JP5251936B2 - 構造物の制振構造 - Google Patents

構造物の制振構造 Download PDF

Info

Publication number
JP5251936B2
JP5251936B2 JP2010184472A JP2010184472A JP5251936B2 JP 5251936 B2 JP5251936 B2 JP 5251936B2 JP 2010184472 A JP2010184472 A JP 2010184472A JP 2010184472 A JP2010184472 A JP 2010184472A JP 5251936 B2 JP5251936 B2 JP 5251936B2
Authority
JP
Japan
Prior art keywords
vibration
structures
damping
pair
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010184472A
Other languages
English (en)
Other versions
JP2010255409A (ja
JP2010255409A5 (ja
Inventor
一登 背戸
郁夫 下田
和也 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Original Assignee
Oiles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp filed Critical Oiles Corp
Priority to JP2010184472A priority Critical patent/JP5251936B2/ja
Publication of JP2010255409A publication Critical patent/JP2010255409A/ja
Publication of JP2010255409A5 publication Critical patent/JP2010255409A5/ja
Application granted granted Critical
Publication of JP5251936B2 publication Critical patent/JP5251936B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、同一又は接近した振動特性を有する複数のビルやタワー等の構造物を振動振幅の異なる場所で連結し、構造物同士の相互作用力を利用して、一蓮托生に構造物を振動制御する制振構造に関する。
現在、ビルの高層化が進んでいる。しかし、ビルの高層化が進めば進むほど、ビルの剛性が低くなり、固有振動数が低下する。そのため、風などの外乱によって、振動が起こり易くなる。これらの振動は居住性の悪化や、ビルの破損の原因となる。阪神淡路大地震によって、10階建てのビルが壊滅的破壊を招いたり、高層ビルが破壊に至らなくとも大きな被害を受けた。そこで、この問題を解決するために振動制御が必要となる。そのために従来、高層ビルの制振方法の研究は数多くなされてきた。中でも、錘の慣性力を利用したアクティブマスダンパー(Active Mass Damper、以下、AMDと略称)方式がよく知られている。しかし、この方式は、風などの中小レベルの外乱に対して有効であるが、大きな制振力を得ることが難しいために大地震に対応できない。さらに、ビルが更に超高層化するとビルの固有振動数が低下するので、慣性力を制御力として利用しているAMD方式では十分な制御力が得られず、風による揺れさえ制御できないという問題がある。
それらの問題を解決するために提案された制振法が連結制振方式である。これは、ビル等の構造物と構造物とをダンパやアクチュエータなどの制振装置で連結することにより、互いの作用・反作用力を制御力として利用して、ビル等の構造物相互の振動を制御する方式である。この方式はAMD方式に比べて大きな制御力が得られ、しかもその制御力は振動数に依存しないので、超高層ビルの風による揺れのみならず大地震にも対応できる。この方式は、晴海再開発地区のトリトンスクエアに建設された3棟の高層ビル(トリトンタワーズ)を2機のアクティブブリッジと呼ばれる制振装置で連結してこれら高層ビルの風による揺れを制御するためにすでに実用化されている。
特開平7−190136号公報
しかし、上記の提案された連結制振方式では、同一高さを有して固有振動数の同じビル同士の制御は不可能であり、また連結された構造物の固有振動数が近づくと、その制振効果は低下する。また、同一高さを有する複数のビルを、上記方式で制御する要請もあるが、ビルの固有振動数が接近するためにこの方式を採用することは困難である。また、連結制振方式は、複数のビルや構造物の相互反力を活用して制御する方法なので、独立したビルや構造物には採用できないと言う本質的な問題もある。
以上述べたように、従来のAMD方式はビルの風や小地震の制御にしか適用できない上に、500メートルを超える超高層ビルにはAMD方式の適用は困難である。そこで提案されたのが連結制振方式であるが、この方式はビルとビル、あるいはタワー構造物同士を制振装置で連結して振動を制御する方法であって、相互の固有振動数が異なる場合に有効である。しかし、ビルやタワー構造物相互の固有振動数が等しい場合には作用・反作用力が得られず、振動制御ができない。また、固有振動数が異なっていたとしても、それが接近している場合は振動制御の効果は僅かである。
また、ビルやタワー構造物が独立して立っている場合に、上記連結制振方式を適用するには、外塔と内塔とに分けてビルやタワー構造物を建設し、両者を制振装置で連結することになるが、その場合は外塔と内塔との間に剛性に大きな差が生じるので、剛性の大きい外塔を制御するために内塔が大きく揺れることになり、肝心の外塔が制御できないという問題もある。
本発明は前記に鑑みてなされたものであって、その目的とするところは、互いに同一又は接近した固有振動数を有する構造物の振動を効果的に制御でき、風による揺れは勿論のこと大地震に対しても対応することができる上に、簡単に最適設計が可能な制振構造を提供することにある。
本発明の複数の構造物の制振構造は、同一又は接近した固有振動数を有する少なくとも一対の構造物をその振動振幅の異なる部位で連結手段を介して連結し、一対の構造物同士の相互作用力により当該一対の構造物の振動を制御するようにしたものである。
本発明では、連結手段により一対の構造物をその振動振幅の異なる部位で連結し、斯かる一対の構造物同士の相互作用力により当該一対の構造物の振動を制御するようにしたものであるために、大きな相互作用力が得られる結果、構造物の振動を効果的に制御でき、風による揺れは勿論のこと大地震に対しても対応することができる。
本発明は、対称構造物、並立する同一高さ若しくは同一若しくは接近した振動特性を有する一対の構造物、同一高さをもつ複数の中層、高層、超高層ビル等の構造物、更には例えば宇宙ステーション用太陽電池パドルや平行に置かれた配管系等の構造物に適用でき、一般の柔軟構造物の風による揺れから大地震による揺れの制振まで幅広く適用でき、更に本発明によれば、構造物の高さが同じでなくとも、固有振動数が接近している場合は、従来の連結制振方式では得ることができない程度の大きな制振性能を得ることができる。
また本発明の構造物の制振構造は、一個の構造物を分割して少なくとも一対の分割構造物を形成し、この分割された一対の分割構造物をその振動振幅の異なる部位で連結手段を介して連結し、一対の分割構造物同士の相互作用力により当該一対の分割構造物の振動を制御するようにしたものである。
斯かる制振構造によれば、一対の分割構造物同士の相互作用力により当該一対の分割構造物の振動を制御するようにしたものであるために、1棟のビル等を分割構造にした構造物であっても、大きな相互作用力が得られる結果、構造物の振動を効果的に制御でき、風による揺れは勿論のこと大地震に強い構造物を提供できる。
本発明において、連結手段は、好ましくは、制振装置と弾性装置とを有しており、この場合、制振装置と弾性装置とは直列に配されているとよい。
制振装置の好ましい例として、油圧ダンパ、磁気ダンパ、摩擦ダンパ、粘性ダンパ、粘弾性ダンパ等を挙げることができるが、より好ましい例としては、永久磁石等を用いた磁気ダンパを挙げることができる。弾性装置の好ましい例として、コイルバネ、片持ち梁等を挙げることができる。
本発明では、振動制御の対象となる振動レベルによって制振装置を選択すれば幅広い振動問題に対処できる。例えば、超高層ビルの風による揺れの制御には、アクティブ制振装置が適している。また、大地震にはアクティブ制振装置では不経済であり、エネルギー消費のないダンパや、少ない可変減衰ダンパなどを選択すればよい。本発明では、制振装置にダンパを用いた場合の最適設計法を得ているので、それを用いれば大地震にも効果的に対処できる。さらに連結手段をオイルダンパなどのパッシブ機器とアクティブ機器とを組み合わせてハイブリッド化することで大地震にも対応できる。
また本発明の制振構造は、上記のいずれかの制振構造において最適振動減衰が得られるように、連結手段のバネ剛性と減衰係数とを、一対の構造物の夫々を連結部位で分けられた2質点モデルで表した場合に得られる制振構造の等価モデルに基づいて決定してなるものである。
斯かる本発明は、一対の連結手段を介して連結された一対の構造物の夫々を連結部位で分けられた2質点モデルで表した場合に、各々簡単な等価モデル(動吸振器型モデル)に縮退できることの知見に基づくものであり、この等価モデルを用いれば、連結手段に例えば片持ち梁状構造物とダンパとを用いたとき、これら片持ち梁状構造物をバネで表したときのバネ剛性とダンパの減衰係数との値を最も効果的に制振できるという観点から決定することができ、而して、最適設計が容易に可能となるのである。
本発明では、連結手段は、上記のような制振装置と弾性装置とを有していてもよいが、制振装置と弾性装置との両方の機能を兼ね備えたもの、例えば減衰機能と弾性機能とを有した減衰バネ装置を具備していてもよい。
互いに同一又は接近した固有振動数を有する構造物の振動を効果的に制御でき、風による揺れは勿論のこと大地震に対しても対応することができる上に、簡単に最適設計が可能な連結制振構造を提供することができる。
本発明による好ましい実施例の斜視説明図である。 図1に示す例の制振効果を確認するためのビル模型構造物の説明図である。 図2に示す例のビル模型構造物と振動モード形との説明図であって、(a)はビル模型構造物の説明図、(b)は一次振動モードの説明図、(c)は二次振動モードの説明図である。 2自由度系モデルと物理パラメータとの説明図である。 連結された2自由度系モデルと物理パラメータとの説明図である。 図5に示す2自由度系モデルの等価モデルの説明図である。 質点1の周波数応答曲線図である。 インパルス応答曲線図である。 実験で得られた周波数応答曲線図である。 実験で得られたインパルス応答曲線図である。 本発明による好ましい他の実施例の正面説明図である。 図11に示す例の一部拡大説明図である。 本発明による好ましい更に他の実施例の正面説明図である。 本発明による好ましい更に他の実施例の正面説明図である。 本発明による好ましい更に他の実施例の正面説明図である。
