JP5247030B2 - 単一偏波光ファイバレーザ及び増幅器 - Google Patents

単一偏波光ファイバレーザ及び増幅器 Download PDF

Info

Publication number
JP5247030B2
JP5247030B2 JP2006538023A JP2006538023A JP5247030B2 JP 5247030 B2 JP5247030 B2 JP 5247030B2 JP 2006538023 A JP2006538023 A JP 2006538023A JP 2006538023 A JP2006538023 A JP 2006538023A JP 5247030 B2 JP5247030 B2 JP 5247030B2
Authority
JP
Japan
Prior art keywords
fiber
polarization
wavelength
single polarization
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006538023A
Other languages
English (en)
Other versions
JP2007510182A (ja
Inventor
エイ ノーラン,ダニエル
リー,ミン−ジュン
ティー ウォルトン,ドネル
エイ ゼンテノ,ルイス
イー バーキー,ジョージ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of JP2007510182A publication Critical patent/JP2007510182A/ja
Application granted granted Critical
Publication of JP5247030B2 publication Critical patent/JP5247030B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02781Hollow fibres, e.g. holey fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/08Sub-atmospheric pressure applied, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/10Fibre drawing or extruding details pressurised
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0281Graded index region forming part of the central core segment, e.g. alpha profile, triangular, trapezoidal core
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03627Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/03655Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - + +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03694Multiple layers differing in properties other than the refractive index, e.g. attenuation, diffusion, stress properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Lasers (AREA)

Description

関連出願の説明
本特許出願は、同じ譲受人に譲渡され、弁理士案件番号がSP03−088Pの、2003年6月19日に出願された、米国特許出願第60/479892号に関する。
本発明は全般的には光能動デバイスに関し、さらに詳しくは単一偏波光ファイバレーザまたは増幅器に関する。
イッテルビウムドープファイバレーザのような希土類元素ドープファイバレーザには、材料処理、製品マーキング及び刻印並びに微細加工のような分野での用途がある。高パワー、挟線幅及び高パルスエネルギーで動作するイッテルビウムドープファイバレーザが開発されつつある。ファイバレーザの応用領域は、別の動作波長を利用でき、さらに高い出力パワーでさえも利用できることによって広がるであろう。それぞれは、非線形波長変換及びいくつかのファイバレーザのコヒーレント結合によって達成できよう。これらの用途の多くに必要な直線偏波出力はファイバレーザのその他の属性に比べてそれほど研究されていない。
したがって、レーザ及び増幅器に対して偏波方向が安定な直線偏波発光を利用できることがいくつかの応用では有用であり、必要でさえあり得る。直線偏波または単一偏波に対しては、ランダムな楕円偏波入力光を受け取り、単一偏波だけをもつ偏波出力光を与える光偏波(PZ)ファイバを得ることが望ましい。偏波特性(単一偏波)は、偏極が直交する2つの偏波の内の1つ、しかも1つだけを伝搬させ、同時に他方の偏波は伝送損失を高めることによって抑制する。そのような単一偏波ファイバは一般に屈折率プロファイルの方位角非対称性を有する。単一偏波光ファイバは超高速伝送システムに有用であり、あるいは光コンポーネント(レーザ、EDFA、光計器、干渉型センサ、ジャイロスコープ等)とともに使用されてこれらに接続されるカップラファイバとしての使用に有用である。単一偏波レーザすなわち直線偏光レーザは広汎な分野で有用な直線偏波単一横モード光波の発光を得るために用いることができる。これらの分野には、遠距離通信、光伝送、計装、スペクトロスコピー、医学、化学種検出及びテレメトリーがある。より特殊ないくつかの例と同様に、直線偏波ファイバ増幅器(LPFA)は、従来のエルビウムドープファイバ増幅器(EDFA)に代わり、希土類ドーパントがドープされたPZファイバの全てまたは一部が光でポンピングされたときに、光ファイバジャイロスコープ、干渉型ファイバセンサ、非線形周波数変換、偏波多重化及びほとんどの位相または振幅変調器構成での使用に対し、1つの直線偏波状態に対して直交状態に対するよりもかなり高い利得を有する。そのような偏波ファイバレーザまたは増幅器を有することにより、2つのビームを、これらが直交偏波である限り、結合して異なる偏波モードを有する単一出力にするために既知の偏波ビーム多重化(PBM)を用いることで高められた逓倍能力を達成できる。
単一モード光導波路の偏波性能における若干の改善が、異なる偏波の分離手段として対称ファイバコアを引き延ばすかまたは歪ませることによって達成された。しかし、非円形状及びそれにともなう応力誘起複屈折だけでは一般に、改善されたファイバレーザまたはファイバ増幅器としての使用あるいは改善されたパワー逓倍のための偏波ビーム多重化のために所望の単一偏波を維持するに十分ではない。
したがって、維持可能であり、PBMによるパワー逓倍に十分な、単一偏波を与えるファイバレーザまたは増幅器を得ることが進行中の開発分野である。
さらに、外部擾乱に対して頑健かつ安定な単一直線偏波(SP)ファイバレーザ発振器または増幅器が必要とされている。頑健かつ安定とは、単一直線偏波を維持するデバイスを意味する。
ラマン散乱及びブリュアン散乱のような非線形効果を回避するためには、高パワー用途に対して大きな有効面積をもつSPファイバレーザ発振器または増幅器を作成することも必要である。
コヒーレントビーム結合手法を用いて光パワーを逓倍できるためにも、安定な線形SPファイバ発振器及び増幅器が必要である。
最後に、高出力パワーにおいて、同時に伝搬している直交偏波モードの非線形結合によって生じる時間的不安定性を回避するためには、SPファイバレーザ発振器及び/または増幅器が必要である。
以下の定義及び術語は技術上普通に用いられている。
屈折率プロファイル−屈折率プロファイルは、光ファイバの選択された区画にわたる、屈折率(Δ%)と(光ファイバの中心線から測った)光ファイバ半径の間の関係である。
半径−光ファイバの区画の半径は一般に、用いられる材料の屈折率が異なる組成をとる点に関して定められる。例えば、中心コアはコア区画の第1の点が中心線上にあるからゼロの内半径を有する。中心コア区画の外半径は導波路の中心線から正のΔを有する中心コアの屈折率の最終点まで引かれた半径である。中心線から外れた第1の点を有する区間については、導波路の中心線から第1の屈折率点の位置までの半径がその区間の内半径である。同様に、導波路の中心線から区画の最終屈折率点の位置までの半径がその区間の外半径である。例えば、中心コアを囲むダウンドープ環状区画は環状区画とクラッド層の間の界面にある外半径を有するであろう。
相対屈折率パーセントΔ%−Δ%という術語は式:
Δ%=100×(n −n )/2n
で定義される屈折率の相対尺度を表す。ここでΔ%はiと表される屈折率プロファイル区画の最大屈折率であり、基準屈折率nはクラッド層の屈折率としてとられる。区画内の全ての点は、付随する、クラッド層に対して測定される相対屈折率を有する。
アルファプロファイル−アルファプロファイルという術語は、bを半径として式:
Δ(b)%=[Δ(b)(1−[αb−bα/(b−bα])]×100
にしたがうΔ(b)%で表されるコアの屈折率プロファイルを指す。ここでbはコアプロファイルの最大点であり、bはΔ(b)%がゼロである点であり、bはbからbの範囲内にあり、すなわちb≦b≦bであって、Δ%は上式で定義され、bはアルファプロファイルの始点であり、bはアルファプロファイルの終点であり、αは実数の指数である。アルファプロファイルの始点及び終点は選択されて、コンピュータモデルに入れられる。本明細書に用いられるように、アルファプロファイルにステップ屈折率プロファイルが続くならば、αプロファイルの始点はαプロファイルとステッププロファイルの交点である。モデルにおいて、αプロファイルを隣接プロファイル区画のプロファイルと滑らかに接続させるため、上式は:
Δ(b)%=[Δ(b)+[Δ(b)−Δ(b)]
×{(1−[αb−bα/(b−bα])×100
と書かれる。ここでbは隣接区画の第1の点である。
本発明の実施形態にしたがえば、線形複屈折性及び直線2色性を有する光導波路が、単一偏波波長範囲を決定するために、初めに設計及び/または測定される。次いで、単一偏波波長範囲と重なる動作波長範囲における導波路の動作を与えるために、活性ドーパントが線形複屈折性及び直線2色性を有する光導波路のコアにドープされる。
単一偏波動作の波長帯域において70dBより大きな偏波依存損失(PDL)差を導波路が示すように、線形複屈折性及び直線2色性を有する光導波路の楕円コアの近くに空気で満たされているかまたは真空にされた孔が配置されることが好ましい。本発明にしたがってそのように形成された光能動型の線形複屈折性及び直線2色性を有する光導波路には、光能動型の線形複屈折性及び直線2色性を有する光導波路に光結合された光コンポーネントを備える単一直線偏波システムにおいて優れた効用がある。
本発明のさらなる特徴及び利点は以下の詳細な説明に述べられ、当業者には、ある程度は説明から容易に明らかであろうし、以下の詳細な説明、特許請求の範囲を添付図面とともに含む、本明細書に説明されるように本発明を実施することによって認められるであろう。
本明細書における説明の目的のため、そうではないと明白に詳述されている場合を除き、本発明が様々な代替構成を想定していることは当然である。添付図面に示され、以下で詳細に説明される特定のファイバが、添付される特許請求の範囲に定められる本発明の概念の例示的実施形態であることも当然である。したがって、本明細書に開示される実施形態に関する特定の寸法及びその他の物理特性は、別途に特許請求の範囲で明白に述べられていない限り、限定と見なされるべきではない。同様の要素の同様の機能は同じ数字で参照される。
図6を参照すれば、本発明の教示にしたがう光能動単一直線偏波デバイスの波長スペクトルが示されている。図1のファイバ30のような線形複屈折性及び直線2色性を有する光導波路または図12のファイバ区画におけるドープト楕円コアに融着接続されたアンドープ単一偏波ファイバ30'は、第1の直線偏波固有モード45にともなう偏波成分及び第2の直線偏波固有モード50にともなう偏波成分を有する光を、十分長い導波路長にわたって累積される第1のモードと第2のモードの間の十分な偏波依存損失(PDL)差(PDLは近似的に3dBより大きい)をもって伝搬させ、第1の偏波モードは第1のカットオフ波長601で第1の3dB減衰を有し、第2の偏波モードは第2のカットオフ波長602で第2の3dB減衰を有し、第1のカットオフ波長と第2のカットオフ波長の間に単一偏波中心波長を有する単一偏波波長範囲48が与えられ、第1のカットオフ波長は第2のカットオフ波長より小さい。
図1に見られるように、複数の活性ドーパント90が、中心動作波長を有する動作波長範囲650における導波路の動作を与えるために、線形複屈折性及び直線2色性を有する光導波路30の一領域34に配され、動作波長範囲が単一偏波波長範囲48に重なるように、単一偏波波長中心波長は中心動作波長に十分近い。図6の利得650が1020〜1100nmで生じるYbドープファイバレーザの特定の用途に対して単一偏波波長範囲48が狭く示されているとしても、一般に動作波長範囲650は単一偏波波長範囲48より広くまたは狭くすることができる。理想的には、動作波長範囲650の中心波長は単一偏波波長範囲48の中心波長に一致すべきであるが、それぞれの中心波長は、2つの波長範囲650及び48が少なくとも光能動単一直線偏波デバイスの図1の出力信号66の動作波長に重なるように、互いに十分近づけることができる。したがって、光能動単一直線偏波デバイスは導波路設計パラメータによって単一偏波波長範囲48内で発振するかまたは増幅するようになる。
本明細書で用いられるように、術語「線形複屈折性」は当該媒質の伝搬の2つの主状態が直線偏波になっており、そのような2つの直線偏波状態が相異なる伝搬定数の実効実数部(屈折率)を有することを意味する。「直線2色性」という別の限定は、偏波状態が相異なる伝搬定数の虚数部(損失)も有することを意味する。
伝搬定数は、与えられた周波数において時間とともに正弦的に変化する電磁場モードに対する任意の電場成分の複素振幅の、与えられた方向の距離に対する、対数変化率である。特定のモードに対する軸方向伝搬定数の実数部は減衰定数と称される。モードパワーに対する減衰係数は減衰定数の2倍である。
偏波は一般に輻射光に関して定められ、単一面に対する磁場ベクトルまたは電場ベクトルの振動の限定を表す。電磁輻射ビームにおいて、偏波方向は(電場は正逆方向に振動するから正と負が区別されない)電場ベクトルの方向である。空間のいずれかの与えられた停留点近くにおいて、ビームの偏波方向はランダムに変わることができ(非偏波ビーム)、一定のままであることができ(平面偏波または直線偏波ビーム)、あるいはそれぞれの偏波方向が直角をなす2つのコヒーレントな平面偏波要素を有することができる。平面偏波の場合、光ビームの電場ベクトルは全て一定の単一面内で振動する。2つのコヒーレント平面偏波の場合、2つの波の振幅及びそれらの相対位相に依存して、合成電場ベクトルは楕円を描き、電磁波は楕円偏波であるといわれる。楕円偏波及び平面偏波は複屈折光学系を用いて相互に変換することができる。
複屈折は一般に、光ビームが2重屈折性物体に入ったときの、速軸及び遅軸に沿う、一般に常光線及び異常光線として知られる、2本の発散光線への光ビームの分離を指す。
2色性は、異方性材料に関して、導波路の伝搬軸に対するある特定の面内で振動する光波の選択的吸収と定義される。伝搬軸に対して直角の面内で振動する光線は吸収されない。異方性は、相異なる伝搬軸に沿って、または進行波の相異なる偏波に対して、相異なる特性を示す物質の特徴をいう。
したがって、偏波依存損失(PDL)は、伝搬波の偏波状態が導波路内で変化する線形複屈折性及び直線2色性を有する導波路における損失であり、最大損失と最小損失の間の差としてデシベルで表される。
「高複屈折性」ファイバ、「偏波保持」ファイバ、「偏波(PZ)」ファイバ、または「偏波非対称」ファイバは、「線形複屈折性及び直線2色性を有する」導波路の一種である、偏波保存(PM)ファイバを指す。一般に、いずれの高複屈折性ファイバも偏波保存ファイバである。線形複屈折性については光ファイバのいわゆる「ビート長」が測定され、直線2色性についてはファイバのPDLが測定される。
高複屈折性は偏波保存または偏波保持に対する別称である。複屈折性材料においては、光波の振動方向にともなって屈折率が変化する。低屈折率を有する方向は速軸であり、速軸に直角な、高屈折率を有する方向は遅軸である。偏波保持または偏波保存(PM)ファイバは、ビームがファイバの長さを通って伝搬する間、ファイバに入る光の偏波面を保持する単一モードファイバと定義される。偏波は、ファイバ構造に形状(形状複屈折)または内部応力(応力誘起複屈折)の偏波非対称性を導入することによって保存される。この非対称性のため、ファイバで伝送される2つの互いに直交する偏波モードは相異なる伝搬定数を有し、通常の単一モードファイバと比較して、相互間のクロスカップリングが低減される。偏波保持または偏波保存光ファイバにおいて、複屈折を導入するために用いられる要素は応力印加部分(SAP)と称される。SAPはファイバ材料の他の部分とは異なる膨張係数を与えるために高濃度にドープされ、線引きされたファイバが冷えると、ファイバで伝送される2つの互いに直交する偏波モードの間のクロスカップリングを制限する残留応力がSAPによって生じる。SAPはファイバコアを囲む楕円形または矩形のクラッド層として構成することができ、あるいはSAPの対をコアの両側に配置することができる。
したがって、PMまたはPZファイバは、第2の偏波モード50の損失がゼロであり、第1のモード45の損失または減衰が第1のカットオフ波長において3dBであるような許容できる線形複屈折性及び直線2色性を有する導波路と見なされるためには、単一偏波波長範囲またはウインドウ48にわたって十分な偏波依存損失(PDL)を有していなければならない。第2のモード50の損失は第2のカットオフ波長として表される波長において3dBである。第1のカットオフ波長と第2のカットオフ波長の間の範囲48内の波長に関して、第1のモードは実質的に3dBより大きい損失を受けるが、第2のモード50は3dBより小さな損失を受ける。波長範囲48は単一偏波波長ウインドウと称される。
本発明の教示にしたがえば、ファイバ30で表されるような線形複屈折性及び直線2色性を有する導波路の導波路パラメータを設計することによって、単一偏波範囲48に一致するかまたはそうではなくとも重なる動作波長範囲650における動作のための、単一直線偏波デバイスが得られる。単一偏波は本発明においては終始単一直線偏波と理解されるべきであり、以降ファイバ30を指す場合には、簡単のため、PZまたはPMファイバは線形複屈折性及び直線2色性をともに有する導波路を意味することになる。
2重クラッドファイバまたはデュアルクラッドファイバは、高屈折率外部クラッド層及びコア領域内への強い閉込めの結果として、広い伝送帯域幅及び導波モードの減少に対する低い曲げ損失を示す光ファイバである。可能な一実施形態として、単一直線偏波デバイスを形成するために二重クラッド型の線形複屈折性及び直線2色性を有するファイバを用いることができる。
得られる単一直線偏波デバイスは、光能動型の線形複屈折性及び直線2色性を有するファイバ自体であるかまたは、そのようなファイバが組み込まれた、最も普通の輝度変換用途としての、レーザまたは増幅器である。
知られているように、LASER(レーザ)はlight amplification by stimulated emission of radiation(誘導放射による光増幅)の頭字語である。レーザは、両端に平面または球面のミラーをもつ、レーザ作用をもつ材料で満たされたキャビティである。そのような材料は、その原子が光または放電によって準安定状態に励起され得るいずれかの材料−結晶、ガラス、液体、染料または気体−である。原子が基底状態に落ち戻るときに原子によって放射される光は別の近くの原子を励起し、よって光がミラー間を往復している間に、光の強度が連続的に高められる。1つのミラーが光の1ないし2%を透過させるようにつくられていれば、単色性の強い、コヒーレント光の高輝度ビームがミラーを通して放射される。平面ミラーが用いられる場合、ビームは強くコリメートされる。凹面ミラーによれば、キャビティの一端近くの点源からビームが出てくるように見える。
光ポンピングは、一組のエネルギー準位にある原子または原子系の数が材料に入る光の吸収によって変化するプロセスである。このプロセスは原子を特定の高エネルギー準位に上げ、いくつかの中間準位間に反転分布を生じさせることができる。レーザ内の低エネルギー状態への電子または分子の誘導遷移の結果としてコヒーレント光を放射する材料は、レーザ発振媒質または能動レーザ媒質と称される。
蛍光は、波長が短い何か別の輻射の吸収の結果としての、波長がより長い光またはその他の電磁輻射の物質による放射であり、蛍光を生じる刺激が維持されている間だけ放射が続く。言い換えれば、蛍光は励起後約10−8秒より短い間持続する発光現象である。
ファイバレーザは、レーザ発振媒質が光増幅を可能にするために低レベルのハロゲン化希土類元素をドープした光ファイバである、レーザである。出力は広い範囲にわたって同調可能であり、広帯域とすることができる。ファイバレーザの閾パワーは低いため、レーザダイオードをポンピングに用いることができ、冷却の必要はない。
単層クラッド型または2層クラッド型の線形複屈折性及び直線2色性を有するファイバがファイバレーザの一実施形態において光ポンピングされる場合、光活性ドーパントによる波長が短い何か別の輻射の吸収の結果としての、蛍光による動作波長範囲650内のより長い波長の光またはその他の電磁輻射の放射を、単層クラッド型またはデュアルクラッド型の単一直線偏波ファイバレーザまたは増幅器を形成するために用いることができる。
図6の動作波長範囲650は、レーザに対しては利得曲線または利得帯域、また増幅器に対しては増幅度曲線と称される。一般に、利得または増幅度は増幅器を通ってある点から別の点に伝送される信号の増分である。信号が通過するためのある周波数において吸収ではなく利得を示す材料は活性媒質として知られる。増幅器及びレーザのいずれにおいても、活性媒質は与えられた動作波長においておそらくは光の吸収よりはむしろ誘導放出がおこるであろう媒質である。そのような媒質は反転分布として知られる状態、すなわち、あるエネルギー準位がより低い準位よりも密に占有される少なくとも1つの量子遷移を有することが必須である。
すなわち、単層クラッド型または2層クラッド型の線形複屈折性及び直線2色性を有するファイバ30は、単一偏波Erドープファイバ増幅器を形成するために、楕円コアを有し、図1のErイオン90をドープし、増幅器の単一偏波波長範囲48において動作するように設計することができよう。単一偏波波長範囲48及びこれに重なる動作波長範囲すなわち利得帯域幅650はYbファイバレーザに対する特定の波長で示されているが、これらの範囲は別の動作波長範囲及びこれに重なる単一偏波波長範囲にかけて適用され得ることは当然である。特に、単一偏波ファイバレーザは、3準位レーザまたは4準位レーザとして実施することができ、あるいは、Erドーパントを含む1.5μmスペクトルにおける眼を安全に保つ動作のためのバンド間準3準位レーザとしてさえも実施することができる。1060〜1080nm4準位Ybレーザ発振に対し、約920nmまたは980nmのポンピング光を用いることができる。
単層クラッド型または2層クラッド型の線形複屈折性及び直線2色性を有するファイバ30は動作波長範囲650において光入力を増幅するために用いられるであろう。図1のエルビウム(希土類元素)イオン90はドーパントとして一般に数100ppmレベルでファイバコア材料に添加される。したがって、ファイバは2〜9μmのエルビウムレーザ発振波長において非常に透明であろう。レーザダイオードで光ポンピングされると、動作波長範囲において光利得が生じ、増幅がおこる。
通常の4準位遷移またはさらに複雑な3準位遷移に対する、単層クラッド型またはデュアルクラッド型のポンピングされるファイバまたは増幅器は既知であるが、単一直線偏波デュアルクラッドファイバレーザまたは増幅器は本発明まで知られていなかった。
全てのデュアルファイバレーザは、内部クラッド層を伝搬する、入射時には直線偏光である、ポンピング光が数mも伝搬すると急速に減偏光するという特性を有する。これは、ポンピング光誘起偏波依存利得による単一偏波発振を得ることを不可能にする。したがって、PDLを導入するための手段が必要である。ドーピングレベルを高めても(すなわち、ファイバコア屈折率デルタを大きくしても)、ファイバの偏波依存損失(PDL)ではなく、単一偏波ウインドウしか大きくならない。必要なことは高い複屈折性及び非対称性であり、これは図2の双対孔ファイバにおいて楕円コア形状及び孔または開口の配置からもたらされる。別の設計において、高い複屈折性及び非対称性は、例えば非対称扁平クラッド層からもたらされ得る。
図1を参照すれば、本発明の、光能動ファイバ、輝度コンバータ、ファイバ増幅器、ファイバレーザ、誘電体導波路レーザまたは増幅器が図1に示され、同じかまたは機能的に同様な部品が同じ数字で参照されるいくつかの例示的または代表的な実施形態を参照して本明細書で全般的に説明され、図示される。一般に、ファイバレーザとしてあるいは増幅器として用いることができるであろう2重クラッド構造は2つのクラッド層32及び36を有する。第1の(内側の)多モードクラッド32は多モードポンピングコアとして作用する。第1のクラッド層すなわちクラッド32は単一モードコア34に隣接し、第2のクラッド36は第1のクラッド32を囲む。第1の多モードクラッドすなわち内部クラッド層32は、能動ポンピング源72から、レンズ70のような必要に応じて用いられる光学系によって結合される入力ポンピング光64に対して、好ましくは約0.2〜0.5の範囲内の、高開口数(NAクラッド)をもつ導波路としてはたらく。複製ファイバレーザは、ファイバがそれぞれの同様の寸法により高効率でモード整合するため、レンズ70なしに増幅器を形成するためのポンピング源72として直接にはたらくであろうことが知られている。
第1の多モードクラッドの断面(図3に見られるようにDクラッドは内部クラッド層の長軸寸法A'である)は、例えば、ポンピング源72の近視野形状(Dレーザは大面積レーザ光放射アパーチャ42の寸法である)またはポンピングビーム64の結合効率を高める別のいずれかの機構または形状に整合させた、所望の形状を有するように設計することができる。第1のクラッド層と第2のクラッド層の間の開口数(NAクラッド)はポンピングレーザダイオード72の出力64を捕捉するに十分な大きさでなければならない。実現される輝度の実増分は、コア面積に対するポンピングクラッド層面積の、クラッド対コア比(CCR)に依存し、この比(CCR)が高くなるほど輝度の増分が大きくなる。しかし、ポンピング光の吸収がこの比(CCR)に反比例するから、コア断面とクラッド層断面の間の面積の隔たりが大きくなるほど長いデバイス長が必要となる。適宜に高いコア面積に対するポンピングクラッド層面積の比(CCR)は、一般にこの比(CCR)が高いほど与えられたポンピングパワーで達成され得る反転のレベルは低くなるから、3準位レーザ発振に対しては高反転レベルの達成を困難にするが、4準位レーザ発振に対してはそれほどの障害にならない。すなわち、ポンピング光吸収と反転は関係する。
したがって、クラッド対コア比(CCR)が高い2重クラッドファイバ増幅器/レーザのコア34におけるドーパント90としてEr,YbまたはNdのような希土類元素を用いることには問題がある。ダイオードレーザバーから利用できる非常に高いパワーを用いても、レーザまたは増幅器のための3準位系の動作に必要な高反転レベルに達することは非常に困難である。
利得を得るためには、3準位遷移では>50%の高反転が必要である。準3準位遷移では、低くはなるが、極小の反転で利得が得られる4準位レーザに比べるとかなり高い反転レベルが必要である。イットリウムイオン及びネオジムイオン(Yb+3及びNd+3)はそれぞれ、約980nmにおける3準位レーザ発振系及び約940nmにおける準3準位レーザ発振系を与える。3準位系において、レーザ発振は励起準位から基底状態または基底準位から数kTより大きくは隔てられていない(すなわち、動作温度においては熱的に混合される)状態の間でおこる。この結果、ポンピングされていないドープトコアがレーザ波長において強い吸収を示し、不十分な反転分布のため、レーザ発振パワー閾値が問題となり得る。
競合する高利得4準位遷移の場合、例えば、ネオジム(Nd)についての約1060nmにおいて、ポンピングされていない場合にドープトコアはレーザ信号波長において透明なままである。この結果、レーザ発振に対するパワー閾値は本質的に2重クラッドファイバ構造のドープトコア及び内部クラッド層の寸法、及びポンピング光吸収長にわたる2重クラッドファイバの背景損失に依存する。
同様に、Yb+3イオンは976〜978nmにおける狭い6nm幅純3準位遷移において利得を有し、高パワー励起EDFAのためのポンピング光源としてのイッテルビウムのかなりの有望性を示すが、透明性に対して数%の反転分布しか必要ではない広い準4準位遷移である、約1030nmに(但し1120nmまでも広がる)ピークをもつYbの別の競合高利得遷移のため、高効率Yb976nmファイバレーザは未だに実現されていない。よって、980nmの(または976nmに近い)レーザ発振の達成が困難である理由は、レーザ発振パワー閾値も高いことを意味する、976nm遷移に対しては高い反転レベル(>50%)が必要なことである。さらに、Ybの約1015〜1030nmにおける競合準4準位遷移は、反転を飽和させる、増幅自然放出光(ASE)を生じるため、約976nmにおける十分な反転は達成しがたい。
上記の反転問題はYbの、2つの競合遷移における利得とポンピング光吸収の間の関係からおこっている。代表的な例として、Ybドープゲルマノ−アルミノケイ酸ガラスにおける(均一な広がりを仮定した)2つの波長での利得は式(1):
Figure 0005247030
で関係付けられる。ここでG1030及びG976はそれぞれ1030nm及び976nmにおける利得であり、αはデシベル(dB)単位の部分褪色ポンピング光吸収率であり、Γ及びΓはドーパントプロファイルによる信号モード及びポンピングモードのそれぞれの重なり因子である。
アンチモンケイ酸ガラスのような別のホストに対しても、係数が異なる同様の関係式が成立するであろう。知られているように、二重クラッドファイバによりダイオードバー及びその他の同様な能動構造からの結合が可能になる。しかし、これは、信号波長においてコアモード対する十分な光利得を得るためにはドーピングが単一コアまたはその近傍に局限される必要があるから、通常は信号重なりに対するドーピングプロファイルによるポンピング光重なりを大きく減退させることによって達成される。一般に、コアは一様にドープされ、ポンピング光導波路と信号コアの間の面積比(CCR)は通常の2重クラッドファイバレーザについて100:1のオーダーである。この結果、Γ=1及びΓ<0.01である。これらの値を式(1)に用いれば、1030nmにおいて1dBのポンピング光吸収毎に約20dBの利得が生じる。同様に、Γ=50の重なり比に対しては、1040nmにおいて36dBまでも大きくなる利得が1dBのポンピング光吸収毎に生じるであろう。
必然的に、競合遷移の利得が高くなれば、反転を飽和させる、増幅自然放出光(ASE)のレベルが高くなる。弱ポンピングによってさえ、1030nmにおけるASEは増幅器を飽和させ、976nmにおけるレーザ発振に必要な反転分布の蓄積を消耗するかまたはそうではなくとも阻害するであろう。実際に、光キャビティがなくとも、より長い4準位波長におけるレーザ発振が後方散乱だけで可能である。したがって、高ポンピング光吸収は、キャビティを定めるレーザミラーが976nmに調整されていても、1030nmまたはさらに長い波長における利得に有利であろう。
すなわち、準3準位または3準位のクラッド層ポンピングファイバレーザにおいては、ポンピング光パワー空間分布のドープト領域との重なりが小さいことから必要な反転レベルが比較的低い(<5%)競合4準位レーザ遷移の利得がかなり高くなる。したがって、必要な反転レベルにおいて所望の3準位または準3準位発振を達成するためにはこれらの競合遷移の利得を抑制することが必要である。
一定のポンピング光パワーに対して十分に長いファイバ長の作成は平均反転の減少と等価であるから、従来の手法の1つでは、約1030nmでの準4準位遷移におけるレーザ発振は回避し、代わりに980nmでのレーザ発振を優先させるに十分にファイバレーザ長が短くされていた。しかし、短ファイバレーザは効率が低い。
本発明の教示にしたがえば、980nmにおけるYb3準位遷移の場合に限れば、コア面積分の内部クラッド層面積(Aクラッド/Aコア)の面積比(CCR)に密接に関係するΓ及びΓの所望の重なり比を推定するために式(1)を用いることができる。Ybに対し、少なくともポンピング光の6dBの吸収が望ましく、1030nmでの競合準4準位遷移における40強dBの利得より多くを抑制することはできないとすれば、式(1)を用いて、所望のAクラッド/Aコアを計算することができる。すなわち、好ましいホストケイ酸ガラスに対し、所望のクラッド対コア比(Aクラッド/Aコア)はYb2重クラッドファイバレーザについては8より小さいことがわかる。
したがって、単一偏波ファイバレーザまたは増幅器の作成のため、最適な2重クラッド3準位または4準位レーザ発振単一偏波動作のための光能動偏波(PZ)ファイバ30が特に設計される。より困難な3準位構成に対し、2重クラッド構造能動ファイバ30は、3準位遷移を有する光励起可能なイオン90または高反転レベルを必要とするいずれか別のタイプのイオンがドープされた、ドープト中心部すなわちコア34を有する。コア34はコア屈折率(nコア)及びコア断面積を有する。断面積はコア34の寸法A及びBから計算することができる。内部クラッド層32がコア34を囲み、内部クラッド層32はコア屈折率より小さい内部クラッド層屈折率(n内部クラッド)、コア断面積の2から25倍の内部クラッド層断面積(2<CCR<25)及び1.5:1より大きいアスペクト比を有する。2重クラッド能動ファイバ30のこの好ましい構造及び寸法により、6dBより大きい、強いポンピング光吸収が可能になり、同時に長波長ASEが抑制される。内部クラッド層断面積は、本発明に教示され、図2によって例示され得るように、より長い寸法A'を含む内部クラッド層の寸法から計算することができる。
