JP5214616B2 - 3次元ディスプレイシステム - Google Patents

3次元ディスプレイシステム Download PDF

Info

Publication number
JP5214616B2
JP5214616B2 JP2009529407A JP2009529407A JP5214616B2 JP 5214616 B2 JP5214616 B2 JP 5214616B2 JP 2009529407 A JP2009529407 A JP 2009529407A JP 2009529407 A JP2009529407 A JP 2009529407A JP 5214616 B2 JP5214616 B2 JP 5214616B2
Authority
JP
Japan
Prior art keywords
observer
projection screen
image
viewer
images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009529407A
Other languages
English (en)
Other versions
JP2010503899A (ja
JP2010503899A5 (ja
Inventor
クリストフ クラー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc filed Critical Apple Inc
Publication of JP2010503899A publication Critical patent/JP2010503899A/ja
Publication of JP2010503899A5 publication Critical patent/JP2010503899A5/ja
Application granted granted Critical
Publication of JP5214616B2 publication Critical patent/JP5214616B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • H04N13/368Image reproducers using viewer tracking for two or more viewers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/363Image reproducers using image projection screens

Description

(関連出願の相互参照)
本出願は、名称「3次元イメージング及びディスプレイシステム」で2005年10月21日に出願された同時係属の米国特許出願第11/255,348号に関連する主題を含む。本特許出願は、Apple Computer,Incに譲受され、整理番号P3830US1で識別される。
(技術分野)
本発明は、一般的に、視覚ディスプレイシステムに関し、より具体的には、3次元ディスプレイシステムに関する。
最新の3次元(「3D」)ディスプレイ技術は、コンピュータグラフィクスだけでなく他の多様な環境及び技術においても益々普及し実用的になっている。成長しつつある実施例には、医学的診断、フライトシミュレーション、航空管制、戦場シミュレーション、気象診断、エンターテインメント、広告、教育、アニメーション、バーチャルリアリティ、ロボット、生体力学上の研究、サイエンティフィックビジュアライゼーションなどが含まれる。
この関心及び普及の増大は多くの要因に起因する。私たちの日常生活では、印刷物及びテレビの両方で合成コンピュータグラフィック画像に囲まれている。最近では家庭のパーソナルコンピュータで同様の画像を生成することができる。また、クレジットカード上のホログラム及びシリアルの箱の上のレンティキュラーディスプレイを目にすることがたびたびある。
勿論、3Dビューイングへの関心は新しいものではない。人々は、前世紀の変わり目に、少なくともステレオスコープの登場以来この経験を受け入れてきた。前世紀の中頃に3D映画の流行によって新しい興奮、関心、及び熱中がもたらされた後、ホログラフィーの魅力が続き、最近ではバーチャルリアリティが出現した。
最近のコンピュータ及びコンピュータグラフィクスの進歩により、空間3D画像がより実用的で利用し易くなった。対話型ディスプレイ用に十分迅速に立体画像ペアを生成するためのコンピュータ処理能力は、例えばデスクトップワークステーションにおいて存在する。ハイエンドのコンピュータ処理能力領域では、複雑な対象物データベースを対話形式で操作及び動画化できるようにする同様の技術的進歩により、高品質3Dディスプレイ用に大量の画像データをレンダリングできるようになる。
「3Dコンピュータグラフィクス」と従来的に呼ばれる3Dシーンの2次元投影では、多変量データの幾つかのタイプの検査、ナビゲーション、及び理解には不十分であることが認識されつつある。3Dレンダリングの恩恵が無いと、優れた透視描写を有する高品質画像でも現実的でなく平面的に見える。このようなアプリケーション環境では、立体視、運動視差、及び(恐らくはあまり優れていない程度までの)眼球調節の人間のデプスキューが、画像理解及びリアル感を可能にするために有意味で重要なものとして認識されつつある。
ビューイングに必要なハードウェアなどの3Dディスプレイ技術の他の態様では、バーチャルリアリティの広範な分野によって、より良好な立体頭部搭載及びブーム搭載ディスプレイ、並びに現実の錯覚を生じさせるのに必要なレート及び品質でシーンをレンダリングする関連のハードウェア及びソフトウェアがコンピュータ及び光学系業界にもたらされた。しかしながら、バーチャルリアリティへの試行はほとんど、現在のところ単独で且つ煩わしいものであり、ユーザは、ユーザの各々にのみ個々に3D世界を提示するヘルメット、特別なメガネ、或いは他のデバイスを着用することが多い。
このような立体ディスプレイの一般的な形式は、シャッター付き又は受動的偏光アイウェアを使用しており、観察者は、2つの表示画像の1つ、すなわち各眼に対して独占的に1つの画像をブロックするアイウェアを着用する。この実施例には受動的偏光メガネ、及び迅速に交互するシャッター付きメガネが含まれる。
これらの取り組みはほぼ成功を収めたが、観察者は一般に眼を覆って器具を装着することを好まないので、広く受け入れられてはいない。更に、これらの取り組みは実用的ではなく、1人又はそれ以上の偶然の通行人、共同制作者のグループ、或いは個別化された投影が要求される場合のような聴衆全体に3D画像を投影するには本質的に使用可能ではない。同一の投影が提示される場合でも、このような状況は、従来の自動立体ディスプレイなどの比較的開発が不十分な異なる技術を必要としてきた。
従って、ヘッドギアの排除を検討することは、観察者が特別な収容設備又はデバイスを使用又は着用する必要もなく観察者に対する立体ビューイング経験を自動的に与える自動立体ディスプレイの開発の動機付けとなった。自動立体ディスプレイは、メガネ、ゴーグル、又は他の個人的に着用される物理的ビューイング補助具を使用することなく視聴者に空間画像を提示しようとする。自動立体ディスプレイは、現実の対象物の光学的特徴への最良の経験的近似を提供するという可能性を保持しているので魅力的である。
実際に3次元で現われる画像を表示するための多くの自動立体方式が提案されてきた。現在物理的に実現可能な自動立体ディスプレイは、一般に3つの広いカテゴリー、すなわち再イメージングディスプレイ、ボリュームディスプレイ、及び視差ディスプレイに分類することができる。
再イメージングディスプレイは通常、3次元対象物から光を取り込み、空間内の新しいロケーションに再放射する。ボリュームディスプレイは、空間ボリュームをスパンし、その空間の個々の部分を照明する。視差ディスプレイは、一方向に変化する強度の光を放射する表面である。各タイプのディスプレイは、商業用ディスプレイシステムで使用されており、各々は固有の長所と短所とを有する。
より一般的なディスプレイ手法は、ボリューム型及び視差型の2つの主なカテゴリーに含まれる傾向がある。
ボリュームタイプの自動立体ディスプレイは、光を放出するか或いは光を放出しているように見える光源として働くポイントの集合をボリューム内に生成することにより3D像を生成する。これらのポイントが等方的に光を放出する場合、結果として生じる画像は、ゴースト又は透明に見える。従って、深さ方向に整列されたボリューム要素は互いにブロックしているようには認識されないので、典型的なボリュームディスプレイは真の3D照射野を作成しない。すなわち、画像はオクルージョンを表示しない。
視差タイプの自動立体ディスプレイは、内部で画像のステレオ分離を行い、これによって観察者は、付加的なアイウェアを使用することが不要になる。観察者が空間内の固定位置に留まる限り各眼に対して異なる画像を提示する、このタイプの幾つかのディスプレイシステムが開発されている。これらの多くは視差障壁法の変形形態であり、微細な垂直格子又はレンティキュラーレンズアレイがディスプレイ画面の前方に配置されている。観察者の眼が空間内の一定の位置に固定されたままである場合、各眼は、格子又はレンズアレイを通してディスプレイ画素の1つのセット(偶数又は奇数)だけを見ることができ、他のセットは見ることができない。よって、この幾何学的配置は、各眼が画像のその別個のビューを表示する画素のセットに対応する、固有のそれぞれの画像だけを確実に見ることができるようにする。視聴者のそれぞれの右眼及び左眼によって個々に見られる2つの画像ビューは、人間の視覚系が別々に見た画像を単一の3D画像として同時に解釈するように構成されている。これは、観察者がどのようなパーソナル補助器具も着用又は使用することを必要とせずに行われる。しかしながら、視差障壁法は通常、観察者が1つのロケーションに静止したままにする必要がある。更に、多くの場合、これらのディスプレイは、水平方向であるが垂直方向ではない視差を提供する2次元照射野を生成する。
自動立体ディスプレイの最新の可能性のある実際的な形態は、ホログラムである。ホログラフィック及び疑似ホログラフィックディスプレイは、視聴者に対してオリジナルの光波面を効率的に再作成又はシミュレートすることによって、多くの異なるビューを同時に提示する部分照射野を出力する。結果として生じる像は、極めてフォトリアリスティックで、オクルージョン及び他のビューポイント依存の効果(例えば反射)を示すと共に、視聴者の物理的位置には依存しない。実際に、視聴者は、動き回って画像の異なる態様を観察することができる。ホログラフィック画像はまた、多くの観察者が同じ画像を同時に見ることを可能にする潜在能力を有する。
遙かに実際的ではあるが、動的に提示されるホログラフィック画像はまた、2ビュー立体ディスプレイに一般的に必要とされるよりもかなり大きな計算処理能力及び帯域幅を必要とする。オリジナルの波面、又はその許容可能な複製をリアルタイムで商業的に許容可能なコストで動的に再作成するための有効な手段が特に必要とされている。
従って、観察者に煩わしくない完全な移動の自由を可能にする、高度に有効的で、実用的、効率的、複雑でなく、更に安価な自動立体3Dディスプレイに対する必要性が依然としてある。更に、垂直並びに水平移動方向の両方において真の視差経験を提供する実用的な自動立体3Dディスプレイに対する必要性が依然としてある。
複数の視聴者についても独立して且つ同時に対応できるような実用的な自動立体3Dディスプレイに対して、並行した必要性が継続的にある。各視聴者が、存在している他の視聴者のいずれか、同じビューイング環境内の全て、及び完全に自由に移動する全てによって同時に見られるものとは全く異なる可能性がある独自にカスタマイズされた自動立体3D画像を各視聴者に提供できるこうした同時ビューイングを提供するように、この必要性を実現することができる場合には特定の利点が与えられる。
更に、困難な未解決の技術的な課題を除いて特別なユーザアピールがあることに起因して、現実のホログラフィック経験を提供する実用的な自動立体3Dディスプレイに対して特有の必要性が引き続きある。上述のような複数の同時及び個別化されたビューイングを可能にするホログラフィック又は疑似ホログラフィックビューイングシステムについての必要性に対する解決策は驚くべきものである。
更に別の差し迫った必要性は、3Dユーザ入力の提供と共にビューイング経験を最適化するためのフィードバックを組み合わせ、従って、特別なビューイングゴーグル又はヘッドギアを必要とせずに3D空間における仮想3D対象物のビューイング及び操作を可能にする邪魔にならない3Dビューイングデバイスを目的としたものである。
増加の一途を辿る商業的競争圧力、益々高まる消費者期待、及び市場における重要な製品差別化に対する機会減少の観点から、これらの問題に対して答えを見つけることは益々重要になっている。更に、コスト抑制、効率改善、性能向上、更にこうした競争圧力への対応に対して依然として必要性が高まっていることにより、これらの問題への解決策を見つける重要な必要性が一層火急のこととなっている。
これらの問題に対する解決策は、長い間追求されてきたが、従来の成果ではどのような解決策も教示又は示唆されておらず、従って、これらの問題に対する解決策が当業者には長い間得ることができなかった。
米国特許出願第11/255,348号公報
本発明は、予め決められた角度的応答性に優れた反射表面関数を備えた投影スクリーンを有する3次元ディスプレイシステムを提供する。3次元画像は、予め決められた角度的応答性に優れた反射表面関数と協働してそれぞれ変調されて、プログラム可能偏向角度を備えたプログラム可能ミラーを定める。
本発明の幾つかの実施形態は、上述の態様に加えて或いはその代替として、他の態様を含む。本態様は、添付図面と共に以下の詳細な説明を読むと当業者には明らかになるであろう。
本発明の実施形態による3次元ディスプレイシステムを示す機能ブロック図及び概略図である。 投影スクリーンの表面上の単一の画素を示す図である。 表面関数を有する投影スクリーンを示す図である。 投影スクリーンの表面関数の関数としてプロジェクタから観察者までの光経路を示す図である。 距離xの関数としての法線の角度及び適正な目標法線角度を示すグラフである。 距離xの関数としての変調関数を示すグラフである。 変調関数の物理的意義を示すグラフ表示である。 デジタル信号プロセッサに表示される観察者の簡略形状を示す図である。 本発明の実施形態による3次元ディスプレイシステムを示すフローチャートである。
以下の実施形態は、当業者が本発明を実施及び利用できる程十分に詳細に説明される。他の実施形態は本開示に基づいて明らかになり、本発明の範囲から逸脱することなくシステム、プロセス、又は機械的な変更を行い得る点を理解されたい。
以下の説明では、本発明を完全に理解するために多数の特定の詳細が提示される。しかしながら、本発明は、これらの特定の詳細なしに実施できることは明らかであろう。本発明を曖昧にしないために、幾つかの公知の回路、システム構成、及び動作ステップは詳細には開示されない。
同様に、本システムの実施形態を示す図面は、半図面であり且つ縮尺通りではなく、特に、寸法の一部は表示を明確にするためのものであり、各図では大幅に誇張して示されている。同様に、図面中の矢視は、説明を容易にするために一般に同じ方向を示し、各図のこの描写はほとんどの部分について任意である。一般に本発明はあらゆる向で機能することができる。
更に、複数の実施形態が共通して幾つかの機能を有して開示され説明される場合、その例証、説明、及び理解を明確且つ容易にするために、類似及び同様の特徴部は通常、互いに同じ参照符号で記述されることになる。
説明の目的のために、本明細書で使用される用語「水平」とは、観察者の方向に関係なく、観察者の眼の平面に対して平行な平面として定義される。用語「垂直」とは、上記で定義された水平に対し直角の方向を指す。「上に」、「よりも上方に」、「よりも下方に」、「底部」、「頂部」「側部」(「側壁」と同様)、「より高い」、「より低い」、「上部」、「にわたって」、及び「下に」などの用語は、水平平面を基準として定義される。
本発明は、邪魔にならず煩わしくない3D自動立体ビューイング経験と共に3Dヒューマンインターフェース機能をもたらす3次元(「3D」)ディスプレイシステムを提供する。観察者はヘッドギアを着用する必要はない。1つの実施形態では、本発明のシステムは、立体3Dディスプレイ及びビューイング経験を提供し、別の実施形態では、現実的なホログラフィック3Dディスプレイ経験を提供する。
本発明の幾つかの実施形態によれば、1又はそれ以上の観察者の位置もまたリアルタイムで追跡され、これによって観察者に投影される3D画像を各観察者に個々に連続してカスタマイズすることができるようになる。また、観察者のリアルタイム位置追跡により、現実的な垂直並びに水平視差を有する3D画像が可能になる。更に、各3D画像は、観察者の個々に変化するビューイング位置に応じて調節することができ、これによって、個人毎にカスタマイズされ個別化された3D画像を動的且つ変化し易い環境で見ることができるようにする。更に、位置的追跡及び位置的応答性に優れた画像調節により、真のホログラフィックビューイング経験の合成が可能になる。
従って、本発明の実施形態によれば、例えば以下の構成単位を含む自動立体ディスプレイシステムが開示される。
・アナログミラー、ポリゴンスキャナ又は類似のデバイス、及びドライバ回路を含む2次元(「2D」)プロジェクタ;
・3D撮像装置(2Dプロジェクタの一部とすることができる);
・表面関数を有する投影スクリーン;
・ディスプレイインターフェース;
・デジタル信号プロセッサ(「DSP」);
・3Dレンダリング機能を備えたホスト中央処理装置(「CPU」);
これら及び他の関連の構成単位及び構成要素は、独立型要素として構成することができ、或いは当該特定の実装の必要に応じて又はこれに適切な1又はそれ以上の組立体の形で共に組み合わせることができる点は理解されるであろう。
ここで図1を参照すると、本発明の実施形態による3次元(「3D」)ディスプレイシステム100の機能ブロック図及び概略図が示されている。ホストCPU102は、従来理解されているように、オペレーティングシステム(「OS」)104、3D/立体レンダリングエンジン106、グラフィクカード108、及び他のコンポーネント(図示せず)を含む。
3D/立体レンダリングエンジン106は、以下に更に説明されるように3D画像(例えば、立体又は疑似ホログラフィック)をレンダリングし、当該特定の実装に従って、ファームウェア、ソフトウェア、又はハードウェアで実装することができる。従って、3D/立体レンダリングエンジン106は、グラフィクカード108などのグラフィクカードの一部、グラフィクスチップの一部、グラフィクスチップのグラフィクスプロセッサユニット(「GPU」)上で実行されるコード、特定用途向け集積回路(「ASIC」)、ホストCPU102上で実行される特定のコードなどとすることができる。実装の選択は、本開示及び当該特定の実装の関連する特徴に基づいて当業者には明らかになるであろう。
3D/立体レンダリングエンジン106によってレンダリングされた3D画像は、デジタルビデオインターフェース(「DVI」)規格に基づく相互接続のような、好適な相互接続を介して3D/立体ディスプレイ110に送られる。相互接続は、無線(例えば、802.11xWi−Fi規格、超広帯域(「UWB」)、又は他の好適なプロトコルを使用したもの)、或いは有線(例えば、アナログ形式、或いは遷移時間最短差動信号伝送方式(「TMDS」)又は低電圧差動信号方式(「LVDS」)などによってデジタルで送信される)のいずれかとすることができる。
3D/立体ディスプレイ110内部のディスプレイインターフェース及び画像スプリッタ112は、3D/立体レンダリングエンジン106からの3D画像を2つの3D副像、すなわち左副像114と右副像116とに分割する。左及び右副像114及び116は、それぞれの画像変調器118及び120において変調されて(ターンオン及びオフを含む)、図2に示されるように、プロジェクタ122による左及び右副像114及び116それぞれの観察者の左眼及び右眼208及び210への光投影を可能にし且つ制御する。次いで観察者の脳は、2つの投影された光副像114及び116を3D画像に結合し、観察者に3Dビューイング経験を提供する。
観察者のそれぞれの左眼及び右眼への偏向は、本発明の実施形態による投影スクリーン124を使用して達成される。投影スクリーン124は、本発明に従って本明細書に開示され教示されるように、適切に変調された画像データと共に、プログラム可能偏向角度を有するプログラム可能ミラーであるミラーデバイス126を形成する。大まかに言えば、この組み合わせは、それぞれの眼の空間ロケーションの関数として観察者の特定の左眼及び右眼に投影スクリーンから光を反射させるように動作するので、投影スクリーンを空間フィルタであるプログラム可能ミラーとして構成し、そうでなければ光がフィルタ除去されたかのように光を反射しない。
従って、本明細書で広く使用される用語「プログラム可能ミラー」とは、本明細書に開示されるように、投影スクリーン124とこれに投影されて且つここから反射される変調画像データとが、投影画像の単一の画素のロケーションのような投影スクリーン124上の特定の限定ロケーションにおいてプログラム可能に変更することができる偏向角度を有することを意味するように定義される。更に一般的には、「プログラム可能ミラー」とは、偏向角度が、投影スクリーン124全体と同じ程度の反射ポイント(例えば画素)の各々において個々にプログラム可能に制御及び変更できることを意味するよう定義される。従って、この定義により、投影スクリーン124は、固定の偏向角度を持たない。むしろ、偏向角度(例えば、観察者の左眼208に対する角度と、観察者の右眼210に対する角度)は、必要に応じて変更するようリアルタイムでプログラムし、観察者の眼の位置の変化(例えば、頭の傾き、頭部位置、観察者位置などの変化に起因するもの)に追従することができる。
3D撮像装置130と共にデジタル信号プロセッサ(「DSP」)128を用いて、投影スクリーン124に対する観察者132(すなわちユーザ)の正確なロケーションを決定する。投影スクリーン124に対する観察者の頭部位置、頭の傾き、及び眼の離隔距離など、観察者132に関する特徴はまた、DSP128及び3D撮像装置130によって決定付けられる。これらの決定に基づいて、画像変調器118及び120の変調関数及び/又はプロジェクタ122の偏向角度に対して適切な変更が行われ、ミラーデバイス126のプログラム可能偏向角度を変えて、観察者132に3Dゴーグル又は他の邪魔なビューイング手段を必要とせずに最良の3Dビューイング経験を提供する。
3D撮像装置130は、当業者には理解されるように、各観察者132の位置及び特徴を位置付けて決定付ける何らかの好適なスキャナ又は他の公知のデバイスとすることができる。このような特徴は、例えば、観察者132の身長、頭の方向(回転及び傾き)、腕及び手の位置などを含むことができる。1つの実施形態では、3D撮像装置は、プロジェクタ122によって投影され、以下に更に説明されるようにこの目的において投影スクリーン124から反射される光を利用することになる。特に有効且つ費用対効果の高い3D撮像装置は、例えば、2005年10月21日出願の本発明の譲受人に譲渡された同時係属の米国特許出願第11/255,348号の教示を利用することによって任意選択的に実施することができる。
幾つかの実施形態では、3D撮像装置130は、プロジェクタ122の不可欠の部分として構成することができる。例えば、プロジェクタ122は、観察者132並びに投影スクリーン124を制御可能に直接照明するよう構成することができる。次いで、適切に位置付けられた光センサ134は、観察者132から反射される照明光をピックアップするように位置付けられる。3D撮像装置130(又は説明するように任意選択的にプロジェクタ122)が、公知の予め決められた角度及び高さで照明光を制御可能に投影するので、光センサ134は、例えば、好適な全方向性光センサとすることができる。次いで、観察者132の位置は、3D撮像装置130からの投影された照明光の角度及び高度によって、及び3D撮像装置130から光センサ134までの照明光の測定された飛行時間(「TOF」)から特定することができる。また、光センサ134は、例証を容易にする目的で別個のユニットとして示されているが、代替的に、例えば3D撮像装置130などの他のシステムコンポーネントのいずれかに組み込むことができる。同様に、3D撮像装置130及び/又は光センサ134は、有利には、プロジェクタ122に組み込み及び/又は統合することができ、任意選択的にその共通のコンポーネントを相互に共有する。
3D撮像装置130及び光センサ134はまた、観察者入力の手段を提供することができる。例えば、観察者132が位置付けられる投影スクリーン124の前方のボリュームは、投影スクリーン124上に3Dディスプレイとしてエコーされる仮想ディスプレイボリューム136として3Dディスプレイシステム100により構成することができる。次に、仮想ディスプレイボリューム136は、観察者入力用に使用することができる。1つの実施形態では、観察者132は、例えばボタンの3D表示を作動させて、仮想アクティブデスクトップ(図示せず)上に幾つかの特徴をアクティブにすることができる。このようなアクティブデスクトップは、仮想ディスプレイボリューム136において仮想的に表示され、投影スクリーン124上の3D投影により、観察者132がすぐ近くに近接して仮想ディスプレイボリューム136内に3D画像として観察者132に表示されることになる。本開示の観点で当業者によって理解されるように、他のヒューマンインターフェース動作も同様に可能である。
ここで図2を参照すると、投影スクリーン124(図1)の表面上に単一の画素202の描写200が示されている。プロジェクタ122から投影スクリーン124上の画素202に進み、次いで観察者の左眼及び右眼208及び210それぞれに戻る経路をたどる左及び右光ビーム204及び206が示されている。観察者の左眼208に入射している左光ビーム204は、画素ロケーションXLでの投影光の反射であり、観察者の右眼210に入射している右光ビーム206は、画素ロケーションXRでの投影光の反射である。1つの実施形態では、画素表面は、磨かれた銀又はアルミニウムなどの反射材料で処理されている。
この実施形態においてはドーム形の各画素202において、投影光ビーム204及び206がそれぞれ、反射して観察者のそれぞれの左眼及び右眼208及び210に入る、1つのロケーションXL及び1つのロケーションXRが厳密に存在する。これは、プロジェクタ122からの照明光ビームの入射角が、入射光ビームが反射されたポイントでの画素202表面の法線212に対する反射角度に等しい理由による。(法線212は、入射光ビームが反射されるポイントでの画素202の表面に直角な線である。)反射の当該ロケーション又はポイント(例えば、XL又はXR)において、画素202の小部分だけが、観察者の対応する左眼208又は右眼210に向けて光を反射させている。画素202の他のいずれかの部分に衝突するプロジェクタからの光は、観察者のその特定の眼以外の他の場所に反射されることになる。
従って、法線212が画素202の表面のスロープに直角であり、スロープは画素202全体にわたって一定ではないので、理想的には唯一のロケーションである各XL及びXRそれぞれが存在し、ここで光が観察者132の対応する左眼208及び右眼210に反射される。観察者132が別の位置に移動する場合、反射の新しいロケーション又はポイントXL及びXRは、観察者の眼に光が適切に反射され続けるようにする必要がある。同様に、更に他の位置での別の観察者は各々、画素202上の固有の反射ロケーションXL及びXRを必要とすることになる。
従って、プロジェクタ122が投影スクリーン124(図1)をスキャンしたときに左及び右の光ビーム204及び206を適切に変調する(ターンオン及びオフする)ことによって、固有の画像をプロジェクタ122により観察者132の左眼及び右眼208及び210にそれぞれ送ることができる。これは、例えばプロジェクタ122が固有のロケーションXLに向けて投影しているその瞬間に投影スクリーン124上の各画素202に左眼の画像情報を投影し、プロジェクタ122が固有のロケーションXRに向けて投影しているその瞬間に右眼の画像情報を投影することによって達成することができる。
このようにして使用される場合、投影スクリーン124は、プログラム可能偏向角度を有するプログラム可能ミラーデバイスとして機能し且つ該デバイスとなる。すなわち、特定のそれぞれの偏向角度(例えば、観察者132のそれぞれの左眼及び右眼208及び210に投影する角度)に関連付けられた固有の画素ロケーションXL及びXRに投影するようプロジェクタ122をプログラムすることによって、投影スクリーン124の偏向角度は、このプログラミングに従って固有に選択及び制御される。よって、投影スクリーン124(その構成に依存する)は、全方向性反射表面(例えば)からプログラム可能偏向角度を有するプログラム可能ミラーデバイスに変換される。
以下に図示され説明されるように、1つの実施形態では、投影スクリーン124に対して正弦表面関数を選択することが有用である。本明細書で使用される用語「正弦表面関数」とは、投影スクリーン124の少なくとも1つの軸に沿った変位の関数として正弦的に変化する投影スクリーン124上の表面トポグラフィーとして定義される。
次に図3を参照すると、表面関数302を有する投影スクリーン124の描写300が示されている。この実施形態での表面関数302は、正弦表面関数であり、表面トポロジーは、図3に全体的に示されるように正弦的に変化し、入射光ビーム304に対して常に変化している既知の予測可能な偏向角度δ0を表す。従って、投影スクリーン124の平面308に対して測定された反射光ビーム306の偏向角度δ0は、投影スクリーン124上のロケーション又は座標の正弦関数である。描写300では、投影スクリーン124の関連する法線212が、水平変位の関数xとして示されており、同様にxと共に正弦的に変化する。
この実施形態での表面関数302は正弦波として描かれているが、より一般的な意味の表面関数302は、公知の又は明確に定義されている限りあらゆる適切な関数とすることができる点は理解されるであろう。以下でより詳細に説明されるように、表面関数302は、予め決められた(すなわち、公知の及び明確に定義された)、反射型(すなわち、その上に衝突する光を反射する)の、及び角度応答性に優れた関数として定義される。角度的応答性は、光の実際の衝突角度が一定のままである場合でも、衝突光が反射される角度は、衝突光が向けられる表面関数上のロケーション(すなわち、関数として)に応じて変化する(すなわち、一定ではない)ことを意味するように定義される。光の反射角度は、従って、光が照準とする又は配向されるロケーションに既知の予測可能な方法で応答する(「角度的に応答する」)。従って、投影スクリーン124は、予め決められた角度的応答性に優れた反射表面関数を定義する空間フィルタ(表面関数302)を有する。
周期的表面関数及び滑らかなスロープ変動(例えば、曲線トポグラフィー)を有する表面関数が好ましいが、関数が明確に定義されている限り、のこぎり歯関数、三角関数、不規則関数、非調波関数、又はいずれかの好適な任意関数を有することが可能である。投影スクリーン124をスキャンして、結果として生じる反射を例えば相関テーブルにマップすることによって、数学的に明確に定義することができ、或いは操作上明確に定義することができる。
続いて図3を参照し、次いで図4を参照すると、xの関数としての反射光ビーム306の偏向角度δ0を以下のように求めることができる。
投影スクリーン124の表面関数302は、次のように投影スクリーン124の厚み(従って表面高度)z(x)をスクリーン表面310に沿った水平変位x(表面関数302を具体化する)に関連付ける。
Figure 0005214616
(式1)
上式で、
0は、投影スクリーン124のZOFF(「Z−Offset」)と最大厚み(ZOFF+Z0)との間の差(従って、Z0は本質的に表面関数の振幅)であり;
OFFは、投影スクリーン124の平均厚み;
Z(x)は、ロケーションxでの投影スクリーン124の厚み;
λpは、1つの画素202(図2)の長さである(従って、λpは、表面関数の1つの完全な周期を表す正弦波の360°の1サイクルである)。
xの関数として接線又はスロープ312を計算するために、(式1)は、xに対して微分される:
Figure 0005214616
(式2)
次いで、角度β*が計算される。
Figure 0005214616
(式3)
角度βは、投影スクリーン124の平面308に対する法線212の角度である。位置xの関数として法線212の角度βを得るため、βを次式のように計算することができる。
Figure 0005214616
(式4)
ここで図4を参照すると、投影スクリーン124の表面関数302の関数として、プロジェクタ122から観察者132までの光経路402(入射光ビーム304と反射光ビーム306とから成る)の描写400が示されている。
角度δp及びδ0は次式のように計算することができる。
Figure 0005214616
(式5)
及び
Figure 0005214616
(式6)
式5及び6を用いると、x軸に対する法線の角度を計算できる。角度δOPはδPとδOとの間の正確に中点であるので、xの関数としての法線は次式のようになる。
Figure 0005214616
(式7)
δOP(式7)とβ(x)(式4)の関数が交わるロケーションは、以下のMATLAB(登録商標)(マサチューセッツ州Natick所在のMathWorks)スクリプトで示される変調関数を与える。
Figure 0005214616

Figure 0005214616

Figure 0005214616
投影スクリーン124のサイズ、画素202、投影距離、ビューイング距離などは、当該特定の利用に依存することになるが、上記のMATLAB(登録商標)スクリプトのパラメータは、1つのこのような実施形態を表している。この実施形態では、プロジェクタ122は、投影スクリーン124から500mm且つ表示された画像(図示せず)の左端から250mm離れ、表示された画像は500mmの幅があり、観察者は、投影スクリーン124から500mm及び表示された画像の左端から125mm離れ、画素202は、1mmの深さと25mmの間隔を有する。
MATLAB(登録商標)スクリプトの上の序文には、δOP(x)(式7)とβ(x)(式4)の関数が交わるロケーションが、以下に説明される変調関数を提供すると記載されている。
ここで図5を参照すると、xの関数として法線212(図3)の角度であるβ(x)の曲線502を示すグラフ500が図示されている。
また図5に示されるのは、δOP(x)の曲線504(基本的にはこの実施形態では直線)である。曲線504は、δOPが距離xの関数として漸次的に変化することを示している。δOP(x)は、距離xの関数として反射ビーム306を観察者132の眼に照準するように適正な法線212(図4)の角度に対応すると考えられる。(図4を参照のこと)。
ここで図6を参照すると、距離xの関数として変調関数602のグラフ600が示されている。変調関数602は、β(x)とδOP(x)の交点(図5に示される)で1の値を有し、他は0の値を有する。観察者の左眼に対する変調関数と観察者の右眼に対する変調関数とが存在する。変調関数は、入射ビーム304(図4)のそれぞれの正確な角度δP(例えば、変調関数値=1)でプロジェクタ122をターンオンさせるのに用いられ、該角度で投影スクリーン124の表面関数302上(例えば、図2に示されるようなロケーションXL及びXRで)に衝突して、入射ビームを観察者132のそれぞれの左眼及び右眼208及び210に直接反射させる。すなわち、各左又は右変調関数は、対応する左又は右眼のみに到達する適正な瞬間にそれぞれの左又は右像の投影を制御しターンオンする。あるときには、プロジェクタ122はオフであり(例えば、変調関数値=0)、投影は行われず、観察者の眼に到達することを狙っていないときに投影ビーム(すなわち、入射ビーム304)をマスキング又はゲートアウトする。
勿論、適正な反射ポイント(例えば、XL及びXR)を照準にしていない場合には観察者の眼に直接反射されないので、投影ビーム(例えば、入射ビーム304)は、説明されたように必ずしもマスクアウトする必要がないことは理解されるであろう。しかしながら、商業的に実用性のある反射表面は完全ではなく、反射は通常、鏡面であるがある程度の拡散反射を示すので、マスキングすることが好ましい。投影ビームが説明された適正な反射ポイント以外のロケーションに衝突する場合には、このような拡散反射は画像品質を劣化させる可能性がある。
同様の考察は、入射ビーム304が、適正な反射ポイントXLR間の距離よりも小さい幅を有するだけでなく、公称上当該距離の1/2を超えないような、かなり小さいことが好ましいことを示唆している。
ここで図7を参照すると、図6に示される変調関数602の物理的意義を示すグラフ表現700が示されている。具体的には図7は、変調関数602と投影スクリーン124の表面関数302との関係、及びプロジェクタ122からの入射光ビーム304(図4)の結果として得られる制御及び同期される伝送及び抑制を示す。
1つの実施形態では、入射光ビーム304は、投影スクリーン124の表面全体にわたって周期的に掃引される。入射光ビーム304の周期的掃引によって、投影スクリーン124の表面全体が掃引されると、その経路が、時間の経過と共に規則的に(すなわち周期的に)変化するようになる。従って、入射光ビーム304の位置又は変位(x、y)は時間tの関数である(説明を簡単にするために、yは示されていない)。
これに伴い、図7は、投影スクリーン124全体にわたってスキャンしたときに、時間tを入射光ビーム304の物理的な移動又は変位xに関係付ける。tとxとの間のこの相関関係によって、観察者132に投影される画像における単一の画素は、表面関数302の1つの画素に関係付けることができる。次いで、画像を変調関数602で適正に変調することによって、画素の特定の部分をマップアウトし、該特定部分をその近傍で所望の反射が観察者132の選択された眼に対して起こる特定の法線212に関係付けることが可能である。1つの実施形態では、入射光ビーム304は、入射光ビーム304が投影スクリーン124の表面全体にわたり周期的に掃引するときに、これに応じて変調関数602によってスイッチオン及びオフにされる。結果として、正確なそれぞれの3D画像情報が観察者132の左眼及び右眼208及び210(図2)に投影されるようになる。
代表的な画像データ信号を描いた画像データ信号702が図7の上部に示されている。画像データ信号702は、例えば、左副像114(図1)用の成分702Lと、右副像116用の成分702Rとを含むことができる。対応する画像変調器118及び120は、左及び右副像114及び116を変調して、変調関数602が1の値を有するときには常にそれぞれの画像データ信号702(すなわち、702L及び702R)をプロジェクタ122にわたすように変調関数602によって制御される。同様に、変調関数602が0の値を有する場合、信号はプロジェクタ122にわたされない。これにより、入射ビーム304の角度が適正である正確な瞬間にだけ、画像データ信号702をプロジェクタ122による投影に対して表面関数302と協働して変調して、それぞれの別個の光経路402を定義し、該経路は、画像データ702及びそこにある左及び右副像(702L及び702Rによって表される114及び116)をそれぞれ空間的に配向して、投影スクリーン124から観察者132のそれぞれの左眼及び右眼208及び210のロケーションに個々に且つ実質的に独占的に反射するようにさせる。画像データ信号702の投影部分は、変調関数602によって調整されたときに、これに応じて投影部分704L及び704Rとして図7に示される。
図7の一番下には、投影スクリーン124の表面関数302の対応する部分が示されている。x、t、変調関数602、及び観察者の左眼208に対する対応する法線212Lと観察者の右眼210に対する法線212Rとの間の関係が表されている。上記で説明されたように、各法線212は相関性があり、これによって入射光ビーム304を観察者のそれぞれの左眼及び右眼に反射するための適正な角度及び投影ターゲットのロケーションを指定する。説明されるように、変調関数602が変調関数値1によってプロジェクタ122をスイッチ「オン」にするのは、これらのロケーション(x)及び対応する時間(t)においてである。
従って、変調関数602で画像データ702を適正に変調することによって、左眼208及び右眼210に対するそれぞれの空間反射が作成される。角度的応答性に優れた反射表面関数302と協働して、左及び右副像114及び116をそれぞれ角度及び強度変調することによって、プログラム可能偏向角度を備えたプログラム可能ミラー126が設けられて定義される。
同様に、以下で更に説明されるように、3Dディスプレイシステム100は、イメージング目的で空間反射を生成することができる。入射光ビーム304又は反射光ビーム306を用いて、対象物をイメージングすることができる。更に具体的には、これらのビームを用いて、所与の偏向角度に対する所与の対象物の距離を決定することができる。この特定のモードでは、3Dディスプレイシステム100は、その視野をイメージングし、デバイスの視野におけるスキャンビームの垂直及び水平変位の関数として対象物の距離を表すマップを作成する。1つの実施形態では、例えば、ビームがプロジェクタ122を離れた後、ビームは、プログラム可能ミラー126によって対象物(例えば、観察者132)上に偏向され、次いで対象物から光センサ134内に入る。変調された光ビームの経路遅延に基づいて、DSP128は、光ビームが移動した距離、従って、特定の対象物がスキャンされた距離を計算することができる。この特徴により、観察者132に最良の可能な立体ビューイング経験を与えるための最適偏向角度の計算が可能になる。
本開示に基づいて、変調関数602が画像データ702の変調に限定されないことは理解されるであろう。変調関数602はまた、水平及び/又は垂直方向におけるスキャンビーム(例えば、入射光ビーム304)のスキャン速度を変調するのにも使用することができる。1つの実施形態では、例えばこのような実装は、プロジェクタを連続的に「オン」に維持して、当該画素ロケーションと選択され目標とされる観察者の眼との間でその瞬間に投影される対応する画素に対する各それぞれの法線212ロケーションに直接入射光ビーム304を単に「ジャンプ」させる。
更に、変調関数602は、投影スクリーン124を一定の速度でスキャンしたときに適切な目標偏向角度δOになるように投影スクリーン124の表面上に符号化することができる点は、理解されるであろう。これは、例えば、観察者132がほとんど固定ロケーションにいる状態の場合に有利となる。このような特定の状況では、スキャンビームは連続して続けることができる。
本発明の開示に従って上記で示されたように、プログラム可能偏向角度δOを備えたミラーは、本発明の開示に従って変調された投影画像ビームと組み合わせて本明細書で開示されるように投影スクリーンを構成することで提供することができる。
図1に関連して上述されたように、システム100は、観察者132などの物理的対象物によって反射された光を評価するピックアップセンサ(3D撮像装置130及び光センサ134(図1)など)を組み込むことによって、1又はそれ以上の既存の対象物又は観察者をイメージングするのに使用することができる。これにより、当該対象物の位置及び形状の特徴を決定することが可能になる。特定の特徴を決定することは、例えば、公知の画像認識技術を使用して容易に行うことができる。これにより、システム100は、例えば、観察者の頭の左側を左眼208に対する左偏向角度に関連付け、観察者の頭の右側を右眼210に対する右偏向角度に関連付けることが可能になる。
観察者132に対して、左及び右像に対して投影される光ビームの適正な偏向角度δOを調節して、観察者のそれぞれの左眼及び右眼208及び210に左及び右像が確実に達するようにするために、このような位置及び形状特徴が必要とされることは理解されるであろう。観察者の位置及び形状特徴を決定するためのこのようなイメージング機能は、システム100におけるフィードバック機構(例えば、3D撮像装置130及び光センサ134)を形成し、これにより観察者が投影スクリーン124の近傍で移動することができ、システム100がこうした移動に対応して、観察者を連続的に追跡し追従することができるようになる。言い換えると、観察者の移動を追跡してフィードバックを提供し、観察者が移動し位置を変えるにつれて観察者の左眼及び右眼に3D画像を正確且つ直接的に配向し続けるよう、適切なリアルタイム調節ができるようにする。
また、このようなフィードバックを用いて、頭の方向(回転及び傾き)、腕、手、及び指の位置などの観察者の特徴を定義し追跡することができ、その結果、種々の観察者作動による制御入力に対してのシステム入力を提供するフィードバックとして、これらの特徴を解釈することができる。次いで、これらの制御入力を用いて、3Dディスプレイシステム100のオペレーションを制御し、仮想ディスプレイボリューム136などにおける仮想対象物を制御及び/又は操作することができる。
例えば、3Dディスプレイシステム100は、仮想ディスプレイボリューム136内で観察者132に対し邪魔にならない3D仮想デスクトップ(図示せず)を提示することができる。その結果、観察者132は、仮想対象物が実際に存在する(存在するように見える)かのように仮想ディスプレイボリューム136に手を伸ばし、仮想対象物を「把持」し、「プッシュ」し、或いは操作することによって、デスクトップ内の対象物を操作することができる。仮想対象物の操作は、フィードバック機構が仮想対象物のロケーションにおいて指の動きのような観察者の動きを認識し、これに応答して仮想対象物のディスプレイを再構成することに起因して生じる。
従って、更に一般的には、仮想ディスプレイボリューム136は、3D対話のための仮想ボリュームとして機能する。このような3D対話及びユーザインターフェース(「UI」)は、3D立体投影及びビューイング、又は3Dホログラフィック(或いは、以下に更に説明されるような疑似ホログラフィック)投影及びビューイングと併用することができる。
1つの検出及びフィードバック実施形態では、例えば、光センサ134による検出のためにプロジェクタ122からの光で観察者132を照明する場合、プロジェクタ122によって投影された各画像フレームは、次の3つのサブフレームに分割することができる。
・観察者132の左眼208(図2)に対して指定された3D立体画像の左3D副像(すなわち左副像114)のフレームである、投影左像サブフレーム;
・観察者132の右眼210に対して指定された3D立体画像の右3D副像(すなわち、右副像116)のフレームである投影右像サブフレーム;
・観察者の実際のロケーション及び方向を決定し位置特定するために観察者132を照明するフレームである投影スキャン画像サブフレーム。
このような実施形態では、スキャン画像サブフレームの投影は、左及び右3D副像の投影に協働して行われる。
スキャン画像サブフレームを用いて、観察者が追跡されている目標エリア全体を掃引することができ、或いは観察者の一般の位置が既知である場合、スキャン画像サブフレーム中の投影ビームは、より具体的にその既知の一般の位置に配向されて観察者132を照明することができる。或いは、観察者132は、投影スクリーン124からの光を観察者に反射させることによって間接的に照明することができる。次いで観察者132からの反射された光を用いて、観察者132の3Dプロフィールを作成し、観察者132と投影スクリーン124との間の関連性を定義することができる。この関連性は、例えば観察者と投影スクリーン間の距離z、及び距離zの投影スクリーン124の平面に平行な対応するx、y平面における種々の観察者特徴のx、y、zロケーション(眼のロケーションなど)として定義することができる。スキャン画像サブフレームの数及びレートは固定とすることができ、或いは観察者132の動きの程度及び速度に応じて及び応答して適応させることができる。
前述のように、投影スクリーン124の近傍の既存の対象物及び/又は観察者のイメージングは、プロジェクタ122によって、或いは3D撮像装置130などの別の撮像装置によって提供することができ、光センサ134をこれに組み込むことができ、或いはこれとは別個に配置してもよい。
ここで図8を参照すると、公知のように好適な画像認識法を使用する3D撮像装置130によってイメージングされた後、観察者の形状がDSP128(図1)に表示できるように簡略化された観察者132の形状800が示されている。DSP128における好適な画像認識は、観察者132の左及び右肩802及び804を識別する。また、観察者の頭部の左側及び右側806及び808は、観察者の左眼及び右眼208及び210の対応するロケーションを有するものとして識別される(3D撮像装置130に可視でない場合、左及び右側806及び808のような、他の頭部特徴の識別ロケーションから補間することによって識別することができる)。眼の位置の補間を可能にする好適なデータ及び手順は、例えばDSP128を用いて記憶することができる。
図8は、上述のx、y、及びz軸に関係付ける観察者の簡略化された形状800を示す。これに関して、観察者132は、観察者の背後に3D撮像装置130があり、投影スクリーン124(図1を参照)と近接した状態で投影スクリーン124(図8に示されていない)に向き合っているものとして認識される。
このようにして利用された場合、イメージングされた観察者132の簡略形状800を用いて、観察者の頭の左及び右側806及び808の正確なロケーションを決定して、観察者の左眼及び右眼208及び210の位置を適正に決定(例えば、補間)する。眼の位置情報をシステム100によって使用して、決定された(補間された)眼の位置に観察者の左眼及び右眼208及び210が到達するように、左及び右像の偏向角度δOがそれぞれ適正に調節される。更に、観察者132が動くと、システム100はこの動きを追跡し、観察者の眼のロケーションの動きを追跡し、更に新しい眼の位置を正確に決定(補間)して、追跡された動きに応じて左及び右副像を調節する。以下に更に説明されるように、追跡された動きに応じて左及び右副像を調節することにより、ホログラムに似た像を生成することができる。
本明細書の開示に基づいて、本発明が全体として3Dディスプレイシステム100を一度に使用する複数の観察者に同時に対応できることは、当業者により更に評価され理解されるであろう。このような複数の観察者が存在するときには、3D撮像装置130又は他のスキャンシステム(前述のようなもの)は、複数の観察者の各々の個々の形状及びロケーションを連続して同時に検出し定義する。次いで、変調関数602及び画像データ信号702は、複数のユーザの各々のロケーション及び方向を追跡するよう適切に修正され、各個々の観察者に関係付けられた適切な固有且つ個々の画像データストリーム及び空間反射を可能にし且つ制御する。このようにして、固有且つ個人的3D視覚経験を各個々の観察者に同時に提供することが容易に可能であり、各視覚経験(すなわち、投影された画像)は、必要に応じて他者と同じか又は異なるよう選択的である。
更に、観察者と非観察者とを区別するために画像認識を実施することができ、これによって、例えばこれに応じて区別できるようになる幾つかの予め決められた定義特徴を有する所望の目標(すなわち、存在する実際の観察者)にだけ像が投影されるようになる。
更にまた、個々の観察者132は個々に区別、検出、及び追跡できるだけでなく、独特の個別特徴(例えば、身長、肩幅、独特な輪郭その他)に基づいて固有に識別することができる。個人化された観察者の選好は記憶され、このような各観察者に関連付けられる。次に、例えば3Dディスプレイシステム100の環境に入ると、本システムは、これらの観察者132を認識し、固有の選好及びこれに関連付けられたパラメータに従って当該観察者の経験をカスタマイズする。実施例は、観察者の自動認証、観察者の到着時の個人的挨拶、当該観察者だけにカスタマイズされたデスクトップを提供すること、当該観察者に対しカスタマイズされた制御応答(例えば、頭の動きへの応答)を提供すること、以前停止した3Dディスプレイを再開することなどを含む。
本発明の有益且つ有利な特徴は、自動的アラインメント(「自動アラインメント」)である。本発明の自動アラインメント機能は、プロジェクタ122、3D撮像装置130(プロジェクタ122と分離されている場合)、投影スクリーン124、及び観察者132の間の自動適正アラインメントを可能にする。1つの実施形態では、自動アラインメント機能は、3D撮像装置及び光センサがプロジェクタ122に組み込まれている場合にはプロジェクタ122をセンサとして利用する。別の実施形態では、自動アラインメント機能は、3D撮像装置130及び/又は光センサ134のような別個の3D撮像装置及びセンサを利用する。
自動アラインメント及び較正機能によって、DSP128及び3D撮像装置130のような3D撮像装置は、観察者のロケーションを決定するだけでなく、投影スクリーン124のロケーションも決定する。これは、観察者132のスキャンに類似して投影スクリーン124をスキャンすることによって達成される。このようなスキャンは、投影スクリーン124、観察者132、及びプロジェクタ122の正確な相対位置及び寸法を決定する。次にDSP128は、このような自動較正によって決定された更新及び現在のスクリーン位置及び/又は座標に従って変調関数602を適切に調節する(較正又は再較正する)。要求され又は必要とされる場合には、自動アラインメント較正を定期的に繰り返し、投影スクリーン124又は他のコンポーネントのロケーションが変わった場合にでも引き続き存在するアラインメントを保証することができる。このような自動較正は、観察者132に極めて最適なビューイング経験が提供されることを保証する。
本明細書における開示に基づいて、投影スクリーン124を適切にスキャンし、投影ビームを光センサなどの特定のロケーションに返す投影角度を記録することによって、投影スクリーン124上の個々の画素をも個別に較正できることは理解されるであろう。次に、投影スクリーンの表面関数302を認知し、光センサのロケーションを認知することにより、変調関数602は、観察者の特定の左眼及び右眼208及び210のような他のいずれかのロケーションに固有に投影するように、これらに基づいて容易に計算及び指定できる。
本発明の優れた態様は、本発明が真のホログラムを見ることと仮想的に区別できないビューイング経験をもたらすことができることである。このような「疑似ホログラフィック」画像は、観察者の動きを追跡してこれに応答する本発明の機能の直接的な結果である。観察者の眼のロケーションの動きを追跡することによって、左及び右3D副像が、リアルホログラムに似た画像を生成するよう追跡された眼の動きに応じて調節される。従って、本発明は、連続して3D画像を観察者に投影でき、表示される種々の仮想対象物の周り及び近傍の空間(例えば、仮想ディスプレイボリューム136内)で移動したときに観察者が持つことになる実際のビューイング経験を再作成する。これは、ホログラムによってもたらされるのと同じ経験的ビューイング効果である。これにより観察者は、例えば、仮想対象物の周りを移動し、様々な角度からその複数の側面を観察することが可能になるが、一方、通常の3D画像では、3D透視を提示するが、見られた対象物と相対的な(例えばその周りの)移動には対応していない。本発明によって投影された疑似ホログラフィック画像は、空間における観察者の実際の動きを検出及び追従(すなわち追跡)し、更にこのような仮想対象物の周りの実際の動きを模倣するようこれに応答して見られた3D画像を適正に再作成することによって、真のホログラムと同じ方法で対象物の3Dビューを動的に変更する。
本発明の疑似ホログラフィック機能の強力且つ予想外の拡張は、ホログラフィック加速である。ホログラフィック加速により、本明細書に教示されるように、視覚的にはっきりと理解される観察者の動きは、これに対応して観察者の実際の動き又は変位よりも高速に疑似ホログラフィック画像を観察者に対して移動させることによって、選択された係数だけ増大される。例えば、対象物の周りを移動すると、対象物は、観察者により対象物の周りの実際の動きよりも高速に回転しているように見える。直線状に移動するときには、投影画像に対する動きは、観察者の実際の動きよりも速く見える。画像の加速の程度は、例えば観察者によって選択することができ、3Dディスプレイシステム100によって容易に実装される。
仮想ディスプレイボリューム136はその範囲が有限であり、観察者が投影スクリーン124に向き合っているので、本発明の環境ではホログラフィック加速は特に有利である。例えば、投影スクリーン124がフラットである場合、観察者が仮想対象物の周りを最後まで実際に物理的に歩くことは現実的ではない。しかし、ホログラフィック加速を用いると、観察者は、対象物の周りの小さな円弧だけを移動し、この間に、あたかも観察者が大きな円弧を旋回しているかのように対象物が回転するのを観察することによって同じ効果を達成することができる。このようなビューイング経験は、実際のホログラムでは現在は実施可能ではなく、従って、本発明の別個の予想外の利点である。
ここで図9を参照すると、本発明の実施形態による3次元ディスプレイシステム900のフローチャートが示されている。3次元ディスプレイシステム900は、ブロック902で、予め決められた角度的応答性に優れた反射表面関数を有する投影スクリーンを準備する段階と、ブロック904で、予め決められた角度的応答性に優れた反射表面関数と協働して3D画像をそれぞれ調整して、プログラム可能偏向角度を備えたプログラム可能ミラーを定義する段階とを含む。
本発明は多数の態様を有することが予想外に明らかになった。
基本的な態様は、本発明が、観察者の完全で煩わしくない移動の自由を可能にする、極めて有効、実用的、効率的、複雑でない、及び安価な自動立体ディスプレイを提供することである。
別の重要な態様は、本発明が、垂直並びに水平両方の移動方向における真の視差経験を提供することである。
更に別の重要な態様は、本発明が、複数の観察者に独立して且つ同時に対応できる実用的な自動立体ディスプレイを提供することである。
本発明の特定の重要な態様は、こうした同時ビューイングをもたらし、存在する他の観察者によって同時に見られるものとは全く異なるようにすることができる固有にカスタマイズされた自動立体画像を全て同じビューイング環境内で、全て移動を完全に自由にして各観察者に提示することができるようにするものである。
本発明の別の特に重要な態様は、リアル感のあるホログラフィック経験を提供する実用的な自動立体ディスプレイを可能にし提供することである。更に驚くべきことに、本発明によるホログラフィック又は疑似ホログラフィックビューイング解決策により、複数の同時且つ個別化されたビューイングが可能になる。
本発明の別の重要な態様は、3D観察者/ユーザ入力の提供と共にビューイング経験を最適化するためのフィードバックを組み合わせた、邪魔にならない3Dビューイングシステムを可能にし提供することであり、従って、特別なビューイングゴーグル又はヘッドギアを必要とせずに3D空間における3D対象物のビューイング及び操作を可能にする。
本発明の更に別の重要な態様は、コスト低減、システム簡素化、及び性能向上といった従来の傾向をサポートしサービスすることである。
本発明のこれら及び他の有用な態様は、技術状態を少なくとも次のレベルに引き続き進めることにある。
従って、本発明の3Dディスプレイシステムが、視覚ディスプレイシステム、及び特に3D自動立体及び疑似ホログラフィックディスプレイシステムのこれまで知られておらず利用可能でなかった重要な解決策、能力、及び機能態の様を提供することが分かった。結果として得られたシステム構成は、直截的で、費用対効果が高く、複雑でなく、多用途で効果的であり、公知の技術に適合させることによって意外にも非自明的に実施することができ、従って、従来の製造プロセス及び技術と十分に互換性がある。
本発明を特定の最良の態様で説明してきたが、当業者であれば、前述の説明の観点から多くの代替形態、修正形態、及び変形形態が明らかになることは理解されたい。従って、本発明は、同梱の請求項の範囲内にある全てのこれらの代替形態、修正形態、及び変形形態を包含するものとする。本明細書でこれまでに記載され又は添付図面に示された全ての事柄は、非限定的な例証の意味で解釈すべきである。
100 3次元(「3D」)ディスプレイシステム
102 ホストCPU
104 オペレーティングシステム
106 3D/立体レンダリングエンジン
108 グラフィクカード
110 3D/立体ディスプレイ
112 ディスプレイインターフェース及び画像スプリッタ
114 左副像
116 右副像
118 画像変調器
120 画像変調器
122 プロジェクタ
124 投影スクリーン
126 ミラーデバイス
128 デジタル信号プロセッサ
130 3D撮像装置
132 観察者
134 光センサ

Claims (21)

  1. 少なくとも1人の観察者(132)の右眼及び左眼(208、210)の位置を追跡する段階と、
    投影スクリーン(124)の少なくとも1つの軸に沿って固定され、正弦角度的応答性のある表面関数(302)を有する反射投影スクリーン(124)に向けて左及び右副像(114、116)を投影(122)し、該左及び右副像(114、116)を少なくとも1人の観察者(132)に対して、それぞれの右眼及び左眼(208、210)の位置に反射させる、プロジェクタ(122)から前記右眼及び左眼(208、210)の位置に対するプログラム可能な反射角度を形成し、疑似ホログラフィック画像を生成する段階と
    を含む3次元画像システム(100)で表示する方法。
  2. 仮想ボリューム(136)において観察者の特徴(208、210、802、804、806、808)を追跡し、対話型観察者(132)起動制御入力に対するフィードバックを提供する段階を含む、
    請求項1に記載の方法。
  3. スキャン画像サブフレームを利用して前記観察者(132)が追跡される目標エリアを掃引する段階を含む、
    請求項1に記載の方法。
  4. 3次元対話のための仮想ボリューム(136)として前記投影スクリーン(124)の前方に予め決められた仮想ディスプレイボリューム(136)を確立する段階を含む
    請求項1に記載の方法。
  5. 前記プロジェクタ(122)によって前記画像(114、116)をターンオン及びターンオフして観察者(132)の左眼及び右眼(208、210)への光投影を制御する段階(118、120)を含む、
    請求項1に記載の方法
  6. 前記プロジェクタ(122)のスキャンビーム(304)のスキャン速度を調整する段階(118、120)を更に含む、
    請求項1に記載の方法
  7. 次式:
    Figure 0005214616
    を使用して前記表面関数(302)に対する法線(212)の角度を決定する段階を含む、請求項1に記載の方法
  8. 次式:
    Figure 0005214616
    を使用して観察者(132)の眼(208、210)に反射ビーム(306)を放射するように構成された前記表面関数(302)に対する法線(212)の角度を決定する段階を含む、請求項1に記載のシステム(100)。
  9. 前記投影スクリーン(124)の表面(310)に変調関数(602)を符号化する段階を更に含む、
    請求項1に記載の方法。
  10. 前記投影スクリーン(124)の表面(310)に変調関数(602)を符号化し、一定の速度で前記投影スクリーン(124)をスキャンしたときに選択された目標偏向角度になるようにする段階を含む、
    請求項1に記載の方法。
  11. 少なくとも1人の観察者(132)の右眼及び左眼(208、210)の位置を追跡する段階が観察者(132)と非観察者とを区別する段階と、
    画像(114、116)を投影する段階(122)がさらに観察者(132)にだけ画像を投影する段階と、
    を含む、
    請求項1に記載の方法。
  12. 前記追跡された動きに応じて前記左及び右副像(114、116)を調節し、ホログラムに似た画像を生成する段階と、
    を更に含む、
    請求項1に記載の方法。
  13. 前記副像(114、116)を変調する段階(118、120)が、前記副像(114、116)が前記観察者(132)の眼(208、210)に到達するように照準されていない場合に、前記副像(114、116)の投影をマスキング又はゲートアウトする段階を更に含む、
    請求項1に記載の方法。
  14. 前記投影スクリーン(124)に向けて前記左及び右副像(114、116)を投影する段階(122)が、前記法線(212)ロケーションとの間でその瞬間に投影される画素についての各それぞれの法線(212)ロケーションに入射光ビーム(304)を投影する段階(122)を含む、
    請求項1に記載の方法。
  15. 前記入射ビームが、前記画素(202)の反射ポイントXL及びXR間の距離よりも小さな幅を有する、請求項14に記載の方法。
  16. 個々の観察者(132)を固有に識別する段階と、
    個人化された観察者(132)の選好を記憶する段階と、
    前記観察者(132)に関連付けられた前記選好に従って前記観察者(132)の経験をカスタマイズする段階と、
    を更に含む、
    請求項1に記載の方法。
  17. 前記投影スクリーン(124)をスキャンして前記投影スクリーン(124)のロケーションを決定し、
    決定された前記投影スクリーン(124)のロケーションに従って前記左及び右副像(114、116)を調節する、
    ことによって、前記左及び右副像(114、116)を投影(122)するために前記投影スクリーン(124)からの反射角度を自動的に決定する段階を含む、
    請求項12に記載の方法
  18. 前記投影スクリーン(124)のロケーションを決定し、
    少なくとも1つの投影副像を予め決められたロケーションに返す少なくとも1つの投影角度を記録し、及び
    これに基づいて前記左及び右副像(114、116)の投影(122)を調節する、
    ことによって、
    前記左及び右副像(114、116)投影(122)するために前記投影スクリーン(124)からの反射角を決定する段階を含む、
    請求項12に記載の方法
  19. 観察者(132)の眼(208、210)ロケーションの動きを追跡する構成と、
    固定された、正弦角度的応答性のある反射投影スクリーン(124)であって、該投影スクリーン(124)の少なくとも1つの軸に沿った、正弦角度的応答性のある表面関数(302)を有する、反射投影スクリーン(124)に向けて左及び右3次元疑似ホログラフィック副像(114、116)を投影する(122)構成と、
    計算可能な反射角度を用いて、前記観察者(132)のそれぞれの左眼及び右眼(208、210)ロケーションに向けて前記左及び右3次元疑似ホログラフィック副像(114、116)を反射させる構成と、
    前記追跡された動きに応じて前記左及び右副像(114、116)の投影を調節して、ホログラムに似た疑似ホログラフィック画像を生成する構成と
    を含む3次元ディスプレイシステム。
  20. 前記観察者(132)の実際の動きよりも速く前記観察者(132)に対して前記疑似ホログラフィック画像(114、116)を動かすことで前記観察者(132)の眼に見える動きを増大させることによって、ホログラフィック加速を提供する構成を含む、請求項19に記載のシステム。
  21. 3次元疑似ホログラフィック投影及びビューイングと共に3次元対話のため仮想ボリューム(136)として前記観察者(132)の前方に予め決められた仮想ディスプレイボリューム(136)を構成する構成を含む、
    請求項19に記載のシステム。
JP2009529407A 2006-09-20 2007-09-20 3次元ディスプレイシステム Expired - Fee Related JP5214616B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/533,580 US7843449B2 (en) 2006-09-20 2006-09-20 Three-dimensional display system
US11/533,580 2006-09-20
PCT/US2007/079101 WO2008070246A2 (en) 2006-09-20 2007-09-20 Three-dimensional display system

Publications (3)

Publication Number Publication Date
JP2010503899A JP2010503899A (ja) 2010-02-04
JP2010503899A5 JP2010503899A5 (ja) 2010-10-21
JP5214616B2 true JP5214616B2 (ja) 2013-06-19

Family

ID=39188095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009529407A Expired - Fee Related JP5214616B2 (ja) 2006-09-20 2007-09-20 3次元ディスプレイシステム

Country Status (6)

Country Link
US (2) US7843449B2 (ja)
EP (1) EP2064895A2 (ja)
JP (1) JP5214616B2 (ja)
KR (1) KR101057617B1 (ja)
CN (2) CN102143374B (ja)
WO (1) WO2008070246A2 (ja)

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2119321B1 (en) * 2007-03-01 2011-09-07 Philips Intellectual Property & Standards GmbH Computer-controlled lighting system
US8237779B2 (en) * 2008-04-04 2012-08-07 Texas Instruments Incorporated Coding scheme for digital video signals and an image architecture using the same
US8456516B2 (en) * 2008-07-01 2013-06-04 Barco N.V. Methods and systems for stereoscopic imaging
US8427424B2 (en) 2008-09-30 2013-04-23 Microsoft Corporation Using physical objects in conjunction with an interactive surface
JP5616352B2 (ja) * 2008-11-24 2014-10-29 コーニンクレッカ フィリップス エヌ ヴェ 三次元guiにおける二次元グラフィックスの拡張
US8686951B2 (en) 2009-03-18 2014-04-01 HJ Laboratories, LLC Providing an elevated and texturized display in an electronic device
JP2013502617A (ja) * 2009-08-25 2013-01-24 ドルビー ラボラトリーズ ライセンシング コーポレイション 3dディスプレイシステム
TWI392952B (zh) * 2009-09-03 2013-04-11 Nat Univ Tsing Hua 多視角攝像方法及系統
WO2011053319A1 (en) * 2009-10-30 2011-05-05 Hewlett-Packard Development Company, L.P. Stereo display systems
US8610761B2 (en) 2009-11-09 2013-12-17 Prohectionworks, Inc. Systems and methods for optically projecting three-dimensional text, images and/or symbols onto three-dimensional objects
US20110199342A1 (en) 2010-02-16 2011-08-18 Harry Vartanian Apparatus and method for providing elevated, indented or texturized sensations to an object near a display device or input detection using ultrasound
US8730309B2 (en) 2010-02-23 2014-05-20 Microsoft Corporation Projectors and depth cameras for deviceless augmented reality and interaction
US20130057663A1 (en) * 2010-04-30 2013-03-07 Alexandre M. Bratkovski Image viewing systems with dynamically reconfigurable screens for three-dimensional viewing
US9030536B2 (en) 2010-06-04 2015-05-12 At&T Intellectual Property I, Lp Apparatus and method for presenting media content
US9049426B2 (en) 2010-07-07 2015-06-02 At&T Intellectual Property I, Lp Apparatus and method for distributing three dimensional media content
US9032470B2 (en) * 2010-07-20 2015-05-12 At&T Intellectual Property I, Lp Apparatus for adapting a presentation of media content according to a position of a viewing apparatus
US9232274B2 (en) 2010-07-20 2016-01-05 At&T Intellectual Property I, L.P. Apparatus for adapting a presentation of media content to a requesting device
US9141189B2 (en) 2010-08-26 2015-09-22 Samsung Electronics Co., Ltd. Apparatus and method for controlling interface
US9466148B2 (en) * 2010-09-03 2016-10-11 Disney Enterprises, Inc. Systems and methods to dynamically adjust an image on a display monitor represented in a video feed
US20120105805A1 (en) * 2010-11-01 2012-05-03 Huei Pei Kuo Image viewing systems with curved screens
US8459797B2 (en) * 2010-11-01 2013-06-11 Hewlett-Packard Development Company, L.P. Image viewing systems with an integrated screen lens
KR101670927B1 (ko) * 2010-11-05 2016-11-01 삼성전자주식회사 디스플레이 장치 및 방법
JP5289416B2 (ja) * 2010-11-10 2013-09-11 株式会社東芝 立体画像表示装置、方法およびプログラム
JP5050094B2 (ja) * 2010-12-21 2012-10-17 株式会社東芝 映像処理装置及び映像処理方法
US20120200676A1 (en) 2011-02-08 2012-08-09 Microsoft Corporation Three-Dimensional Display with Motion Parallax
US9329469B2 (en) * 2011-02-17 2016-05-03 Microsoft Technology Licensing, Llc Providing an interactive experience using a 3D depth camera and a 3D projector
US9480907B2 (en) 2011-03-02 2016-11-01 Microsoft Technology Licensing, Llc Immersive display with peripheral illusions
US8743244B2 (en) 2011-03-21 2014-06-03 HJ Laboratories, LLC Providing augmented reality based on third party information
JP2012222386A (ja) * 2011-04-04 2012-11-12 Sony Corp 表示制御装置および方法、並びにプログラム
KR20120132912A (ko) * 2011-05-30 2012-12-10 삼성전자주식회사 다중 표시 모드를 지원하는 단말기 및 이의 구동 방법
US9597587B2 (en) 2011-06-08 2017-03-21 Microsoft Technology Licensing, Llc Locational node device
DE102011077345B4 (de) 2011-06-10 2019-08-29 Airbus Operations Gmbh Verfahren und Vorrichtung zum Darstellen von Informationen mittels eines Dual-View-Displays in einer Passagierkabine eines Luft- oder Raumfahrzeuges
DE102011077421A1 (de) * 2011-06-10 2012-12-13 Airbus Operations Gmbh Verfahren und Vorrichtung zum Darstellen von Informationen mittels eines autostereoskopischen 3D-Displays in einer Passagierkabine eines Luft- oder Raumfahrzeuges
US8964008B2 (en) 2011-06-17 2015-02-24 Microsoft Technology Licensing, Llc Volumetric video presentation
US9602766B2 (en) 2011-06-24 2017-03-21 At&T Intellectual Property I, L.P. Apparatus and method for presenting three dimensional objects with telepresence
TWI428633B (zh) * 2011-08-22 2014-03-01 Wistron Corp 用來調整立體影像顯示模組之立體影像顯示的方法及其立體影像顯示模組
US9113043B1 (en) * 2011-10-24 2015-08-18 Disney Enterprises, Inc. Multi-perspective stereoscopy from light fields
US9165401B1 (en) 2011-10-24 2015-10-20 Disney Enterprises, Inc. Multi-perspective stereoscopy from light fields
US20130107022A1 (en) * 2011-10-26 2013-05-02 Sony Corporation 3d user interface for audio video display device such as tv
US20130145272A1 (en) * 2011-11-18 2013-06-06 The New York Times Company System and method for providing an interactive data-bearing mirror interface
FR2983330B1 (fr) * 2011-11-24 2014-06-20 Thales Sa Procede et dispositif de representation d'environnements synthetiques
CN103139581A (zh) * 2011-11-30 2013-06-05 四川长虹电器股份有限公司 一种偏光3d液晶电视重影消除方法
US20130141784A1 (en) * 2011-12-06 2013-06-06 Christopher J. White Stereoscopic display system using illumination detector
CN102522029A (zh) * 2011-12-06 2012-06-27 公安部交通管理科学研究所 行人和非机动车交通违法警示教育体验系统的构建方法
JP2013121031A (ja) * 2011-12-07 2013-06-17 Sony Corp 表示装置および方法、並びにプログラム
WO2013127401A1 (fr) * 2012-02-27 2013-09-06 Belarbi Zahmani Kheirddine Systeme hologramme
CN103324327B (zh) * 2012-03-22 2016-04-06 深圳泰山在线科技有限公司 虚拟屏实现方法和系统
RU2014143033A (ru) 2012-03-27 2016-05-20 Конинклейке Филипс Н.В. Трехмерный дисплей для множества зрителей
CN103456235A (zh) * 2012-05-31 2013-12-18 苏州萃智新技术开发有限公司 一种地球仪
US8754829B2 (en) * 2012-08-04 2014-06-17 Paul Lapstun Scanning light field camera and display
CN102780900B (zh) * 2012-08-09 2014-12-10 冠捷显示科技(厦门)有限公司 一种多人多视角立体显示器影像显示方法
TWI458530B (zh) * 2012-08-20 2014-11-01 Au Optronics Corp 娛樂顯示系統及其互動式立體顯示方法
US8902160B2 (en) * 2012-08-24 2014-12-02 Reincloud Corporation Reducing distortion in an image source comprising a parallax barrier
JP5395934B1 (ja) * 2012-08-31 2014-01-22 株式会社東芝 映像処理装置および映像処理方法
FR2996494A1 (fr) * 2012-10-08 2014-04-11 Jean Baptiste Chaumette Dispositif pour les enfants permettant de dessiner des images a main levee puis de les visionner pour les animer
US11083344B2 (en) 2012-10-11 2021-08-10 Roman Tsibulevskiy Partition technologies
US9584797B2 (en) 2012-10-31 2017-02-28 Elwha Llc Systems and methods to confirm that an autostereoscopic display is accurately aimed
CN103869758A (zh) * 2012-12-11 2014-06-18 苏州安答软件有限公司 一种适用于智能机房管理的3d全景展示系统
US20150177608A1 (en) * 2013-02-01 2015-06-25 Jeremy Richard Nelson Auto stereoscopic projector screen
CN103135331A (zh) * 2013-03-13 2013-06-05 桂林理工大学 一种主动式任意方位三维立体投影装置
CN103149787A (zh) * 2013-03-13 2013-06-12 桂林理工大学 一种主动式任意方位三维立体投影方法
TWI637348B (zh) * 2013-04-11 2018-10-01 緯創資通股份有限公司 影像顯示裝置和影像顯示方法
US9245388B2 (en) 2013-05-13 2016-01-26 Microsoft Technology Licensing, Llc Interactions of virtual objects with surfaces
WO2015017242A1 (en) * 2013-07-28 2015-02-05 Deluca Michael J Augmented reality based user interfacing
CN103489338A (zh) * 2013-09-29 2014-01-01 国家电网公司 一种三维场景投影播放器
US9875496B2 (en) 2013-10-29 2018-01-23 Ebay Inc. Product schematics collection and projection
JP6398248B2 (ja) 2014-01-21 2018-10-03 セイコーエプソン株式会社 位置検出システム、及び、位置検出システムの制御方法
TWI507015B (zh) * 2014-02-20 2015-11-01 Au Optronics Corp 三維影像之調整方法及採用此方法之三維顯示器
US20160165197A1 (en) * 2014-05-27 2016-06-09 Mediatek Inc. Projection processor and associated method
CN104394395A (zh) * 2014-09-30 2015-03-04 深圳市亿思达科技集团有限公司 一种能够改变扫描频率的全息图像显示方法、装置及系统
CN104394393A (zh) * 2014-09-30 2015-03-04 深圳市亿思达科技集团有限公司 同时为多个观察者提供全息图像的显示方法、装置及系统
CN104394394A (zh) * 2014-09-30 2015-03-04 深圳市亿思达科技集团有限公司 一种实现全息图像显示的三维显示方法、装置及系统
CN104410852A (zh) * 2014-10-20 2015-03-11 深圳市亿思达科技集团有限公司 一种基于反射的三维全息显示系统
CN104410853A (zh) * 2014-10-20 2015-03-11 深圳市亿思达科技集团有限公司 一种基于透射的三维全息显示系统
CN104503092B (zh) * 2014-11-28 2018-04-10 深圳市魔眼科技有限公司 不同角度和距离自适应的三维显示方法及设备
TWI556625B (zh) * 2015-05-12 2016-11-01 台達電子工業股份有限公司 投影設備
WO2016199540A1 (ja) * 2015-06-11 2016-12-15 コニカミノルタ株式会社 空中映像表示装置
US10176553B2 (en) 2015-06-26 2019-01-08 Sony Corporation Image processing system with three-dimensional viewing and method of operation thereof
US10521952B2 (en) * 2016-04-12 2019-12-31 Quidient, Llc Quotidian scene reconstruction engine
CN107305697B (zh) * 2016-04-22 2021-04-02 北京仿真中心 一种基于显卡dvi接口的目标模拟器实时驱动系统及方法
CN107708594B (zh) 2016-06-03 2021-03-05 柯惠Lp公司 用于机器人手术系统的控制臂组合件
JP2019523663A (ja) * 2016-06-03 2019-08-29 コヴィディエン リミテッド パートナーシップ ロボット外科手術装置および視聴者適合型の立体視ディスプレイの態様を制御するためのシステム、方法、およびコンピュータ可読記憶媒体
US10091496B2 (en) * 2016-11-28 2018-10-02 X Development Llc Systems, devices, and methods for calibrating a light field projection system
US9955144B2 (en) 2016-12-11 2018-04-24 Lightscope Media, Llc 3D display system
US9762892B2 (en) 2016-12-11 2017-09-12 Lightscope Media, Llc Auto-multiscopic 3D display and camera system
US10290152B2 (en) 2017-04-03 2019-05-14 Microsoft Technology Licensing, Llc Virtual object user interface display
CN112470191A (zh) 2018-05-02 2021-03-09 奎蒂安特有限公司 用于处理具有几乎无限细节的场景的编解码器
CN108663890A (zh) * 2018-05-08 2018-10-16 深圳市华星光电技术有限公司 基于镜面显示的3d投影屏幕及3d投影显示装置
US10846923B2 (en) 2018-05-24 2020-11-24 Microsoft Technology Licensing, Llc Fusion of depth images into global volumes
CN109697957B (zh) * 2019-01-07 2020-11-03 京东方科技集团股份有限公司 图像像素校正方法及系统
US11212514B2 (en) * 2019-03-25 2021-12-28 Light Field Lab, Inc. Light field display system for cinemas
CN109916331B (zh) * 2019-03-26 2022-01-11 中国科学院光电技术研究所 一种基于复合光栅的结构光微纳结构三维检测方法
CN110568715A (zh) * 2019-09-30 2019-12-13 宁波元年文化传媒有限公司 立体球体表面全覆盖投影装置
US20220086404A1 (en) * 2020-09-17 2022-03-17 Iview Displays (Shenzhen) Company Ltd. Dynamic projection method for target tracking and a dynamic projection equipment
US20230281955A1 (en) 2022-03-07 2023-09-07 Quidient, Llc Systems and methods for generalized scene reconstruction

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2086556A (en) * 1934-01-11 1937-07-13 Jacobson Beatrice Projection screen for obtaining stereoscopic effects
US2804801A (en) * 1951-11-23 1957-09-03 William T Snyder Projection screens
US3026770A (en) * 1958-04-02 1962-03-27 Rowe E Carney Jr Curved projection screen
US4649425A (en) 1983-07-25 1987-03-10 Pund Marvin L Stereoscopic display
US5065236A (en) 1990-11-02 1991-11-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Stereoscopic camera and viewing systems with undistorted depth presentation and reduced or eliminated erroneous acceleration and deceleration perceptions, or with perceptions produced or enhanced for special effects
US5024521A (en) * 1990-11-19 1991-06-18 Larry Zuchowski Autostereoscopic presentation system
US5311220A (en) * 1992-06-10 1994-05-10 Dimension Technologies, Inc. Autostereoscopic display
JPH07140570A (ja) * 1993-11-15 1995-06-02 Matsushita Electric Ind Co Ltd 3次元ディスプレイ装置及びその駆動方法
US5528263A (en) 1994-06-15 1996-06-18 Daniel M. Platzker Interactive projected video image display system
JPH0968674A (ja) * 1995-09-01 1997-03-11 Tsushin Hoso Kiko 3次元画像表示装置
US6061179A (en) * 1996-01-23 2000-05-09 Canon Kabushiki Kaisha Stereoscopic image display apparatus with two-/three-dimensional image display switching function
US6023277A (en) * 1996-07-03 2000-02-08 Canon Kabushiki Kaisha Display control apparatus and method
US6310733B1 (en) 1996-08-16 2001-10-30 Eugene Dolgoff Optical elements and methods for their manufacture
DE19641480A1 (de) 1996-10-09 1998-04-30 Tan Helmut Verfahren zur stereoskopischen Projektion von 3D-Bilddarstellungen auf einer Bildanzeigeeinrichtung
JP3397602B2 (ja) * 1996-11-11 2003-04-21 富士通株式会社 画像表示装置及び方法
JP3526157B2 (ja) 1996-12-24 2004-05-10 株式会社日立製作所 指向性反射スクリーンおよび画像表示装置
JPH10268231A (ja) 1997-03-26 1998-10-09 Philips Japan Ltd 立体画像表示装置
JP3255087B2 (ja) * 1997-06-23 2002-02-12 株式会社エム・アール・システム研究所 立体画像表示装置
AUPO884297A0 (en) * 1997-08-27 1997-09-18 Orme, Gregory Michael Imaging devices
US6533420B1 (en) 1999-01-22 2003-03-18 Dimension Technologies, Inc. Apparatus and method for generating and projecting autostereoscopic images
JP2000338605A (ja) * 1999-05-28 2000-12-08 Hitachi Ltd 指向性反射スクリーンおよび画像表示装置
US6985290B2 (en) 1999-12-08 2006-01-10 Neurok Llc Visualization of three dimensional images and multi aspect imaging
JP4128008B2 (ja) * 2000-05-19 2008-07-30 ティボル・バログ 3d画像を表示するための方法及び装置
US6999110B2 (en) 2000-08-30 2006-02-14 Japan Science And Technology Corporation Three-dimensional image display system
TW540228B (en) 2000-11-03 2003-07-01 Actuality Systems Inc Three-dimensional display systems
US6931596B2 (en) * 2001-03-05 2005-08-16 Koninklijke Philips Electronics N.V. Automatic positioning of display depending upon the viewer's location
KR100783358B1 (ko) 2001-04-27 2007-12-07 엘지.필립스 엘시디 주식회사 입체영상 표시장치 및 제조방법
US20040252187A1 (en) 2001-09-10 2004-12-16 Alden Ray M. Processes and apparatuses for efficient multiple program and 3D display
AU2002360529A1 (en) 2001-12-11 2003-06-23 New York University Searchable lightfield display
AU2003210440A1 (en) * 2002-01-04 2003-07-24 Neurok Llc Three-dimensional image projection employing retro-reflective screens
US7224382B2 (en) 2002-04-12 2007-05-29 Image Masters, Inc. Immersive imaging system
JP4147054B2 (ja) * 2002-05-17 2008-09-10 オリンパス株式会社 立体観察装置
GB2393344A (en) 2002-09-17 2004-03-24 Sharp Kk Autostereoscopic display
US20040263969A1 (en) * 2002-11-25 2004-12-30 Lenny Lipton Lenticular antireflection display
WO2004111913A2 (en) 2003-05-28 2004-12-23 Alden Ray M Multiple program display with 3-d application
US20060012542A1 (en) 2004-07-03 2006-01-19 Alden Ray M Multiple program and 3D display screen and variable resolution apparatus and process
JP2006023599A (ja) * 2004-07-09 2006-01-26 Ts Photon:Kk 2d/3d切換式ディスプレイシステム
US20060109200A1 (en) 2004-11-22 2006-05-25 Alden Ray M Rotating cylinder multi-program and auto-stereoscopic 3D display and camera
JP4871539B2 (ja) * 2005-07-25 2012-02-08 キヤノン株式会社 立体像表示装置
US7583437B2 (en) * 2005-12-08 2009-09-01 Real D Projection screen with virtual compound curvature
DE102006004301A1 (de) * 2006-01-20 2007-08-02 Seereal Technologies S.A. Holographische Projektionsvorrichtung zur Vergrößerung eines Rekonstruktionsbereichs

Also Published As

Publication number Publication date
CN101518096B (zh) 2011-06-22
CN102143374A (zh) 2011-08-03
EP2064895A2 (en) 2009-06-03
US20080068372A1 (en) 2008-03-20
CN102143374B (zh) 2013-07-17
KR20090045938A (ko) 2009-05-08
US20100118118A1 (en) 2010-05-13
US7843449B2 (en) 2010-11-30
JP2010503899A (ja) 2010-02-04
US9300951B2 (en) 2016-03-29
WO2008070246A2 (en) 2008-06-12
WO2008070246A3 (en) 2008-11-06
CN101518096A (zh) 2009-08-26
KR101057617B1 (ko) 2011-08-19

Similar Documents

Publication Publication Date Title
JP5214616B2 (ja) 3次元ディスプレイシステム
US8199186B2 (en) Three-dimensional (3D) imaging based on motionparallax
US7703924B2 (en) Systems and methods for displaying three-dimensional images
JP3990865B2 (ja) 3次元アンチエリアシングを用いた多平面ボリュメトリック表示システム及びその動作方法
US20150312561A1 (en) Virtual 3d monitor
JP2005500578A (ja) 3次元アンチエリアシングを用いた多平面ボリュメトリック表示システムおよびその動作方法
JP2016511888A (ja) イメージ形成における及びイメージ形成に関する改良
JP2005508016A (ja) 3次元画像の投影
EP3308539A1 (en) Display for stereoscopic augmented reality
WO2017014138A1 (ja) 画像提示装置、光学透過型ヘッドマウントディスプレイ、および画像提示方法
US20180017940A1 (en) Three-dimensional display with augmented holograms
CN114746903B (zh) 虚拟、增强和混合现实系统和方法
CN113875230B (zh) 混合模式三维显示方法
JP4023479B2 (ja) 凹面立体映像提示スクリーン及びそれを用いた凹面立体映像提示システム
Bimber et al. Alternative Augmented Reality Approaches: Concepts, Techniques, and Applications.
Xue et al. A new 3D display using a dynamically reconfigurable display matrix surface
JP2006317883A (ja) システム
KR20220099580A (ko) 인사이드-아웃 위치, 사용자 신체 및 환경 추적을 갖는 가상 및 혼합 현실을 위한 머리 장착 디스플레이

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111019

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120611

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120911

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130227

R150 Certificate of patent or registration of utility model

Ref document number: 5214616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees