JP5223883B2 - 固体撮像素子 - Google Patents

固体撮像素子 Download PDF

Info

Publication number
JP5223883B2
JP5223883B2 JP2010113720A JP2010113720A JP5223883B2 JP 5223883 B2 JP5223883 B2 JP 5223883B2 JP 2010113720 A JP2010113720 A JP 2010113720A JP 2010113720 A JP2010113720 A JP 2010113720A JP 5223883 B2 JP5223883 B2 JP 5223883B2
Authority
JP
Japan
Prior art keywords
solid
photoelectric conversion
imaging device
opening
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010113720A
Other languages
English (en)
Other versions
JP2010226126A (ja
Inventor
良幸 北澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2010113720A priority Critical patent/JP5223883B2/ja
Publication of JP2010226126A publication Critical patent/JP2010226126A/ja
Application granted granted Critical
Publication of JP5223883B2 publication Critical patent/JP5223883B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Description

本発明は、裏面照射型の固体撮像素子に関する。
従来のCMOSセンサあるいはCCDセンサ等の固体撮像素子においては、半導体基板に画素となる光電変換部が形成され、光電変換部の信号電荷を読み出す手段等の半導体パターンを形成した基板主面側にカラーフィルタ及びオントップレンズを形成して、基板表面側から光を入射する方式が最も一般的である。しかし、この表面照射型の例えばCMOS型固体撮像素子では、半導体ウェハ表面に配線層、遮光層、あるいはゲート電極などが配置されていることから、光電変換部以外のパターン面積によって光電変換部であるフォトダイオードの開口率が低下し、取り扱い電荷量及び感度が低下するという問題があった。また、配線層、遮光層、あるいはゲート電極で乱反射された入射光が隣接する画素に入射することによって混色が発生する。
近年、これらの問題を解決するために、特許文献1にあるように、画素パターンが形成された主面とは反対側の半導体基板裏面、すなわちシリコンウェハ裏面にカラーフィルタ及びオンチップレンズを形成して、光を裏面から入射する裏面照射型の固体撮像素子が提案されている。
図10に、従来のシリコン単結晶基板内部に光電変換部となるフォトダイオードを埋め込んだ裏面照射型のCMOS固体撮像素子の一例を示す。同図は要部の断面構造を示す。
この裏面照射型のCMOS固体撮像素子1は、第1導電型例えばp型のシリコン半導体基板2の表面に各画素を区画するための素子分離領域3を形成し、各区画領域に光電変換部となるフォトダイオード4、フォトダイオードの信号電荷を読み出すための複数のMOSトランジスタTr、例えば読出しトランジスタ、リセットトランジスタ、アンプトランジスタ及び垂直選択トランジスタの4つのMOSトランジスタが形成されて単位画素セル5が形成される。この単位画素セル5が多数個、2次元マトリクッス状に配列される。フォトダイオード4は、各赤色、緑色及び青色に対応したフォトダイオード4R、4G及び4Bが順次配列されるように形成される。
フォトダイオード4は、p型半導体基板2の基板表面から所定の深さにわたってイオン注入により形成した第2導電型であるn型半導体領域6により形成される。MOSトランジスタTrなどは、p型半導体基板2の表面側に形成したn+ ソース/ドレイン領域8とゲート絶縁膜を介して形成したゲート電極9により形成される。このp型半導体領域2の表面側には、層間絶縁膜9を介して所要パターンの多層配線10が形成される。
一般的には、これら多層配線層10が形成された後、表面上に第1のパシベーション膜12が成膜される。次いで、例えばシリコンウェハによる支持基板25が基板表面側の第1のパシベーション膜12上に接着された後、p型半導体基板2の裏面側が10μm以下になるまで研磨除去される。次いで、p型半導体基板2の裏面側にn型半導体領域6に接してp+ 半導体領域(いわゆるアキュミュレーション層)7が形成される。なお、フォトダイオード4を構成するn型半導体領域6の表面側にもp半導体領域(いわゆるアキュミュレーション層)20が形成される。フォトダイオード4は、このp半導体領域7,20、n型半導体領域26及びp型半導体基板2によるHAD(Hole Accumulation Diode)構造による埋込みフォトダイオードとして形成される。
基板裏面側の埋込みフォトダイオード4直上に、シリコン酸化膜13、第2のパシベーション膜(例えばプラズマシリコン窒化膜)14が順次成膜され、この上に画素間の混色を防止するための遮光膜(例えばAl膜)15が形成される。さらに、透明平坦化膜16、カラーフィルタ17R、17G、17B及びオンチップレンズ18などの樹脂製薄膜が形成される。符号19はこの固体撮像素子1を収容したパッケージの上面に配置された赤外線カットフィルタである。
上述の裏面照射型のCMOS固体撮像素子1では、入射光のうち赤外線21は赤外線カットフィルタ19によりカットされてフォトダイオード4側への入射が阻止される。赤外線カットフィルタ19を透過した赤色光線22、緑色光線23、青色光線24は、それぞれ対応する赤色、緑色及び青色に対応するフォトダイオード4R、4G及び4Bに入射される。遮光膜15で反射された各色光線22、23、24はフォトダイオード4側に入射されない。
特開2003ー31785号公報
ところで、上述裏面照射型の固体撮像素子1では、混色が生じ易い。一般に、長波長の赤色光線22は単結晶シリコン中の吸収係数が小さいことから、特に混色が発生し易い。すなわち、撮像領域の周辺においてフォトダイオードの水平面に対して斜め方向から入射する赤色光線L1 は、単結晶シリコン中を透過して隣接画素〔緑色画素、青色画素〕のフォトダイオード4G,4B(図示の例ではフォトダイオード4B)に直接入射して混色の原因となる。この斜め方向からの入射光線L1 を遮光するためには、画素間に遮光膜15が必要であるが、単位画素セル5の微細化、集積化を行うために、隣接する画素間のフォトダイオード4を近づけ過ぎた場合、あるいは画素間の遮光膜15の幅W1 を小さくし過ぎた場合は、混色を防止することが困難になる。これは、結果的に埋込みフォトダイオード4の面積低下による取り扱い電荷量の低下、あるいは画素開口率の低下に伴う光利用効率の低下を招く。さらに、画素間に配置した遮光膜15の側面で反射した入射光線L2 が隣接画素〔青色画素、緑色画素〕のフォトダイオード4B,4G(図示の例ではフォトダイオード4G)へ入射して混色を発生する懼れがあった。
本発明は、上述の点に鑑み、混色防止、さらに光電変換部の開口率の低下、感度低下等を抑制できる裏面照射型の固体撮像素子を提供するものである。
本発明に係る固体撮像素子は、第1導電型の半導体基板に形成された光電変換部と、光電変換部の信号電荷を読み出す手段からなる複数の画素と、半導体基板の裏面から光照射する光照射面と、画素間を除く光電変換部上において、半導体基板の光照射面側から光電変換部が露出する深さまで設けられ、裏面側の開口が底面よりも広く、内壁面に傾斜を有する開口部と、光照射面の表面側全面に設けられた、基板よりも高濃度の第1導電型のアキュミュレーション層と、アキュミュレーション層上を覆う絶縁膜と、開口部の内壁面の傾斜面に沿って設けられた遮光膜と、絶縁膜及び遮光膜を覆って開口部を埋め込む透明絶縁膜とを有し、画素間の光照射面上の絶縁膜と、開口部を埋め込む透明絶縁膜とが、半導体基板の裏面側で平坦化されている。
本発明に係る裏面照射型の固体撮像素子によれば、隣接する画素間に位置して半導体基板の裏面より内側に埋め込まれた遮光膜を有するので、遮光膜が光電変換部に近接して形成され、特に撮像領域の周辺画素において斜め方向から入射する光の隣接する画素への入射が阻止されて混色を回避することができる。光電変換部の開口率の低下、感度低下等を抑制できる。
従来では単位画素セルのサイズが微細化するにしたがい画素間の混色防止が困難となるが、本発明では画素開口率を下げることなく微細サイズの画素でも理想的な混色防止を実現できる。
本発明に係る裏面照射型の固体撮像素子の一実施の形態を示す要部の断面図である。 本発明に係る裏面照射型の固体撮像素子の製造方法の一実施の形態を示す製造工程図(その1)である。 本発明に係る裏面照射型の固体撮像素子の製造方法の一実施の形態を示す製造工程図(その2)である。 本発明に係る裏面照射型の固体撮像素子の製造方法の一実施の形態を示す製造工程図(その3)である。 本発明に係る裏面照射型の固体撮像素子の製造方法の一実施の形態を示す製造工程図(その4)である。 本発明に係る裏面照射型の固体撮像素子の製造方法の一実施の形態を示す製造工程図(その5)である。 本発明に係る裏面照射型の固体撮像素子の製造方法の一実施の形態を示す製造工程図(その6)である。 本発明に係る裏面照射型の固体撮像素子の製造方法の一実施の形態を示す製造工程図(その7)である。 本発明に係る裏面照射型の固体撮像素子の製造方法の一実施の形態を示す製造工程図(その8)である。 従来の裏面照射型の固体撮像素子の一例を示す断面図である。
以下、図面を参照して本発明に実施の形態を説明する。
図1に、本発明に係る裏面照射型の固体撮像素子をCMOS固体撮像素子に適用した実施の形態を示す。同図は撮像領域の要部の断面構造を示す。
本実施の形態に係る裏面照射型のCMOS固体撮像素子31は、第1導電型例えばp型のシリコン半導体基板、いわゆる単結晶シリコンウェハ32の表面(一方の主面)に各画素を区画するための素子分離領域33を形成し、各区画領域に光電変換部となるフォトダイオード34、フォトダイオード34の信号電荷を読み出すための複数のMOSトランジスタTr、例えば読出しトランジスタ、リセットトランジスタ、アンプトランジスタ及び垂直選択トランジスタの4つのMOSトランジスタが形成されて単位画素セル35が形成される。この単位画素セル35が多数個、2次元マトリクッス状に配列される。フォトダイオード34は、各赤色、緑色及び青色に対応したフォトダイオード34R、34G及び34Bが順次配列されるように形成される。
フォトダイオード34は、p型半導体基板32の基板表面から所定の深さにわたってイオン注入により形成した第2導電型である例えばn型半導体領域36により形成される。MOSトランジスタTrは、p型半導体基板32の表面側に形成したn+ ソース/ドレイン領域38とゲート絶縁膜を介して形成したゲート電極39により形成される。このp型半導体領域32の表面側には、層間絶縁膜300を介して所要パターンの多層配線40が形成される。さらに、最上層の層間絶縁膜300上に例えばプラズマシリコン窒化膜等による第1のパシベーション膜42が形成される。
一方、単結晶シリコンウェハ32の裏面(他方の主面)には、従来のようにウェハ全体を薄く研磨除去することなく、各画素のフォトダイオード34のn型半導体領域36が露出するように所要の深さの開口部52が形成される。この開口部52は、開口部52の底面からウェハ表面(一方の主面)までの距離mがフォトダイオード34の深さ、例えば5μm〜10μmの厚さを残して形成される。また、開口部52の深さDは、開口部52間(いわゆる画素間)の開口部52が形成されない領域、すなわち非開口領域53において、可視光のうち最も長波長の赤色光線62がフォトダイオード34まで到達しないだけの十分な厚さ(距離)Fを確保できる深さに設定される。
このn型半導体領域36の露出面、開口部52の内壁面(すなわち内側面)を含む単結晶シリコンウェハ32の裏面全面に接して第1導電型のアキュミュレーション層、本例ではp+ 半導体領域37が形成される。なお、フォトダイオード4を構成するn型半導体領域6の表面側にも、アキュミュレーション層となるp半導体領域46が形成される。フォトダイオード34は、このp+ 半導体領域37、46、n型半導体領域36及びp型半導体基板32によるHAD構造による埋込みフォトダイオードとして形成される。また、単結晶シリコンウェハ32の裏面には、開口部52の底面、側面の内壁面及び非開口領域53の上面を含む全面に絶縁膜の例えばシリコン酸化膜43が形成される。さらに、開口部52の底面を除いて少なくとも内壁面に遮光膜となる反射膜45が形成される。反射膜45は金属膜が好ましく、例えばAl膜で形成される。そして、開口部52内に透明絶縁膜54が埋め込まれる。この透明絶縁膜54によりウェハ裏面は平坦化される。図1に示すように、遮光膜となる反射膜45は、隣接する画素間に位置して半導体基板32の裏面より内側に埋め込まれて形成される。
この平坦化されたウェハ裏面上に例えばプラズマシリコン窒化膜等による第2のパシベーション膜44が形成され、この上にカラーフィルタ47R、47G、47B、オンチップレンズ48などの樹脂製薄膜が画素ごとに形成される。符号49は、固体撮像素子31を収容したパッケ−ジの上面に配置された赤外線カットフィルタである。
CMOS固体撮像素子の周辺回路では、CMOSトランジスタで構成される。なお、図1では単位画素セルの複数のMOSトランジスタをnチャネルトランジスタで構成した。
上述の本実施の形態に係る裏面照射型のCMOS固体撮像素子31では、光学レンズ系及び赤外線カットフィルタ49を通してウェハ裏面を光照射面としてウェハ裏面から光入射される。前述と同様に、入射光のうち赤外線61は赤外線カットフィルタ49によりカットされてフォトダイオード34側への入射が阻止される。赤外線カットフィルタ49を透過した赤色光線62、緑色光線63、青色光線64は、カラーフィルタを通して、それぞれ対応する赤色、緑色及び青色に対応するフォトダイオード34R、34G及び34Bに入射される。各色光線については、長波長の赤色光線62が最も深くフォトダイオード34R内に入射され、緑色光線63が赤色光線62より浅くフォトダイオード34G内に入射され、青色光線64が最も浅くフォトダイオード34B内に入射される。
そして、本実施形態の裏面照射型のCMOS固体撮像素子31によれば、単結晶シリコンウェハ32の裏面側を研磨除去せずに各画素に対応した領域にフォトダイオード34が臨むような開口部52を形成し、開口部52の底面を除いて少なくとも開口部52の内壁面に反射膜45を形成している。このような構成により、撮像領域の周辺画素においてフォトダイオード34に斜め方向から入射する光線(図示の例では長波長の赤色光線)L3 は、開口部52の内壁面の反射膜45で反射されて対応する画素のフォトダイオード34(図示の例では赤色に対応したフォトダイオード34R)に入射され、隣接する画素への入射が阻止されて混色を回避することができる。この反射膜45は、混色防止のための遮光と、入射光をフォトダイオード34へ集光し導く光ガイドの役割の機能を合せ持つ。
このように開口部52の内壁面に形成された反射膜45によって、画素間遮光と集光が同時に実現できるので、画素開口率の低下に伴う光利用率の低下、感度の低下、混色等の問題を生じることがない。本実施形態では、反射膜45が光集光の役割をはたすので、光利用率の向上が図れる。従来では単位画素セルのサイズが微細化するにしたがい画素間の混色防止が困難となるが、本実施の形態では画素開口率を下げることなく微細サイズの画素でも理想的な混色防止を実現できる。
一方、非開口領域53では、厚さ(距離)Fが可視光のうち最も長波長の赤色光線62がフォトダイオード34まで到達しないだけの十分な厚さ(距離)を確保しているので、光吸収層としての役割を果している。従って、非開口領域53に入射された可視光はフォトダイオード34へ入射されることがない。
すなわち、半導体基板の開口部が形成されない領域における裏面から開口部底面に対応する面までの処理を、可視光が光電変換部まで到達させない距離に設定するので、上記領域の面上に反射膜が形成されていなくても、この領域を入射する可視光の悪影響は生じない。また、開口部の底面から半導体基板の表面までの距離を、裏面側から照射された可視光を光電変換部へ入射できる距離に設定されるので、各画素での入射光による光電変換を十分に行うことができる。
前述の図10に示す裏面照射型のCMOS固体撮像素子1では、製造する場合、支持基板25を接着した後、半導体基板2、すなわち数100μm〜700μm厚の単結晶シリコンウェハの裏面を厚さt1 が10μm以下になるまで研磨除去することが必須である。しかし、単結晶シリコンウェハの全面を均一な厚さで研磨除去することは難しい。単結晶シリコンウェハの厚さが不均一になると、裏面側の埋込みフォトダイオード4の取り扱い電荷量及び感度がウェハ面内でバラツキを生じる懼れがある。
本実施形態では、このように単結晶シリコンウェハ32の厚さを薄く均一に研磨除去する工程を必要としないため、単結晶シリコンウェハの厚さの不均一性を原因とする、従来のようなフォトダイオード34の取り扱い電荷量のバラツキ、及び感度のウェハ面内でのバラツキが生じない。また、単結晶シリコンウェハ32を薄く研磨除去することがないので、簡便な半導体プロセスにより裏面照射型のCMOS固体撮像素子を製造することがきる。
次に、図2〜図8を用いて上述の裏面照射型のCMOS固体撮像素子31の製造方法の一例を説明する。
先ず、図2に示すように、第1導電型、例えばp型の単結晶シリコンウェハ32を用意する。このp型の単結晶シリコンウェハ32の表面(一方の主面)に、例えば選択酸化(LOCOS)層、トレンチ分離等による画素分離のための素子分離領域33を形成する。また、ウェハ表面に光電変換部の電荷蓄積領域となる第2導電型の例えばn+ 半導体領域36aを形成し、第2導電型の例えばn+ ソース/ドレイン領域38とゲート絶縁膜とゲート電極39によるMOSトランジスタTrを形成する。n+ 半導体領域36aの基板表面側には、アキュミュレーション層となるp+半導体領域46を形成する。さらに、層間絶縁膜300を介して接続プラグ41、多層配線40を形成し、最上層の層間絶縁膜40上にだい1のパシベーション膜42を形成する。
次に、図3に示すように、単結晶シリコンウェハ32の裏面(他方の主面)に各画素ごとに所要に深さDの開口部52を選択エッチングにより形成する。このとき、開口部52としては、ウェハ表面から開口部52の底面までの距離mが5μm〜10μm程度になるように選択エッチングして形成する。従って、隣合う開口部52間の非開口領域53の厚さFは、可視光のうちの最も波長の長い赤色光線が後に形成するフォトダイオードまで到達しないだけの十分な長さを確保することができる。
次に、図4に示すように、各開口部52の底面に臨むウェハ裏面にn+ 半導体領域36aに接続するようにn- 半導体領域36bを例えばイオン注入により形成し、n型半導体領域36を形成する。さらに、開口部52の底面に臨むn- 半導体領域36b、開口部52の内壁面及び非開口領域53の上面の全表面に不純物を導入して第1導電型であるp+ アキュミュレーション層37を形成する。このようにしてHAD構造の裏面埋め込み型のフォトダイオード34〔34R,34G,34B〕を形成する。
次に、図5に示すように、開口部52の内面を含むウェハ裏面全面に、絶縁膜(例えば熱酸化膜などのシリコン酸化膜)43を形成し、さらにその上に反射膜45となる金属膜、例えばAl膜を成膜する。
次に、図6に示すように、反射膜45に対してエッチバックを施し、開口部52の底面の反射膜45を除去し、開口部52の内壁面(すなわち内側面)のみに反射膜45を残す。この反射膜45は自己整合的に所謂サイドウォールの反射膜として形成される。
次に、図7に示すように、開口部52内に、例えばSOG(シリコン・オン・グラス)膜などの透明絶縁膜54を形成し、ウェハ裏面を平坦化する。
その後、図8に示すように、平坦化されたウェハ裏面上に例えばプラズマシリコン窒化膜などの第2のパシベーション膜44を形成し、さらにカラーフィルタ47R、47G、47G、オンチップレンズ48を形成して目的の裏面照射型のCMOS固体撮像素子31を得る。
本実施の形態の裏面照射型のCMOS固体撮像素子の製造方法によれば、単結晶シリコンウェハ32の厚さを薄く均一に研磨除去する工程を必要としないため、ウェハ厚が全面均一となり、フォトダイオード34の取り扱い電荷量、ウェハ面内での感度を均一にしたCMOS固体撮像素子を製造できる。また、従来の支持基板の貼り合せ工程、ウェハの厚さを薄くする研磨工程などが省略されるので、製造が容易になる。
また、単位画素セルの微細化、高集積化されても混色の生じにくい裏面照射型のCMOS固体撮像素子を製造することができる。
開口部52の内壁面に反射膜45を形成する工程において、開口部52の内面を含むウェハ裏面の全面に反射膜45を形成した後、ウェハ裏面側からエッチバックすることにより、自己整合的に開口部52底面の反射膜45が除去され、開口部52の内壁面のみに反射膜45を残すことができる。
開口部52の形成工程では、非開口領域53における入射される可視光がフォトダイオード34まで到達しない距離を確保するような深さDの開口部を形成することにより、非開口領域53からのフォトダイオード34への光入射を阻止することができる。
なお、図9A,Bに、反射膜45のエッチバック工程の他の例を示す。この例では、反射膜45を開口部52内を含むウェハ全面に形成した後、非開口領域53の上面に選択的にレジストマスク67を形成し(図9A参照)、その状態で反射膜45に対して裏面側からエッチング処理を施す(図9B参照)。
このエッチバック処理によれば、開口部52の底面の反射膜45のみ除去し、他の開口部52の内壁面及び非開口領域53の上面には反射膜45が残る。従って、非開口領域53に入射される光線はこの反射膜45で反射され、フォトダイオード側へ入射を確実に阻止することができる。このように、非開口領域上にも反射膜45を残す構成としたとき、非開口領域53の厚さFは前述の条件を満たすことはない。
上例では、本発明を裏面照射型のCMOS固体撮像素子に適用したが、その他、図示せざるも裏面照射型のCCD固体撮像素子にも適用することができる。この場合も、CCD固体撮像素子のウェハ裏面側に、上述したように各画素に対応して光電変換部が臨むように開口部を形成し、開口部の内壁面に反射膜を形成するようにして構成することができる。
31・・裏面照射型のCMOS固体撮像素子、32・・単結晶シリコンウェハ、33・・素子分離領域、34〔34R,34G,34B〕・・フォトダイオード、Tr・・MOSトランジスタ、35・・単位画素セル、36・・n型半導体領域、38・・ソース/ドレイン領域、39・・ゲート電極、40・・多層配線、41・・接続プラグ、37・・p+ アキュミュレーション層、42・・第1のパシベーション膜、43・・絶縁膜、44・・第2のパシベーション膜、45・・遮光膜となる反射膜、47R、47G、47G・・カラーフィルタ、48・・オンチップレンズ、49・・赤外線カットフィルタ、52・・開口部、53・・非開口領域、61・・赤外線、62・・赤色光線、63・・緑色光線、64・・青色光線、100、300・・層間絶縁膜

Claims (7)

  1. 第1導電型の半導体基板に形成された光電変換部と、前記光電変換部の信号電荷を読み出す手段からなる複数の画素と、
    前記半導体基板の裏面から光照射する光照射面と、
    前記画素間を除く前記光電変換部上において、前記半導体基板の前記光照射面側から前記光電変換部が露出する深さまで設けられ、裏面側の開口が底面よりも広く、内壁面に傾斜を有する開口部と、
    前記光照射面の表面側全面に設けられた、前記基板よりも高濃度の第1導電型のアキュミュレーション層と、
    前記アキュミュレーション層上を覆う絶縁膜と、
    前記開口部の内壁面の傾斜面に沿って設けられた遮光膜と、
    前記絶縁膜及び前記遮光膜を覆って前記開口部を埋め込む透明絶縁膜と、を有し、
    前記画素間の前記光照射面上の前記絶縁膜と、前記開口部を埋め込む前記透明絶縁膜とが、前記半導体基板の裏面側で平坦化されている
    固体撮像素子。
  2. 前記光電変換部の信号電荷を読み出す手段が前記半導体基板の表面側に形成された請求項1記載の固体撮像素子。
  3. 前記半導体基板の裏面側に形成したカラーフィルタを有する請求項1又は2記載の固体撮像素子。
  4. 前記遮光膜が、入射光を反射して前記光電変換部へ導く機能を合わせ持つ請求項1乃至3のいずれかに記載の固体撮像素子。
  5. 前記光電変換部の前記導体基板の厚みが、前記隣接する画素間の前記半導体基板の厚みより薄く、前記光電変換部の前記半導体基板の裏面側に前記隣接する画素間の前記半導体基板の裏面まで透明絶縁膜が埋め込まれた請求項1乃至4のいずれかに記載の固体撮像素子。
  6. 前記光電変換部の信号電荷を読み出す手段として画素トランジスタを有するCMOS固体撮像素子である請求項1乃至5のいずれかに記載の固体撮像素子。
  7. CCD固体撮像素子である請求項1乃至5のいずれかに記載の固体撮像素子。
JP2010113720A 2010-05-17 2010-05-17 固体撮像素子 Expired - Fee Related JP5223883B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010113720A JP5223883B2 (ja) 2010-05-17 2010-05-17 固体撮像素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010113720A JP5223883B2 (ja) 2010-05-17 2010-05-17 固体撮像素子

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004265767A Division JP4765285B2 (ja) 2004-09-13 2004-09-13 固体撮像素子及びその製造方法

Publications (2)

Publication Number Publication Date
JP2010226126A JP2010226126A (ja) 2010-10-07
JP5223883B2 true JP5223883B2 (ja) 2013-06-26

Family

ID=43042910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010113720A Expired - Fee Related JP5223883B2 (ja) 2010-05-17 2010-05-17 固体撮像素子

Country Status (1)

Country Link
JP (1) JP5223883B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101133154B1 (ko) 2011-02-03 2012-04-06 디지털옵틱스 코포레이션 이스트 상이한 파장을 균일하게 수광하기 위한 차등 높이 실리콘을 포함하는 이면 조사 센서 패키지
KR101095945B1 (ko) 2011-02-03 2011-12-19 테쎄라 노쓰 아메리카, 아이엔씨. 상이한 파장을 균일하게 수광하기 위한 흡광 재료를 포함하는 이면 조사 센서 패키지
KR102063795B1 (ko) * 2017-10-12 2020-01-09 전자부품연구원 실리콘 나노와이어를 이용한 이미지 센서 및 그 제조방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288930U (ja) * 1975-12-26 1977-07-02
JPH07307485A (ja) * 1994-05-10 1995-11-21 Canon Inc 光電変換装置
JP4496636B2 (ja) * 2000-11-10 2010-07-07 株式会社デンソー 光集積回路およびその製造方法
JP2002319669A (ja) * 2001-04-23 2002-10-31 Hamamatsu Photonics Kk 裏面入射型ホトダイオード及びホトダイオードアレイ
JP3722367B2 (ja) * 2002-03-19 2005-11-30 ソニー株式会社 固体撮像素子の製造方法
DE10392637B4 (de) * 2002-05-10 2014-09-04 Hamamatsu Photonics K.K. Hintergrundbeleuchtetes Photodioden-Array und Verfahren zum Herstellen desselben
JP4165129B2 (ja) * 2002-06-21 2008-10-15 三菱電機株式会社 裏面入射型固体撮像素子

Also Published As

Publication number Publication date
JP2010226126A (ja) 2010-10-07

Similar Documents

Publication Publication Date Title
US11735620B2 (en) Solid-state imaging device having optical black region, method of manufacturing the same, and electronic apparatus
US9287423B2 (en) Solid-state imaging device and method of manufacturing the solid-state imaging device
US8835981B2 (en) Solid-state image sensor
JP4765285B2 (ja) 固体撮像素子及びその製造方法
JP5218502B2 (ja) 固体撮像装置の製造方法
US20110156186A1 (en) Solid-state imaging device
TWI548071B (zh) 顏色最佳化影像感測器
US20060006438A1 (en) Solid state imaging device and production method therefor
JP2012169530A (ja) 固体撮像装置、および、その製造方法、電子機器
JP2006261372A (ja) 固体撮像素子および固体撮像素子の製造方法および画像撮影装置
JP2011086709A (ja) 固体撮像装置及びその製造方法
JP2008010544A (ja) 固体撮像素子
JP4691939B2 (ja) 裏面照射型固体撮像素子の製造方法
JP2011198966A (ja) 固体撮像装置及びその製造方法
JP2008182142A (ja) 固体撮像装置およびその製造方法、および撮像装置
JP4285432B2 (ja) 固体撮像素子及びその製造方法
JP5223883B2 (ja) 固体撮像素子
JPH10189936A (ja) 固体撮像素子及びその製造方法
JP2012099743A (ja) 固体撮像装置及びその製造方法
JP2004228407A (ja) 固体撮像素子および固体撮像素子の製造方法
WO2023021758A1 (ja) 光検出装置及び電子機器

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees