
JP5731876B2 (ja) 電流検出装置およびこれを用いた電力量計
CN111466003B (zh) 带电流传感器的电抗器
JP6570982B2 (ja) リアクトル
US11462355B2 (en) Reactor
JP3970401B2 (ja) 電流検出器
JP6685598B2 (ja) 電流センサー
JP6919321B2 (ja) 電力変換装置
JP6811427B2 (ja) 電流センサ及び分電盤
JP2018054588A (ja) 電流センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130403

R150 Certificate of patent or registration of utility model

Ref document number: 5252207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250