図2を改めて参照すれば、外部クラッド層36が内部クラッド層32を囲み、内部クラッド層屈折率より小さい外部クラッド層屈折率を有する。
1060nmにおける動作のための、ファイバ30を用いる、Ybファイバレーザの例は、複雑な3準位レーザよりも簡単な準4準位レーザの実施であろう。3準位レーザとしての動作とは対照的に、4準位レーザとしての動作では、内部クラッド対コア面積比(CCR)には全く制限がないはずである。
しかし、より困難な、3準位遷移を有する光励起可能なYbイオンを含む能動PZファイバ30の使用に対しては、キャビティ及びファイバの最適化が実施されなければならない。能動ファイバ30のポンピング端に、信号反射率が100%で、ポンピング光に対しては透明なミラー60が配置される。必要に応じて設けられる出力ミラー62により、約4%の信号反射率が出力端に与えられる。導波路損失を無視すれば、G976=7dBである。ポンピング光パワーの少なくとも6dBが吸収されることが望ましいが、1040nm利得は波長選択帰還により40dB以下に抑制されることが望ましい。これらの値を式(1)に代入して、好ましいクラッド対コア面積比または重なり比Γを得ることができ、980nmにおいてYbファイバレーザで用いるための希土類ドーパントYbについて7.6の最大比が得られる。
光励起可能なイオン90は希土類元素の内の1つに加えて、クロムのような、遷移金属の内の1つまたはそれより多くとすることができよう。ファイバにラマン利得を与えるためにGe,PまたはBのような元素が用いられるならば、ラマン利得をもつファイバをポンピングするための2重クラッドファイバレーザとして用いるための光励起可能なイオンはいずれか適する希土類元素である。
一般に、能動ファイバ30は増幅器またはファイバレーザとして用いることができる。Er,Nd,Tm及びYbのような、光励起可能なイオンとしての全ての、特に高反転レベルを必要とする、希土類ドーパント90に対して、本発明は2重クラッド構造についての最大許容内部クラッド層面積を教示する。一般に、ポンピング光吸収断面積(σap)、準安定レベル寿命(τ)及び所望の平均反転レベル(n2)、並びに特定のパワー吸収を仮定するようないずれかのタイプのレーザダイオードからの利用できるポンピングパワーが与えられれば、入力及び出力(非吸収)ポンピング光パワー値をそれぞれP入力及びP出力として推定することができ、いずれかの希土類及びホスト材料系に対して本発明によって教示されるように、式(2):
Figure 0005247030
を用いて最大クラッド層断面積を見いだすことができる。ここでhνはポンピング光子エネルギーである。
イオン及びホスト材料がいかに異なっても式(2)は普遍的に適用可能であり、飽和より十分低いレベルで動作する増幅器に特に適している。1530〜1565nmで動作する従来の、すなわちCバンドシリカガラスErドープ増幅器(EDFA)として用いられる、能動ファイバ30の古典的な場合には、式(2)に対応する値を代入することでAクラッド<780μm2が本発明によって教示される。したがって、一般に、高効率のレーザまたは増幅器動作に対して最もクリティカルであるのはクラッド対コア比(CCR)ではなく、内部クラッドの絶対寸法である。したがって、コア34は内部クラッド層32の内側に適合するいかなる寸法にもすることができる。しかし、コア34は寸法及びNAが標準の単一モードファイバ20と同様であることが好ましく、そうであればレーザまたは増幅器に対する出力ファイバ20の結合が容易になるであろう。3〜4μmの代表的な単一モードコア半径では、CバンドErドープファイバの場合について、10:1〜20:1のクラッド対コア面積CCR(Aクラッド/Aコア)を導くことができる。
本例において、2重クラッドファイバ増幅器はGe及びAlが共ドープされたシリカガラスに基づき(タイプII)、980nmにおいてポンピングされる(σap=2.55×10−25m2,τ=8ミリ秒,hν=2.03×10−19J)。増幅器をポンピングするために単一2Wレーザダイオードが用いられる。レーザダイオードのこの2Wのパワーを利用すれば、利用できるパワーの80%(P入力=1600mW)が内部クラッド層に結合される。ファイバ増幅器の所望のパワー効率が与えられれば、パワーの1/2より多くが他端で漏れ出ることはない(P出力=800mW)。タイプIICバンド増幅器に対して、最小利得「リップル」(有用な増幅帯域内での利得変動)を達成するためには〜0.6の平均反転(n2)が必要である。これらの値を式(2)に代入すれば、内部クラッド層断面積Aクラッド≒780μm2が得られる。これが意味することは、780平方μmより大きな内部クラッド層断面積に対しては、より強力な(利用できるパワーが2Wより大きい)ポンピングレーザが用いられなければ0.6の平均反転は達成され得ないであろうということである。実際上、内部クラッド層の利用できる寸法は、受動損失により、500μm2のオーダーないしそれより小さい、さらに小さい値に制限されるであろう。
代表的なa=3μmのコア半径を用いれば、クラッド対コア面積比CCRはAクラッド/Aコア=500/(π・32)≒18であり、これは、2重クラッドレーザ及び増幅器の作動に対して以前の参考文献に推奨されているかまたはこれまで報告されている値より十分小さい。
したがって、2W 980nm大面積レーザダイオードでポンピングされるCバンドErドープ2重クラッド増幅器に対し、クラッド対コア面積比について本発明の教示にしたがう推奨値は10:1〜20:1であるが、いずれの場合も、内部クラッド層の断面積は500μm2をこえるべきではない。レーザダイオードで利用できるパワーが4Wポンピングダイオードにおけるように2倍になれば推奨値も2倍になり、よってクラッド対コア面積比がこの場合は20:1〜40:1であり、内部クラッド層面積がこの場合は1000μm2未満である。
1570nmと1620nmの間で動作する長波長すなわちLバンド増幅器における増幅に対しては、約0.4のような、かなり小さい平均反転値が必要である。平均反転値の低下に対応して、使用できる内部クラッド層の最大断面積はCバンド増幅器の場合より少なくとも2.5倍大きい。1.76W 980nmレーザダイオードモジュールでポンピングされる、内部クラッド層断面積が2100μm2の2重クラッドLバンド増幅器の動作が実際に示されている。しかし、この増幅器の円形内部クラッド層形状及び小ポンピング光吸収により、増幅器効率は〜15%でしかなかった。さらに小さいクラッド層寸法が、同じ平均反転に対してさらに高いポンピング光吸収レベルが可能になり得るから、Lバンドに対しても、Cバンドに対しても、有利である。したがって、2W大面積レーザダイオードでポンピングされるLバンドErドープ2重クラッド増幅器に対し、クラッド対コア面積比CCDについての推奨値は10:1=50:1であり、内部クラッド層の断面積は2000μm2をこえるべきではない。
能動ファイバ30で与えられるYbファイバレーザが、高効率レーザ動作のために、単一2W大面積レーザダイオード72でポンピングされ、入力ポンピングパワーP入力=1600mWが内部クラッド層32に実際に入射されるならば、レーザ発振に必要な閾パワーは入力ポンピングパワーの約1/4すなわち約400mWをこえるべきではない。αp=6dB,(920nmポンピング光に対し)hν=2.16×10−19J,σap=8.3×10−21m2,τ=0.8ミリ秒及びP入力=0.4Wをとれば、式(4)からクラッド層面積はAクラッド=890μm2である。したがって、920nm大面積レーザダイオードでポンピングされるYbドープ976nm2重クラッドファイバレーザに対して、クラッド対コア面積比の推奨値は式(1)から2:1〜8:1であり、閾値は可能な限り大きく下げるべきであるから、内部クラッド層の断面積は式(4)から900μm2をこえるべきではない。
そのような小さなクラッド対コア面積比をもつ2重クラッドファイバは実現可能である。好ましい10×30μm楕円形内部クラッド層内の直径8μm円形コアに対して、面積比は(5・15/42)≒4.7であり、この値はYbについて教示される最大比8より小さい。
2重クラッド能動ファイバ30の好ましい構造及び寸法により、長波長ASEを抑制しながらの強いポンピング光吸収が可能になり、3準位遷移を得るに十分に強いポンピング光強度が可能になる。例えば、増幅器またはレーザとしての使用のための、3準位または準3準位2重クラッド能動ファイバすなわち輝度コンバータ30の入力側が波長λPのポンピング信号64で照射される。多モード内部クラッド層32内の中心におかれた、好ましい単一横モードコア34は、適切な屈折率差を与えるために内部クラッド層32とは十分異なる組成を有するガラスでつくられる。コア34は厳密に単一モードである必要はなく、2モードとの境界線上にあるコアでも動作する。高パワーレーザ発振に対して好ましくは、コア34にはイッテルビウムイオン(Yb+3)、エルビウムイオン(Er+3)またはネオジムイオン(Nd+3)がドープされるが、その他の希土類元素90も用いることができる。2重クラッド能動ファイバ30は、NAクラッドが0.3より大きくなるような、内部クラッド層32の屈折率より低い屈折率をもつガラスでつくられることが好ましい、外部クラッド層36も有する。総ガラス構造によりこれらのタイプの屈折率が可能になり、ガラスタイプには、ランタンアルミノケイ酸ガラス、ゲルマニウム酸アンチモン、硫化物、没食子酸鉛ビスマス等がある。オーバークラッドのための好ましい材料もガラス、例えば、アルカリ−ホウアルミノケイ酸である。
図2,5,7または8の能動PZファイバ30の断面領域図では、それぞれの相対直径を正確に表すようにはされていない。しかし、内部クラッド層32の面積は近似的にコア34の面積の25倍よりは小さいことが好ましい。また、外部クラッド層として空気(n=1)を用いて単層クラッド単一偏波レーザまたは増幅器を与えることも可能である。
能動ファイバ30の長さは、いかなる高次モードもその長さにかけて十分に減衰するように当該波長に比較して非常に長くすること以外は、比較的重要ではない。実際上、この長さはコアの希土類ドーピングレベル及び所望のポンピング光吸収効率によって決定される。いくつかの状況においては、長さ1cmで十分以上である。
能動PZファイバ30は、光キャビティ46の入力端及び出力端のそれぞれを定める、端面反射器としてはたらくための、2つのミラー60,62を有する。入力ミラー60はポンピング波長λPにおいて光ポンピング信号64に対しては極めて透過率が高く、出力信号66の信号(レーザ発振)波長λSにおいては極めて反射率が高いようにつくられ、出力ミラー62は信号波長λSにおいてある程度反射性(ある程度は透過性)であり、好ましくはポンピング波長λPにおいても少なくともある程度は反射性であるようにつくられる。ファイバレーザとして用いられる能動ファイバ30については、劈開出力ファセットを出力ミラー62として用いることが可能である。バットカップリング出力ファイバ20のへのエアギャップで生じる4%の反射率であっても光キャビティを定めるに十分である。
単一モードファイバ20がコア34の出力端にバットカップリングされる。輝度コンバータすなわちファイバレーザ30がEDFAまたは、ラマン増幅器すなわちラマン利得をもつファイバのような、その他のドープト光増幅器のためのポンピング光源として用いられていれば、単一モードファイバ20は能動ポンピング光源を増幅ファイバに結合するためのポンピング光ファイバである。これにより、ポンピング信号64が入力ミラー60において高効率で光キャビティ46に入ることができる。光キャビティ46はミラー60,62間で定められ、光キャビティ内の定在波の内の若干は出力ミラー62を通過することが可能である。
3準位レーザ発振のための能動ファイバ30によって与えられるイッテルビウムファイバレーザの例では、信号波長λSは3準位Yb+3遷移に対応する978nmに等しい。ファイバレーザにかかわる、本発明はYb+3ドーピングの観点から開発されたが、本発明はこれに限定されない。ファイバレーザすなわち輝度コンバータ30には別の遷移元素イオンまたは、Nd+3のような、希土類元素イオン90をドープすることができる。共ドーピングによるかまたは異なるドーピングがなされたファイバの連結による、YbドーピングとNdドーピングの併用により、920nmではなく800nmでのポンピングが可能になる。
集束素子70を別途に用いなくとも、大面積ストライプレーザ72の光特性は多モード内部クラッド層32への直接結合を可能にするに十分良好であり得る。しかし、集束素子70が必要であれば、一般に寸法が100×1μm2の放射アパーチャ及び遅軸及び速軸のそれぞれにおいて0.1/0.55のNAを有する大面積レーザダイオードからのポンピング光パワーの、断面が30×10μm2の矩形コアをもち、有効開口数が>0.42のファイバへの高効率結合を可能にする技術が開発されている。術語「遅」及び「速」はそれぞれ、レーザダイオードの接合面に対して「平行」及び「垂直」な面を指す。発光部寸法が100×1μm2で、遅軸及び速軸のそれぞれにおけるNAが(最大遠視野強度点の5%で測定して)0.1/0.55の大面積半導体レーザ72からの光を高効率で結合するためには、寸法が30×10μm2で遅軸及び速軸のそれぞれにおける5%NAが0.35/0.12の発光部遠視野像を生じさせるための結合光学系またはその他のビーム整形器70を設計することができる。
直接結合であるか否かにかかわらず、976nmより短いがイッテルビウム吸収帯域内の波長で発光するAlGaAsまたはInGaAsの大面積ストライプ、アレイ、ダイオードバーの形態のレーザダイオード72によるか、あるいは別のファイバまたはスタックダイオードの多重化結合によって、ポンピング信号を供給することができる。実用ポンピング帯域は850nmから970nmまで広がり、さらに好ましい範囲は910〜930nm、最も好ましい範囲は915〜920nmである。これらの帯域及びレーザ発振波長の精確な値はホスト誘電体に依存して数nmシフトすることがあり得る。
本発明の教示にしたがえば、入力ミラー60は挟帯域フィルタであり、好ましくは、PZ能動ファイバ30の図6の単一偏波帯域幅(SPB)48と中心が合された挟帯域幅を有するファイバブラッグ回折格子(FBG)である。2重クラッドファイバレーザにおいて単一偏波発振すなわちレーザ発振を達成するために入力ミラー60の(例えばFBGによる)帯域幅制限を用いるためには、複屈折が中程度(10−4〜10−6)のPZファイバ30が好ましい。知られているように、正しい長さの、PZファイバ30の応力誘起領域または(非対称扁平クラッド層のような)形状誘起領域からの正しい大きさの複屈折性をもつ(2色性が全くないかまたは小さい)ファイバ発振器は、異方性ファイバ30に対する利得帯域幅の下で波長依存偏波出力状態を有するように設計される。そのような適する複屈折性または2色性領域により、得られるPZファイバ30は偏波依存損失(PDL)を有し、これは時に2色性と称される。入力ミラー60による帯域幅制限はPZファイバ30の特定の単一偏波を選択するために用いられる。