以下、本発明の実施の形態を、図に示す例に基づいて更に詳細に説明する。なお、本発明はこれら例に何等限定されないのである。
図1に示す制振構造1は、互いに同一又は接近した固有振動数を有して同一振動特性をもつ一対の構造物、本例では塔状の構造物であるビル2及び3を、その振動振幅の異なる部位4、5、6及び7で一対の連結手段8及び9を介して連結し、ビル2及び3同士の相互作用力により当該ビル2及び3の振動を制御するようにしたものである。
ビル2及び3の夫々は基礎10上に構築されており、連結手段8は、一端でビル2の上端である部位4に固着された弾性装置としての片持ち梁11と、一端で片持ち梁11の下方端である自由端12に連結されていると共に他端でビル3の上端よりも下方の部位5に連結されている制振装置としてのダンパ13とを有しており、片持ち梁11は、部位4を支点として自由端12側で弾性的に略水平方向に揺動可能となっており、ダンパ13は、略水平方向において伸縮自在となっていると共に斯かる略水平方向の振動伸縮においてその振動を減衰させるようになっている。
連結手段9は、一端でビル3の上端である部位6に固着された弾性装置としての片持ち梁15と、一端で片持ち梁15の下方端である自由端16に連結されていると共に他端でビル2の上端よりも下方の部位7に連結されている制振装置としてのダンパ17とを有しており、片持ち梁15もまた、片持ち梁11と同様に、部位6を支点として自由端16側で弾性的に略水平方向に揺動可能となっており、ダンパ17は、ダンパ13と同様に、略水平方向において伸縮自在となっていると共に斯かる略水平方向の振動伸縮においてその振動を減衰させるようになっている。
連結手段8及び9を含めて対称構造をもつ図1に示す制振構造1の動作解析及び作用効果を確認するために、制振構造1に相当する図2に示すような模型制振構造Aを作成した。模型制振構造Aにおいて、2Aは、ビル2に、3Aはビル3に、11Aは片持ち梁11に、13Aはダンパ13に、15Aは片持ち梁15に、17Aはダンパ17に夫々相当し、ビル2に相当するビル模型2Aは、図3の(a)に示すように、高さ1000[mm]、幅150[mm]、厚さ2[mm]のアルミ製の2枚の平板21と、縦150[mm]、横80[mm]、厚さ25[mm]のアクリル製の2枚の板22とからなり、ダンパ模型13Aを取り付けるために2階層構造物にしてあり、下端から30[mm]までを完全固定している。図3の(b)及び(c)には、ビル模型2Aのモード解析によって得られた一次モード(4.16Hz)及び二次モード(11.14Hz)の振動モード形を夫々実線で示す。ビル3に相当するビル模型3Aも、ビル模型2Aと同様に形成されている。
本解析では、制御対象モードは一次及び二次モードとし、低次元化物理モデル作成法を用いて2自由度系に低次元化する。一次モードは最上階で、二次モードは中層階でそれぞれ同定する。図4にビル模型2Aにおける2自由度系の概略図と物理パラメータを示す。ここで、mは、ビル模型2A及び3Aの夫々における上階の質量であって、0.6379(kg)、mは、ビル模型2A及び3Aの夫々における下階の質量であって、0.8893(kg)、k10は、ビル模型2A及び3Aの夫々の全体のバネ剛性であって、−140.65(N/m)、k12は、ビル模型2A及び3Aの夫々の上階のバネ剛性であって、1513(N/m)、k20は、ビル模型2A及び3Aの夫々の下上階のバネ剛性であって、1539(N/m)である。
図5に、片持ち梁模型11A及び15Aをバネとして表し、直列に配された斯かる片持ち梁模型11A及び15A並びにダンパ模型13A及び17Aで互いに連結した時の模型制振構造Aの解析モデルを示し、m11は、ビル模型2Aにおける上階の質量、m12は、ビル模型2Aにおける下階の質量、k110は、ビル模型2A全体のバネ剛性、k112は、ビル模型2Aの上階のバネ剛性、k120は、ビル模型2Aの下上階のバネ剛性、m21は、ビル模型3Aにおける上階の質量、m22は、ビル模型3Aにおける下階の質量、k210は、ビル模型3A全体のバネ剛性、k212は、ビル模型3Aの上階のバネ剛性、k220は、ビル模型3Aの下上階のバネ剛性、kは、片持ち梁模型11A及び15Aの夫々のバネ剛性、そして、cは、ダンパ模型13A及び17Aの夫々の減衰係数である。ここで、模型制振構造Aでは一対の互いに同一振動特性をもつビル模型2A及び3Aを並列に配しているので、左右の2自由度系モデルは同じ物理パラメータを有することになる。このモデルの特徴は、片持ち梁模型11A及び15A(バネ要素)とダンパ模型13A及び17A(減衰要素)とが直列に配置されていることにある。また、この連結されたモデルは左右対称であるので、地面(基礎10)加振時においては図6のような簡単な等価モデルとして表せる。これは動吸振器型モデルに他ならないので、動吸振器の最適設計法を参考に最適設計のためのパラメータを導出できる。
本発明では、制振構造1の最適設計法には、動吸振器の設計に用いられている定点理論を適用する。図6によれば、基礎10の変位uに対する質点1の変位x1の周波数応答曲線は図7のようになる。一点鎖線は減衰係数cがゼロの場合の応答であり、点線は減衰係数cが無限大の場合の応答である。この周波数応答には交点(小円で示す)が3つ存在する。減衰が変わっても全て周波数応答曲線はこの交点を通るので、これを定点という。したがって、定点を最大値とするような応答曲線を作る条件を求めれば連結手段8及び9の最適設計となる。その設計手順は以下のようになる。
1.減衰係数cがゼロの場合と無限大の場合の周波数応答曲線を描き、バネ剛性kの値を変化させて、3つの交点(定点)の内、一次モードに関する低周波数の定点の高さが低くなる様なバネ剛性kの値を決定する。
2.低周波数の定点で、周波数応答曲線が最大値を持つ減衰係数cを決定する。
以上の手順によって、最適バネ剛性kopt=2800[N/m]、最適減衰係数copt=33[Ns/m]となる。
これらの最適値を用いて周波数応答曲線を計算したものを図7の実線で示す。大地震でビルを破壊に至らしめるのは一次モードの振動であるが、この一次モードの共振ピークが良く抑制されており、しかもそのピーク値は定点を通っていることから、連結手段8及び9のバネ剛性kと減衰係数cとが最適に設計されていることになる。この時の、地面をインパルス的に加振したことによる質点1のインパルス応答を図8に示す。ビル模型2A及び3Aの振動が速やかに減衰していることが分かる。これは一対のビル模型2A及び3Aで同時に同じに減衰されている。
以上のように得られたシミュレーション結果を実験的に確認することにより、本発明の効果を示す。最適設計されたバネ剛性koptと減衰係数coptとを基に連結手段8及び9に係る片持ち梁模型11A及び15Aとダンパ模型13A及び17Aとを作成した。
片持ち梁模型11A及び15Aは厚さ6[mm]×長さ550[mm]×幅50[mm]のアルミ製で、厚さは最適バネ剛性koptを使って、理論式より決定した。また、ダンパは、銅板と磁石とを使った磁気ダンパであり、最適減衰係数coptをもつように、理論式を用いて設計した。
図9の周波数応答より、シミュレーションと同様に各共振ピークがよく低減されている。また、図10のインパルス応答でも、振動発生から約3[sec]と振動が素早く収束しており、本発明の効果が示されている。
以上のように制振構造1において連結手段8又は9のバネ剛性kと減衰係数cとを、一対のビル2及び3の夫々を連結部位5及び7で分けられた図5に示す2質点m11及びm12並びにm21及びm22モデルで表した場合に得られる図6に示す制振構造1の等価モデルに基づいて決定して、最適振動減衰が得られるようにしている。
図11及び図12に示す他の例の制振構造1では、ビル2の頂部である部位4に連結手段8の片持ち梁11が固着されており、その自由端12には制振装置の内筒31が取り付けられており、ビル3の中ほどの部位5には制振装置の外筒32の一端が剛に固着されて取り付けられており、その外筒32の他端はビル2の中ほどでスライド機構33によって水平方向に移動自在に支持されており、内筒31は外筒32の内部でガイド34によって滑らかに軸方向に移動できるようになっており、内筒31と外筒32とは単数又は複数の油圧ダンパ等のダンパ35で結合されている。連結手段9側も図示しないが同様に構成されている。
以上のように図11及び図12に示す制振構造1もまた、内筒31、外筒32、スライド機構33、ガイド34及びダンパ35を具備した制振装置と片持ち梁11を具備した弾性装置とを有した連結手段8を介してビル2及び3をその振動振幅の異なる部位4及び5で連結しており、同様の連結手段9を介してビル2及び3をその振動振幅の異なる部位6及び7で連結しており、而して、ビル2及び3の相互作用力によりビル2及び3の振動を制御するようにしている。
図11及び図12に示す制振構造1の例では、制振のための制振装置としてパッシブなダンパ35を用いているが、これに代えて、セミアクティブ制振器又はアクティブ制振器を用いてもよく、また、パッシブ制振器とアクティブ制振器とを組み合わせたハイブリッド制振器を用いて、風などの微振動に対してアクティブ制振器が働き、大地震に対してパッシブ制振器が働くようにすると、あらゆる振動外乱に対して対応することができる。図11及び図12に示す例において、内筒31に通路を施せば火災などの緊急時に避難路として機能させることができる。
また連結手段8及び9を上下逆に配置して制振構造1を構成してもよい。即ち、図13に示すように、片持ち梁11の一端を部位5に固着すると共にその自由端12をダンパ13の一端に連結し、ダンパ13の他端を部位4に連結し、片持ち梁15の一端を部位7に固着すると共にその自由端16をダンパ17の一端に連結し、ダンパ17の他端を部位6に連結してもよい。
更に、一対の連結手段8及び9のうち一方の連結手段、例えば図14に示すように連結手段9を用いて制振構造1を構成してもよい。この場合は、前記した最適減衰程ではないがある程度の制振効果は持たすことができる。
さらに本発明は、一対以上のビル、一個のビル又は並立する一般構造物にも適用できる。例えば、図15に示すようにビル40を四つ割りにして分割ビル41を形成し、これら分割ビル41を連結手段8及び/又は9で連結して制振構造42にすれば、あたかも1棟のビル40でありながら、大地震や強風に強い高層ビルが実現できる。また、図15の制振構造42によれば、あらゆる方向からの風又は地震が襲っても全方向に耐える制振構造が実現できる。
1 制振構造
2、3 ビル
4、5、6、7 部位
8、9 連結手段

Claims (3)

  1. 同一又は接近した固有振動数を有する少なくとも一対の構造物をその振動振幅の異なる部位で連結手段を介して連結し、一対の構造物同士の相互作用力により当該一対の構造物の振動を制御するようにした複数の構造物の制振構造であって、直列に配された制振装置と弾性装置とを有した連結手段は、一端で一対の構造物のうちの一方の構造物に固着された弾性装置としての片持ち梁と、一端で片持ち梁の自由端に連結されていると共に他端で一対の構造物のうちの他方の構造物に連結されている制振装置としてのダンパとを有しており、片持ち梁は、一方の構造物を支点としてその自由端側で弾性的に略水平方向に揺動可能となっており、ダンパは、略水平方向において伸縮自在となっていると共に当該略水平方向の振動伸縮においてその振動を減衰させるようになっている複数の構造物の制振構造
  2. 一対の構造物をその振動振幅の異なる部位で一対の連結手段を介して連結してなる請求項1に記載の複数の構造物の制振構造。
  3. 請求項1又は2に記載の制振構造において最適振動減衰が得られるように、連結手段のバネ剛性と減衰係数とを、一対の構造物の夫々を連結部位で分けられた2質点モデルで表した場合に得られる制振構造の等価モデルに基づいて決定してなる制振構造。
JP2010184472A 2010-08-19 2010-08-19 構造物の制振構造 Active JP5251936B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010184472A JP5251936B2 (ja) 2010-08-19 2010-08-19 構造物の制振構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010184472A JP5251936B2 (ja) 2010-08-19 2010-08-19 構造物の制振構造

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004352065A Division JP4788134B2 (ja) 2004-12-03 2004-12-03 構造物の制振構造

Publications (3)

Publication Number Publication Date
JP2010255409A JP2010255409A (ja) 2010-11-11
JP2010255409A5 JP2010255409A5 (ja) 2010-12-24
JP5251936B2 true JP5251936B2 (ja) 2013-07-31

Family

ID=43316601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010184472A Active JP5251936B2 (ja) 2010-08-19 2010-08-19 構造物の制振構造

Country Status (1)

Country Link
JP (1) JP5251936B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101582820B1 (ko) * 2014-05-29 2016-01-07 한국과학기술원 면진구조물의 등가모델의 모델링방법
KR101540189B1 (ko) * 2014-12-09 2015-07-29 대진대학교 산학협력단 비틀림 진동 제어 가능한 초고층 복합 빌딩 시스템

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3724817B2 (ja) * 1993-06-14 2005-12-07 一登 背戸 柔軟構造物の制振構造
JP2000240321A (ja) * 1999-02-22 2000-09-05 Daiwa House Ind Co Ltd 制震パネル及び制震構造
JP2001207679A (ja) * 2000-01-28 2001-08-03 Tatsuji Ishimaru ダンパー
JP2002194917A (ja) * 2000-12-25 2002-07-10 Building Research Institute フレームの耐震構造
JP2004285599A (ja) * 2003-03-19 2004-10-14 Shimizu Corp 構造物の制震構造

Also Published As

Publication number Publication date
JP2010255409A (ja) 2010-11-11

Similar Documents

Publication Publication Date Title
JP5570605B2 (ja) 建物内の運動を減衰するための方法および構造
JP6372034B2 (ja) 防振減震装置
JP2010007793A (ja) 免震構造
JP2020101081A (ja) 制振装置及びこれを備えた建物
JP5403372B2 (ja) トラス梁の構造
JP5251936B2 (ja) 構造物の制振構造
JP4788134B2 (ja) 構造物の制振構造
JP3858432B2 (ja) 連結構造物の制振方法
Chen et al. Viscoelastically supported viscous mass damper incorporated into a seismic isolation system
JP2015148095A (ja) 免震構造
JP2007231718A (ja) 多層構造物
JP5458374B2 (ja) 制振システム
WO2019020991A1 (en) BUILDING, INTEGRATED DAMPING UNIT AND DAMPING METHOD
JP6853869B2 (ja) 建物の制振構造
JP2018529034A (ja) 減衰の小さい構造物用振動制御装置
Awchat et al. Seismic Response of Tall Building with Underground Storey Using Dampers
JP5252227B2 (ja) 免震システム
JP2010255324A (ja) 建物の制震構造
JP2008240290A (ja) 免震装置、及び免震装置の施工方法
JP2016056875A (ja) 制振機能付き免震構造物
JP2005299173A (ja) 塔状構造物の制振構造
JP2019190539A (ja) 建物用受動型制振装置
JP2011099538A (ja) 上下免震システム
JP2012202510A (ja) 免震構造物
JP7395034B1 (ja) 建築物の振動減衰性能を増強する耐力壁の構造を有する制震装置、及びそれを備えた制震システム

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20100910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Ref document number: 5251936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250