JP5247776B2 - 車両用駆動装置の油圧制御装置 - Google Patents

車両用駆動装置の油圧制御装置 Download PDF

Info

Publication number
JP5247776B2
JP5247776B2 JP2010187540A JP2010187540A JP5247776B2 JP 5247776 B2 JP5247776 B2 JP 5247776B2 JP 2010187540 A JP2010187540 A JP 2010187540A JP 2010187540 A JP2010187540 A JP 2010187540A JP 5247776 B2 JP5247776 B2 JP 5247776B2
Authority
JP
Japan
Prior art keywords
oil passage
oil
low
hydraulic
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010187540A
Other languages
English (en)
Other versions
JP2012047203A (ja
Inventor
武 星野谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010187540A priority Critical patent/JP5247776B2/ja
Publication of JP2012047203A publication Critical patent/JP2012047203A/ja
Application granted granted Critical
Publication of JP5247776B2 publication Critical patent/JP5247776B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Multiple-Way Valves (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Control Of Transmission Device (AREA)

Description

本発明は、車両の駆動力を発生する電動機と、電動機と車輪との動力伝達経路上に設けられ、動力を断接する油圧式断接手段と、を備えた車両用駆動装置の油圧制御装置に関する。
この種の車両用駆動装置の油圧制御装置として、従来、特許文献1に記載の車両用駆動装置の油圧制御装置が知られている。この車両用駆動装置の油圧制御装置120は、図27に示すように、電動オイルポンプ121から吐出されるオイルをレギュレータ弁122と一方向弁123とクラッチ油路切替弁124とを介して油圧クラッチ107に給油可能にされ、一方向弁123とクラッチ油路切替弁124とを結ぶ給油路125にアキュームレータ126が接続されている。
クラッチ油路切替弁124は、コントローラにより制御される電磁三方弁で構成されており、クラッチ油路切替弁124のソレノイド124aへの通電時に給油路125を油圧クラッチ107に連なるクラッチ油路132に接続し、油圧クラッチ107に給油してこれを係合させ、また、ソレノイド124aへの通電停止時に給油路125とクラッチ油路132との接続を断って、クラッチ油路132をドレンポート124bに接続し、油圧クラッチ107から排油してこれを解放させる。
また、クラッチ油路切替弁124を遮断した状態から再度接続する際、アキュームレータ126にある程度の油圧が蓄圧されていれば、レギュレータ弁122を低圧側にしてあっても、一方向弁123によって給油路125からレギュレータ弁122側への油の流通が阻止されるので、アキュームレータ126に蓄圧された油圧によって油圧クラッチ107を係合させることができる。
特開2006−258279号公報
しかしながら、特許文献1に記載の油圧制御装置120では、油圧クラッチ107の解放時にクラッチ油路132をドレンポート124bに接続することで、油圧クラッチ107からオイルが排出するため、再度油圧クラッチ107を係合させる際に、油圧を復帰させるまでに時間がかるという課題があった。
本発明は、上記課題に鑑みてなされたものであり、油圧の復帰を早期に行うことができる車両用駆動装置の油圧制御装置を提供することを目的とする。
上記の目的を達成するために、請求項1に記載の発明は、
車両の駆動力を発生する電動機(例えば、後述の実施形態の電動機2A、2B、2C)と、
前記電動機と車輪(例えば、後述の実施形態の後輪LWr、RWr)との動力伝達経路上に設けられ、動力を断接する油圧式断接手段(例えば、後述の実施形態の油圧ブレーキ60A、60B)と、を備えた車両用駆動装置(例えば、後述の実施形態の後輪駆動装置1)の油圧制御装置(例えば、後述の実施形態の油圧回路71、71A、71C、71E、71F)であって、
前記油圧式断接手段に油圧を供給する油圧供給源(例えば、後述の実施形態の電動オイルポンプ70)と、
前記油圧式断接手段と前記油圧供給源とを接続する油経路に配設される断接手段油路切替弁(例えば、後述の実施形態のブレーキ油路切替弁74)と、を備え、
前記断接手段油路切替弁は、閉弁位置と開弁位置とを切替可能な弁体(例えば、後述の実施形態の弁体74a)を備え、
前記断接手段油路切替弁には、前記油圧供給源に連通するライン油路(例えば、後述の実施形態のライン油路75)と、油圧式断接手段に連通する断接手段油路(例えば、後述の実施形態のブレーキ油路77)と、排油路(例えば、後述の実施形態のハイポジションドレン78)と、が接続され、
前記断接手段油路切替弁は、前記弁体が前記閉弁位置で、前記ライン油路と前記断接手段油路とを遮断状態とし、且つ、前記断接手段油路と前記排油路とを連通状態とし、
前記断接手段油路切替弁は、前記弁体が前記開弁位置で、前記ライン油路と前記断接手段油路とを連通状態とし、且つ、前記断接手段油路と前記排油路とを遮断状態とし、
前記排油路は、前記油圧供給源の油吸入口(例えば、後述の実施形態の油吸入口70a)が配置される第1の油貯留部(例えば、後述の実施形態のオイルパン80)よりも鉛直方向で高い位置に配設される第2の油貯留部(例えば、後述の実施形態の貯留部79)に連通し、
前記ライン油路には、前記電動機あるいは前記動力伝達経路の潤滑部あるいは冷却部である低圧供給先(例えば、後述の実施形態の潤滑・冷却部91)に連通する低圧油路(例えば、後述の実施形態の低圧油路76)が接続され、
前記低圧油路には、前記低圧油路における油圧が所定圧以上で開弁し、前記低圧油路とリリーフ弁排油路(例えば、後述の実施形態のリリーフドレン86)とを連通する状態とするリリーフ弁(例えば、後述の実施形態のリリーフ弁84)が配設され、
前記リリーフ弁排油路は、前記第2の油貯留部に連通することを特徴とする車両用駆動装置の油圧制御装置。
また、請求項2に記載の発明は、請求項1に記載の構成に加えて、
前記油圧式断接手段は、前記油圧式断接手段が締結する方向に付勢する油を収容する油室(例えば、後述の実施形態の第1作動室S1)を備え、
前記第2の油貯留部の鉛直方向最上部が、前記油圧式断接手段の油室の鉛直方向最上部と鉛直方向最下部との中分点よりも鉛直方向で高い位置となるように前記第2の油貯留部が配設されることを特徴とする。
また、請求項3に記載の発明は、請求項1又は2に記載の構成に加えて、
前記排油路の第2の油貯留部側端部(例えば、後述の実施形態の貯留部側端部78a)は、前記第2の油貯留部の底面に接続されることを特徴とする。
また、請求項に記載の発明は、請求項1〜3のいずれか1項に記載の構成に加えて、
前記リリーフ弁排油路の第2の油貯留部側端部(例えば、後述の実施形態の油貯留部側端部86a)は、前記第2の油貯留部の鉛直方向最上部よりも高い位置に配置されることを特徴とする。
また、請求項に記載の発明は、請求項1〜のいずれか1項に記載の構成に加えて、
前記油経路には、さらに低圧油路切替弁(例えば、後述の実施形態の低圧油路切替弁73)が設けられ、
前記低圧油路切替弁は、第1の作動位置(例えば、後述の実施形態の低圧側位置)と第2の作動位置(例えば、後述の実施形態の高圧側位置)とに切替可能な弁体(例えば、後述の実施形態の弁体73a)を備え、
前記低圧油路切替弁には、前記油圧供給源に連通する第1油路(例えば、後述の実施形態の第1ライン油路75a)と、前記電動機あるいは前記動力伝達経路の潤滑部あるいは冷却部である低圧供給先(例えば、後述の実施形態の潤滑・冷却部91)に連通する低圧油路(例えば、後述の実施形態の第1低圧油路76a、第2低圧油路76b)と、が接続され、
前記低圧油路は、互いに並列に配置された第1低圧油路(例えば、後述の実施形態の第1低圧油路76a)と第2低圧油路(例えば、後述の実施形態の第2低圧油路76b)とを有し、
前記第1低圧油路と前記第2低圧油路とで、流路抵抗が異なり、
前記低圧油路切替弁は、前記弁体が前記第1の作動位置で、前記第1油路と前記第1低圧油路とを連通状態とし、前記弁体が前記第2の作動位置で、前記第1油路と前記第2低圧油路とを連通状態とすることを特徴とする。
また、請求項に記載の発明は、請求項に記載の構成に加えて、
前記低圧油路切替弁には、前記油圧式断接手段に連通する第2油路(例えば、後述の実施形態の第2ライン油路75b)がさらに接続され、
前記低圧油路切替弁は、前記弁体が前記第1の作動位置で、さらに前記第1油路と前記第2油路とを連通状態とし、前記弁体が前記第2の作動位置で、さらに前記第1油路と前記第2油路とを連通状態とすることを特徴とする。
また、請求項に記載の発明は、請求項又はに記載の構成に加えて、
前記低圧油路切替弁は、前記弁体が前記第1の作動位置で、前記第1油路と前記第2低圧油路とを遮断状態とし、前記弁体が前記第2の作動位置で、前記第1油路と前記第1低圧油路とを遮断状態とすることを特徴とする。
また、請求項に記載の発明は、請求項のいずれか1項に記載の構成に加えて、
前記低圧油路切替弁は、前記弁体を前記第2の作動位置から前記第1の作動位置の方向に付勢する弾性手段(例えば、後述の実施形態のスプリング73b)と、
前記弁体を前記第1の作動位置から前記第2の作動位置の方向に付勢する油を収容する油室(例えば、後述の実施形態の油室73c)と、を備え、
前記油室は、前記第1油路と前記第2油路の少なくとも一方と常時連通するように接続され、
前記油圧供給源は、前記油圧式断接手段に供給する油圧を可変に駆動可能であり、
前記低圧油路切替弁は、前記油室の油圧が所定圧に達したときに、前記弁体が前記第1の作動位置から前記第2の作動位置に移動するように設定されることを特徴とする。
また、請求項に記載の発明は、請求項のいずれか1項に記載の構成に加えて、
前記第1低圧油路よりも前記第2低圧油路の方が流路抵抗が大きくなるように形成されることを特徴とする。
また、請求項10に記載の発明は、請求項に記載の構成に加えて、
前記第1低圧油路と前記第2低圧油路に流路抵抗手段(例えば、後述の実施形態のオリフィス85a、85b)を配設し、
前記第1低圧油路の流路抵抗手段(例えば、後述の実施形態のオリフィス85a)よりも、前記第2低圧油路の流路抵抗手段(例えば、後述の実施形態のオリフィス85b)の方が流路抵抗が大きくなるように形成されることを特徴とする。
また、請求項11に記載の発明は、請求項10に記載の構成に加えて、
前記流路抵抗手段は、流路に配設する縮径部(例えば、後述の実施形態のオリフィス85a、85b)であって、
前記第1低圧油路の縮径部(例えば、後述の実施形態のオリフィス85a)の最小流路断面積よりも、前記第2低圧油路の縮径部(例えば、後述の実施形態のオリフィス85b)の最小流路断面積の方が小さくなるように前記第1低圧油路と前記第2低圧油路が形成されることを特徴とする。
また、請求項12に記載の発明は、請求項に記載の構成に加えて、
前記第1低圧油路の流路断面積よりも、前記第2低圧油路の流路断面積の方が小さくなるように前記第1低圧油路と前記第2低圧油路が形成されることを特徴とする。
また、請求項13に記載の発明は、請求項に記載の構成に加えて、
前記第1低圧油路の、前記低圧油路切替弁から前記低圧供給先までの流路長よりも、前記第2低圧油路の、前記低圧油路切替弁から前記低圧供給先までの流路長の方が長くなるように前記第1低圧油路と前記第2低圧油路が形成されることを特徴とする。
また、請求項14に記載の発明は、請求項13のいずれか1項に記載の構成に加えて、
前記第1低圧油路と前記第2低圧油路は下流側で合流し共通の低圧油路(例えば、後述の実施形態の低圧共通油路76c)を形成することを特徴とする。
また、請求項15に記載の発明は、請求項10に記載の構成に加えて、
前記第1低圧油路の流路抵抗手段及び前記第2低圧油路の流路抵抗手段よりも下流側で、且つ前記低圧供給先よりも上流側に他の流路抵抗手段(例えば、後述の実施形態のオリフィス85c)を備え、
前記他の流路抵抗手段よりも前記第1低圧油路の流路抵抗手段の方が流路抵抗が大きいことを特徴とする。
また、請求項16に記載の発明は、請求項11に記載の構成に加えて、
前記第1低圧油路の流路抵抗手段及び前記第2低圧油路の流路抵抗手段よりも下流側で、且つ前記低圧供給先よりも上流側に他の縮径部(例えば、後述の実施形態のオリフィス85c)を備え、
前記他の縮径部の最小流路断面積よりも前記第1低圧油路の最小流路断面積の方が小さいことを特徴とする。
また、請求項17に記載の発明は、請求項1〜16のいずれか1項に記載の構成に加えて、
前記断接手段油路切替弁は、前記弁体と、前記弁体を前記開弁位置から前記閉弁位置方向へ付勢する弾性手段(例えば、後述の実施形態のスプリング74b)と、前記弁体を前記閉弁位置から前記開弁位置方向へ付勢する油を収容する油室(例えば、後述の実施形態の油室74c)と、を備え、
前記断接手段油路切替弁は、前記油室の油圧が所定圧に達したときに、前記弁体が前記閉弁位置から前記開弁位置に移動し、
前記油室と前記油圧供給源とを接続する油経路には、電気的駆動手段(例えば、後述の実施形態のソレノイド174)を有する電気的駆動油路切替弁(例えば、後述の実施形態のソレノイド弁83)が配設され、
前記電気的駆動油路切替弁は、前記油室と前記油圧供給源とを連通状態とする開弁位置と、前記油室と前記油圧供給源とを遮断状態とする閉弁位置とを切替可能な弁体(例えば、後述の実施形態のソレノイド弁体175)と、前記弁体を前記閉弁位置から前記開弁位置方向へ付勢する弾性手段(例えば、後述の実施形態のソレノイドバネ176)と、を備え、
前記電気的駆動油路切替弁は、前記電気的駆動手段への電力非供給時に、前記弁体が前記開弁位置に位置して、前記油室と前記油圧供給源とを連通状態とし、
前記電気的駆動油路切替弁は、前記電気的駆動手段への電力供給時に、前記弁体が前記閉弁位置に位置して、前記油室と前記油圧供給源とを遮断状態とすることを特徴とする。
請求項1に記載の発明によれば、弁体を開弁位置から閉弁位置へ移行して油圧式断接手段を解放するときに、油圧式断接手段のオイルが第1の油貯留部などの低位部に直接排出されずに、排油路を経由して第1の油貯留部よりも鉛直方向で高い位置に配設される第2の油貯留部に排出されて貯留されるので、再度弁体が閉弁位置から開弁位置へ移行して油圧式断接手段が締結する際に、油圧の復帰を早期化することができる。
また、第2の油貯留部にリリーフ弁排油路からのオイルを供給することにより、第2の油貯留部の液面低下を抑制することが可能となり、油圧式断接手段に油圧が供給されない状態で、油圧式断接手段の油室内の油面をより高い位置に維持することができる。さらには、リリーフ弁排油路からの油の供給量が、断接手段油路切替弁に接続される排油路からの油の排出量よりも多い場合には、油圧式断接手段の油室内の油面を油圧が供給される状態と同程度に維持することができる。
請求項2に記載の発明によれば、油圧式断接手段の油室は、油圧力を発生させる場所であるため液密性が高く、断接手段油路と排油路とが連通された状態でもオイルは第2の油貯留部に排出されにくいが、油室の中分点より高い位置に第2の油貯留部の鉛直方向最上部を設定することで、より第2の油貯留部に排出されるオイルを低減することができる。
請求項3に記載の発明によれば、第2の油貯留部のオイルが減少した場合にも、排油路内に空気が混入することを抑制することができる。
請求項に記載の発明によれば、第2の油貯留部からリリーフ弁排油路を経由して低圧油路にオイルが逆流することを抑制することができる。
請求項に記載の発明によれば、低圧油路切替弁の弁体の作動位置によって、流路抵抗の異なる第1低圧油路と第2低圧油路とを切替可能であるので、低圧供給先への流量を適切に調整することができる。
また、請求項に記載の発明によれば、油圧式断接手段に連通する第2油路を低圧油路切替弁に接続することで、油路の簡略化、省スペース化を図ることができる。
また、請求項に記載の発明によれば、弁体が第1の作動位置と第2の作動位置のときに、連通していない方の油路同士を遮断状態とすることで、連通している方の油路同士の流量を精確に調整することができる。
請求項に記載の発明によれば、油圧供給源の駆動状態を変更するのみで、弁体を第1の作動位置と第2の作動位置とで切り替えることができるので、それに対応して自動的に第1低圧油路と第2低圧油路を切り替えることができる。従って、低圧油路切替弁を制御するための電磁弁などを不要とすることができる。
請求項に記載の発明によれば、高圧時に連通する第2低圧油路の流路抵抗を大きく設定することで、低圧供給先への過度のオイル流出を抑制し、油圧式断接手段へ効率よく油を供給することができる。
請求項10に記載の発明によれば、流路抵抗を流路抵抗手段によって調整可能となり、流路抵抗の調整が容易となる。
請求項11に記載の発明によれば、流路断面積を縮径部によって調整可能となり、流路抵抗の調整が容易となる。
請求項12に記載の発明によれば、流路断面積を調整することによって、流路抵抗を細かく調整可能で、それぞれの油路の流量を細かく調整することができる。
請求項13に記載の発明によれば、流路長を調整することによって、流路抵抗を細かく調整可能で、それぞれの油路の流量を細かく調整することができる。
請求項14に記載の発明によれば、低圧油路のうち低圧油路切替弁側である上流側を並列とすることで流路抵抗を異ならせることができ、下流側を共通化することで油圧回路の簡素化することができる。
請求項15に記載の発明によれば、他の流路抵抗手段が、第1低圧油路もしくは第2低圧油路の流路抵抗手段よりも流路抵抗が大きい場合には、第1低圧油路もしくは第2低圧油路の流量が他の流路抵抗手段によって決まってしまい所望の流量を流すことができないので、他の流路抵抗手段よりも第1低圧油路の流路抵抗手段の方が流路抵抗を大きくすることにより、所望の流量を流すことができる。
請求項16に記載の発明によれば、他の縮径部が、第1低圧油路もしくは第2低圧油路の縮径部よりも流路抵抗が大きい場合には、第1低圧油路もしくは第2低圧油路の流量が他の縮径部によって決まってしまい所望の流量を流すことができないので、他の縮径部よりも第1低圧油路の縮径部の方が流路抵抗を大きくすることにより、所望の流量を流すことができる。
請求項17に記載の発明によれば、断接手段油路切替弁の油室への油経路に電気的駆動手段を有する電気的駆動油路切替弁が介設され、電力非供給時に油室と油圧供給源を連通状態とするので、電気的駆動油路切替弁での電力消費を伴わずに油室への油圧の供給や油圧の調整が可能であり、それに応じて油圧式断接手段への油圧の供給や油圧の調整を行うことができる。特に、油圧式断接手段の解放時間よりも締結時間の方が長い場合に電力消費量を低減することができる。また、電力供給時には即時に油路を遮断することができる。
本発明に係る油圧制御装置を搭載可能な車両の一実施形態であるハイブリッド車両の概略構成を示すブロック図である。 本発明に係る油圧制御装置で制御される後輪駆動装置の縦断面図である。 図2に示す後輪駆動装置の部分拡大図である。 後輪駆動装置がフレームに搭載された状態を示す斜視図である。 第1実施形態の油圧制御装置の油圧回路図である。 (a)は低圧油路切替弁が低圧側位置に位置するときの説明図であり、(b)は低圧油路切替弁が高圧側位置に位置するときの説明図である。 (a)はブレーキ油路切替弁が閉弁位置に位置するときの説明図であり、(b)はブレーキ油路切替弁が開弁位置に位置するときの説明図である。 (a)はソレノイド弁の非通電時の説明図であり、(b)はソレノイド弁の通電時の説明図である。 走行中であって油圧ブレーキの解放状態における油圧制御装置の油圧回路図である。 油圧ブレーキの弱締結状態における油圧制御装置の油圧回路図である。 油圧ブレーキの締結状態における油圧制御装置の油圧回路図である。 電動オイルポンプの負荷特性を示すグラフである。 車両状態における前輪駆動装置と後輪駆動装置との関係を電動機の作動状態と油圧回路の状態とをあわせて記載した表である。 停車中の後輪駆動装置の速度共線図である。 前進低車速時の後輪駆動装置の速度共線図である。 前進中車速時の後輪駆動装置の速度共線図である。 減速回生時の後輪駆動装置の速度共線図である。 前進高車速時の後輪駆動装置の速度共線図である。 後進時の後輪駆動装置の速度共線図である。 車両走行におけるタイミングチャートである。 電動オイルポンプの制御フローを示すフロー図である。 第2実施形態の油圧制御装置の油圧回路図である。 第3実施形態の油圧制御装置の油圧回路図である。 第4実施形態の油圧制御装置の油圧回路図である。 第5実施形態の油圧制御装置の油圧回路図である。 本発明に係る油圧制御装置を搭載可能な車両の他の実施形態であるハイブリッド車両の概略構成を示すブロック図である。 特許文献1に記載の油圧回路図である。
先ず、本発明に係る油圧制御装置を適用可能な車両用駆動装置の一実施形態を図1〜図4に基づいて説明する。
本発明に係る油圧制御装置を適用可能な車両用駆動装置は、電動機を車軸駆動用の駆動源とするものであり、例えば、図1に示すような駆動システムの車両に用いられる。以下の説明では車両用駆動装置を後輪駆動用として用いる場合を例に説明するが、前輪駆動用に用いてもよい。
図1に示す車両3は、内燃機関4と電動機5が直列に接続された駆動装置6(以下、前輪駆動装置と呼ぶ。)を車両前部に有するハイブリッド車両であり、この前輪駆動装置6の動力がトランスミッション7を介して前輪Wfに伝達される一方で、この前輪駆動装置6と別に車両後部に設けられた駆動装置1(以下、後輪駆動装置と呼ぶ。)の動力が後輪Wr(RWr、LWr)に伝達されるようになっている。前輪駆動装置6の電動機5と後輪Wr側の後輪駆動装置1の電動機2A、2Bは、PDU8(パワードライブユニット)を介してバッテリ9に接続され、バッテリ9からの電力供給と、バッテリ9へのエネルギー回生がPDU8を介して行われるようになっている。PDU8は後述するECU45に接続されている。
図2は、後輪駆動装置1の全体の縦断面図を示すものであり、同図において、10A、10Bは、車両の後輪Wr側の左右の車軸であり、車幅方向に同軸上に配置されている。後輪駆動装置1の減速機ケース11は全体が略円筒状に形成され、その内部には、車軸駆動用の電動機2A、2Bと、この電動機2A、2Bの駆動回転を減速する遊星歯車式減速機12A、12Bとが、車軸10A、10Bと同軸上に配置されている。この電動機2A及び遊星歯車式減速機12Aは左後輪LWrを制御し、電動機2B及び遊星歯車式減速機12Bは右後輪RWrを制御し、電動機2A及び遊星歯車式減速機12Aと電動機2B及び遊星歯車式減速機12Bは、減速機ケース11内で車幅方向に左右対称に配置されている。そして、減速機ケース11は、図4に示すように、車両3の骨格となるフレームの一部であるフレーム部材13の支持部13a、13bと、不図示の後輪駆動装置1のフレームで支持されている。支持部13a、13bは、車幅方向でフレーム部材13の中心に対し左右に設けられている。なお、図4中の矢印は、後輪駆動装置1が車両に搭載された状態における位置関係を示している。
減速機ケース11の左右両端側内部には、それぞれ電動機2A、2Bのステータ14A、14Bが固定され、このステータ14A、14Bの内周側に環状のロータ15A、15Bが回転可能に配置されている。ロータ15A、15Bの内周部には車軸10A、10Bの外周を囲繞する円筒軸16A、16Bが結合され、この円筒軸16A、16Bが車軸10A、10Bと同軸で相対回転可能となるように減速機ケース11の端部壁17A、17Bと中間壁18A、18Bに軸受19A、19Bを介して支持されている。また、円筒軸16A、16Bの一端側の外周であって減速機ケース11の端部壁17A、17Bには、ロータ15A、15Bの回転位置情報を電動機2A、2Bの制御コントローラ(図示せず)にフィードバックするためのレゾルバ20A、20Bが設けられている。
また、遊星歯車式減速機12A、12Bは、サンギヤ21A、21Bと、このサンギヤ21に噛合される複数のプラネタリギヤ22A、22Bと、これらのプラネタリギヤ22A、22Bを支持するプラネタリキャリア23A、23Bと、プラネタリギヤ22A、22Bの外周側に噛合されるリングギヤ24A、24Bと、を備え、サンギヤ21A、21Bから電動機2A、2Bの駆動力が入力され、減速された駆動力がプラネタリキャリア23A、23Bを通して出力されるようになっている。
サンギヤ21A、21Bは円筒軸16A、16Bに一体に形成されている。また、プラネタリギヤ22A、22Bは、例えば図3に示すように、サンギヤ21A、21Bに直接噛合される大径の第1ピニオン26A、26Bと、この第1ピニオン26A、26Bよりも小径の第2ピニオン27A、27Bを有する2連ピニオンであり、これらの第1ピニオン26A、26Bと第2ピニオン27A、27Bが同軸にかつ軸方向にオフセットした状態で一体に形成されている。このプラネタリギヤ22A、22Bはプラネタリキャリア23A、23Bに支持され、プラネタリキャリア23A、23Bは、軸方向内側端部が径方向内側に伸びて車軸10A、10Bにスプライン嵌合され一体回転可能に支持されるとともに、軸受33A、33Bを介して中間壁18A、18Bに支持されている。
なお、中間壁18A、18Bは電動機2A、2Bを収容する電動機収容空間と遊星歯車式減速機12A、12Bを収容する減速機空間とを隔て、外径側から内径側に互いの軸方向間隔が広がるように屈曲して構成されている。そして、中間壁18A、18Bの内径側、且つ、遊星歯車式減速機12A、12B側にはプラネタリキャリア23A、23Bを支持する軸受33A、33Bが配置されるとともに中間壁18A、18Bの外径側、且つ、電動機2A、2B側にはステータ14A、14B用のバスリング41A、41Bが配置されている(図2参照)。
リングギヤ24A、24Bは、その内周面が小径の第2ピニオン27A、27Bに噛合されるギヤ部28A、28Bと、ギヤ部28A、28Bより小径で減速機ケース11の中間位置で互いに対向配置される小径部29A、29Bと、ギヤ部28A、28Bの軸方向内側端部と小径部29A、29Bの軸方向外側端部を径方向に連結する連結部30A、30Bとを備えて構成されている。この実施形態の場合、リングギヤ24A、24Bの最大半径は、第1ピニオン26A、26Bの車軸10A、10Bの中心からの最大距離よりも小さくなるように設定されている。小径部29A、29Bは、それぞれ後述する一方向クラッチ50のインナーレース51とスプライン嵌合し、リングギヤ24A、24Bは一方向クラッチ50のインナーレース51と一体回転するように構成されている。
ところで、減速機ケース11とリングギヤ24A、24Bの間には円筒状の空間部が確保され、その空間部内に、リングギヤ24A、24Bに対する制動手段を構成する油圧ブレーキ60A、60Bが第1ピニオン26A、26Bと径方向でラップし、第2ピニオン27A、27Bと軸方向でラップして配置されている。油圧ブレーキ60A、60Bは、減速機ケース11の内径側で軸方向に伸びる筒状の外径側支持部34の内周面にスプライン嵌合された複数の固定プレート35A、35Bと、リングギヤ24A、24Bの外周面にスプライン嵌合された複数の回転プレート36A、36Bが軸方向に交互に配置され、これらのプレート35A、35B,36A、36Bが環状のピストン37A、37Bによって締結及び解放操作されるようになっている。ピストン37A、37Bは、減速機ケース11の中間位置から内径側に延設された左右分割壁39と、左右分割壁39によって連結された外径側支持部34と内径側支持部40間に形成された環状のシリンダ室38A、38Bに進退自在に収容されており、シリンダ室38A、38Bへの高圧オイルの導入によってピストン37A、37Bを前進させ、シリンダ室38A、38Bからオイルを排出することによってピストン37A、37Bを後退させる。なお、油圧ブレーキ60A、60Bは図4に示すように、前述したフレーム部材13の支持部13a、13b間に配置された電動オイルポンプ70に接続されている。
また、さらに詳細には、ピストン37A、37Bは、軸方向前後に第1ピストン壁63A、63Bと第2ピストン壁64A、64Bを有し、これらのピストン壁63A、63B,64A、64Bが円筒状の内周壁65A、65Bによって連結されている。したがって、第1ピストン壁63A、63Bと第2ピストン壁64A、64Bの間には径方向外側に開口する環状空間が形成されているが、この環状空間は、シリンダ室38A、38Bの外壁内周面に固定された仕切部材66A、66Bによって軸方向左右に仕切られている。減速機ケース11の左右分割壁39と第2ピストン壁64A、64Bの間は高圧オイルが直接導入される第1作動室S1(図5参照)とされ、仕切部材66A、66Bと第1ピストン壁63A、63Bの間は、内周壁65A、65Bに形成された貫通孔を通して第1作動室S1と導通する第2作動室S2(図5参照)とされている。第2ピストン壁64A、64Bと仕切部材66A、66Bの間は大気圧に導通している。
この油圧ブレーキ60A、60Bでは、第1作動室S1と第2作動室S2に後述する油圧回路71からオイルが導入され、第1ピストン壁63A、63Bと第2ピストン壁64A、64Bに作用するオイルの圧力によって固定プレート35A、35Bと回転プレート36A、36Bを相互に押し付けが可能である。したがって、軸方向左右の第1,第2ピストン壁63A、63B,64A、64Bによって大きな受圧面積を稼ぐことができるため、ピストン37A、37Bの径方向の面積を抑えたまま固定プレート35A、35Bと回転プレート36A、36Bに対する大きな押し付け力を得ることができる。
この油圧ブレーキ60A、60Bの場合、固定プレート35A、35Bが減速機ケース11から伸びる外径側支持部34に支持される一方で、回転プレート36A、36Bがリングギヤ24A、24Bに支持されているため、両プレート35A、35B,36A、36Bがピストン37A、37Bによって押し付けられると、両プレート35A、35B,36A、36B間の摩擦締結によってリングギヤ24A、24Bに制動力が作用し固定され、その状態からピストン37A、37Bによる締結が解放されると、リングギヤ24A、24Bの自由な回転が許容される。
また、軸方向で対向するリングギヤ24A、24Bの連結部30A、30B間にも空間部が確保され、その空間部内に、リングギヤ24A、24Bに対し一方向の動力のみを伝達し他方向の動力を遮断する一方向クラッチ50が配置されている。一方向クラッチ50は、インナーレース51とアウターレース52との間に多数のスプラグ53を介在させたものであって、そのインナーレース51がスプライン嵌合によりリングギヤ24A、24Bの小径部29A、29Bと一体回転するように構成されている。またアウターレース52は、内径側支持部40により位置決めされるとともに、回り止めされている。一方向クラッチ50は、車両3が電動機2A、2Bの動力で前進する際に係合してリングギヤ24A、24Bの回転をロックするように構成されている。より具体的に説明すると、一方向クラッチ50は、電動機2A、2B側の順方向(車両3を前進させる際の回転方向)の回転動力が車輪Wr側に入力されるときに係合状態となるとともに電動機2A、2B側の逆方向の回転動力が車輪Wr側に入力されるときに非係合状態となり、車輪Wr側の順方向の回転動力が電動機2A、2B側に入力されるときに非係合状態となるとともに車輪Wr側の逆方向の回転動力が電動機2A、2B側に入力されるときに係合状態となる。
このように本実施形態の後輪駆動装置1では、電動機2A、2Bと車輪Wrとの動力伝達経路上に一方向クラッチ50と油圧ブレーキ60A、60Bとが並列に設けられている。
次に、図5〜図8を参照して本発明に係る油圧制御装置を構成する油圧回路について説明する。
油圧回路71は、オイルパン80(第1の油貯留部)に配設した吸入口70aから吸入され電動オイルポンプ70から吐出されるオイルを低圧油路切替弁73とブレーキ油路切替弁74とを介して油圧ブレーキ60A、60Bの第1作動室S1に給油可能に構成されるとともに、低圧油路切替弁73を介して電動機2A、2B及び遊星歯車式減速機12A、12Bなどの潤滑・冷却部91に供給可能に構成される。電動オイルポンプ70は、位置センサレス・ブラシレス直流モータからなる電動機90で高圧モードと低圧モードの少なくとも2つのモードで運転(稼動)可能となっておりPID制御で制御されている。なお、符号92は、ブレーキ油路77の油圧を検出する圧力センサである。また、油圧回路71には、温度センサ(不図示)も設けられている。
低圧油路切替弁73は、ライン油路75を構成する電動オイルポンプ70側の第1ライン油路75aと、ライン油路75を構成するブレーキ油路切替弁74側の第2ライン油路75bと、潤滑・冷却部91に連通する第1低圧油路76aと、潤滑・冷却部91に連通する第2低圧油路76bと、に接続される。また、低圧油路切替弁73は、第1ライン油路75aと第2ライン油路75bとを常時連通させるとともにライン油路75を第1低圧油路76a又は第2低圧油路76bに選択的に連通させる弁体73aと、弁体73aをライン油路75と第1低圧油路76aとを連通する方向(図5において右方)へ付勢するスプリング73bと、弁体73aをライン油路75の油圧によってライン油路75と第2低圧油路76bとを連通する方向(図5において左方)へ押圧する油室73cと、を備える。従って、弁体73aは、スプリング73bによってライン油路75と第1低圧油路76aとを連通する方向(図5において右方)へ付勢されるとともに、図中右端の油室73cに入力されるライン油路75の油圧によってライン油路75と第2低圧油路76bとを連通する方向(図5において左方)へ押圧される。
ここで、スプリング73bの付勢力は、電動オイルポンプ70が後述する低圧モードで運転中に油室73cに入力されるライン油路75の油圧では、図6(a)に示すように、弁体73aが移動せずライン油路75を第2低圧油路76bから遮断し第1低圧油路76aに連通させるように設定され(以下、図6(a)の弁体73aの位置を低圧側位置と呼ぶ。)、電動オイルポンプ70が後述する高圧モードで運転中に油室73cに入力されるライン油路75の油圧では、図6(b)に示すように、弁体73aが移動してライン油路75を第1低圧油路76aから遮断し第2低圧油路76bに連通させるように設定されている(以下、図6(b)の弁体73aの位置を高圧側位置と呼ぶ。)。
ブレーキ油路切替弁74は、ライン油路75を構成する第2ライン油路75bと、油圧ブレーキ60A、60Bに接続されるブレーキ油路77と、ハイポジションドレン78を介して貯留部79(第2の油貯留部)と、に接続される。また、ブレーキ油路切替弁74は、第2ライン油路75bとブレーキ油路77とを連通・遮断させる弁体74aと、弁体74aを第2ライン油路75bとブレーキ油路77とを遮断する方向(図5において右方)へ付勢するスプリング74bと、弁体74aをライン油路75の油圧によって第2ライン油路75bとブレーキ油路77とを連通する方向(図5において左方)へ押圧する油室74cと、を備える。従って、弁体74aは、スプリング74bによって第2ライン油路75bとブレーキ油路77とを遮断する方向(図5において右方)へ付勢されるとともに、油室74cに入力されるライン油路75の油圧によって第2ライン油路75bとブレーキ油路77とを連通する方向(図5において左方)へ押圧可能にされる。
スプリング74bの付勢力は、電動オイルポンプ70が低圧モード及び高圧モードで運転中に、油室74cに入力されるライン油路75の油圧で、弁体74aを図7(a)の閉弁位置から図7(b)の開弁位置に移動させて、ブレーキ油路77をハイポジションドレン78から遮断し第2ライン油路75bに連通させるように設定されている。即ち、電動オイルポンプ70が低圧モードで運転されても高圧モードで運転されても、油室74cに入力されるライン油路75の油圧がスプリング74bの付勢力を上回り、ブレーキ油路77をハイポジションドレン78から遮断し第2ライン油路75bに連通させる。
第2ライン油路75bとブレーキ油路77とを遮断した状態においては、油圧ブレーキ60A、60Bはブレーキ油路77とハイポジションドレン78を介して貯留部79に連通される。ここで、貯留部79は、オイルパン80よりも鉛直方向で高い位置、より好ましくは、貯留部79の鉛直方向最上部が、油圧ブレーキ60A、60Bの第1作動室S1の鉛直方向最上部と鉛直方向最下部との中分点よりも鉛直方向で高い位置となるように配設される。従って、ブレーキ油路切替弁74が閉弁した状態においては、油圧ブレーキ60A、60Bの第1作動室S1に貯留していたオイルが直接オイルパン80に排出されず、貯留部79に排出されて蓄えられるように構成される。なお、貯留部79から溢れたオイルは、オイルパン80に排出されるように構成される。また、ハイポジションドレン78の貯留部側端部78aは、貯留部79の底面に接続される。
ブレーキ油路切替弁74の油室74cは、パイロット油路81とソレノイド弁83を介してライン油路75を構成する第2ライン油路75bに接続可能にされている。ソレノイド弁83は、ECU45によって制御される電磁三方弁で構成されており、ECU45によるソレノイド弁83のソレノイド174(図8参照)への非通電時に第2ライン油路75bをパイロット油路81に接続し、油室74cにライン油路75の油圧を入力する。
ソレノイド弁83は、図8に示すように、3方弁部材172と、ケース部材173に設けられ、不図示のケーブルを介して供給される電力を受けて励磁されるソレノイド174と、ソレノイド174の励磁力を受けて右方に引っ張られるソレノイド弁体175と、ケース部材173の中心に形成されるバネ保持凹部173aに収容され、ソレノイド弁体175を左方に付勢するソレノイドバネ176と、3方弁部材172内に設けられ、ソレノイド弁体175の進退を摺動自在にガイドするガイド部材177と、を備える。
3方弁部材172は、略有底円筒状の部材であって、その中心線に沿って右端部から略中間部まで形成される右部凹状穴181と、同じく中心線に沿って左端部から右部凹状穴181の近傍まで形成される左部凹状穴182と、右部凹状穴181と左部凹状穴182との間において中心線と直交する方向に沿って形成される第1径方向穴183と、右部凹状穴181の略中間部と連通し中心線と直交する方向に沿って形成される第2径方向穴184と、中心線に沿って形成され、左部凹状穴182と第1径方向穴183とを連通する第1軸方向穴185と、中心線に沿って形成され、第1径方向穴183と右部凹状穴181とを連通する第2軸方向穴186と、を有する。
また、3方弁部材172の左部凹状穴182の底部には、第1軸方向穴185を開閉するボール187が左右方向に移動可能に入れられると共に、左部凹状穴182の入口側には、ボール187の離脱を規制するキャップ188が嵌合されている。また、キャップ188には、第1軸方向穴185と連通する貫通穴188aが中心線に沿って形成されている。
また、第2軸方向穴186は、左右動するソレノイド弁体175の左端部に形成される開閉突起175aの根元部の接触又は非接触により開閉される。また、第1軸方向穴185を開閉するボール187は、左右動するソレノイド弁体175の開閉突起175aの先端部により左右に移動される。
そして、ソレノイド弁83では、ソレノイド174へ非通電(電力非供給)にすることにより、図8(a)に示すように、ソレノイドバネ176の付勢力を受けてソレノイド弁体175が左動して、ソレノイド弁体175の開閉突起175aの先端部がボール187を押すことにより、第1軸方向穴185が開放されると共に、ソレノイド弁体175の開閉突起175aの根元部が第2軸方向穴186に接触することにより、第2軸方向穴186が閉塞される。これにより、ライン油路75を構成する第2ライン油路75bが、第1軸方向穴185と第1径方向穴183からパイロット油路81を介して油室74cに連通する(以下、図8(a)のソレノイド弁体175の位置を開弁位置と呼ぶことがある。)。
また、ソレノイド174へ通電(電力供給)することにより、図8(b)に示すように、ソレノイド174の励磁力を受けてソレノイド弁体175がソレノイドバネ176の付勢力に抗して右動し、貫通穴188aからの油圧がボール187を押すことにより、第1軸方向穴185が閉塞されると共に、ソレノイド弁体175の開閉突起175aの根元部が第2軸方向穴186から離れることにより、第2軸方向穴186が開放される。これにより、油室74cに貯留していたオイルが、第1径方向穴183と第2軸方向穴186と第2径方向穴184を介してオイルパン80に排出され、第2ライン油路75bとパイロット油路81とが遮断される(以下、図8(b)のソレノイド弁体175の位置を閉弁位置と呼ぶことがある。)。
また、図5に戻って、油圧回路71では、第1低圧油路76aと第2低圧油路76bは下流側で合流して共通の低圧共通油路76cを構成しており、合流部には、低圧共通油路76cのライン圧が所定圧以上になった場合に低圧共通油路76c内のオイルをリリーフドレン86を介してオイルパン80に排出させ、油圧を低下させるリリーフ弁84が接続されている。
ここで、第1低圧油路76aと第2低圧油路76bには、図6に示すように、それぞれ流路抵抗手段としてのオリフィス85a、85bが形成されており、第1低圧油路76aのオリフィス85aが第2低圧油路76bのオリフィス85bよりも大径となるように構成されている。従って、第2低圧油路76bの流路抵抗は第1低圧油路76aの流路抵抗よりも大きく、電動オイルポンプ70を高圧モードで運転中における第2低圧油路76bでの減圧量が、電動オイルポンプ70を低圧モードで運転中における第1低圧油路76aでの減圧量よりも大きくなって、高圧モード及び低圧モードにおける低圧共通油路76cの油圧は略等しくなっている。
このように第1低圧油路76aと第2低圧油路76bとに接続された低圧油路切替弁73は、電動オイルポンプ70が低圧モードで運転中においては、油室73c内の油圧よりもスプリング73bの付勢力が勝りスプリング73bの付勢力により弁体73aが低圧側位置に位置して、ライン油路75を第2低圧油路76bから遮断し第1低圧油路76aに連通させる。第1低圧油路76aを流れるオイルは、オリフィス85aで流路抵抗を受けて減圧され、低圧共通油路76cを経由して潤滑・冷却部91に至る。一方、電動オイルポンプ70が高圧モードで運転中においては、スプリング73bの付勢力よりも油室73c内の油圧が勝りスプリング73bの付勢力に抗して弁体73aが高圧側位置に位置して、ライン油路75を第1低圧油路76aから遮断し第2低圧油路76bに連通させる。第2低圧油路76bを流れるオイルは、オリフィス85bでオリフィス85aよりも大きな流路抵抗を受けて減圧され、低圧共通油路76cを経由して潤滑・冷却部91に至る。
従って、電動オイルポンプ70が低圧モードから高圧モードに切り替わると、ライン油路75の油圧の変化に応じて自動的に流路抵抗の小さい油路から流路抵抗の大きい油路に切り替わるので、高圧モードのときに潤滑・冷却部91に過度のオイルが供給されることが抑制される。
また、低圧共通油路76cから潤滑・冷却部91に至る油路には、他の流路抵抗手段としての複数のオリフィス85cが設けられている。複数のオリフィス85cは、第1低圧油路76aのオリフィス85aの最小流路断面積の方が複数のオリフィス85cの最小流路断面積よりも小さくなるように設定されている。即ち、複数のオリフィス85cの流路抵抗よりも第1低圧油路76aのオリフィス85aの流路抵抗の方が大きく設定されている。このとき、複数のオリフィス85cの最小流路断面積は、各オリフィス85cの最小流路断面積の総和である。これにより、第1低圧油路76aのオリフィス85aと第2低圧油路76bのオリフィス85bで所望の流量を流すことが調整可能になっている。
ここで、ECU45(図1参照)は、車両全体の各種制御をするための制御装置であり、ECU45には車速、操舵角、アクセルペダル開度AP、シフトポジション、SOCなどが入力される一方、ECU45からは、内燃機関4を制御する信号、電動機2A、2Bを制御する信号、バッテリ9における発電状態・充電状態・放電状態などを示す信号、ソレノイド弁83のソレノイド174への制御信号、電動オイルポンプ70を制御する制御信号などが出力される。
即ち、ECU45は、電動機2A、2Bを制御する電動機制御装置としての機能と、断接手段としての油圧ブレーキ60A、60Bを制御する断接手段制御装置としての機能を、少なくとも備えている。断接手段制御装置としてのECU45は、電動機2A、2Bの駆動状態及び/又は電動機2A、2Bの駆動指令(駆動信号)に基づいて電動オイルポンプ70とソレノイド弁83のソレノイド174を制御する。この電動オイルポンプ70の制御は、回転数制御でもトルク制御であってもよく、第1作動室S1と第2作動室S2の目標油圧に基づいてなされる。さらに、圧力センサ92から検出される第1作動室S1と第2作動室S2の実油圧と目標油圧とに基づいてなされることが好ましい。なお、圧力センサ92からの実油圧に代えて、油圧推定手段によって求められた推定油圧を用いてもよい。
次に、後輪駆動装置1の油圧回路71の動作について説明する。
図5は、停車中に油圧ブレーキ60A、60Bが解放している状態の油圧回路71を示している。この状態では、ECU45は、電動オイルポンプ70を稼動しない。これにより、低圧油路切替弁73の弁体73aは低圧側位置に位置し、ブレーキ油路切替弁74の弁体74aは閉弁位置に位置し、油圧回路71には油圧が供給されていない。
図9は、車両走行中に油圧ブレーキ60A、60Bが解放している状態を示している。この状態では、ECU45は、電動オイルポンプ70を低圧モードで運転する。また、ECU45は、ソレノイド弁83のソレノイド174へ通電しており、第2ライン油路75bとパイロット油路81とが遮断される。これにより、ブレーキ油路切替弁74の弁体74aはスプリング74bの付勢力により閉弁位置に位置して、第2ライン油路75bとブレーキ油路77とが遮断されるとともにブレーキ油路77とハイポジションドレン78とが連通され、油圧ブレーキ60A、60Bが解放される。そして、ブレーキ油路77は、ハイポジションドレン78を介して貯留部79に接続される。
また、低圧油路切替弁73は、スプリング73bの付勢力が、図中右端の油室73cに入力される電動オイルポンプ70の低圧モードで運転中のライン油路75の油圧より大きいため、弁体73aが低圧側位置に位置し、ライン油路75を第2低圧油路76bから遮断し第1低圧油路76aに連通させる。これにより、ライン油路75のオイルが第1低圧油路76aを介してオリフィス85aで減圧され、潤滑・冷却部91に供給される。
図10は、油圧ブレーキ60A、60Bが弱締結している状態における油圧回路71を示している。なお、弱締結とは、動力伝達可能であるが、油圧ブレーキ60A、60Bの締結状態の締結力に対し弱い締結力で締結している状態をいう。このとき、ECU45は、電動オイルポンプ70を低圧モードで運転する。また、ECU45は、ソレノイド弁83のソレノイド174へ非通電にして、ブレーキ油路切替弁74の油室74cに第2ライン油路75bの油圧を入力している。これにより、スプリング74bの付勢力より油室74c内の油圧が勝り、弁体74aが開弁位置に位置して、ブレーキ油路77とハイポジションドレン78とが遮断されるとともに第2ライン油路75bとブレーキ油路77とが連通され、油圧ブレーキ60A、60Bが弱締結する。
低圧油路切替弁73は、このときも油圧ブレーキ60A、60Bの解放時と同様に、スプリング73bの付勢力が、図中右端の油室73cに入力される電動オイルポンプ70の低圧モードで運転中のライン油路75の油圧より大きいため、弁体73aが低圧側位置に位置し、ライン油路75を第2低圧油路76bから遮断し第1低圧油路76aに連通させる。これにより、ライン油路75のオイルが第1低圧油路76aを介してオリフィス85aで減圧され、潤滑・冷却部91に供給される。
図11は、油圧ブレーキ60A、60Bが締結している状態における油圧回路71を示している。このとき、ECU45は、電動オイルポンプ70を高圧モードで運転する。また、ECU45は、ソレノイド弁83のソレノイド174へ非通電にして、ブレーキ油路切替弁74の右端の油室74cに第2ライン油路75bの油圧を入力している。これにより、スプリング74bの付勢力より油室74c内の油圧が勝り、弁体74aが開弁位置に位置して、ブレーキ油路77とハイポジションドレン78とが遮断されるとともに第2ライン油路75bとブレーキ油路77とが連通され、油圧ブレーキ60A、60Bが締結する。
低圧油路切替弁73は、電動オイルポンプ70の高圧モードで運転中の図中右端の油室73cに入力されるライン油路75の油圧がスプリング73bの付勢力より大きいため、弁体73aが高圧側位置に位置し、ライン油路75を第1低圧油路76aから遮断し第2低圧油路76bに連通させる。これにより、ライン油路75のオイルが第2低圧油路76bを介してオリフィス85bで減圧され、潤滑・冷却部91に供給される。
このように、ECU45は、電動オイルポンプ70の運転モード(稼動状態)と、ソレノイド弁83の開閉を制御することにより、油圧ブレーキ60A、60Bを解放又は締結させ、電動機2A、2B側と車輪Wr側とを遮断状態と接続状態とを切り替えるとともに、油圧ブレーキ60A、60Bの締結力を制御することができる。
図12は電動オイルポンプ70の負荷特性を示すグラフである。
図12に示すように、高圧モード(油圧PH)に比べて低圧モード(油圧PL)は、オイルの供給流量を維持しつつも電動オイルポンプ70の仕事率を1/4〜1/5程度に低減することができる。即ち、低圧モードにおいては電動オイルポンプ70の負荷が小さく、高圧モードに比べて電動オイルポンプ70を駆動する電動機90の消費電力を低減することができる。
図13は、各車両状態における前輪駆動装置6と後輪駆動装置1との関係を電動機2A、2Bの作動状態と油圧回路71の状態とをあわせて記載したものである。図中、フロントユニットは前輪駆動装置6、リアユニットは後輪駆動装置1、リアモータは電動機2A、2B、EOPは電動オイルポンプ70、SOLはソレノイド174、OWCは一方向クラッチ50、BRKは油圧ブレーキ60A、60Bを表わす。また、図14〜図19は後輪駆動装置1の各状態における速度共線図を表わし、左側のS、Cはそれぞれ電動機2Aに連結された遊星歯車式減速機12Aのサンギヤ21A、車軸10Aに連結されたプラネタリキャリア23A、右側のS、Cはそれぞれ電動機2Bに連結された遊星歯車式減速機12Bのサンギヤ21B、車軸10Bに連結されたプラネタリキャリア23B、Rはリングギヤ24A、24B、BRKは油圧ブレーキ60A、60B、OWCは一方向クラッチ50を表わす。以下の説明において電動機2A、2Bによる車両前進時のサンギヤ21A、21Bの回転方向を順方向とする。また、図中、停車中の状態から上方が順方向の回転、下方が逆方向の回転であり、矢印は、上方が順方向のトルクを表し、下方が逆方向のトルクを表す。
停車中は、前輪駆動装置6も後輪駆動装置1も駆動していない。従って、図14に示すように、後輪駆動装置1の電動機2A、2Bは停止しており、車軸10A、10Bも停止しているため、いずれの要素にもトルクは作用していない。この車両の停車中においては、油圧回路71は、図5に示すように、電動オイルポンプ70が非稼動であり、ソレノイド弁83のソレノイド174は非通電になっているものの油圧が供給されないため油圧ブレーキ60A、60Bは解放(OFF)している。また、一方向クラッチ50は、電動機2A、2Bが非駆動のため係合していない(OFF)。
そして、イグニッションをONにした後、EV発進、EVクルーズなどモータ効率のよい前進低車速時は、後輪駆動装置1による後輪駆動となる。図15に示すように、電動機2A、2Bが順方向に回転するように力行駆動すると、サンギヤ21A、21Bには順方向のトルクが付加される。このとき、前述したように一方向クラッチ50が係合しリングギヤ24A、24Bがロックされる。これによりプラネタリキャリア23A、23Bは順方向に回転し前進走行がなされる。なお、プラネタリキャリア23A、23Bには車軸10A、10Bからの走行抵抗が逆方向に作用している。このように車両の発進時には、イグニッションをONにして電動機2A、2Bのトルクをあげることで、一方向クラッチ50が機械的に係合してリングギヤ24A、24Bがロックされる。
このとき油圧回路71は、図10に示すように、電動オイルポンプ70が低圧モード(Lo)で稼動し、ソレノイド弁83のソレノイド174は非通電(OFF)になっており、油圧ブレーキ60A、60Bが弱締結状態となっている。このように、電動機2A、2Bの順方向の回転動力が車輪Wr側に入力されるときには一方向クラッチ50が係合状態となり、一方向クラッチ50のみで動力伝達可能であるが、一方向クラッチ50と並列に設けられた油圧ブレーキ60A、60Bも弱締結状態とし電動機2A、2B側と車輪Wr側とを接続状態としておくことで、電動機2A、2B側からの順方向の回転動力の入力が一時的に低下して一方向クラッチ50が非係合状態となった場合にも、電動機2A、2B側と車輪Wr側とで動力伝達不能になることを抑制できる。また、後述する減速回生への移行時に電動機2A、2B側と車輪Wr側とを接続状態とするための回転数制御が不要となる。このときの油圧ブレーキ60A、60Bの締結力は、後述する減速回生時や後進時と比べて弱い締結力となっている。一方向クラッチ50が係合状態のときの油圧ブレーキ60A、60Bの締結力を一方向クラッチ50が非係合状態のときの油圧ブレーキ60A、60Bの締結力よりも弱くすることにより、油圧ブレーキ60A、60Bの締結のための消費電力が低減される。さらにこの状態においては、上述したようにライン油路75のオイルが第1低圧油路76aを介してオリフィス85aで減圧され、潤滑・冷却部91に供給され、潤滑・冷却部91の潤滑及び冷却がなされている。
前進低車速走行から車速があがりエンジン効率のよい前進中車速走行に至ると、後輪駆動装置1による後輪駆動から前輪駆動装置6による前輪駆動となる。図16に示すように、電動機2A、2Bの力行駆動が停止すると、プラネタリキャリア23A、23Bには車軸10A、10Bから前進走行しようとする順方向のトルクが作用するので、前述したように一方向クラッチ50が非係合状態となる。
このとき油圧回路71は、図10に示すように、電動オイルポンプ70が低圧モード(Lo)で稼動し、ソレノイド弁83のソレノイド174は非通電(OFF)になっており、油圧ブレーキ60A、60Bが弱締結状態となっている。このように、車輪Wr側の順方向の回転動力が電動機2A、2B側に入力されるときには一方向クラッチ50は非係合状態となり、一方向クラッチ50のみで動力伝達不能であるが、一方向クラッチ50と並列に設けられた油圧ブレーキ60A、60Bを弱締結させ、電動機2A、2B側と車輪Wr側とを接続状態としておくことで動力伝達可能な状態に保つことができ、後述する減速回生時への移行時に回転数制御が不要となる。なお、このときの油圧ブレーキ60A、60Bの締結力も、後述する減速回生時や後進時と比べて弱い締結力となっている。さらにこの状態においては、上述したようにライン油路75のオイルが第1低圧油路76aを介してオリフィス85aで減圧され、潤滑・冷却部91に供給され、潤滑・冷却部91の潤滑及び冷却がなされている。
図15の状態から電動機2A、2Bを回生駆動しようすると、図17に示すように、プラネタリキャリア23A、23Bには車軸10A、10Bから前進走行を続けようとする順方向のトルクが作用するので、前述したように一方向クラッチ50が非係合状態となる。
このとき、油圧回路71は、図11に示すように、電動オイルポンプ70が高圧モード(Hi)で稼動し、ソレノイド弁83のソレノイド174は非通電(OFF)とされ、油圧ブレーキ60A、60Bが締結状態(ON)となる。従って、リングギヤ24A、24Bが固定されるとともに電動機2A、2Bには逆方向の回生制動トルクが作用し、電動機2A、2Bで減速回生がなされる。このように、車輪Wr側の順方向の回転動力が電動機2A、2B側に入力されるときには一方向クラッチ50は非係合状態となり、一方向クラッチ50のみで動力伝達不能であるが、一方向クラッチ50と並列に設けられた油圧ブレーキ60A、60Bを締結させ、電動機2A、2B側と車輪Wr側とを接続状態としておくことで動力伝達可能な状態に保つことができ、この状態で電動機2A、2Bを回生駆動状態に制御することにより、車両のエネルギーを回生することができる。さらにこの状態においては、上述したようにライン油路75のオイルが第2低圧油路76bを介してオリフィス85bで減圧され、潤滑・冷却部91に供給され、潤滑・冷却部91の潤滑及び冷却がなされている。
続いて加速時には、前輪駆動装置6と後輪駆動装置1の四輪駆動となり、後輪駆動装置1は、図15に示す前進低車速時と同じ状態であり、油圧回路71も、図10に示す状態となる。
前進高車速時には、前輪駆動装置6による前輪駆動となる。図18に示すように、電動機2A、2Bが力行駆動を停止すると、プラネタリキャリア23A、23Bには車軸10A、10Bから前進走行しようとする順方向のトルクが作用するので、前述したように一方向クラッチ50が非係合状態となる。
このとき油圧回路71は、図9に示すように、電動オイルポンプ70が低圧モード(Lo)で稼動し、ソレノイド弁83のソレノイド174は通電(ON)され、油圧ブレーキ60A、60Bが解放状態(OFF)となる。従って、電動機2A、2Bの連れ回りが防止され、前輪駆動装置6による高車速時に電動機2A、2Bが過回転となるのが防止される。さらにこの状態においては、上述したようにライン油路75のオイルが第1低圧油路76aを介してオリフィス85aで減圧され、潤滑・冷却部91に供給され、潤滑・冷却部91の潤滑及び冷却がなされている。
後進時には、図19に示すように、電動機2A、2Bを逆力行駆動すると、サンギヤ21A、21Bには逆方向のトルクが付加される。このとき、前述したように一方向クラッチ50が非係合状態となる。
このとき、油圧回路71は、図11に示すように、電動オイルポンプ70が高圧モード(Hi)で稼動し、ソレノイド弁83のソレノイド174は非通電(OFF)とされ、油圧ブレーキ60A、60Bが締結状態となる。従って、リングギヤ24A、24Bが固定されて、プラネタリキャリア23A、23Bは逆方向に回転し後進走行がなされる。なお、プラネタリキャリア23A、23Bには車軸10A、10Bからの走行抵抗が順方向に作用している。このように、電動機2A、2B側の逆方向の回転動力が車輪Wr側に入力されるときには一方向クラッチ50は非係合状態となり、一方向クラッチ50のみで動力伝達不能であるが、一方向クラッチ50と並列に設けられた油圧ブレーキ60A、60Bを締結させ、電動機2A、2B側と車輪Wr側とを接続状態としておくことで動力伝達可能に保つことができ、電動機2A、2Bの回転動力によって車両を後進させることができる。さらにこの状態においては、上述したようにライン油路75のオイルが第2低圧油路76bを介してオリフィス85bで減圧され、潤滑・冷却部91に供給され、潤滑・冷却部91の潤滑及び冷却がなされている。
このように後輪駆動装置1は、車両の走行状態、言い換えると、電動機2A、2Bの回転方向が順方向か逆方向か、及び電動機側2A、2Bと車輪Wr側のいずれから動力が入力されるかに応じて、油圧ブレーキ60A、60Bの締結・解放が制御され、さらに油圧ブレーキ60A、60Bの締結時であっても締結力が調整される。
図20は、車両が停車中の状態からEV発進→EV加速→エンジン加速→減速回生→中速クルーズ→加速→高速クルーズ→減速回生→停車→後進→停車に至る際の電動オイルポンプ70(EOP)と、一方向クラッチ50(OWC)、油圧ブレーキ60A、60B(BRK)のタイミングチャートである。
先ず、イグニッションをONにしてシフトがPレンジからDレンジに変更され、アクセルペダルが踏まれるまでは、電動オイルポンプ70は非稼動(OFF)、一方向クラッチ50は非係合(OFF)、油圧ブレーキ60A、60Bは解放(OFF)状態を維持する。そこから、アクセルペダルが踏まれると後輪駆動(RWD)で後輪駆動装置1によるEV発進、EV加速がなされる。このとき、電動オイルポンプ70が低圧モードで稼動(Lo)し、一方向クラッチ50が係合(ON)し、油圧ブレーキ60A、60Bは弱締結状態となる。そして、車速が低車速域から中車速域に至って後輪駆動から前輪駆動になると内燃機関4によるENG走行(FWD)がなされる。このとき、一方向クラッチ50が非係合(OFF)となり、電動オイルポンプ70と油圧ブレーキ60A、60Bはそのままの状態を維持する。そして、ブレーキが踏まれるなど減速回生時には、一方向クラッチ50が非係合(OFF)のまま、電動オイルポンプ70が高圧モードで稼動(Hi)し、油圧ブレーキ60A、60Bが締結(ON)する。内燃機関4による中速クルーズ中は、上述のENG走行と同様の状態となる。続いて、さらにアクセルペダルが踏まれて前輪駆動から四輪駆動(AWD)になると、再び一方向クラッチ50が係合(ON)する。そして、車速が中車速域から高車速域に至ると、再び内燃機関4によるENG走行(FWD)がなされる。このとき、一方向クラッチ50が非係合(OFF)となり、電動オイルポンプ70は低圧モードで稼動(Lo)したまま、油圧ブレーキ60A、60Bが解放(OFF)される。そして、減速回生時には、上述した減速回生時と同様の状態となる。そして、車両が停止すると、電動オイルポンプ70は非稼動(OFF)、一方向クラッチ50は非係合(OFF)、油圧ブレーキ60A、60Bは解放(OFF)状態となる。
続いて、後進走行時には、一方向クラッチ50は非係合(OFF)のまま、電動オイルポンプ70が高圧モードで稼動(Hi)し、油圧ブレーキ60A、60Bが締結(ON)する。そして、車両が停止すると、再び電動オイルポンプ70は非稼動(OFF)、一方向クラッチ50は非係合(OFF)、油圧ブレーキ60A、60Bは解放(OFF)状態となる。
このように、前進低車速時や前進中車速時に油圧ブレーキ60A、60Bは弱締結状態に維持することにより、電動機2A、2Bに一時的な駆動トルクの低下が生じた場合でも、電動機2A、2B側と車輪Wr側とで動力伝達不能になることを抑制することができる。また、油圧ブレーキ60A、60Bを弱締結状態にして、車輪Wr側と電動機2A、2B側とを動力伝達可能に保つことで、電動機2A、2Bを回生駆動状態に移行するときなどに回転数制御が不要となる。
さらに、前進高車速時には、油圧ブレーキ60A、60Bを解放することにより、電動機2A、2Bの過回転が防止される。なお、前進高車速時には油圧回路71の油温は十分高くなっているので、その後減速回生に移行しても油圧ブレーキ60A、60Bを早期に締結させることができる。
続いて、電動オイルポンプ70の制御について図21を参照して説明する。
先ず、不図示の油温センサで油圧回路71の油温を検出し(ステップS1)、続いて、圧力センサ92で油圧回路71の油圧(Ps)を検出する(ステップS2)。次に、電動オイルポンプ70の実際の回転数であるEOP実回転数(Nact)を検出し(ステップS3)、モード判定を行なう(ステップS4)。選択されるモードは、図13に示した車両状態に対応するようになっており、停車状態に対応して油圧ブレーキ60A、60Bを解放する停車モードと、前進低車速、前進中車速及び加速状態に対応して油圧ブレーキ60A、60Bを弱締結状態とする低車速・加速モードと、高車速状態に対応して油圧ブレーキ60A、60Bを解放する高車速モードと、減速回生状態に対応して油圧ブレーキ60A、60Bを締結させる回生モードと、及び、後進状態に対応して油圧ブレーキ60A、60Bを締結させる後進モードと、に分類される。
モード判定では、先ず、停車モードであるか否かの判定が行なわれる(ステップS5)。その結果、停車モードと判定された場合には、電動オイルポンプ70を停止させるため電動オイルポンプ70の回転数指令値(Ncmd)をゼロにする(ステップS6)。一方、モード判定の結果、停車モード以外のモードと判定された場合には、油温に応じて潤滑・冷却部91に所定量のオイルを供給するために必要な電動オイルポンプ70の回転数(Nlc)を算出する(ステップS7)。
続いて、高車速モードであるか否かの判定が行なわれる(ステップS8)。その結果、高車速モードであれば、油圧ブレーキ60A、60Bを解放させるため電動オイルポンプ70の回転数指令値(Ncmd)を潤滑・冷却部91に所定量のオイルを供給するために必要な電動オイルポンプ70の回転数(Nlc)に設定する(ステップS9)。これにより、油圧ブレーキ60A、60Bが締結状態から解放状態に遷移したとき目標油圧が低圧油圧(PL)からゼロになり、PID補正値が負になって潤滑・冷却部91に所定量のオイルを供給するために必要な電動オイルポンプ70の回転数(Nlc)を下回ることが回避される。
ステップS8の結果、高車速モードでない場合、目標油圧(Pt)を算出する(ステップS10)。即ち、低車速・加速モードであれば油圧ブレーキ60A、60Bが弱締結状態となる所定の低圧油圧(低圧モード時の油圧PL)を算出し、回生モード又は後進モードであれば油圧ブレーキ60A、60Bが締結状態となる所定の高圧油圧(高圧モード時の油圧PH)を算出する。
次に、算出した目標油圧(Pt)から圧力センサ92で検出された油圧回路71の油圧(Ps)を差し引いた差圧(ΔP)を算出し(ステップS11)、差圧(ΔP)のPID補正値であるPID補正値(Pc)を算出する(ステップS12)。そして、予め求められた変換関係に基づいてPID補正値(Pc)に対応する電動オイルポンプ70の回転数(Nc1)を算出し(ステップS13)、潤滑・冷却部91に所定量のオイルを供給するために必要な電動オイルポンプ70の回転数(Nlc)にPID補正値(Pc)に対応する電動オイルポンプ70の回転数(Nc1)を加えた値を電動オイルポンプ70の回転数の指令値(Ncmd)に設定する(ステップS14)。このように潤滑・冷却部91に所定量のオイルを供給するために必要な電動オイルポンプ70の回転数(Nlc)を加えることで、フィードバックの通信遅れによる応答性の悪化が抑制される。
以上説明したように、本実施形態の油圧回路71は、油圧ブレーキ60A、60Bに油圧を供給する電動オイルポンプ70と、油圧ブレーキ60A、60Bと電動オイルポンプ70とを接続する油経路に配設されるブレーキ油路切替弁74と、を備える。ブレーキ油路切替弁74は、閉弁位置と開弁位置とを切替可能な弁体74aを備え、ブレーキ油路切替弁74には、電動オイルポンプ70に連通するライン油路75と、油圧ブレーキ60A、60Bに連通するブレーキ油路77と、貯留部79に連通するハイポジションドレン78と、が接続される。ブレーキ油路切替弁74は、弁体74aが閉弁位置で、ライン油路75とブレーキ油路77とを遮断状態とし、且つ、ブレーキ油路77とハイポジションドレン78とを連通状態とし、弁体74aが開弁位置で、ライン油路75とブレーキ油路77とを連通状態とし、且つ、ブレーキ油路77とハイポジションドレン78とを遮断状態とする。さらに、貯留部79は、電動オイルポンプ70の油吸入口70aが配置されるオイルパン80よりも鉛直方向で高い位置に配設される。そして、弁体74aを開弁位置から閉弁位置へ移行して油圧ブレーキ60A、60Bを解放するときに、油圧ブレーキ60A、60Bのオイルがオイルパン80に直接排出されずに、ハイポジションドレン78を経由してオイルパン80よりも鉛直方向で高い位置に配設される貯留部79に排出されて貯留される。従って、再度弁体74aが閉弁位置から開弁位置へ移行して油圧ブレーキ60A、60Bが締結する際に、油圧の復帰を早期化することができる。
また、本実施形態によれば、貯留部79の鉛直方向最上部が、油圧ブレーキ60A、60Bの第1作動室S1の鉛直方向最上部と鉛直方向最下部との中分点よりも鉛直方向で高い位置となるように貯留部79が配設される。油圧ブレーキ60A、60Bの第1作動室S1は、油圧力を発生させる場所であるため液密性が高く、油圧ブレーキ60A、60Bとハイポジションドレン78とが連通された状態でもオイルは貯留部79に排出されにくいが、第1作動室S1の中分点より高い位置に貯留部79の鉛直方向最上部を設定することで、より貯留部79に排出されるオイルを低減することができる。従って、油圧ブレーキ60A、60Bにはある程度のオイルが存在したままの状態にすることができ、油圧ブレーキ60A、60Bの迅速な締結動作が可能となる。
また、本実施形態によれば、ハイポジションドレン78の貯留部側端部78aは、貯留部79の底面に接続されるので、貯留部79のオイルが減少した場合にも、ハイポジションドレン78内に空気が混入することを抑制することができる。
また、本実施形態によれば、低圧油路切替弁73は、低圧側位置(第1の作動位置)と高圧側位置(第2の作動位置)とに切替可能な弁体73aを備え、低圧油路切替弁73には、電動オイルポンプ70に連通する第1ライン油路75a(第1油路)と、電動機2A、2Bあるいは動力伝達経路の潤滑・冷却部91である低圧供給先に連通する低圧油路と、が接続され、低圧油路は、互いに並列に配置された第1低圧油路76aと第2低圧油路76bとを有し、第1低圧油路76aと第2低圧油路76bとで、流路抵抗が異なり、低圧油路切替弁73は、弁体73aが低圧側位置で、第1ライン油路75aと第1低圧油路76aとを連通状態とし、弁体73aが高圧側位置で、第1ライン油路75aと第2低圧油路76bとを連通状態とするので、流路抵抗の異なる第1低圧油路76aと第2低圧油路76bとを切替可能であり、潤滑・冷却部91への流量を適切に調整することができる。
また、本実施形態によれば、低圧油路切替弁73には、油圧ブレーキ60A、60Bに連通する第2ライン油路75b(第2油路)がさらに接続され、低圧油路切替弁73は、弁体73aが低圧側位置で、さらに第1ライン油路75aと第2ライン油路75bとを連通状態とし、弁体73aが高圧側位置で、さらに第1ライン油路75aと第2ライン油路75bとを連通状態としているので、弁体73aの位置によらず第1ライン油路75aと第2ライン油路75bとは連通状態となり、第1ライン油路75aと第2ライン油路75bとを連通する油路を低圧油路切替弁73を迂回するように形成する場合に比べ油路の簡略化、省スペース化を図ることができる。
また、本実施形態によれば、低圧油路切替弁73は、弁体73aが低圧側位置で、第1ライン油路75aと第2低圧油路76bとを遮断状態とし、弁体73aが高圧側位置で、第1ライン油路75aと第1低圧油路76aとを遮断状態とするので、連通していない方の油路同士を遮断状態とすることで、連通している方の油路同士の流量を精確に調整することができる。
また、本実施形態によれば、低圧油路切替弁73は、弁体73aを高圧側位置から低圧側位置の方向に付勢するスプリング73b(弾性手段)と、弁体73aを低圧側位置から高圧側位置の方向に付勢する油を収容する油室73cと、を備え、油室73cは、第2ライン油路75bと常時連通するように接続され、電動オイルポンプ70は、油圧ブレーキ60A、60Bに供給する油圧を可変に駆動可能であり、低圧油路切替弁73は、油室73cの油圧が所定圧に達したときに、弁体73aが低圧側位置から高圧側位置に移動するように設定されるので、電動オイルポンプ70の駆動状態を変更するのみで、弁体73aを低圧側位置と高圧側位置とで切り替えることができ、それに対応して自動的に第1低圧油路76aと第2低圧油路76bを切り替えることができる。従って、低圧油路切替弁73を制御するための電磁弁などを不要とすることができる。なお、上記実施形態では、油室73cは、第2ライン油路75bと常時連通するように接続されたが、第1ライン油路75aと常時連通するように接続してもよい。また、低圧油路切替弁73をソレノイド等による駆動可能に構成してもよい。さらに、低圧油路切替弁73は低圧側位置と高圧側位置の間の位置に連続的に切替可能な構成とすることもできる。
また、本実施形態によれば、第1低圧油路76aよりも第2低圧油路76bの方が流路抵抗が大きくなるように形成されるので、低圧油路切替弁73の弁体73aが高圧側位置で、第1ライン油路75aと第2低圧油路76bとを連通状態としたときに潤滑・冷却部91への過度のオイル流出を抑制し、油圧ブレーキ60A、60Bへ効率よく油を供給することができる。
また、本実施形態によれば、第1低圧油路76aと第2低圧油路76bに流路抵抗手段を配設し、第1低圧油路76aの流路抵抗手段よりも、第2低圧油路76bの流路抵抗手段の方が流路抵抗が大きくなるように形成されるので、流路抵抗を流路抵抗手段によって調整可能となり、流路抵抗の調整が容易となる。
また、本実施形態によれば、流路抵抗手段は、流路に配設するオリフィス85a、85bであって、第1低圧油路76aのオリフィス85aの最小流路断面積よりも、第2低圧油路76bのオリフィス85bの最小流路断面積の方が小さくなるように第1低圧油路76aと第2低圧油路76bが形成されるので、流路断面積をオリフィス85a、85bによって調整可能となり、流路抵抗の調整が容易となる。なお、上記実施形態では、流路抵抗手段としてオリフィス85a、85bを例示したが、これに限定されず、ベンチュリ、格子状のメッシュ等を用いてもよい。さらに、流路抵抗手段を設ける代わりに、第1低圧油路76aの流路断面積よりも、第2低圧油路76bの流路断面積の方が小さくなるように第1低圧油路76aと第2低圧油路76bを形成してもよく、第1低圧油路76aの、低圧油路切替弁73から潤滑・冷却部91までの流路長よりも、第2低圧油路76bの、低圧油路切替弁73から潤滑・冷却部91までの流路長の方が長くなるように第1低圧油路76aと第2低圧油路76bを形成してもよい。これにより、流路断面積や流路長を調整することによって、流路抵抗を細かく調整可能で、それぞれの油路の流量を細かく調整することができる。
また、本実施形態によれば、第1低圧油路76aと第2低圧油路76bは下流側で合流し共通の低圧共通油路76cを形成するので、低圧油路のうち低圧油路切替弁73側である上流側を並列とすることで流路抵抗を異ならせることができ、下流側を共通化することで油圧回路71の簡素化することができる。
また、本実施形態によれば、第1低圧油路76aのオリフィス85a及び第2低圧油路76bのオリフィス85bよりも下流側で、且つ潤滑・冷却部91よりも上流側に他のオリフィス85cを備え、オリフィス85cよりも第1低圧油路76aのオリフィス85aの方が流路抵抗が大きいので、第1低圧油路76aもしくは第2低圧油路76bの流量をオリフィス85a、85bで調整することができる。なお、オリフィス85a、85bと同様に、オリフィス85cの代わりに、ベンチュリ、格子状のメッシュ等の流路抵抗手段を設けてもよい。
また、本実施形態によれば、ソレノイド弁83は、ソレノイド174への電力非供給(非通電)時に、ソレノイド弁体175が開弁位置に位置して、油室74cと電動オイルポンプ70とを連通状態とし、ソレノイド174への電力供給(通電)時に、ソレノイド弁体175が閉弁位置に位置して、油室74cと電動オイルポンプ70とを遮断状態とするので、ソレノイド弁体175での電力消費を伴わずに油室74cへの油圧の供給や油圧の調整が可能であり、それに応じて油圧ブレーキ60A、60Bへの油圧の供給や油圧の調整を行うことができる。特に、油圧ブレーキ60A、60Bの解放時間よりも締結時間の方が長い場合に電力消費量を低減することができる。また、電力供給時には即時に油路を遮断することができる。
<第2実施形態>
次に、本発明の第2実施形態について図22を参照して説明する。なお、以降に説明する第2〜第5実施形態は、第1実施形態の油圧回路の構成を一部変更したものであり、同一の部材については同一の符号を付して説明を省略する。
第2実施形態の油圧回路71Aは、リリーフ弁84のリリーフドレン86が電動オイルポンプ70の油吸入口70aが配置されるオイルパン80ではなく、オイルパン80よりも鉛直方向で高い位置に配設された貯留部79に接続される点で、第1実施形態の油圧回路71と相違している。また、このリリーフドレン86の油貯留部側端部86aが貯留部79の鉛直方向最上部よりも高い位置に配置される。また、このリリーフドレン86の油貯留部側端部86aは貯留部79の鉛直方向最上部よりも高い位置に配置される。
これにより、第1実施形態の油圧回路71の作用に加え、貯留部79にリリーフドレン86からのオイルを供給することにより、貯留部79の液面低下を抑制することが可能となり、油圧ブレーキ60A、60Bに油圧が供給されない状態での、油圧ブレーキ60A、60Bの油室内の油面をより高い位置に維持することができる。さらには、リリーフドレン86からのオイルの供給量が、ブレーキ油路切替弁74からのオイルの排出量よりも多い場合には、油圧ブレーキ60A、60Bの油室内の油面を油圧が供給される状態と同程度に維持することができる。また、本実施形態によれば、このリリーフドレン86の油貯留部側端部86aが貯留部79の鉛直方向最上部よりも高い位置に接続されるので、貯留部79からリリーフドレン86を経由してオイルが逆流することを抑制することができる。
<第3実施形態>
次に、本発明の第3実施形態について図23を参照して説明する。
第3実施形態の油圧回路71Cは、第1実施形態のソレノイド弁83が設けられておらず、ブレーキ油路切替弁74の油室74cが直接ライン油路75を構成する第2ライン油路75bに接続されている点で、第1実施形態の油圧回路71と相違している。
この油圧回路71Cでは、電動オイルポンプ70は、高圧モードと低圧モードに加え、さらに極低圧モードの3つのモードで運転可能となっており、低圧油路切替弁73のスプリング73bの付勢力は、電動オイルポンプ70が低圧モード及び極低圧モードで運転中に油室73cに入力されるライン油路75の油圧では、弁体73aが移動せずライン油路75を第2低圧油路76bから遮断し第1低圧油路76aに連通させるように設定され、電動オイルポンプ70が高圧モードで運転中に油室73cに入力されるライン油路75の油圧では、弁体73aが移動してライン油路75を第1低圧油路76aから遮断し第2低圧油路76bに連通させるように設定されている。また、ブレーキ油路切替弁74のスプリング74bの付勢力は、電動オイルポンプ70が極低圧モードで運転中に油室74cに入力されるライン油路75の油圧では、弁体74aが移動せず第2ライン油路75bとブレーキ油路77を遮断するように設定され、電動オイルポンプ70が低圧モード及び高圧モードで運転中に油室74cに入力されるライン油路75の油圧では、弁体74aが移動して第2ライン油路75bとブレーキ油路77を連通させるように設定されている。
そして、油圧ブレーキ60A、60Bをスタンバイ状態にするためには電動オイルポンプ70を低圧モードで運転し、油圧ブレーキ60A、60Bを解放状態にするためには電動オイルポンプ70を極低圧モードで運転し、油圧ブレーキ60A、60Bを締結状態にするためには電動オイルポンプ70を高圧モードで運転することにより、第1実施形態と同様の作用を果たすことができる。本実施形態の油圧回路71では、電動オイルポンプ70を3段階で制御する必要があるが、その代わりにソレノイド弁83を省略することで、部品点数を減らして構造を簡素化することができる。
<第4実施形態>
次に、本発明の第4実施形態について図24を参照して説明する。
第4実施形態の油圧回路71Eは、第1実施形態のライン油路75を構成する第1ライン油路75aと第2ライン油路75bとが低圧油路切替弁73を介さずに接続されている点で、第1実施形態の油圧回路71と相違している。
この油圧回路71Eでは、第1ライン油路75aが低圧油路切替弁73に至る途中に2つの分岐路が形成され、一方の分岐路が低圧油路切替弁73を介さずに第2ライン油路75bに接続され、他方の分岐路が油室73cに接続されている。この油圧回路71Eでも、電動オイルポンプ70の運転モード、ソレノイド174へ通電・非通電を第1実施形態の油圧回路71と同様に制御することで、第1実施形態の油圧回路71と同様に油圧ブレーキ60A、60Bを解放状態、弱締結状態、締結状態に制御することができ、常時潤滑・冷却部91を潤滑・冷却することができる。
<第5実施形態>
次に、本発明の第5実施形態について図25を参照して説明する。
第5実施形態の油圧回路71Fは、第1実施形態の低圧油路切替弁73とソレノイド弁83が設けられておらず、ブレーキ油路切替弁74の油室74cが直接ライン油路75に接続され、さらにライン油路75から分岐した第1低圧油路76aのオリフィス85aで減圧されたオイルが、複数のオリフィス85cを介して潤滑・冷却部91へ供給されるように構成されている点で、第1実施形態の油圧回路71と相違している。
この油圧回路71Fでは、第3実施形態と同様に、電動オイルポンプ70は、高圧モードと低圧モードに加え、さらに極低圧モードの3つのモードで運転可能となっており、ブレーキ油路切替弁74のスプリング74bの付勢力は、電動オイルポンプ70が極低圧モードで運転中に油室74cに入力されるライン油路75の油圧では、弁体74aが移動せずライン油路75とブレーキ油路77を遮断するように設定され、電動オイルポンプ70が低圧モード及び高圧モードで運転中に油室74cに入力されるライン油路75の油圧では、弁体74aが移動してライン油路75とブレーキ油路77を連通させるように設定されている。
そして、油圧ブレーキ60A、60Bをスタンバイ状態にするためには電動オイルポンプ70を低圧モードで運転し、油圧ブレーキ60A、60Bを解放状態にするためには電動オイルポンプ70を極低圧モードで運転し、油圧ブレーキ60A、60Bを締結状態にするためには電動オイルポンプ70を高圧モードで運転することにより、第1実施形態と同様に油圧ブレーキ60A、60Bを制御することができる。なお、本実施形態では、低圧油路切替弁73が設けられていないため、電動オイルポンプ70の運転モードによらず、ライン油路75の油圧を第1低圧油路76aのオリフィス85aで減圧することとなる。また、本実施形態の油圧回路71Fでは、電動オイルポンプ70を3段階で制御する必要があるが、その代わりに低圧油路切替弁73とソレノイド弁83を省略することで、部品点数を減らして構造を簡素化することができる。
尚、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。
なお、本実施形態の後輪駆動装置1は、2つの電動機2A、2Bにそれぞれ遊星歯車式減速機12A、12Bを設け、それぞれ左後輪LWrと右後輪RWrの制御するように構成したが、これに限定されず、図26に示すように1つの電動機2Cと1つの減速機12Cを不図示の差動装置に接続して構成してもよい。
また、前輪駆動装置6を内燃機関4を用いずに電動機5を唯一の駆動源とするものでもよい。
また、各弁機構において、遮断状態とは、完全に流路を閉塞する場合のみならずに、本発明の作用効果を果たす範囲で連通状態に対し流路を絞る態様も含むものである。
1 後輪駆動装置(車両用駆動装置)
2A、2B、2C 電動機
10A、10B 車軸
12A、12B 遊星歯車式減速機
50 一方向クラッチ
60A、60B 油圧ブレーキ(油圧式断接手段)
70 電動オイルポンプ(油圧供給源)
70a 油吸入口
71、71A、71B、71E、71F 油圧回路(油圧制御装置)
73 低圧油路切替弁
73a 弁体
73b スプリング
73c 油室
74 ブレーキ油路切替弁(断接手段油路切替弁)
74a 弁体
74b スプリング(弾性手段)
74c 油室
75 ライン油路(油経路)
75a 第1ライン油路(第1油路)
75b 第2ライン油路(第2油路)
76 低圧油路
76a 第1低圧油路
76b 第2低圧油路
76c 低圧共通油路
77 ブレーキ油路(断接手段油路)
78 ハイポジションドレン(排油路)
79 貯留部(第2の油貯留部)
80 オイルパン(第1の油貯留部)
83 ソレノイド弁(電気的駆動油路切替弁)
84 リリーフ弁
85a、85b オリフィス(流路抵抗手段、縮径部)
85c オリフィス(他の流路抵抗手段、他の縮径部)
86 リリーフドレン(リリーフ弁排油路)
86a 油貯留部側端部
91 潤滑・冷却部(低圧供給先)
174 ソレノイド(電気的駆動手段)
175 ソレノイド弁体(弁体)
176 ソレノイドバネ(弾性手段)
LWr 左後輪(車輪)
RWr 右後輪(車輪)
S1 第1作動室

Claims (17)

  1. 車両の駆動力を発生する電動機と、
    前記電動機と車輪との動力伝達経路上に設けられ、動力を断接する油圧式断接手段と、を備えた車両用駆動装置の油圧制御装置であって、
    前記油圧式断接手段に油圧を供給する油圧供給源と、
    前記油圧式断接手段と前記油圧供給源とを接続する油経路に配設される断接手段油路切替弁と、を備え、
    前記断接手段油路切替弁は、閉弁位置と開弁位置とを切替可能な弁体を備え、
    前記断接手段油路切替弁には、前記油圧供給源に連通するライン油路と、油圧式断接手段に連通する断接手段油路と、排油路と、が接続され、
    前記断接手段油路切替弁は、前記弁体が前記閉弁位置で、前記ライン油路と前記断接手段油路とを遮断状態とし、且つ、前記断接手段油路と前記排油路とを連通状態とし、
    前記断接手段油路切替弁は、前記弁体が前記開弁位置で、前記ライン油路と前記断接手段油路とを連通状態とし、且つ、前記断接手段油路と前記排油路とを遮断状態とし、
    前記排油路は、前記油圧供給源の油吸入口が配置される第1の油貯留部よりも鉛直方向で高い位置に配設される第2の油貯留部に連通し、
    前記ライン油路には、前記電動機あるいは前記動力伝達経路の潤滑部あるいは冷却部である低圧供給先に連通する低圧油路が接続され、
    前記低圧油路には、前記低圧油路における油圧が所定圧以上で開弁し、前記低圧油路とリリーフ弁排油路とを連通する状態とするリリーフ弁が配設され、
    前記リリーフ弁排油路は、前記第2の油貯留部に連通することを特徴とする車両用駆動装置の油圧制御装置。
  2. 前記油圧式断接手段は、前記油圧式断接手段が締結する方向に付勢する油を収容する油室を備え、
    前記第2の油貯留部の鉛直方向最上部が、前記油圧式断接手段の油室の鉛直方向最上部と鉛直方向最下部との中分点よりも鉛直方向で高い位置となるように前記第2の油貯留部が配設されることを特徴とする請求項1に記載の車両用駆動装置の油圧制御装置。
  3. 前記排油路の第2の油貯留部側端部は、前記第2の油貯留部の底面に接続されることを特徴とする請求項1又は2に記載の車両用駆動装置の油圧制御装置。
  4. 前記リリーフ弁排油路の第2の油貯留部側端部は、前記第2の油貯留部の鉛直方向最上部よりも高い位置に配置されることを特徴とする請求項1〜3のいずれか1項に記載の車両用駆動装置の油圧制御装置。
  5. 前記油経路には、さらに低圧油路切替弁が設けられ、
    前記低圧油路切替弁は、第1の作動位置と第2の作動位置とに切替可能な弁体を備え、
    前記低圧油路切替弁には、前記油圧供給源に連通する第1油路と、前記電動機あるいは前記動力伝達経路の潤滑部あるいは冷却部である低圧供給先に連通する低圧油路と、が接続され、
    前記低圧油路は、互いに並列に配置された第1低圧油路と第2低圧油路とを有し、
    前記第1低圧油路と前記第2低圧油路とで、流路抵抗が異なり、
    前記低圧油路切替弁は、前記弁体が前記第1の作動位置で、前記第1油路と前記第1低圧油路とを連通状態とし、前記弁体が前記第2の作動位置で、前記第1油路と前記第2低圧油路とを連通状態とすることを特徴とする請求項1〜のいずれか1項に記載の車両用駆動装置の油圧制御装置。
  6. 前記低圧油路切替弁には、前記油圧式断接手段に連通する第2油路がさらに接続され、
    前記低圧油路切替弁は、前記弁体が前記第1の作動位置で、さらに前記第1油路と前記第2油路とを連通状態とし、前記弁体が前記第2の作動位置で、さらに前記第1油路と前記第2油路とを連通状態とすることを特徴とする請求項に記載の車両用駆動装置の油圧制御装置。
  7. 前記低圧油路切替弁は、前記弁体が前記第1の作動位置で、前記第1油路と前記第2低圧油路とを遮断状態とし、前記弁体が前記第2の作動位置で、前記第1油路と前記第1低圧油路とを遮断状態とすることを特徴とする請求項又はに記載の車両用駆動装置の油圧制御装置。
  8. 前記低圧油路切替弁は、前記弁体を前記第2の作動位置から前記第1の作動位置の方向に付勢する弾性手段と、
    前記弁体を前記第1の作動位置から前記第2の作動位置の方向に付勢する油を収容する油室と、を備え、
    前記油室は、前記第1油路と前記第2油路の少なくとも一方と常時連通するように接続され、
    前記油圧供給源は、前記油圧式断接手段に供給する油圧を可変に駆動可能であり、
    前記低圧油路切替弁は、前記油室の油圧が所定圧に達したときに、前記弁体が前記第1の作動位置から前記第2の作動位置に移動するように設定されることを特徴とする請求項のいずれか1項に記載の車両用駆動装置の油圧制御装置。
  9. 前記第1低圧油路よりも前記第2低圧油路の方が流路抵抗が大きくなるように形成されることを特徴とする請求項のいずれか1項に記載の車両用駆動装置の油圧制御装置。
  10. 前記第1低圧油路と前記第2低圧油路に流路抵抗手段を配設し、
    前記第1低圧油路の流路抵抗手段よりも、前記第2低圧油路の流路抵抗手段の方が流路抵抗が大きくなるように形成されることを特徴とする請求項に記載の車両用駆動装置の油圧制御装置。
  11. 前記流路抵抗手段は、流路に配設する縮径部であって、
    前記第1低圧油路の縮径部の最小流路断面積よりも、前記第2低圧油路の縮径部の最小流路断面積の方が小さくなるように前記第1低圧油路と前記第2低圧油路が形成されることを特徴とする請求項10に記載の車両用駆動装置の油圧制御装置。
  12. 前記第1低圧油路の流路断面積よりも、前記第2低圧油路の流路断面積の方が小さくなるように前記第1低圧油路と前記第2低圧油路が形成されることを特徴とする請求項に記載の車両用駆動装置の油圧制御装置。
  13. 前記第1低圧油路の、前記低圧油路切替弁から前記低圧供給先までの流路長よりも、前記第2低圧油路の、前記低圧油路切替弁から前記低圧供給先までの流路長の方が長くなるように前記第1低圧油路と前記第2低圧油路が形成されることを特徴とする請求項に記載の車両用駆動装置の油圧制御装置。
  14. 前記第1低圧油路と前記第2低圧油路は下流側で合流し共通の低圧油路を形成することを特徴とする請求項13のいずれか1項に記載の車両用駆動装置の油圧制御装置。
  15. 前記第1低圧油路の流路抵抗手段及び前記第2低圧油路の流路抵抗手段よりも下流側で、且つ前記低圧供給先よりも上流側に他の流路抵抗手段を備え、
    前記他の流路抵抗手段よりも前記第1低圧油路の流路抵抗手段の方が流路抵抗が大きいことを特徴とする請求項10に記載の車両用駆動装置の油圧制御装置。
  16. 前記第1低圧油路の流路抵抗手段及び前記第2低圧油路の流路抵抗手段よりも下流側で、且つ前記低圧供給先よりも上流側に他の縮径部を備え、
    前記他の縮径部の最小流路断面積よりも前記第1低圧油路の最小流路断面積の方が小さいことを特徴とする請求項11に記載の車両用駆動装置の油圧制御装置。
  17. 前記断接手段油路切替弁は、前記弁体と、前記弁体を前記開弁位置から前記閉弁位置方向へ付勢する弾性手段と、前記弁体を前記閉弁位置から前記開弁位置方向へ付勢する油を収容する油室と、を備え、
    前記断接手段油路切替弁は、前記油室の油圧が所定圧に達したときに、前記弁体が前記閉弁位置から前記開弁位置に移動し、
    前記油室と前記油圧供給源とを接続する油経路には、電気的駆動手段を有する電気的駆動油路切替弁が配設され、
    前記電気的駆動油路切替弁は、前記油室と前記油圧供給源とを連通状態とする開弁位置と、前記油室と前記油圧供給源とを遮断状態とする閉弁位置とを切替可能な弁体と、前記弁体を前記閉弁位置から前記開弁位置方向へ付勢する弾性手段と、を備え、
    前記電気的駆動油路切替弁は、前記電気的駆動手段への電力非供給時に、前記弁体が前記開弁位置に位置して、前記油室と前記油圧供給源とを連通状態とし、
    前記電気的駆動油路切替弁は、前記電気的駆動手段への電力供給時に、前記弁体が前記閉弁位置に位置して、前記油室と前記油圧供給源とを遮断状態とすることを特徴とする請求項1〜16のいずれか1項に記載の車両用駆動装置の油圧制御装置。
JP2010187540A 2010-08-24 2010-08-24 車両用駆動装置の油圧制御装置 Active JP5247776B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010187540A JP5247776B2 (ja) 2010-08-24 2010-08-24 車両用駆動装置の油圧制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010187540A JP5247776B2 (ja) 2010-08-24 2010-08-24 車両用駆動装置の油圧制御装置

Publications (2)

Publication Number Publication Date
JP2012047203A JP2012047203A (ja) 2012-03-08
JP5247776B2 true JP5247776B2 (ja) 2013-07-24

Family

ID=45902318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010187540A Active JP5247776B2 (ja) 2010-08-24 2010-08-24 車両用駆動装置の油圧制御装置

Country Status (1)

Country Link
JP (1) JP5247776B2 (ja)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110126A (ja) * 1984-06-25 1986-01-17 Fuji Tekkosho:Kk 液圧クラツチ装置
JPH08312684A (ja) * 1995-05-16 1996-11-26 Aqueous Res:Kk 車輌用発進装置
JP2003139167A (ja) * 2001-11-01 2003-05-14 Honda Motor Co Ltd 自動変速機の油圧制御機構
JP3700855B2 (ja) * 2003-09-30 2005-09-28 ジヤトコ株式会社 ハイブリッド車両の制御装置
JP4704062B2 (ja) * 2005-02-16 2011-06-15 本田技研工業株式会社 油圧制御装置
DE102005019762B4 (de) * 2005-04-28 2018-07-12 Andreas Stihl Ag & Co. Kg Verfahren zur Steuerung eines elektromagnetischen Ventils in einem Kraftstoffsystem
JP4740685B2 (ja) * 2005-08-09 2011-08-03 本田技研工業株式会社 自動変速機の油圧制御装置
JP2007132613A (ja) * 2005-11-11 2007-05-31 Chofu Seisakusho Co Ltd コージェネレーションシステム
JP4347315B2 (ja) * 2006-04-27 2009-10-21 本田技研工業株式会社 電動車両の油圧回路

Also Published As

Publication number Publication date
JP2012047203A (ja) 2012-03-08

Similar Documents

Publication Publication Date Title
JP5487313B2 (ja) 車両用駆動装置の液体流路制御装置
JP5414636B2 (ja) 車両用駆動装置
JP5344771B2 (ja) 車両
WO2013005783A1 (ja) 車両用駆動装置
US8768551B2 (en) Vehicle driving apparatus
JP5600633B2 (ja) 車両用駆動装置及び車両
JP5414731B2 (ja) 車両
JP5335025B2 (ja) 車両用駆動装置
JP5707210B2 (ja) 車両用駆動装置及び車両
JP2012214176A (ja) 車両用駆動装置
JP5197689B2 (ja) 車両用駆動装置の油圧制御装置
JP5850641B2 (ja) 車両
JP5520993B2 (ja) 車両用駆動装置
JP5247776B2 (ja) 車両用駆動装置の油圧制御装置
JP5757767B2 (ja) 車両用駆動装置
JP5695957B2 (ja) 車両用駆動装置
JP6118932B1 (ja) 駆動装置
JP5608604B2 (ja) 車両用駆動装置
JP5883690B2 (ja) 車両用駆動装置
JP2013199978A (ja) 動力装置
JP2017180565A (ja) 液状流体供給システム

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3