本発明の利得帯域幅制限は単一偏波ファイバレーザの高パワー動作に対して特に重要である。例えば、図2の双対孔構造をとれば、ほとんどの希土類遷移は0.5〜1%のコアΔによって達成できる単一偏波帯域幅よりかなり広い利得帯域幅を有する。一般に、コア直径を縮小するかまたは、コアNAを変えるためのゲルマニウム(Ge)、リン(P)、アルミニウム(Al)またはホウ素(B)のようなガラス成分のドーピングレベルを高めることによるような、Δを大きくすることによって、単一偏波帯域幅を容易に広げることができるが、後者には基本モードの有効面積を縮小するというマイナスの効果がある。高パワー動作に対しては基本モードの最大有効面積を有することが求められ、これを行うための1つの簡単な方法はΔを小さくし、コア半径を大きくすることであるが、Δを小さくすると単一偏波ウインドウも狭くなり、よって別途の回折格子またはその他の反射器によって選択することができる利得帯域幅制限を有することが必要になるであろう。
図6を改めて参照すれば、10−4〜10−6の範囲にある複屈折及び約6mの長さを有するSPファイバ30によるNdドープファイバレーザの出力パワースペクトルS0の同様のプロットが示され、これは利得帯域幅650として示されるYbドープファイバに対して容易に置き換えることができる。いずれのタイプの希土類ドーパントによっても、単一偏波帯域幅48をファイバレーザの帯域幅650と揃えるために利得がより高い位置を、図1の高パワーファイバレーザについての入力ミラー60のファイバブラッグ回折格子実施形態によって選択することができ、これは回折格子60の出力パワースペクトル、透過率またはスペクトル強度に関して表される。図1の回折格子60の挟帯域フィルタ(F)はファイバレーザの利得帯域幅(FWHM)650及び単一偏波帯域幅48より狭い帯域幅(FWHM)を有する。NdまたはYbファイバについての最適フィルタ帯域は1〜30nmの範囲にある。連続波を得るための肝要なパラメータは、キャビティ内フィルタ帯域幅(F)よりも広い、図1のレーザまたは増幅器からの出力信号の発生スペクトル帯域幅650である。高パワー信号の発生は図1に示されるようなファブリ−ペロキャビティに限定されず、キャビティ内導波路及び挟バンドパスフィルタを有するいかなる導波路レーザキャビティ構造も実施できる。実際、回折格子60は挟帯域である必要はなく、図12に示されるようなバンドパスフィルタ60'とすることができ、あるいはその他のいずれかの適する反射器とすることができる。
SPファイバ30の一例として、単一偏波光導波路ファイバ30の第1の実施形態は、図2〜5に最善に示されるような、断面構造を有する。図12の単一偏波ファイバ30'には、コアに活性イオンがドープされていないことを除いて、同じ構成がある。図示される実施形態において、活性イオンドープ光導波路PZファイバ20は、ファイバの軸線に沿って延び、最大寸法がAで最小寸法がBの中心コア34を有する。中心コア34の断面形状は細長であり、好ましくは概ね楕円形である。好ましくはこの細長さは、線引きされたファイバ30が1.5より大きな、好ましくは約1.5と8の間、さらに好ましくは2と5の間の、A/Bで定められる、第1のアスペクト比AR1を示すように、ファイバプロセス(線引きまたは再線引き)中に制御されるであろう。
中心コア34はゲルマニウムドープシリカでつくられることが好ましく、ゲルマニウムは、約0.5%と2.5%の間、さらに好ましくは約0.9%と1.3%の間で、一実施形態においては約1.1%の、図3〜4に示されるコアΔ%,Δ1をコアが有するような、十分な量で与えられる。中心コア34の平均直径d平均={A+B}/2は、好ましくは約3μmと12μmの間、さらに好ましくは4μmと10μmの間である。
コアΔ%,Δ1を高めることにより、単一偏波帯域幅48(図6を見よ)を長波長側にシフトさせ得ることがわかった。逆に、PDL差形成器としてはたらく、2色性領域の孔24,26の直径を小さくすると、様々なファイバパラメータをより小さな孔によって最適化して、単一偏波帯域幅48を短波長側に移すことができる。単一偏波帯域幅48は第1の偏波45のカットオフ波長と第2の偏波50のカットオフ波長の間におかれる。この波長帯域48内では、真の単一偏波、すなわち、1つの、しかも1つだけの、偏波が与えられる。本明細書において、単一偏波帯域幅48は図6に最善に示されるプロットの直線領域49から3dB低下点で測定される。
一例として、図6を参照すれば、単一偏波帯域幅(SPB)48は約1057nmと1082nmの間にわたり、よって約25nmの単一偏波帯域幅を与える。しかし、この範囲は例示的であり、PZファイバに対して別の波長帯域が与えられ得ることは当然である。単一偏波領域の幅(SPB)は、コアデルタを高め、平均コア直径を小さくすることによって広くすることができる。同様に、上述したように、SPBの位置を調節することができる。SPB48の相対位置または幅を調整するために単一偏波ファイバにさらに調節を行うことができる(下の表1を見よ)。
下の表1は、モデル計算に基づく、単一偏波ファイバの様々な、孔直径(d)の変化、コアΔ%,Δ1の変化、第1のアスペクト比AR1及び中心コア34のd平均の変化に対する、第1の偏波のカットオフ波長λ1,第2の偏波のカットオフ波長λ2及び単一偏波波長帯域幅Δλの感度を示す。
Figure 0005247030
上の例1〜18は、様々な構造パラメータの変化に対するPZファイバ30の感度を示す。特に、孔直径を1μmから15μmまで変えることにより、単一偏波波長帯域を短波長側にシフトさせ得ることを、例1〜4に見ることができる。例14〜18は、単一偏波波長帯域幅を広くするためにコアΔ%,Δ1をどのように用いることができるかを劇的に示す。残りの例は、単一偏波帯域幅及び帯域の相対位置に影響を与えるために平均コア直径d平均及びアスペクト比AR1をどのように用いることができるかを示す。
これまでに論じたファイバパラメータだけがファイバの可能な設計パラメータではない。受動単一偏波ファイバには、異なる用途に対する最適化のための、コアの楕円率、コアの寸法、コアデルタ、隣接孔の寸法のような、いくつかの設計パラメータがある。所望の値についてカットオフ波長差を達成するためにこれらのファイバパラメータを設計することができる。単一偏波ウインドウはこれらのカットオフ波長の間の波長範囲であり、よって単一偏波ウインドウも様々なファイバパラメータに依存して変わり得る。能動単一偏波ファイバ30の用途については、2つの用途が卓越している。
第1に、単一偏波増幅器に対して、ファイバの設計パラメータは、増幅されるべき波長が単一偏波ファイバの単一偏波波長領域内に入るように設計される。増幅されるべき波長がいずれのカットオフ波長より大きければ(すなわち、単一偏波ウインドウの上側で外にあれば)、いずれの偏波も透過しないから、増幅は当然おこらないであろう。波長がいずれのカットオフ波長より小さければ、いずれの偏波も増幅され、単一偏波機能は生じないであろう。一例として、エルビウム(Er)である活性ドーパント90がSPファイバの楕円コアにドープされている単一偏波Erドープファイバ増幅器(SP-EDFA)を有することができよう。
第2に、単一偏波発振器(レーザ)に対しては、利得帯域幅が単一偏波ウインドウに一致するかまたはそれより狭くなるようにファイバパラメータを設計する必要がある。そうではなければ、単一偏波が生じるであろう波長に対して帰還がより強くなることを確実にするために、例えば、単一偏波ウインドウ内に入るブラッグ波長における反射率が高いファイバブラッグ回折格子によって、入力ミラー60による波長選択帰還を実施する必要がある。
Ybファイバレーザについては、利得は1020nmから1100nmの範囲で生じ、よって単一偏波(SP)ファイバ30はこの範囲に単一偏波ウインドウをもつように設計されなければならない。利得帯域がSPウインドウ48よりかなり広ければ、SPウインドウ48内に入る挟波長領域範囲だけに利得を制限し、帰還を与えるために、反射率が高い回折格子60を用いることができる(但し、他のいずれかの波長選択フィルタも用いることができる)。入力ミラー60,好ましくは回折格子の高反射率は、いずれかの高利得ファイバレーザの一方の側から十分なパワーを取り出すために望ましい。好ましいその他のファイバパラメータは、約0.8の開口数を与えるための約0.15%のコア屈折率Δ%を有する大モード面積を与えるために、コア34が楕円形状を有することである。
図2を改めて参照すれば、中心コア34は中心コアとは異なる組成を有し、好ましくは屈折率がコアより低く、時に扁平クラッド層と称される、環状領域12で囲まれることが好ましい。したがって、環状扁平クラッド層領域12は純シリカに対して屈折率を下げるドーピングがなされることが好ましく、したがって、フッ素ドープシリカでつくられることが最も好ましい。環状扁平クラッド層領域12は、図4に示されるように、好ましくは約−0.0%と−0.7%の間、さらに好ましくは約−0.2%と−0.6%の間、最も好ましくは約−0.4%のΔ%,Δ2を示す。一般に、環状扁平クラッド層領域12のガラスは、線引き温度において中心コア34より高い粘度をもつようにドープされる。環状扁平クラッド層領域12は、図2のコア/クラッド界面22で示されるような概ね楕円形状を有することもでき、さらに好ましくは破線38で示されるような概ね円形状を有することもできる。
円形状を有する実施形態において、環状扁平クラッド層領域12は、好ましくは約10〜15μmの間、さらに好ましくは約13〜19μmの間であり、一実施形においては約16.5μmの、外直径Dを有する。必要に応じて、環状扁平クラッド層領域12は、楕円のような、全体的に細長い形状を有することができる。この場合、平均寸法D平均={A'+B'}/2は中心コア34の約2倍、例えば約6〜16μmの間であり、A'/B'で定められる、第2のアスペクト比AR2は約1.5と8の間である。
楕円形中心コアに加えて、コア34の両側に少なくとも1つずつの空気孔が形成される。孔24,26は、少なくとも一部が、ファイバ30の環状扁平クラッド層領域12に形成されることが好ましい。孔24,26は、空気で満たされるかまたは真空に引かれた孔であってファイバ30の全軸長に沿って延びることが好ましく、その寸法はファイバ長に沿って実質的に一定であることが好ましい。孔24,26は中心コア34の直径を挟んで対向して配置されることが好ましく、完全にまたは一部だけを環状領域12内に形成することができる。例えば、孔24,26は環状扁平クラッド層領域12内に完全に包含することができ、あるいは孔24,26は図7のファイバ30に示されるように外部クラッド層36内まである程度広がることができる。孔は中心コア34の最小寸法Bに隣接し、これに位置を合せ、中心コア34に極めて密接して(例えば、中心コア34から3μm以内に孔の縁をおいて)、配置される。位置合せに関しては、空気孔は、孔24,26の中心を通る線28(図5)が最小寸法(B)と実質的に合せられる。孔は円形であることが好ましいが、必要に応じて別の形状をもつことができ、等しいか不等の寸法をもつことができ、好ましくは約1〜15μmの間、さらに好ましくは約5〜11μmの間の直径d(図5)のような最大寸法を有することができる。それぞれの側に1つの孔だけが示されるが、楕円形状を生じ、動作波長帯域内で単一偏波を与えるために、それぞれの側に沿う複数の孔が作用することができる。
外部クラッド層36は環状扁平クラッド層領域12を囲み、これに接していることが好ましい。外部クラッド層36は約125μmの通常の外直径を有することが好ましく、好ましくは実質的に純シリカの組成を有する。必要に応じて、外部クラッド層36はフッ素のようなその他の適するドーパントを含むことができ、外直径は、寸法上の制限からそのように規定されていれば、小さくすることができる。
X-X軸及びY-Y軸に沿う単一偏波ファイバ30の相対屈折率プロファイルの概要図がそれぞれ図3及び4に示される。これらのグラフは(μm単位の)ファイバ半径に対してグラフ化された相対屈折率パーセント(Δ%)を示し、そのような軸のそれぞれに沿うプロファイルにおけるPDL差を明瞭に示す。詳しくは、グラフは、中心コア34の最大相対屈折率Δ1,孔26の(その深さのために切頭された)相対屈折率及び環状扁平クラッド層領域12の最大相対屈折率Δ2を示す。近似的に空気の相対屈折率n空気=1.0であり、したがって、Δ%は大きく負である(約−54%と評価される)。プロファイルの破線部分38は(破線38で示される−図2を見よ)部分32が円形状を有するファイバ30を表す。すなわち、それぞれの軸に沿う屈折率プロファイルは非常に異なることが容易に認められるはずである。ファイバ30の長さは約10cmから1mの範囲にあるように設計され、十分な偏波依存損失(PDL)差は単一偏波波長範囲にわたって70dBより大きい。
図7を参照すれば、単一偏波ファイバ30の別の実施形態が示されている。ファイバ30は、楕円形状の中心コア34,楕円コアの短径に横付けして中心コアの両側に配置された円形断面空気孔24,26,環状扁平クラッド層領域12及び外部クラッド層領域36を有する。この実施形態において、孔24,16は一部が環状扁平クラッド層領域12に形成され、一部が外部クラッド層36に形成される。環状扁平クラッド層領域12は約−0.4%のΔ%を与えるに十分にフッ素ドープされる。外部クラッド層36は純シリカでつくられることが好ましい。上で与えられた、d(孔の直径)、最大及び最小寸法A及びB,及び環状領域の直径Dの範囲はこの実施形態に等しく適する。
図8を参照すれば、単一偏波ファイバ30のまた別の実施形態が示されている。この実施形態において、ファイバ30は、楕円形状の中心コア34,楕円コアの短径に横付けして中心コアの両側に配置された円形空気孔24,16及びクラッド層領域22を有する。この実施形態において、孔24,26は環状領域12内に形成されるが、環状領域12はクラッド層22と同じ材料でつくられ、この材料は純シリカであることが好ましい。破線38は孔24,26の最外部より大きい半径に配置されたコアとクラッド領域の間の界面を示す。ファイバ30のこの実施形態において、コアΔ%,Δ1は単層クラッド版の単一偏波ファイバレーザまたは増幅器に対して約1.6%であることが好ましい。内部クラッド層22は円形で示されているが、他の実施形態と同様に、楕円形状またはNAが0.3で断面が200×400平方μmの矩形の矩形状とすることができる。さらに、必要に応じて、外部クラッド層36が付加されたデュアルクラッド版の単一偏波ファイバレーザまたは増幅器を実施することができる。
本発明の実施形態にしたがう単一偏波ファイバ30はそれぞれ、所望のSPB48(図6を見よ)内で単一偏波(1つの、しかも1つだけの、偏波モードの透過)を可能にする光学特性を示す。本発明にしたがう単一偏波ファイバ30のSPB48は、約800〜1600nmの間にあるように設計されることが好ましい。最も好ましくは、ファイバのSPB48は、980,1060,1080,1310または1550nmで動作する光コンポーネントとともに容易に用いることができるように、980,1060,1080,1310または1550nmに一致するように設計されるであろう。特に、本発明の教示にしたがえば、SPBの中心波長は、図1の入力ミラーまたは回折格子60によって選択すなわち同調される結果、ファイバレーザまたは増幅器の動作波長の中心波長と実質的に(約±20nmの範囲内で)一致することが好ましい。さらに、本発明にしたがうPZファイバ30は、978nmにおいて好ましくは15dB以上、さらに好ましくは20dB以上の消光比をSPB48内で示すことが好ましい。
実験例1
図7に示される断面構造を有する、本発明にしたがう第1の代表的な単一偏波ファイバ30を作成した。ファイバ30は、約5.33μmの平均直径d平均、約7.75μmの最大寸法A,約2.9μmの最小寸法B−この結果第1のアスペクト比A/Bは約2.7に等しい、1.1%の中心コアΔ%,Δ1及びαが約2のαプロファイルを有する、中心コア34を有する。孔24,26は一部が環状領域12に含まれ、一部がクラッド層22に含まれる。孔24,26の平均直径は約8.3μmである。環状領域12はフッ素ドープし、よって純シリカクラッド層22に対して扁平になっている。環状領域12の相対屈折率Δ2は−0.4%であり、環状領域12の外直径Dは約16μmであった。この実施形態において孔24,26は中心コア34の側面に実質的に接している。試験した単一偏波ファイバ30は、例えば、978nmの波長において、1.51mの長さにかけて約38.6dBの消光比ERを示した。SPB48においてERは約15dBであった。ファイバ長のビート長は4.21mmであることがわかった。長さ1.45mについて978nmで測定した減衰は0.027dB/mであった。
実験例2及び3
実験例2及び3では同じファイバの長さに沿う(実験例1の長さから隔てられた)別の部分を試験し、若干異なる性能結果を得た。発明者等は、ファイバの長さに沿うこの特性変動が主に、量産ファイバにおいてはかなりよく制御されているであろう、原型ファイバにおけるプロセス制御変動によると判断した。
実験例4
表2に別の実験試料が実験例4として示される。本実験例において、コアΔ%,Δ1は2.0%であり、Δ2は−0.4%であった。本実験例において、平均コア直径d平均({A+B}/2)は約4μmであって、アスペクト比AR1は約3.2であった。平均孔直径及びその他のファイバパラメータは実験例1と同様である。この例で実証されるように、中心コアの相対屈折率を2.0%まで高めると、相対屈折率が1.1%の場合に比較して、単一偏波(SP)帯域幅が42nmまで広がった。
上述した単一偏波ファイバ及び別の実験ファイバの光学特性が表2に与えられる。
Figure 0005247030
図6を参照すれば、ファイバ30の相異なる偏波モード45,50に対する透過パワー(dB)対波長(nm)の線を示すことによって、図7の実験例1ファイバに対する単一偏波帯域幅(SPB)を表すグラフが示される。詳しくは、第1の偏波45及び第2の偏波50が測定されて波長の関数としてプロットされている。
978nmにおける消光比は、帯域幅が0.5nmの978nm単一波長ポンピングレーザからの光信号に短ファイバ長を通過させ、次いで978nmの波長で透過したパワーを測定することによって求めた。同様に、SPB内において同様の方法でERを測定することができる。入力端において、複屈折軸のそれぞれ1つに順次に偏光子を合せながら、ファイバの出力端において2つの偏波にともなう透過パワーを測定した。消光比ERは式:
ER=10logp1/p2
を用いて決定した。ここで、
p2は第2の偏波におけるパワーであり、
p1は第1の偏波におけるパワーである。
光源のスペクトルにおける変調周期Δλ及びファイバ長Lを決定することにより、波長走査法を用いてビート長LBも測定した。2つの偏光子をファイバの前及び後に挿入した。ビート長LBは式:
LB={ΔλL}/λ
にしたがって計算される。ここでλは光源の中心波長(nm)である。この測定においては、広帯域ASE源を用い、フーリエ変換を行うことによって変調周期を得た。ASE源の波長は970〜1020nmであり、中心波長は980nmであった。測定したビート長は4.21mmであった。
同様に、第1の偏波のカットオフ波長λ1,第2の偏波のカットオフ波長λ2及び単一偏波帯域幅(2つの偏波モードのカットオフ波長間の差)を決定した。それぞれの測定に対し、300〜2000nmにおいて平坦なスペクトルをもつ非偏光白色光源を用いた。次いで偏光子を光入射端に挿入し、消光比の測定から決定された2つの偏波軸に設定して、それぞれの偏波に対するカットオフ試験を行った。
単一偏波ファイバの減衰は、ファイバの第1の長さ(ほぼ3m)についてパワーp1を測定し、次いでファイバを切断して長さを短く(ほぼ1m)してパワーp2を測定することによって測定する。次いで減衰を:
減衰=[10logp1−10logp2]/L
として計算する。ここでLは取り除かれた長さである。減衰は978nmで測定する。
図9を参照すれば、本明細書に説明される単一偏波ファイバの実施形態にしたがう単一偏波ファイバ30を用いている一システム40が示されている。システム40は、本発明にしたがうファイバ30を有するかまたはファイバ30に接続されている、レーザ、ジャイロスコープ、センサ、変調器、ビームスプリッタ、偏波マルチプレクサ等のような、光デバイス42を備える。ファイバ30及び光コンポーネント42はさらにハウジング44に収めることができ、ハウジング44内にはサブコンポーネントを収めることができる。
図10を参照すれば、本発明の実施形態にしたがうファイバ30が光コンポーネント42a,42b間に接続され、ファイバ及び光コンポーネントが必要に応じてハウジング44内に収められる、システム140が示されている。
図11を参照すれば、本発明の実施形態にしたがうファイバ30が光コンポーネント42に接続され、ファイバ30が必要に応じて図1に例示されているように別のタイプのファイバ20に光結合されている、システム240が示されている。SPファイバ30と別のタイプのファイバ20の接続は、図13に示されているように、図9〜11の任意の順序の様々な組合せで行い得ることが理解されるであろう。
図12を参照すれば、単一直線偏波イッテルビウムドープファイバレーザを提供するために、受動単一偏波(SP)ファイバ30'に融着接続されたYbドープ利得ファイバ20の10mファイバ区画を980nmで非偏光ポンピング光72が光ポンピングする。2重クラッド実施形態に対して、ポンピング光72は、受動(アンドープ)単一偏波ファイバ30'に融着接続された、楕円コアを有する複屈折性イッテルビウムドープファイバ20を有するレーザキャビティ46をポンピングする。ドープトファイバ区画20及びアンドープSPファイバ区画30'で形成された線形複屈折性及び直線2色性を有するファイバの光ポンピングから得られた直線偏波イッテルビウムドープファイバレーザは、この例示的実施形態において30dBより大きい偏波消光比を示した。
すなわち、図1におけるような前方ポンピング方向におけるドープトファイバ区画20及びアンドープSPファイバ区画30'で形成された線形複屈折性及び直線2色性を有するファイバの光ポンピングだけで、直線偏波イッテルビウムドープファイバレーザを得ることができる。しかし、後方反射も可能であることを示すため、図12にはさらに素子が付加されている。500mの偏波保存PMファイバ区画20'は、コーニングインコーポレーテッド(Corning Incorporated)から市販されている、イッテルビウムがドープされていないPANDAファイバである。レーザキャビティ46の前面における偏光ビームスプリッタ132及びλ/2波長板134の組込みによって、単一偏波動作が導入される。楕円コア利得ファイバ20及び単一偏波ファイバ30を有するキャビティ46を非偏光ポンピング源すなわちポンピングレーザ72からの非偏光によってポンピングした。測定した消光比は1000:1をこえていた。
10mの利得ファイバ20に重量で6000ppmのイッテルビウムをドープした。寸法が7.9μm×3.5μmの楕円コアで複屈折を得た。この複屈折は1μmにおいて7mmの群偏波ビート長に相当した。ポンピングレーザ72は、(当時はコーニング−レーザトロン(Corning-Lasertron)から入手できた)約974.5nmで動作する高パワー(500mW)単ストライプレーザダイオードとした。ポンピング光を、ビームスプリッタ132及び波長板134を介して500m長偏波保存ファイバ(コーニングPM980)20'の偏波軸に対し45°で入射させることによって、減偏光した。得られたポンピング光の偏光度は1%より小さかった。
アンドープ単一偏波ファイバ30'は基本横モードに対して偏波依存伝搬カットオフ波長を有していた。このカットオフ差により、単一偏波だけが伝搬するための(図6における帯域幅と同様の)波長範囲があった。
Ybドープ楕円コアファイバ20の10m長区画をアンドープ単一偏波ファイバ30'に融着接続することによってレーザキャビティ46を構成した。偏波保存ファイバのためこれら2つのファイバの偏波固有軸をスプライサー17(フジクラ40-PM)で揃えた。接合点において楕円コアファイバ20及び単一偏波ファイバ30を回転し、出力においてアナライザ偏光子126を回転することによって、ゼロ透過を検出した。評価した楕円コアファイバ20と単一偏波ファイバ30'の間の接続損失は1dBより小さかった。
ファイバレーザの動作波長が単一偏波ファイバ30'の単一偏波帯域幅48内にあることを保証するため、キャビティ46内にバルク型1080nmバンドパスフィルタ60'をおいた。ファブリ−ペロファイバキャビティ46の境界を、一端は金被覆高反射器60(R>99.9%)により、他端はファイバファセット−空気界面の3.5%フレネル反射によって定めた。レンズ138は透明であり、そのように形成された線形複屈折性及び直線2色性を有するファイバ20及び30'に光を、またそれらからの光を、結合するために用いた。反射は、一端における金ミラー60及びポンピング光入力端におけるファイバ−空気界面62による反射だけである。
ポンピング光/信号光経路に顕微鏡カバースライド136を斜めにおくことによって、ファイバレーザのポンピング端でレーザ出力66をとった。スプリアス偏波効果を避けるためブルースター角とは大きく異なる角度で配置することに注意を払った。
レーザは約150mWの入射パワーにおいて50mWの出力を生じた。最高出力パワーを得るためのキャビティ最適化は行っていない。直線偏光を高率で含む出力を生じるに必要な最小長を決定するために単一偏波ファイバを切り縮めた。
図13を参照すれば、単一偏波ファイバ30の長さの関数としての偏波消光比が示されている。例えば、5m長単一偏波ファイバ30を用いて30dBの消光比が得られた。得られたファイバレーザに対する、それぞれの直交偏波軸についての出力スペクトルが図14に示される。
図15を参照すれば、単一偏波ファイバ30は偏波依存カットオフ波長を示した。ファイバ長の関数としてのそれぞれの偏波固有モードに対するカットオフ波長が図16に示される。与えられた長さに対する、このファイバの偏波波長帯域は図16または15における2つの波長(カットオフ1及びカットオフ2)の間の差で表される。例えば、2m長ファイバについては、図6と同様の単一偏波帯域幅48としての1070〜1117nmの波長範囲において単一偏波だけがこのファイバ30内を伝搬するであろう。したがって、バンドパスフィルタで選択された約1070nmの波長の周りにおいて、約1070〜1071nmのレーザ利得帯域幅が1070〜1117nmの単一偏波波長範囲の端に重なることが、図14からわかる。
長さの関数としての単一偏波ファイバ30'の効果を調べるため、単一偏波通過帯域48の短波長端である1070nmで動作させるようにレーザを選んだ。この1070nm波長は1080nmバンドパスフィルタの入射角を伝搬しているキャビティ内ビームに対して回転させることによって得た。図15から、この場合は、偏波依存損失の長さ依存性は単一偏波ウインドウ48の中心より大きくなる。図13に示されるように、20dBより大きな消光比が1mのような短い単一偏波ファイバ30'長によって得られた。
したがって、ドープト楕円コアファイバ区画20に付加されたアンドープ単一偏波ファイバ30の使用によって、直線偏波ファイバレーザを実施することができる。測定した直線偏波度は1000:1をこえていた。このファイバレーザは、より精妙な波長選択性帰還を与えて様々な位置で単一偏波波長範囲と重なるように利得帯域幅を合せ込むための、ファイバ回折格子の使用によってさらに最適化することができる。
本発明の範囲を逸脱することなく本発明に変形及び改変がなされ得ることが当業者には明らかであろう。したがって、本発明の改変及び変形が添付される特許請求項及びそれらの透過物の範囲内にはいれば、本発明はそれらの改変及び変形を包含するとされる。
本発明のいくつかの部分はDARPAに認められた契約第MDA-972-02-3-004の下で米国政府の援助によってなされた。米国政府は本発明の特許請求項の内のいくつかに一定の権利を有し得る。
本発明にしたがう、ファイバレーザとしての使用のための能動ポンピング光源42のような光コンポーネントに光結合されているか、あるいは増幅器としての使用のために能動励起ポンピング光源42自体として用いられる、単一偏波光能動光ファイバを備えるシステムの略図である 本発明にしたがう図1の単一偏波光能動光ファイバ30の第1の実施形態の断面図である 本発明にしたがう、図2の軸X−Xに沿ってとられた第1の実施形態の屈折率プロファイルの概念図である 本発明にしたがう、図2の軸Y−Yに沿ってとられた第1の実施形態の屈折率プロファイルの概念図である 本発明にしたがう単一偏波光ファイバの第1の実施形態の拡大された部分断面図である 本発明にしたがう、図1のレーザとして動作させる、単一偏波光ファイバ30の利得帯域幅650内の第2の偏波50のカットオフ波長に中心がおかれた入力ミラー60の代表的な回折格子フィルタ帯域幅を示すグラフと揃えられた単一偏波光ファイバ30の一実施形態の単一偏波の代表的な波長帯域を示すグラフである 本発明の実施形態にしたがう図1の単一偏波光ファイバ30の第2の実施形態の断面図である 本発明の実施形態にしたがう図1の単一偏波光ファイバ30の第3の実施形態の断面図である 光コンポーネントに光結合されている本発明の実施形態にしたがう単一偏波光能動光ファイバ30を備えるシステムの略図である 光コンポーネントに光結合されている本発明の実施形態にしたがう単一偏波光能動光ファイバ30を備えるシステムの略図である 光コンポーネントに光結合されている本発明の実施形態にしたがう単一偏波光能動光ファイバ30を備えるシステムの略図である 光コンポーネントに光結合されている本発明の別の実施形態にしたがう光能動型の線形複屈折性及び直線2色性を有するファイバを形成するために、ファイバ区画のドープト楕円コアをもつ単一偏波光ファイバのアンドープ版30'を含むレーザキャビティの略図である 本発明にしたがう図12の単一偏波ファイバ30'についての長さの関数としての消光比のグラフである 本発明にしたがう図12のレーザについての直交偏波軸に対する出力スペクトルのグラフである 本発明にしたがう図12の単一偏波ファイバ30'のそれぞれの偏波についての基本モードカットオフスペクトルのグラフである 本発明にしたがう、長さの関数としての、図15の単一偏波ファイバ30'のそれぞれの偏波についての基本モードカットオフスペクトルのグラフである
符号の説明
12 環状扁平クラッド層領域
20 単一モードファイバ
22 コア/クラッド界面
24,26 孔
30 単一偏波ファイバ
34 コア
48 単一偏波波長範囲
90 活性ドーパント
650 動作波長範囲

Claims (7)

  1. 光能動単一直線偏波デバイスであって、当該光能動単一直線偏波デバイスが、
    光を伝搬するための、単一偏波波長範囲を持つ、線形複屈折性及び直線2色性を有する光導波路、及び
    前記単一偏波波長範囲に重なる動作波長範囲における前記導波路の動作を提供するための、前記線形複屈折性及び直線2色性を有する光導波路の一部に配された複数の活性ドーパント、
    を有してなるものであり、
    前記導波路が、第1の直線偏波固有モードにともなう光ファイバ偏波成分及び第2の直線偏波固有モードにともなう光ファイバ偏波成分を有する偏波保存(PM)ファイバを有し、偏波依存損失(PDL)差が導波路長にかけて前記第1の偏波モードと前記第2の偏波モードの間に累積され、前記第1の偏波モードが第1のカットオフ波長において第1の3dB減衰を有し、前記第2の偏波モードが第2のカットオフ波長において第2の3dB減衰を有し、よって前記第1のカットオフ波長と前記第2のカットオフ波長の間の単一偏波中心波長を有する前記単一偏波波長範囲を与え、前記第1のカットオフ波長が前記第2のカットオフ波長より小さく、前記単一偏波中心波長が前記動作波長範囲の中心波長に近いこと、
    前記光ファイバが、実質的に楕円の形状を有する光能動ドープト中心コアを有し、前記光ファイバが前記中心コアの両側のそれぞれに配置された少なくとも1つの空気孔を有し、当該空気孔の各々の縁が前記中心コアから3μm以内に位置し、当該空気孔の中心を通る線が、前記中心コアが最小寸法を有する軸と実質的に一直線に合わせられ、前記光ファイバが前記動作波長範囲内で単一偏波モードをサポートすること、及び、
    前記導波路長が5cmから1mの範囲にあり、前記偏波依存損失(PDL)差が前記単一偏波波長範囲にわたり3dBより大きいことを特徴とする単一偏波デバイス。
  2. 前記複数の活性ドーパントを励起するための前記導波路に結合されたポンピング信号をさらに有し、前記複数の活性ドーパントが、前記動作波長範囲において出力光を放射するための、前記導波路のための利得媒質を提供することを特徴とする請求項1に記載の単一偏波デバイス。
  3. 前記単一偏波デバイスが、波長選択フィルタを更に有してなり、前記利得媒質から放射される前記出力光が前記波長選択フィルタの所定の挟帯域波長範囲によって前記所定の挟帯域波長範囲にわたる帰還を提供するために選択的にフィルタリングされる広帯域光であり、前記所定の挟帯域波長範囲が前記単一偏波波長範囲内に包含されることを特徴とする請求項2に記載の単一偏波デバイス。
  4. 前記線形複屈折性及び直線2色性を有する光導波路が10−6より大きい複屈折を有する高複屈折性ファイバを含むことを特徴とする請求項1に記載の単一偏波デバイス。
  5. 前記線形複屈折性及び直線2色性を有する光導波路がアンドープ単一偏波ファイバに接続された利得ドープ楕円コアファイバを含むことを特徴とする請求項1に記載の単一偏波デバイス。
  6. 前記波長選択フィルタがファイバブラッグ回折格子を含むことを特徴とする請求項3に記載の単一偏波デバイス。
  7. 請求項1記載の単一偏波デバイスを備えるシステムにおいて、前記導波路の動作の提供が利得の提供を含むことを特徴とするシステム。
JP2006538023A 2003-10-30 2004-10-07 単一偏波光ファイバレーザ及び増幅器 Expired - Fee Related JP5247030B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/696,928 US7120340B2 (en) 2003-06-19 2003-10-30 Single polarization optical fiber laser and amplifier
US10/696,928 2003-10-30
PCT/US2004/032950 WO2005043700A2 (en) 2003-10-30 2004-10-07 Single polarization optical fiber laser and amplifier

Publications (2)

Publication Number Publication Date
JP2007510182A JP2007510182A (ja) 2007-04-19
JP5247030B2 true JP5247030B2 (ja) 2013-07-24

Family

ID=34550231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006538023A Expired - Fee Related JP5247030B2 (ja) 2003-10-30 2004-10-07 単一偏波光ファイバレーザ及び増幅器

Country Status (7)

Country Link
US (2) US7120340B2 (ja)
EP (1) EP1678794A2 (ja)
JP (1) JP5247030B2 (ja)
CN (1) CN100446357C (ja)
AU (1) AU2004307401A1 (ja)
TW (1) TWI247146B (ja)
WO (1) WO2005043700A2 (ja)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6943881B2 (en) * 2003-06-04 2005-09-13 Tomophase Corporation Measurements of optical inhomogeneity and other properties in substances using propagation modes of light
CN100388030C (zh) * 2003-06-19 2008-05-14 康宁股份有限公司 单偏振光纤和系统以及其制造方法
US20050063712A1 (en) * 2003-09-22 2005-03-24 Rice Robert R. High speed large core multimode fiber optic transmission system and method therefore
WO2005082801A2 (en) 2004-02-20 2005-09-09 Corning Incorporated Optical fiber and method for making such fiber
US7315699B2 (en) * 2004-04-26 2008-01-01 Lucent Technologies Inc. Optical device for extracting a sideband signal from a composite signal including orthogonally modulated signals
US6970632B2 (en) * 2004-05-03 2005-11-29 Corning Incorporated Solid type single polarization fiber and apparatus
US8498681B2 (en) * 2004-10-05 2013-07-30 Tomophase Corporation Cross-sectional mapping of spectral absorbance features
US7970458B2 (en) * 2004-10-12 2011-06-28 Tomophase Corporation Integrated disease diagnosis and treatment system
US7203407B2 (en) * 2004-10-21 2007-04-10 Corning Incorporated Rare earth doped single polarization double clad optical fiber and a method for making such fiber
US7280728B2 (en) * 2004-10-22 2007-10-09 Corning Incorporated Rare earth doped single polarization double clad optical fiber with plurality of air holes
US7720323B2 (en) * 2004-12-20 2010-05-18 Schlumberger Technology Corporation High-temperature downhole devices
US20060139727A1 (en) * 2004-12-28 2006-06-29 Rachid Gafsi Hybrid fiber polarization dependent isolator, and laser module incorporating the same
US7236672B2 (en) * 2005-03-30 2007-06-26 Corning Incorporated Optical systems utilizing optical fibers transmitting high power signal and a method of operating such systems
EP1898504A1 (en) * 2005-06-07 2008-03-12 The Furukawa Electric Co., Ltd. Light source
US7831298B1 (en) * 2005-10-04 2010-11-09 Tomophase Corporation Mapping physiological functions of tissues in lungs and other organs
FR2896315B1 (fr) * 2005-11-08 2010-09-17 Cit Alcatel Fibre optique amplificatrice
US7382957B2 (en) 2006-01-30 2008-06-03 Corning Incorporated Rare earth doped double clad optical fiber with plurality of air holes and stress rods
US8498046B2 (en) * 2008-12-04 2013-07-30 Imra America, Inc. Highly rare-earth-doped optical fibers for fiber lasers and amplifiers
JP2007273600A (ja) * 2006-03-30 2007-10-18 Furukawa Electric Co Ltd:The 光ファイバレーザ
US7289263B1 (en) 2006-08-02 2007-10-30 Coherent, Inc. Double-pass fiber amplifier
US8103142B2 (en) * 2007-02-05 2012-01-24 Ofs Fitel, Llc Preventing dielectric breakdown in optical fibers
US8180185B2 (en) * 2007-03-22 2012-05-15 General Electric Company Fiber optic sensor for detecting multiple parameters in a harsh environment
US7706646B2 (en) * 2007-04-24 2010-04-27 Tomophase Corporation Delivering light via optical waveguide and multi-view optical probe head
DE102007022561B4 (de) * 2007-05-14 2010-09-16 Meos Ag Aktiver Rotationssensor
KR101137658B1 (ko) 2007-06-19 2012-04-20 닛토덴코 가부시키가이샤 편광 섬유, 편광자, 편광판, 적층 광학 필름 및 화상 표시 장치
WO2009016703A1 (ja) * 2007-07-27 2009-02-05 Mitsubishi Electric Corporation 平面導波路型レーザ装置
JP2009059953A (ja) * 2007-08-31 2009-03-19 Furukawa Electric Co Ltd:The 光ファイバレーザ
JP4981632B2 (ja) * 2007-11-16 2012-07-25 三菱電線工業株式会社 ダブルクラッドファイバのファイバ端部加工方法
US8452383B2 (en) * 2008-02-29 2013-05-28 Tomophase Corporation Temperature profile mapping and guided thermotherapy
US9450373B2 (en) * 2009-03-05 2016-09-20 Lawrence Livermore National Security, Llc Apparatus and method for enabling quantum-defect-limited conversion efficiency in cladding-pumped Raman fiber lasers
US8467858B2 (en) * 2009-04-29 2013-06-18 Tomophase Corporation Image-guided thermotherapy based on selective tissue thermal treatment
WO2011028628A2 (en) 2009-08-26 2011-03-10 Tomophase Corporation Optical tissue imaging based on optical frequency domain imaging
FR2952243B1 (fr) * 2009-11-03 2012-05-11 Univ Bordeaux 1 Source optique mettant en oeuvre une fibre dopee, fibre pour une telle source optique et procede de fabrication d'une telle fibre
US8274400B2 (en) * 2010-01-05 2012-09-25 Schlumberger Technology Corporation Methods and systems for downhole telemetry
WO2012075474A2 (en) * 2010-12-02 2012-06-07 Ofs Fitel, Llc Dfb fiber laser bend sensor and optical heterodyne microphone
US10095016B2 (en) 2011-01-04 2018-10-09 Nlight, Inc. High power laser system
EP2620793A1 (en) * 2012-01-26 2013-07-31 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Transversal load insensitive optical waveguide, and optical sensor comprising a wave guide
CN103257393B (zh) * 2012-10-30 2015-03-04 长飞光纤光缆股份有限公司 一种大有效面积光纤
US20140198317A1 (en) * 2013-01-13 2014-07-17 Honeywell International Inc. Stablized pump laser with output reflector on polarizing optical fiber
US9310248B2 (en) 2013-03-14 2016-04-12 Nlight, Inc. Active monitoring of multi-laser systems
TWI583347B (zh) * 2013-09-14 2017-05-21 明達醫學科技股份有限公司 光學裝置之光源模組及其運作方法
JP2015184371A (ja) * 2014-03-20 2015-10-22 株式会社フジクラ 偏波保持光ファイバ
CN104359892B (zh) * 2014-11-20 2017-03-29 福建师范大学 一种不同模态分子振动光谱检测与成像装置
US10866125B2 (en) * 2016-02-16 2020-12-15 National Research Council Of Canada Low insertion loss high temperature stable fiber Bragg grating sensor and method for producing same
CN106772812A (zh) * 2016-12-19 2017-05-31 中国电子科技集团公司第四十六研究所 一种具有吸光涂覆层的单偏振光纤偏振器结构
US10454607B2 (en) * 2017-02-23 2019-10-22 Corning Incorporated Mode division multiplexing systems and methods using a rectangular-core optical fiber
JP7133328B2 (ja) * 2017-03-22 2022-09-08 株式会社フジクラ 偏波保持ファイバ、光デバイス、偏波保持ファイバの母材、及び製造方法
JP2019066629A (ja) * 2017-09-29 2019-04-25 株式会社フジクラ 基板型光導波路及び導入方法
CN108957626B (zh) * 2018-06-19 2020-09-08 全球能源互联网研究院有限公司 一种反馈式传能光纤及光纤传能系统、装置
CN109143458B (zh) * 2018-08-23 2020-05-15 哈尔滨工程大学 一种在线可调谐双芯光纤偏振器
US11912606B2 (en) * 2019-04-08 2024-02-27 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Infrared-transmitting, polarization-maintaining optical fiber and method for making
US20230074977A1 (en) * 2020-01-30 2023-03-09 Nlight, Inc. Multi-band pumping of doped fiber sources
CN111239910B (zh) * 2020-03-23 2021-02-09 北京大学 一种光子灯笼型简并模组复用/解复用器及传输方法
CN111600185B (zh) * 2020-06-05 2021-03-05 中国科学院半导体研究所 双偏振光纤放大器
EP4300728A1 (en) * 2021-02-24 2024-01-03 Fujikura Ltd. Fiber laser
US11675123B2 (en) 2021-09-09 2023-06-13 Cisco Technology, Inc. Radiation-induced birefringence in polarization-maintaining fiber

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US86668A (en) * 1869-02-09 Improvement in shuttle-guide for looms
US172486A (en) * 1876-01-18 Improvement in keys for piano-fortes
US152115A (en) * 1874-06-16 Improvement in lamps for heating
US196992A (en) * 1877-11-13 Improvement in touristss albums
JP2579484B2 (ja) * 1987-05-22 1997-02-05 日本電信電話株式会社 希土類添加光フアイバレ−ザ
US5166940A (en) * 1991-06-04 1992-11-24 The Charles Stark Draper Laboratory, Inc. Fiber laser and method of making same
US5166910A (en) * 1991-10-15 1992-11-24 Atlantic Richfield Company Method and apparatus for measuring the acoustic velocity
US5513913A (en) * 1993-01-29 1996-05-07 United Technologies Corporation Active multipoint fiber laser sensor
JPH06291392A (ja) * 1993-04-06 1994-10-18 Hitachi Cable Ltd 光ファイバ増幅器
FR2720198B1 (fr) * 1994-05-20 1996-07-19 France Telecom Laser à fibre optique polarisé linéairement.
US5511083A (en) 1995-03-02 1996-04-23 United Technologies Corporation Polarized fiber laser source
US5546481A (en) 1995-03-02 1996-08-13 United Technologies Corporation Single polarization fiber and amplifier
NO302441B1 (no) * 1995-03-20 1998-03-02 Optoplan As Fiberoptisk endepumpet fiber-laser
US5912910A (en) * 1996-05-17 1999-06-15 Sdl, Inc. High power pumped mid-IR wavelength systems using nonlinear frequency mixing (NFM) devices
US6212310B1 (en) 1996-10-22 2001-04-03 Sdl, Inc. High power fiber gain media system achieved through power scaling via multiplexing
CA2279420C (en) * 1997-02-13 2007-11-06 Ionas A/S Polarisation asymmetric active optical waveguide, method of its production, and its uses
DE19860410A1 (de) * 1998-12-28 2000-06-29 Abb Research Ltd Faserlaser-Sensor zur Messung von differentiellen Drücken und von Strömungsgeschwindigkeiten
US6370180B2 (en) * 1999-01-08 2002-04-09 Corning Incorporated Semiconductor-solid state laser optical waveguide pump
WO2000060390A1 (en) * 1999-03-30 2000-10-12 Crystal Fibre A/S Polarisation preserving optical fibre
US6324326B1 (en) * 1999-08-20 2001-11-27 Corning Incorporated Tapered fiber laser
JP2001267665A (ja) * 2000-03-16 2001-09-28 Sumitomo Electric Ind Ltd 光増幅用光ファイバ、光ファイバ増幅器および光ファイバレーザ発振器
EP1197738A1 (de) * 2000-10-18 2002-04-17 Abb Research Ltd. Anisotroper Faserlaser-Sensor mit verteilter Rückkopplung
US6954575B2 (en) * 2001-03-16 2005-10-11 Imra America, Inc. Single-polarization high power fiber lasers and amplifiers
US6563995B2 (en) 2001-04-02 2003-05-13 Lightwave Electronics Optical wavelength filtering apparatus with depressed-index claddings
US6658171B2 (en) 2001-06-14 2003-12-02 Ericsson Telecomunicacoes S.A. Optical fiber bragg grating polarizer
US6825974B2 (en) 2001-11-06 2004-11-30 Sandia National Laboratories Linearly polarized fiber amplifier
US6816514B2 (en) * 2002-01-24 2004-11-09 Np Photonics, Inc. Rare-earth doped phosphate-glass single-mode fiber lasers
US7430081B2 (en) * 2002-02-28 2008-09-30 Emcore Corporation Sub-micron adjustable mount for supporting a component and method

Also Published As

Publication number Publication date
US7496244B2 (en) 2009-02-24
TWI247146B (en) 2006-01-11
JP2007510182A (ja) 2007-04-19
US20090003753A1 (en) 2009-01-01
WO2005043700A3 (en) 2005-09-15
US7120340B2 (en) 2006-10-10
CN100446357C (zh) 2008-12-24
CN1894831A (zh) 2007-01-10
TW200528781A (en) 2005-09-01
AU2004307401A1 (en) 2005-05-12
EP1678794A2 (en) 2006-07-12
US20040258377A1 (en) 2004-12-23
WO2005043700A2 (en) 2005-05-12

Similar Documents

Publication Publication Date Title
JP5247030B2 (ja) 単一偏波光ファイバレーザ及び増幅器
US6825974B2 (en) Linearly polarized fiber amplifier
JP5899084B2 (ja) 偏光保持モードロックファイバレーザ発振器
US7724422B2 (en) Method and apparatus for providing light having a selected polarization with an optical fiber
US6563995B2 (en) Optical wavelength filtering apparatus with depressed-index claddings
DK2082462T3 (en) PHOTONIC BAND FIBER AND FIBER AMPLIFIER
US20060171426A1 (en) Fiber-laser with intracavity polarization maintaining coupler providing plane polarized output
JP2016129252A (ja) シングルモード動作を維持したままクラッド吸収を増加させたダブルクラッドの利得をもたらすファイバ
JP2843478B2 (ja) 光学信号を制御するための装置および光学導波路中の光学信号を制御する方法
US6282016B1 (en) Polarization maintaining fiber lasers and amplifiers
EP1733460A2 (en) Method and apparatus for providing light having a selected polarization with an optical fiber
Machewirth et al. Large-mode-area double-clad fibers for pulsed and CW lasers and amplifiers
CA2004716C (en) Superfluorescent broadband fiber laser source
JP2753539B2 (ja) 光ファイバ増幅器
Peterka et al. Optical Amplification
JP4194763B2 (ja) 偏光および波長の安定した超蛍光ソース
US8654800B2 (en) Method and apparatus for controlling mode coupling in high power laser system
Honzatko et al. Preparation and characterization of highly thulium-and alumina-doped optical fibers for single-frequency fiber lasers
JP2019535118A (ja) Nd3+ファイバレーザおよびアンプ
JPS63289981A (ja) 希土類添加光フアイバレ−ザ
JP4809554B2 (ja) 半導体レーザモジュール及びこれを用いたラマン増幅器
Martinez-Rios et al. Double-clad Yb3+-doped fiber lasers with virtually non-circular cladding geometry
Nagel Methods for Managing Stimulated Brillouin Scattering in Narrow Linewidth Fiber Raman Amplifiers
Kozlov et al. Single-mode-fiber to thin film optical waveguide couplers using bulk laser crystals
Fitzau et al. Experimental and theoretical studies on kW class polarized fiber lasers for cw operation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100506

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100513

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100602

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100609

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100702

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110921

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110929

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111021

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130104

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees