JP5223334B2 - 高パワー短パルスファイバレーザ - Google Patents
高パワー短パルスファイバレーザ Download PDFInfo
- Publication number
- JP5223334B2 JP5223334B2 JP2007506550A JP2007506550A JP5223334B2 JP 5223334 B2 JP5223334 B2 JP 5223334B2 JP 2007506550 A JP2007506550 A JP 2007506550A JP 2007506550 A JP2007506550 A JP 2007506550A JP 5223334 B2 JP5223334 B2 JP 5223334B2
- Authority
- JP
- Japan
- Prior art keywords
- pulse
- fiber
- optical
- laser
- amplifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 title claims description 231
- 230000003287 optical effect Effects 0.000 claims description 153
- 230000010287 polarization Effects 0.000 claims description 42
- 238000000034 method Methods 0.000 claims description 35
- 239000013307 optical fiber Substances 0.000 claims description 34
- 230000008878 coupling Effects 0.000 claims description 18
- 238000010168 coupling process Methods 0.000 claims description 18
- 238000005859 coupling reaction Methods 0.000 claims description 18
- 239000006185 dispersion Substances 0.000 claims description 17
- 238000005259 measurement Methods 0.000 claims description 14
- 230000003321 amplification Effects 0.000 claims description 11
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 11
- 238000004806 packaging method and process Methods 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 230000006835 compression Effects 0.000 claims description 4
- 238000007906 compression Methods 0.000 claims description 4
- 230000001902 propagating effect Effects 0.000 claims description 4
- 230000002238 attenuated effect Effects 0.000 claims description 3
- 238000002834 transmittance Methods 0.000 claims description 3
- 238000005086 pumping Methods 0.000 claims 1
- 230000003595 spectral effect Effects 0.000 description 50
- 238000013461 design Methods 0.000 description 31
- 239000006096 absorbing agent Substances 0.000 description 21
- 238000001228 spectrum Methods 0.000 description 16
- 238000004891 communication Methods 0.000 description 12
- 238000009826 distribution Methods 0.000 description 12
- 238000013459 approach Methods 0.000 description 11
- 230000008901 benefit Effects 0.000 description 9
- 230000007613 environmental effect Effects 0.000 description 9
- 239000004038 photonic crystal Substances 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 230000009021 linear effect Effects 0.000 description 7
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 238000005253 cladding Methods 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- 230000010363 phase shift Effects 0.000 description 5
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 4
- 229910052761 rare earth metal Inorganic materials 0.000 description 4
- 150000002910 rare earth metals Chemical class 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 229910052769 Ytterbium Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000003079 width control Methods 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 238000012356 Product development Methods 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 208000003173 lipoprotein glomerulopathy Diseases 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
- H01S3/1106—Mode locking
- H01S3/1112—Passive mode locking
- H01S3/1115—Passive mode locking using intracavity saturable absorbers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/005—Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
- H01S3/0057—Temporal shaping, e.g. pulse compression, frequency chirping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
- H01S3/06729—Peculiar transverse fibre profile
- H01S3/06741—Photonic crystal fibre, i.e. the fibre having a photonic bandgap
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06754—Fibre amplifiers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/094003—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/094042—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a fibre laser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/0941—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/102—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
- H01S3/1028—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/1603—Solid materials characterised by an active (lasing) ion rare earth
- H01S3/1618—Solid materials characterised by an active (lasing) ion rare earth ytterbium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1691—Solid materials characterised by additives / sensitisers / promoters as further dopants
- H01S3/1698—Solid materials characterised by additives / sensitisers / promoters as further dopants rare earth
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/005—Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
- H01S3/0064—Anti-reflection devices, e.g. optical isolaters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/005—Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
- H01S3/0078—Frequency filtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
- H01S3/06712—Polarising fibre; Polariser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/13—Stabilisation of laser output parameters, e.g. frequency or amplitude
- H01S3/1305—Feedback control systems
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Lasers (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Description
〔1〕U.S. Patent Application No. 09/576,772 filed on May23,2000 by M.E. Fermann, A. Galvanauskas, and D. Harter entitled “Modular, high energy, widely-tunable ultrafast fiber source”(Docket No. IM-83)
〔2〕U.S. Patent Application No. 10/627,069 filed on July 24, 2003 by M.E. Fermann, and G.C. Cho entitled “Integrated Fiber Laser Pulse Source With Pulse Width Control”(Docket No. IMRAA. 021A/IM-99)
〔3〕U.S. Patent No. 6,151,338 issued to S.G. Grubb, D.F. Welch, and R.Zanoni in November 21, 2000 entitled “High power laser optical amplifier system”
〔4〕O.G. Okhotnikov, L.A. Gomes, N. Xiang T. Jouhti, A.K. Chin, R. Singh, and A.B. Grudinin, “980-nm picosecond fiber laser” IEEE Photonics Technology Letters, 15(11),1519-1521(2003)
〔5〕H. Lim, F.O. Ilday, and F.W. Wise, “Generation of 2-nJ pulse from a femtosecond ytterbium fiber laser” Optics Letters, 28(8),660-662(2003)
[0008]図2Bは、ソリトン発振器の分散波サイドピークを取り去るために発振器内にフィルタを持つファイバ型発振器の一実施例を模式的に示す。
[0092]モジュール型デザインコンセプトは、さらに発振器、増幅器及びレーザシステムを含むその他の構成要素内の要素にも拡張され得る。図11A−Cは、本技術の有利なモジュール型アプローチでデザインされパッケージされ得る模範的な実施例を描画している。
[0100]図11Cは、光学的なアイソレーションを行うための光学部品を含むハウジング762を有するアイソレータモジュール760の一実施例を示している。角度研磨或いは割断された面をもつ光ファイバ766を有する第1光ファイバコネクタ764が、ハウジング762の一側壁を通して複数の光学部品を含むハウジングの内側領域に達している。これらの光学部品は、光ファイバ766から出力される光を受けて好ましくはコリメートするための第1レンズ768、光アイソレータ770、及びビームスプリッタ772を含んでいる。角度研磨或いは割断された面をもつ光ファイバ775を有する第2光ファイバコネクタ774が、ハウジング762の別の側壁を通して光学部品を含む内側領域に達している。アイソレータ770は、例えば、ファラデー回転子、直線偏光子(図示しない)を有してもよい。ビームスプリッタ772は、ビームの一部を第3ファイバコネクタ780に向かわせるプレート或いはウェッジを有してもよい。他の実施例では、レンズがビームスプリッタ722と第3ファイバコネクタ780の間で光を結合してもよい。第3のファイバコネクタ780は、第1光ファイバ766と第2光ファイバ775の間を伝搬する光の一部をタッピングオフするためのタップを有し、アイソレータ770の動作に一般には含まれない。従って、ビームスプリッタ772とタップ780は、アイソレータモジュールデザインの他の実施例から取り除かれる。しかしながら、タップ780は、ここに記載されたようなレーザシステムに対してフィードバックを与えるのに有益である。ビームスプリッタ772と第2光ファイバ775との間に配置された第2レンズ778は、ビームスプリッタ772と第2光ファイバの間の光を結合する。第1光ファイバ766から第2光ファイバコネクタ774までアイソレータ770とビームスプリッタ772を通して、光路が形成される。しかしながら、この光路は、アイソレータ770の結果として、実質上単一方向である。
(その他の実施例)
例1では、パルス幅をもつパルスを出力するパルスファイバレーザを有している。そのパルスファイバレーザは、モードロックファイバ発振器、増幅器、及びスペクトルフィルタを有する。モードロックファイバ発振器は、パルス幅とバンド幅をもつスペクトルパワー分布とをもつ複数の光パルスを有する光出力を生成する。増幅器は、光パルスを増幅するために、モードロックファイバ増幅器に光学的に接続されている。スペクトルフィルタは、増幅器に達する前にモードロックファイバ発振器の光出力を受光するために配置される。スペクトルパワー分布の一部を減衰し、それによりスペクトルバンド幅を減らすために、スペクトルフィルタは、モードロックファイバ発振器の光出力のスペクトルパワー分布と重なるバンドエッジを備えるスペクトル伝導をもつ。モードロックファイバ発振器からファイバ増幅器に結合される光パルスのパルス幅は、それにより減少される。
例2では、圧縮された光パルスを生成する方法を有する。この方法では、スペクトルバンド幅を備える対応するスペクトルパワー分布をもつ光パルスの列を生成するために、ファイバ共鳴共振器の縦モードは、実質上モードロックされる。光パルスは、増幅され、圧縮された光パルスを生成するため圧縮される。圧縮される光パルスが、より短い持続時間をもつように、スペクトルパワー分布のスペクトルバンド幅が、減らされる。
例3では、モードロックファイバ発振器、増幅器、一つ以上の光ポンプ光源、パルス圧縮器、及び予備圧縮器を有するパルスファイバレーザを有している。モードロックファイバ発振器は、利得ファイバと、共鳴共振器を形成するために利得ファイバに関して配置された一対の反射光学素子と、を有する。モードロックファイバ発振器は、平均パルス幅をもつ光パルス列を生成する。増幅器は、光パルスが増幅器を伝搬できるように、モードロックファイバ増幅器に光学的に接続される。ファイバ増幅器は、光パルスを増幅する。一つ以上の光ポンプ光源が、ファイバ発振器とファイバ増幅器とをポンプするために、モードロックファイバ発振器とファイバ増幅器とに光学的に接続される。パルス圧縮器が、ファイバ増幅器により増幅された光パルス出力を受け取るために光学的に結合される。パルス圧縮器は、ファイバ増幅器での光パルス出力のパルス幅を短縮する。予備圧縮器は、モードロックファイバ発振器とファイバ増幅器との間の光路に配置される。圧縮器での光パルスのパルス持続時間がさらに短縮されるように、予備圧縮器は、ファイバ増幅器に入力される光パルスの持続時間を短縮する。
例4では、短い高パワー光パルスを生成する方法を有する。平均パルス幅を持つ複数のレーザパルスを有する光信号を生成するため、この方法は、実質上レーザ共振器のモードロック光モードを有する。その光信号は、周波数成分の分布を有する。この方法は、増幅され圧縮された光パルスを生成するために、光パルスを圧縮するステップと、圧縮された光パルスを増幅するステップと、をさらに有する。増幅され圧縮された光パルスは、スペクトル成分を区別するために、分散光学素子を使い且つ異なるスペクトル成分に異なる位相シフトを導入して、増幅の後にさらに圧縮される。
例5では、モードロックファイバ発振器、ファイバ増幅器、光学的ポンプ光源、及びパルス圧縮器を有するパルスファイバレーザを有している。モードロックファイ発振器は、光パルスを出力する。ファイバ増幅器は、モードロックファイバ発振器に光学的に接続され、光パルスを増幅する。光学的ポンプ光源は、ファイバ増幅器に光学的に接続される。パルス圧縮器は、ファイバ増幅器から増幅された光パルス出力を受け取るために光学的に結合される。パルスファイバレーザは、(i)モードロックファイバ発振器とファイバ増幅器との間の光路中の第1光タップ及び第1光タップからの出力の測定に基づきモードロックファイバ発振器を制御するための第1タップからの第1フィードバックループ、及び(ii)ファイバ増幅器と圧縮器との間の光路中の第2光タップ及び第1タップからの出力の測定に基づきファイバ増幅器を制御するための第2ップからの第2ィードバックループ、の少なくとも一つをさらに有する。
例6では、光源モジュール、アイソレータモジュール、増幅器モジュール、及び圧縮器モジュールを有するパルス光源を有している。光源モジュールは、光ファイバを有し、光パルスを出力する。アイソレータモジュールは、入力及び出力ファイバを持つハウジングの中に光アイソレータを有する。入力ファイバは、光源モジュールの光ファイバに光学的に結合されている。入力ファイバに導入された光パルスが、アイソレータで受け取られ、光路に沿って出力結合器に進むことが許されるように、光アイソレータは、入力と出力ファイバとを接続する光路中に配置される。増幅器モジュールは、増幅媒質を有し、光パルスを増幅するためにアイソレータモジュールの出力ファイバに光学的に接続された光入力を持つ。圧縮器モジュールは、光パルスを圧縮するために増幅器モジュールに光学的に結合されている。
Claims (17)
- 光パルスを出力するモードロックファイバ発振器と、
前記光パルスを受け取るために前記モードロックファイバ発振器に光学的に接続され、前記光パルスに利得を与える利得媒質を有する増幅器と、
前記増幅器で利得が与えられた光パルスのパルス幅を圧縮する圧縮器と、を有するパルスファイバーレーザにおいて、
前記モードロック発振器と前記増幅器との間に、前記モードロックファイバ発振器から前記増幅器に結合される前記光パルスのエネルギが減少されるように調節可能な透過率をもつ可変減衰器が配置され、
前記可変減衰器は、前記増幅器に入力される光パルスのエネルギを制御することにより前記圧縮器から出力される光パルスのパルス幅を制御することを特徴とするパルスファイバレーザ。 - 前記可変減衰器は、偏光選択光学系を有する請求項1のパルスファイバレーザ。
- 前記可変減衰器は、偏光子を有する請求項2のパルスファイバレーザ。
- 前記可変減衰器は、さらに偏光回転素子を有する請求項3のパルスファイバレーザ。
- 前記偏光回転素子は、波長板を有する請求項4のパルスファイバレーザ。
- 前記可変減衰器は、ハウジングに入れられた一つ以上の光学素子を有し、ハウジングは、前記一つ以上の光学素子に光を結合するために、そこから延びる入力と出力のファイバをもつ、請求項1のパルスファイバレーザ。
- 前記増幅器から増幅された光パルス出力を受け取るために光学的結合され、前記増幅器での前記光パルス出力の持続時間を短縮する一つ以上の分散光学素子を有する、パルス圧縮器をさらに有する請求項1のパルスファイバレーザ。
- 前記一つ以上の分散光学素子は、分散光ファイバを有する請求項7のパルスファイバレーザ。
- レーザパルスを繰り返し生成するためにレーザ共振器の縦モードを実質上モードロックするステップと、
前記レーザパルスを増幅するステップと、
前記レーザパルスをチャープさせ、それにより前記光パルスの光周波数を時間に関して変化させるステップと、
短縮された持続時間をもつ圧縮されたレーザパルスを生成するために、前記レーザパルスの異なる光周波数成分を異なるように伝搬させることで前記レーザパルスを圧縮するステップと、を有する高パワー短レーザパルスを生成する方法において、
前記圧縮されたレーザパルスの前記持続時間をさらに短縮するために、前記レーザパルスを増幅するステップの前に前記レーザパルスを選択的に減衰するステップを備え、
前記減衰するステップは、前記増幅するステップに入力される光パルスのエネルギを制御することにより前記圧縮するステップから出力される光パルスのパルス幅を制御し、
少なくとも200mWより大きい光パワーと200フェムト秒以下のパルス持続時間とをもつ圧縮された高パワー短レーザパルスを生成する方法。 - 前記レーザパルスは、約1〜20dBの範囲で減衰される請求項9の方法。
- 前記増幅ステップの後の前記レーザパルスの偏光を前記レーザパルスの前記圧縮ステップまで保持するステップをさらに有する請求項9の方法。
- 光パルスを出力するファイバ式発振器をモードロックするステップと、
増幅器を可変減衰器を通して前記ファイバ式発振器に光学的に結合し、前記ファイバ式発振器からの前記光パルスを前記可変減衰器を通して前記増幅器に与えるようにするステップと、
前記光パルスを短縮するためにパルス圧縮器を前記増幅器に光学的に結合するステップと、を有する高パワー短パルスファイバレーザを製造する方法であって、
前記パルス圧縮器から出力される光パルスのパルス幅を短縮するために、前記光パルスの測定に基づいて前記可変減衰器を調節して前記増幅器に入力される光パルスのエネルギを減少させるステップを有する高パワー短パルスファイバレーザを製造する方法。 - 前記ファイバ式発振器からの前記光パルスを増幅するために前記増幅器をポンプするステップと、
前記光パルスを圧縮するステップと、をさらに有し、
前記増幅ステップと圧縮ステップとの後の前記光パルスが、少なくとも約200mWの平均パワーと少なくとも200フェムト秒より短いパルス持続時間とをもつ請求項12の方法。 - 前記可変減衰器は、前記光パルスのパワーの測定に基づいて調整される請求項12の方法。
- 前記可変減衰器は、前記出力パルスのパルス持続時間の測定に基づいて調整される請求項12の方法。
- 前記減衰器を密閉されたハウジングにパッケージするステップをさらに有する請求項12の方法。
- 前記発振器の少なくとも一部を密閉されたハウジングにパッケージするステップをさらに有する請求項12の方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/814,319 US7804864B2 (en) | 2004-03-31 | 2004-03-31 | High power short pulse fiber laser |
US10/814,319 | 2004-03-31 | ||
PCT/US2005/010884 WO2005094379A2 (en) | 2004-03-31 | 2005-03-30 | High power short pulse fiber laser |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011150645A Division JP5516522B2 (ja) | 2004-03-31 | 2011-07-07 | 高パワー短パルスファイバレーザ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007532005A JP2007532005A (ja) | 2007-11-08 |
JP5223334B2 true JP5223334B2 (ja) | 2013-06-26 |
Family
ID=35060484
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007506550A Active JP5223334B2 (ja) | 2004-03-31 | 2005-03-30 | 高パワー短パルスファイバレーザ |
JP2011150645A Active JP5516522B2 (ja) | 2004-03-31 | 2011-07-07 | 高パワー短パルスファイバレーザ |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011150645A Active JP5516522B2 (ja) | 2004-03-31 | 2011-07-07 | 高パワー短パルスファイバレーザ |
Country Status (3)
Country | Link |
---|---|
US (4) | US7804864B2 (ja) |
JP (2) | JP5223334B2 (ja) |
WO (1) | WO2005094379A2 (ja) |
Families Citing this family (111)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007516600A (ja) * | 1997-03-21 | 2007-06-21 | イムラ アメリカ インコーポレイテッド | 先進材料処理応用のためのピコ秒−ナノ秒パルス用高エネルギ光ファイバ増幅器 |
US7190705B2 (en) | 2000-05-23 | 2007-03-13 | Imra America. Inc. | Pulsed laser sources |
US7394591B2 (en) * | 2000-05-23 | 2008-07-01 | Imra America, Inc. | Utilization of Yb: and Nd: mode-locked oscillators in solid-state short pulse laser systems |
US7361171B2 (en) | 2003-05-20 | 2008-04-22 | Raydiance, Inc. | Man-portable optical ablation system |
US7095772B1 (en) * | 2003-05-22 | 2006-08-22 | Research Foundation Of The University Of Central Florida, Inc. | Extreme chirped/stretched pulsed amplification and laser |
US7414780B2 (en) | 2003-06-30 | 2008-08-19 | Imra America, Inc. | All-fiber chirped pulse amplification systems |
US8173929B1 (en) | 2003-08-11 | 2012-05-08 | Raydiance, Inc. | Methods and systems for trimming circuits |
US20050177143A1 (en) * | 2003-08-11 | 2005-08-11 | Jeff Bullington | Remotely-controlled ablation of surfaces |
US8921733B2 (en) | 2003-08-11 | 2014-12-30 | Raydiance, Inc. | Methods and systems for trimming circuits |
US7280730B2 (en) | 2004-01-16 | 2007-10-09 | Imra America, Inc. | Large core holey fibers |
US7804864B2 (en) | 2004-03-31 | 2010-09-28 | Imra America, Inc. | High power short pulse fiber laser |
US7505196B2 (en) | 2004-03-31 | 2009-03-17 | Imra America, Inc. | Method and apparatus for controlling and protecting pulsed high power fiber amplifier systems |
US7508853B2 (en) | 2004-12-07 | 2009-03-24 | Imra, America, Inc. | Yb: and Nd: mode-locked oscillators and fiber systems incorporated in solid-state short pulse laser systems |
US7209619B2 (en) | 2004-12-30 | 2007-04-24 | Imra America, Inc. | Photonic bandgap fibers |
US7787729B2 (en) * | 2005-05-20 | 2010-08-31 | Imra America, Inc. | Single mode propagation in fibers and rods with large leakage channels |
US7440173B2 (en) * | 2005-06-30 | 2008-10-21 | Polar Onyx, Inc. | All fiber laser solution for spectral broadening and pulse stretching in a chirped pulse amplification fiber system |
JP4930895B2 (ja) * | 2005-07-15 | 2012-05-16 | アイシン精機株式会社 | 短光パルス発生方法及び短光パルス発生装置 |
US7245419B2 (en) * | 2005-09-22 | 2007-07-17 | Raydiance, Inc. | Wavelength-stabilized pump diodes for pumping gain media in an ultrashort pulsed laser system |
US8189971B1 (en) | 2006-01-23 | 2012-05-29 | Raydiance, Inc. | Dispersion compensation in a chirped pulse amplification system |
US8232687B2 (en) | 2006-04-26 | 2012-07-31 | Raydiance, Inc. | Intelligent laser interlock system |
US7444049B1 (en) | 2006-01-23 | 2008-10-28 | Raydiance, Inc. | Pulse stretcher and compressor including a multi-pass Bragg grating |
US9130344B2 (en) | 2006-01-23 | 2015-09-08 | Raydiance, Inc. | Automated laser tuning |
US8571075B2 (en) * | 2010-11-29 | 2013-10-29 | Imra America, Inc. | Frequency comb source with large comb spacing |
US7525724B2 (en) * | 2006-03-16 | 2009-04-28 | The University Of Kansas | Laser system for photonic excitation investigation |
US7822347B1 (en) * | 2006-03-28 | 2010-10-26 | Raydiance, Inc. | Active tuning of temporal dispersion in an ultrashort pulse laser system |
US8073026B2 (en) * | 2006-06-23 | 2011-12-06 | Kansas State University Research Foundation | Method and apparatus for controlling carrier envelope phase |
US20080018988A1 (en) * | 2006-07-24 | 2008-01-24 | Andrew Davidson | Light source with tailored output spectrum |
EP1926188A1 (en) | 2006-11-27 | 2008-05-28 | JDS Uniphase Corporation | Power stabilization of laser harmonic frequency conversion |
US7496260B2 (en) | 2007-03-27 | 2009-02-24 | Imra America, Inc. | Ultra high numerical aperture optical fibers |
JP5400282B2 (ja) | 2007-06-28 | 2014-01-29 | 古河電気工業株式会社 | パルス増幅器及びこれを用いたパルス光源 |
JP2009043849A (ja) * | 2007-08-07 | 2009-02-26 | Nippon Telegr & Teleph Corp <Ntt> | 光ファイバ増幅器 |
CN103246014B (zh) * | 2007-09-26 | 2015-12-23 | Imra美国公司 | 玻璃大芯径光纤 |
JP5355991B2 (ja) * | 2007-11-30 | 2013-11-27 | 株式会社メガオプト | パルス光源およびパルス圧縮方法 |
US7903326B2 (en) | 2007-11-30 | 2011-03-08 | Radiance, Inc. | Static phase mask for high-order spectral phase control in a hybrid chirped pulse amplifier system |
US8290003B2 (en) | 2007-11-30 | 2012-10-16 | Sumitomo Electric Industries, Ltd. | Pulse light source |
CN102006964B (zh) * | 2008-03-21 | 2016-05-25 | Imra美国公司 | 基于激光的材料加工方法和系统 |
US8125704B2 (en) | 2008-08-18 | 2012-02-28 | Raydiance, Inc. | Systems and methods for controlling a pulsed laser by combining laser signals |
JP2010103291A (ja) * | 2008-10-23 | 2010-05-06 | Fujifilm Corp | モード同期レーザ装置 |
KR20100060122A (ko) * | 2008-11-27 | 2010-06-07 | 한국광기술원 | 펌프 광원의 손상을 방지하기 위한 인라인 아이솔레이터를 갖는 광섬유 레이저 |
US8285098B2 (en) * | 2009-03-31 | 2012-10-09 | Imra America, Inc. | Wide bandwidth, low loss photonic bandgap fibers |
TWI410011B (zh) * | 2009-12-30 | 2013-09-21 | Ind Tech Res Inst | 環形或線性共振腔全光纖短脈衝雷射系統及其操作方法 |
KR101408496B1 (ko) | 2010-03-16 | 2014-06-18 | 아이신세이끼가부시끼가이샤 | 펄스 레이저 장치, 투명 부재 용접 방법 및 투명 부재 용접 장치 |
JP5693705B2 (ja) | 2010-03-30 | 2015-04-01 | イムラ アメリカ インコーポレイテッド | レーザベースの材料加工装置及び方法 |
US8238386B2 (en) * | 2010-05-21 | 2012-08-07 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Pulsed light source |
FR2963707B1 (fr) * | 2010-08-03 | 2013-07-12 | Ecole Polytech | Dispositif d'amplification a derive de frequence pour un laser impulsionel |
KR20140018183A (ko) | 2010-09-16 | 2014-02-12 | 레이디안스, 아이엔씨. | 적층 재료의 레이저 기반 처리 |
FR2965673B1 (fr) * | 2010-09-30 | 2013-08-23 | Ecole Polytech | Dispositif d'amplification a derive de frequence pour un laser impulsionnel |
JP5710935B2 (ja) * | 2010-10-26 | 2015-04-30 | ソニー株式会社 | 半導体光増幅器組立体 |
FR2969841B1 (fr) * | 2010-12-22 | 2013-04-26 | Commissariat Energie Atomique | Laser impulsionnel femtoseconde stabilise et procede de stabilisation |
JP2014504802A (ja) * | 2010-12-30 | 2014-02-24 | ロッキード・マーチン・コーポレーション | 小型高エネルギー中波opcpaレーザ |
US8804233B2 (en) * | 2011-08-09 | 2014-08-12 | Ofs Fitel, Llc | Fiber assembly for all-fiber delivery of high energy femtosecond pulses |
US9166355B2 (en) | 2011-09-12 | 2015-10-20 | Lawrence Livermore National Security, Llc | Directly driven source of multi-gigahertz, sub-picosecond optical pulses |
EP2756342B1 (en) * | 2011-09-14 | 2016-11-30 | IMRA America, Inc. | Controllable multi-wavelength fiber laser source |
US8797512B2 (en) * | 2011-09-15 | 2014-08-05 | Advanced Scientific Concepts, Inc. | Automatic range corrected flash ladar camera |
IN2014DN06677A (ja) * | 2012-01-09 | 2015-05-22 | Attochron Llc | |
US9553421B2 (en) | 2012-10-16 | 2017-01-24 | Imra America, Inc. | Compact ultra-short pulse source amplifiers |
US8848751B2 (en) | 2013-02-27 | 2014-09-30 | Coherent Gmbh | Short-pulsed compact MOPA |
US9172206B2 (en) * | 2013-03-15 | 2015-10-27 | Canon Kabushiki Kaisha | Fiber laser system |
US20140276669A1 (en) * | 2013-03-15 | 2014-09-18 | Amo Development Llc. | Short pulse laser with adjustable pulse length |
TW201448386A (zh) * | 2013-04-02 | 2014-12-16 | Eolite Systems | 用於產生超短雷射脈衝的裝置和方法 |
US9706631B2 (en) | 2013-05-10 | 2017-07-11 | Lawrence Livermore National Security, Llc | Modulated method for efficient, narrow-bandwidth, laser Compton X-ray and gamma-ray sources |
KR101552109B1 (ko) | 2014-01-10 | 2015-09-11 | 한양대학교 에리카산학협력단 | 광섬유 레이저 |
US9997889B1 (en) * | 2014-02-20 | 2018-06-12 | Lockheed Martin Coherent Technologies, Inc. | Threshold fluorescence detection for protection of laser systems |
JP6345944B2 (ja) * | 2014-02-21 | 2018-06-20 | 株式会社ミツトヨ | 斜入射干渉計 |
AU2015255872B2 (en) | 2014-05-08 | 2019-08-15 | Lawrence Livermore National Security, Llc | Ultralow-dose, feedback imaging with laser-compton x-ray and laser-compton gamma-ray sources |
CA2951639C (en) | 2014-05-08 | 2021-01-26 | Lawrence Livermore National Security, Llc | Methods for 2-color radiography with laser-compton x-ray sources |
US10069271B2 (en) | 2014-06-02 | 2018-09-04 | Nlight, Inc. | Scalable high power fiber laser |
CN104092090A (zh) * | 2014-07-25 | 2014-10-08 | 中国科学院光电研究院 | 一种双腔结构激光器系统及其能量可控调谐方法 |
EP3202000A4 (en) * | 2014-09-30 | 2018-05-16 | IPG Photonics Corporation | Giant-chirp all-normal-dispersion sub-nanosecond fiber oscillator |
US9634458B2 (en) * | 2014-10-02 | 2017-04-25 | Bae Systems Information And Electronic Systems Integration Inc. | Pump recycling integrated amplifier |
US9244332B1 (en) * | 2014-12-22 | 2016-01-26 | Deutsches Elektronen-Synchrotron Desy | Pulse light source device and method for creating fs pulses |
FR3031246B1 (fr) * | 2014-12-29 | 2018-02-09 | Universite de Bordeaux | Systeme et procede de generation d'impulsions lumineuses ultrabreves a forte densite spectrale de puissance et accordables en longueur d'onde |
US9837783B2 (en) | 2015-01-26 | 2017-12-05 | Nlight, Inc. | High-power, single-mode fiber sources |
CN105140761B (zh) * | 2015-02-16 | 2018-05-18 | 深圳市欧凌镭射科技有限公司 | 一种窄脉冲光纤激光器 |
US9806486B2 (en) * | 2015-03-19 | 2017-10-31 | Ii-Vi Incorporated | Optical amplifier module |
US10050404B2 (en) | 2015-03-26 | 2018-08-14 | Nlight, Inc. | Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss |
JP6051252B2 (ja) * | 2015-03-27 | 2016-12-27 | 株式会社フジクラ | ファイバレーザ装置 |
US9899791B2 (en) * | 2015-05-14 | 2018-02-20 | KM Labs Inc. | Single pass amplification of dissipative soliton-like seed pulses |
US9401580B1 (en) | 2015-05-27 | 2016-07-26 | Lumentum Switzerland Ag | Optical source with passive pulse shaping |
WO2017044799A1 (en) | 2015-09-10 | 2017-03-16 | Massachusetts Institute Of Technology | Systems, apparatus, and methods for laser amplification in fiber amplifiers |
FI127908B (en) * | 2015-09-22 | 2019-05-15 | Teknologian Tutkimuskeskus Vtt Oy | Method and apparatus for measuring surface height |
CN105305212B (zh) * | 2015-11-02 | 2018-07-27 | 河北大学 | 一体化无源子腔模块和制造方法以及光纤激光器 |
US10434600B2 (en) | 2015-11-23 | 2019-10-08 | Nlight, Inc. | Fine-scale temporal control for laser material processing |
US11179807B2 (en) | 2015-11-23 | 2021-11-23 | Nlight, Inc. | Fine-scale temporal control for laser material processing |
JP6656076B2 (ja) * | 2016-05-06 | 2020-03-04 | キヤノン株式会社 | ファイバー構造体及び光源装置 |
CN106451053B (zh) * | 2016-08-17 | 2019-01-22 | 北京无线电计量测试研究所 | 一种锁模状态的探测方法和设备 |
US10673198B2 (en) | 2016-09-29 | 2020-06-02 | Nlight, Inc. | Fiber-coupled laser with time varying beam characteristics |
US10423015B2 (en) | 2016-09-29 | 2019-09-24 | Nlight, Inc. | Adjustable beam characteristics |
US10673199B2 (en) | 2016-09-29 | 2020-06-02 | Nlight, Inc. | Fiber-based saturable absorber |
US10673197B2 (en) | 2016-09-29 | 2020-06-02 | Nlight, Inc. | Fiber-based optical modulator |
CN106785832B (zh) * | 2016-11-25 | 2019-04-23 | 深圳市杰普特光电股份有限公司 | 脉冲光纤激光器 |
JP6879032B2 (ja) * | 2017-04-25 | 2021-06-02 | 株式会社豊田中央研究所 | レーザレーダ装置およびレーザレーダ光集積回路 |
RU2664758C1 (ru) * | 2017-08-14 | 2018-08-22 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") | Способ стабилизации длины волны узкополосного волоконного лазера и устройство для его осуществления |
CN107482432B (zh) * | 2017-08-16 | 2019-06-21 | 中国科学院上海光学精密机械研究所 | 环形多程激光放大装置 |
CA3025797A1 (en) | 2017-11-30 | 2019-05-30 | Institut National De La Recherche Scientifique | System and method for correcting laser beam wavefront of high power laser systems |
US11777610B2 (en) | 2018-02-07 | 2023-10-03 | Attochron, Llc | Method and apparatus for ultra-short pulsed laser communication through a lossy medium |
CN108932521B (zh) * | 2018-04-26 | 2021-02-09 | 中国农业大学 | 一种基于深度学习的农作物分类方法及系统 |
WO2020006638A1 (en) * | 2018-07-06 | 2020-01-09 | Institut National De La Recherche Scientifique | Method and system of laser-driven intense x-ray photons imaging |
JP7285067B2 (ja) * | 2018-10-30 | 2023-06-01 | 浜松ホトニクス株式会社 | レーザ加工装置及びレーザ加工方法 |
WO2020090894A1 (ja) | 2018-10-30 | 2020-05-07 | 浜松ホトニクス株式会社 | レーザ加工装置及びレーザ加工方法 |
EP3903131A4 (en) * | 2018-12-28 | 2022-08-24 | NLIGHT, Inc. | FIBER OPTIC DEVICES FOR TRANSFERRING STIMULATED RAMAN SCATTERING (SRS) LIGHT OUT OF A FIBER |
KR102191987B1 (ko) * | 2019-04-18 | 2020-12-16 | 한국과학기술연구원 | 그래핀을 이용하여 레이저의 잡음을 감소하기 위한 광소자 |
CN110137786B (zh) * | 2019-05-31 | 2020-08-04 | 电子科技大学 | 一种产生孤子爆发模式的全光纤激光系统及方法 |
CN110455495B (zh) * | 2019-07-31 | 2021-05-11 | 华中科技大学鄂州工业技术研究院 | 一种光纤激光器模式稳定性检测装置及方法 |
JP7569564B2 (ja) | 2019-09-19 | 2024-10-18 | 大学共同利用機関法人自然科学研究機構 | レーザ装置及びパルス幅変更方法 |
CN111082293A (zh) * | 2019-12-09 | 2020-04-28 | 中国兵器装备研究院 | 光纤激光器模式稳定性监控装置及方法 |
CN111262129B (zh) * | 2020-01-19 | 2021-03-09 | 之江实验室 | 一种功率可调、可检偏的452nm倍频系统 |
CN111786251B (zh) * | 2020-07-28 | 2024-09-10 | 广东瀚盈激光科技有限公司 | 一种光纤激光器脉冲串生成及放大模块与光纤激光器 |
CN113725705B (zh) * | 2021-08-25 | 2022-07-08 | 吉林大学 | 一种基于光谱整形的绿光脉冲源 |
RU210531U1 (ru) * | 2021-11-30 | 2022-04-19 | федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный университет" | Оптическая система для генерации лазерных импульсов высокой спектральной плотности |
DE102022117267A1 (de) * | 2022-07-12 | 2024-01-18 | Trumpf Laser Gmbh | Passiv modengekoppelter Faseroszillator, Laservorrichtung und nichtlineares CPA-Verstärkungssystem mit einem solchen Faseroszillator |
Family Cites Families (119)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3729690A (en) | 1961-10-27 | 1973-04-24 | American Optical Corp | Means for producing and amplifying optical energy |
US3409843A (en) | 1964-04-02 | 1968-11-05 | Raytheon Co | Single mode laser |
US3500234A (en) | 1966-07-07 | 1970-03-10 | Rca Corp | Unitary q-switch laser device |
US3584312A (en) | 1969-10-20 | 1971-06-08 | Raytheon Co | Spikeless single-mode laser |
US3801931A (en) | 1972-11-30 | 1974-04-02 | Trw Inc | Single mode laser oscillator with linear resonator and internal faraday isolator |
JPS5013056A (ja) | 1973-06-04 | 1975-02-10 | ||
US3928818A (en) | 1974-10-17 | 1975-12-23 | Us Navy | Method of reducing light leakage in lasers |
US3978429A (en) | 1975-05-27 | 1976-08-31 | Bell Telephone Laboratories, Incorporated | Mode-locked laser |
JPS56165385A (en) | 1980-05-26 | 1981-12-18 | Nec Corp | Device for generating high power multiwavelength light pulse |
US4723248A (en) | 1983-06-10 | 1988-02-02 | Allied Corporation | Optical limiter |
US4860296A (en) | 1983-12-30 | 1989-08-22 | American Telephone And Telegraph Company, At&T Bell Laboratories | Laser controlled by a multiple-layer heterostructure |
AU584739B2 (en) | 1985-08-13 | 1989-06-01 | British Technology Group Limited | Optical fibres |
US4902897A (en) | 1986-10-13 | 1990-02-20 | Seiko Epson Corporation | Ion beam gun and ion beam exposure device |
JP2597845B2 (ja) | 1987-06-09 | 1997-04-09 | 浜松ホトニクス株式会社 | 高繰り返しパルスレーザー装置 |
US4941738A (en) | 1988-07-29 | 1990-07-17 | American Telephone And Telegraph Company | Polarization independent optical amplifier apparatus |
US4991923A (en) | 1989-01-17 | 1991-02-12 | Board Of Trustees Of The Leland Stanford Junior University | Acousto-optic modulator for optical fibers using Hertzian contact with a grooved transducer substrate |
US5008887A (en) | 1989-04-19 | 1991-04-16 | Kafka James D | Mode-locked fiber laser |
US5189676A (en) | 1989-09-06 | 1993-02-23 | The Board Of Trustees Of The Leland Stanford Junior University | Broadband laser source |
US5005175A (en) | 1989-11-27 | 1991-04-02 | At&T Bell Laboratories | Erbium-doped fiber amplifier |
US5238868A (en) | 1989-11-30 | 1993-08-24 | Gte Laboratories Incorporated | Bandgap tuning of semiconductor quantum well structures |
NL9000532A (nl) | 1990-03-08 | 1991-10-01 | Philips Nv | Inrichting voor het opwekken van blauw laserlicht. |
US5363386A (en) | 1990-05-02 | 1994-11-08 | British Telecommunications Public Limited Company | Optical waveguide laser |
US5136598A (en) | 1990-05-31 | 1992-08-04 | The United States Of America As Represented By The Secretary Of The Navy | Modulated high-power optical source |
US5050183A (en) | 1990-11-05 | 1991-09-17 | The United States Of America As Represented By The Secretary Of The Navy | Figure eight shaped coherent optical pulse source |
US5163059A (en) | 1991-05-09 | 1992-11-10 | Coherent, Inc. | Mode-locked laser using non-linear self-focusing element |
US5192709A (en) | 1991-09-17 | 1993-03-09 | University Of California Office Of Technology Transfer | Nanoscale modulation doping method |
US5222089A (en) | 1992-01-08 | 1993-06-22 | General Instrument Corporation | Optical signal source for overcoming distortion generated by an optical amplifier |
US5226049A (en) | 1992-02-06 | 1993-07-06 | Amoco Corporation | Optical fiber rare earth ion upconversion laser system |
US5272560A (en) | 1992-03-30 | 1993-12-21 | Hewlett-Packard Company | Variable spectral width multiple pass optical noise source |
US5311603A (en) | 1992-10-28 | 1994-05-10 | Litton Systems Inc. | Highly efficient superfluorescent fiber laser/amplifier for interferometric sensors |
JP3529153B2 (ja) | 1993-03-04 | 2004-05-24 | 三星電子株式会社 | 液晶表示装置及びその製造方法 |
US5303314A (en) | 1993-03-15 | 1994-04-12 | The United States Of America As Represented By The Secretary Of The Navy | Method and apparatus for polarization-maintaining fiber optical amplification with orthogonal polarization output |
GB9315011D0 (en) | 1993-07-20 | 1993-09-01 | British Telecomm | Dispersion compensation |
US5414725A (en) | 1993-08-03 | 1995-05-09 | Imra America, Inc. | Harmonic partitioning of a passively mode-locked laser |
US5448579A (en) | 1993-12-09 | 1995-09-05 | Hewlett-Packard Company | Polarization independent picosecond fiber laser |
US5689519A (en) | 1993-12-20 | 1997-11-18 | Imra America, Inc. | Environmentally stable passively modelocked fiber laser pulse source |
US5395793A (en) | 1993-12-23 | 1995-03-07 | National Research Council Of Canada | Method of bandgap tuning of semiconductor quantum well structures |
US5422897A (en) | 1994-01-28 | 1995-06-06 | British Telecommunications Public Limited Company | Two-stage mono-mode optical fibre laser |
US5436925A (en) * | 1994-03-01 | 1995-07-25 | Hewlett-Packard Company | Colliding pulse mode-locked fiber ring laser using a semiconductor saturable absorber |
US5440573A (en) * | 1994-03-22 | 1995-08-08 | Imra America, Inc. | Method and apparatus for controlling laser emmision wavelength using non-linear effects |
US5400350A (en) | 1994-03-31 | 1995-03-21 | Imra America, Inc. | Method and apparatus for generating high energy ultrashort pulses |
US5778016A (en) | 1994-04-01 | 1998-07-07 | Imra America, Inc. | Scanning temporal ultrafast delay methods and apparatuses therefor |
US5585913A (en) | 1994-04-01 | 1996-12-17 | Imra America Inc. | Ultrashort pulsewidth laser ranging system employing a time gate producing an autocorrelation and method therefore |
US5513194A (en) | 1994-06-30 | 1996-04-30 | Massachusetts Institute Of Technology | Stretched-pulse fiber laser |
US5479422A (en) | 1994-08-12 | 1995-12-26 | Imra America, Inc. | Controllabel dual-wavelength operation of modelocked lasers |
US5499134A (en) | 1994-08-24 | 1996-03-12 | Imra America | Optical pulse amplification using chirped Bragg gratings |
US5633885A (en) | 1994-09-29 | 1997-05-27 | Imra America, Inc. | Frequency chirp control and compensation for obtaining broad bandwidth ultrashort optical pulses from wavelength-tunable lasers |
US5450427A (en) * | 1994-10-21 | 1995-09-12 | Imra America, Inc. | Technique for the generation of optical pulses in modelocked lasers by dispersive control of the oscillation pulse width |
US5659558A (en) | 1995-03-06 | 1997-08-19 | Matsushita Electric Industrial Co., Ltd. | Short-wavelength laser element doped with rare earth ions, optical amplifier doped with rare earth ions, and wavelength converter doped with rare earth ions |
NO302441B1 (no) | 1995-03-20 | 1998-03-02 | Optoplan As | Fiberoptisk endepumpet fiber-laser |
US5696782A (en) | 1995-05-19 | 1997-12-09 | Imra America, Inc. | High power fiber chirped pulse amplification systems based on cladding pumped rare-earth doped fibers |
US5677769A (en) | 1995-05-30 | 1997-10-14 | Imra America | Optical sensor utilizing rare-earth-doped integrated-optic lasers |
US5574738A (en) | 1995-06-07 | 1996-11-12 | Honeywell Inc. | Multi-gigahertz frequency-modulated vertical-cavity surface emitting laser |
US5663731A (en) | 1995-08-25 | 1997-09-02 | Imra America, Inc. | Method and apparatus for time invariant pulse detection |
US5627848A (en) | 1995-09-05 | 1997-05-06 | Imra America, Inc. | Apparatus for producing femtosecond and picosecond pulses from modelocked fiber lasers cladding pumped with broad area diode laser arrays |
US5701319A (en) | 1995-10-20 | 1997-12-23 | Imra America, Inc. | Method and apparatus for generating ultrashort pulses with adjustable repetition rates from passively modelocked fiber lasers |
US5748318A (en) | 1996-01-23 | 1998-05-05 | Brown University Research Foundation | Optical stress generator and detector |
US5666373A (en) | 1996-02-06 | 1997-09-09 | Raytheon Company | Laser having a passive pulse modulator and method of making same |
US5847863A (en) | 1996-04-25 | 1998-12-08 | Imra America, Inc. | Hybrid short-pulse amplifiers with phase-mismatch compensated pulse stretchers and compressors |
US6249630B1 (en) | 1996-12-13 | 2001-06-19 | Imra America, Inc. | Apparatus and method for delivery of dispersion-compensated ultrashort optical pulses with high peak power |
US5862287A (en) | 1996-12-13 | 1999-01-19 | Imra America, Inc. | Apparatus and method for delivery of dispersion compensated ultrashort optical pulses with high peak power |
US5880877A (en) * | 1997-01-28 | 1999-03-09 | Imra America, Inc. | Apparatus and method for the generation of high-power femtosecond pulses from a fiber amplifier |
US6151338A (en) * | 1997-02-19 | 2000-11-21 | Sdl, Inc. | High power laser optical amplifier system |
US6181463B1 (en) | 1997-03-21 | 2001-01-30 | Imra America, Inc. | Quasi-phase-matched parametric chirped pulse amplification systems |
US6208458B1 (en) | 1997-03-21 | 2001-03-27 | Imra America, Inc. | Quasi-phase-matched parametric chirped pulse amplification systems |
US5867304A (en) | 1997-04-25 | 1999-02-02 | Imra America, Inc. | Use of aperiodic quasi-phase-matched gratings in ultrashort pulse sources |
US6198568B1 (en) | 1997-04-25 | 2001-03-06 | Imra America, Inc. | Use of Chirped Quasi-phase-matched materials in chirped pulse amplification systems |
US6188705B1 (en) | 1997-05-16 | 2001-02-13 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Fiber grating coupled light source capable of tunable, single frequency operation |
US5818630A (en) | 1997-06-25 | 1998-10-06 | Imra America, Inc. | Single-mode amplifiers and compressors based on multi-mode fibers |
US6097741A (en) | 1998-02-17 | 2000-08-01 | Calmar Optcom, Inc. | Passively mode-locked fiber lasers |
US6020591A (en) | 1997-07-11 | 2000-02-01 | Imra America, Inc. | Two-photon microscopy with plane wave illumination |
US5920668A (en) | 1997-10-24 | 1999-07-06 | Imra America, Inc. | Compact fiber laser unit |
KR19990040319A (ko) | 1997-11-17 | 1999-06-05 | 성재갑 | 고분자 표면의 이온 입자 조사에 의한 미세 기공 막의 제조 |
US6154310A (en) | 1997-11-21 | 2000-11-28 | Imra America, Inc. | Ultrashort-pulse source with controllable multiple-wavelength output |
US6072811A (en) * | 1998-02-11 | 2000-06-06 | Imra America | Integrated passively modelocked fiber lasers and method for constructing the same |
US6034975A (en) | 1998-03-09 | 2000-03-07 | Imra America, Inc. | High power, passively modelocked fiber laser, and method of construction |
US6252892B1 (en) | 1998-09-08 | 2001-06-26 | Imra America, Inc. | Resonant fabry-perot semiconductor saturable absorbers and two photon absorption power limiters |
WO2000021166A1 (fr) * | 1998-10-04 | 2000-04-13 | The Furukawa Electric Co., Ltd. | Amplificateur optique |
US6275512B1 (en) | 1998-11-25 | 2001-08-14 | Imra America, Inc. | Mode-locked multimode fiber laser pulse source |
US6650673B2 (en) | 1998-12-15 | 2003-11-18 | Bookham Technology, Plc | Generation of short optical pulses using strongly complex coupled DFB lasers |
JP4114258B2 (ja) * | 1999-01-26 | 2008-07-09 | アイシン精機株式会社 | 複数パルス光発生方法及びその装置 |
US6330388B1 (en) | 1999-01-27 | 2001-12-11 | Northstar Photonics, Inc. | Method and apparatus for waveguide optics and devices |
US6393035B1 (en) | 1999-02-01 | 2002-05-21 | Gigatera Ag | High-repetition rate passively mode-locked solid-state laser |
JP3903650B2 (ja) * | 1999-06-18 | 2007-04-11 | 住友電気工業株式会社 | 光増幅器および光増幅器制御方法 |
DE19934639A1 (de) * | 1999-07-23 | 2001-02-01 | Ldt Gmbh & Co | Resonatorspiegel mit einem sättigbaren Absorber |
DE19941836C2 (de) | 1999-09-02 | 2001-09-13 | Toshiba Kawasaki Kk | Upconversion-Faserlaser-Vorrichtung |
US7071041B2 (en) | 2000-01-20 | 2006-07-04 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device |
US6816652B1 (en) | 2000-03-20 | 2004-11-09 | Calmar Optcom, Inc. | Pump fiber bundle coupler for double-clad fiber devices |
US6420728B1 (en) | 2000-03-23 | 2002-07-16 | Manijeh Razeghi | Multi-spectral quantum well infrared photodetectors |
US6546169B1 (en) | 2000-05-22 | 2003-04-08 | Calmar Optcom, Inc. | Pump couplers for double-clad fiber devices |
US6885683B1 (en) | 2000-05-23 | 2005-04-26 | Imra America, Inc. | Modular, high energy, widely-tunable ultrafast fiber source |
US7088756B2 (en) * | 2003-07-25 | 2006-08-08 | Imra America, Inc. | Polarization maintaining dispersion controlled fiber laser source of ultrashort pulses |
US7190705B2 (en) | 2000-05-23 | 2007-03-13 | Imra America. Inc. | Pulsed laser sources |
US6643299B1 (en) | 2000-07-17 | 2003-11-04 | Calmar Optcom, Inc. | Bi-metal and other passive thermal compensators for fiber-based devices |
WO2002007273A2 (en) | 2000-07-17 | 2002-01-24 | Calmar Optcom, Inc. | Fiber laser stabilization |
WO2002025783A2 (en) * | 2000-09-22 | 2002-03-28 | Calmar Optcom, Inc. | Actively mode-locked fiber laser with controlled chirp output |
AUPR043900A0 (en) | 2000-09-28 | 2000-10-26 | Australian National University, The | Method of disordering quantum well heterostructures by high energy ion irradiation |
US6878562B2 (en) | 2000-10-20 | 2005-04-12 | Phosistor Technologies, Incorporated | Method for shifting the bandgap energy of a quantum well layer |
JP2002214050A (ja) | 2000-12-01 | 2002-07-31 | Agilent Technol Inc | 光サンプリング装置 |
US6954575B2 (en) | 2001-03-16 | 2005-10-11 | Imra America, Inc. | Single-polarization high power fiber lasers and amplifiers |
WO2002075873A1 (en) | 2001-03-16 | 2002-09-26 | Calmar Optcom, Inc. | Digital control of actively mode-locked lasers |
JP2004527001A (ja) * | 2001-04-11 | 2004-09-02 | ユニバーシティ、オブ、サウサンプトン | 光パルス光源および光パルスを生成するための方法 |
US6845108B1 (en) | 2001-05-14 | 2005-01-18 | Calmar Optcom, Inc. | Tuning of laser wavelength in actively mode-locked lasers |
WO2003028177A1 (en) * | 2001-09-24 | 2003-04-03 | Giga Tera Ag | Pulse-generating laser |
CA2366251C (en) * | 2001-12-28 | 2004-06-22 | Peleton Photonic Systems Inc. | Multi-wavelength ring laser source |
GB2395353B (en) * | 2002-02-18 | 2004-10-13 | Univ Southampton | Pulsed light sources |
US6628695B1 (en) | 2002-03-07 | 2003-09-30 | The Board Of Trustees Of The Leland Stanford Junior University | Monolithically integrated mode-locked vertical cavity surface emitting laser (VCSEL) |
FI113719B (fi) | 2002-04-26 | 2004-05-31 | Nokia Corp | Modulaattori |
US6693927B1 (en) * | 2002-09-13 | 2004-02-17 | Intralase Corp. | Method and apparatus for oscillator start-up control for mode-locked laser |
JP4459547B2 (ja) * | 2003-04-15 | 2010-04-28 | 独立行政法人科学技術振興機構 | 光パルス圧縮器および光関数発生器、光パルス圧縮方法および光関数発生方法 |
US7414780B2 (en) * | 2003-06-30 | 2008-08-19 | Imra America, Inc. | All-fiber chirped pulse amplification systems |
DE602004023531D1 (de) * | 2003-10-24 | 2009-11-19 | Koheras As | Optisches system zur bereitstellung von kurzen laserimpulsen |
WO2005094275A2 (en) | 2004-03-25 | 2005-10-13 | Imra America, Inc. | Optical parametric amplification, optical parametric generation, and optical pumping in optical fibers systems |
US7804864B2 (en) | 2004-03-31 | 2010-09-28 | Imra America, Inc. | High power short pulse fiber laser |
US7711013B2 (en) | 2004-03-31 | 2010-05-04 | Imra America, Inc. | Modular fiber-based chirped pulse amplification system |
US7602825B1 (en) | 2004-10-20 | 2009-10-13 | Calmar Optcom, Inc. | Tunable passively mode-locked lasers with phase-lock feedback for low timing jitters |
US7668213B2 (en) | 2004-12-30 | 2010-02-23 | Imra America, Inc. | Method and apparatus for obtaining and maintaining mode-locking in fiber laser systems |
US7573918B1 (en) | 2006-08-07 | 2009-08-11 | Calmar Optcom, Inc. | Dispersion compensated mode-locked pulsed lasers and optical amplifiers |
US7991022B1 (en) | 2008-01-16 | 2011-08-02 | Calmar Optcom, Inc. | Optical pulse amplification based on stimulated Raman scattering |
-
2004
- 2004-03-31 US US10/814,319 patent/US7804864B2/en not_active Expired - Fee Related
-
2005
- 2005-03-30 WO PCT/US2005/010884 patent/WO2005094379A2/en active Application Filing
- 2005-03-30 JP JP2007506550A patent/JP5223334B2/ja active Active
-
2010
- 2010-06-14 US US12/814,628 patent/US8537864B2/en not_active Expired - Fee Related
-
2011
- 2011-07-07 JP JP2011150645A patent/JP5516522B2/ja active Active
-
2013
- 2013-08-28 US US14/012,508 patent/US9071037B2/en not_active Expired - Fee Related
-
2015
- 2015-04-13 US US14/685,320 patent/US9640940B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US20120008649A1 (en) | 2012-01-12 |
JP5516522B2 (ja) | 2014-06-11 |
US9071037B2 (en) | 2015-06-30 |
US8537864B2 (en) | 2013-09-17 |
US20050226278A1 (en) | 2005-10-13 |
WO2005094379A2 (en) | 2005-10-13 |
JP2011228738A (ja) | 2011-11-10 |
US7804864B2 (en) | 2010-09-28 |
JP2007532005A (ja) | 2007-11-08 |
US20150085885A1 (en) | 2015-03-26 |
US9640940B2 (en) | 2017-05-02 |
WO2005094379A3 (en) | 2006-12-07 |
US20150325977A1 (en) | 2015-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5223334B2 (ja) | 高パワー短パルスファイバレーザ | |
EP3410548B1 (en) | Chirped pulse amplifier for a fiber optic system | |
US8503069B2 (en) | All-fiber chirped pulse amplification systems | |
EP2430716B1 (en) | Cascaded raman fiber laser system based on filter fiber | |
US7773294B2 (en) | Low-average-power parabolic pulse amplification | |
JP2013077831A (ja) | モジュール式ファイバ型チャープパルス増幅システム | |
EP2246718B1 (en) | Optical fiber coupling device | |
US8508843B2 (en) | Laser systems with doped fiber components | |
US9059564B2 (en) | Short-pulse fiber-laser | |
JP2013541201A (ja) | チャープ・パルス増幅に基づくレーザー・パルスの発生 | |
JP2009506560A (ja) | ファイバレーザ | |
WO2006106669A1 (ja) | 光源装置 | |
EP4140000A1 (en) | Fiber laser system | |
CN109273973B (zh) | 一种2微米波段的耗散孤子激光器 | |
CA2693288C (en) | Low-average-power parabolic pulse amplification | |
CN115152102A (zh) | 用于生成光的光学脉冲的方法和系统 | |
US20230223729A1 (en) | Mode-lockable ring oscillator and associated methods | |
Tsang | Design and analysis of high power laser systems | |
AU2011253657A1 (en) | Fiber lasers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20070305 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070305 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080213 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110512 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110707 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120524 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120719 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130225 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5223334 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160322 Year of fee payment: 3 |