JP5209090B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP5209090B2
JP5209090B2 JP2011148234A JP2011148234A JP5209090B2 JP 5209090 B2 JP5209090 B2 JP 5209090B2 JP 2011148234 A JP2011148234 A JP 2011148234A JP 2011148234 A JP2011148234 A JP 2011148234A JP 5209090 B2 JP5209090 B2 JP 5209090B2
Authority
JP
Japan
Prior art keywords
drive signal
semiconductor device
connector
semiconductor element
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011148234A
Other languages
Japanese (ja)
Other versions
JP2011193031A (en
Inventor
規由 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011148234A priority Critical patent/JP5209090B2/en
Publication of JP2011193031A publication Critical patent/JP2011193031A/en
Application granted granted Critical
Publication of JP5209090B2 publication Critical patent/JP5209090B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device that improves reliability of transfer of a drive signal to a semiconductor element. <P>SOLUTION: The semiconductor device 30 includes the semiconductor element 13, a connector 17, a case 19, and an electrode 18. The semiconductor element 13 has a voltage-driven type power device for controlling an on operation and an off operation for a main current by inputting the drive signal. The connector 17 receives the drive signal while being not in contact with a sending part which transmits the drive signal, and transmits the drive signal to the semiconductor element 13. The case 19 accommodates the semiconductor element 13, and constitutes an external frame of the semiconductor device 30. The electrode 18 is positioned on an upper surface of the case 19 and also connected to the semiconductor element 13 to supply a main current. The connector 17 is embedded in a wall of the upper surface of the case 19. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は半導体装置に関し、特に電圧駆動型のパワーデバイスを有する半導体装置に関する。   The present invention relates to a semiconductor device, and more particularly to a semiconductor device having a voltage-driven power device.

一般的に、半導体素子を備えた半導体装置は、主電極と信号端子とを介して外部のシステム側に接続されている。主電極は、オン動作時またはオフ動作時に半導体素子に主電流を流す。信号端子は、半導体装置をオン動作またはオフ動作させるために、システム側から駆動信号(ゲート駆動信号)が伝達される。この駆動信号は、インバータなどのシステム側から電圧で伝達される。   Generally, a semiconductor device including a semiconductor element is connected to an external system side via a main electrode and a signal terminal. The main electrode allows a main current to flow through the semiconductor element during an on operation or an off operation. A drive signal (gate drive signal) is transmitted from the system side to the signal terminal in order to turn on or off the semiconductor device. This drive signal is transmitted as a voltage from the system side such as an inverter.

このような半導体装置として、たとえば特開2004−87871号公報(特許文献1)の半導体スイッチ素子の温度検出装置が挙げられる。この特許文献1には、温度検出器と、非接触温度伝達装置と、電源回路とを備えている。温度検出器は、半導体スイッチ素子の所望の場所の温度を検出する。非接触温度伝達装置は、半導体スイッチ素子に装着した温度検出器で得られる温度検出値を、この半導体スイッチ素子から離れた場所へ非接触で伝達する。電源回路は、半導体スイッチ素子へ入力するゲート信号を電源にして、温度検出器と非接触温度伝達装置へ動作電力を供給する。   As such a semiconductor device, for example, a temperature detection device for a semiconductor switch element disclosed in Japanese Patent Application Laid-Open No. 2004-87871 (Patent Document 1) can be given. This Patent Document 1 includes a temperature detector, a non-contact temperature transmission device, and a power supply circuit. The temperature detector detects the temperature of a desired location of the semiconductor switch element. The non-contact temperature transmission device transmits a temperature detection value obtained by a temperature detector attached to the semiconductor switch element to a place away from the semiconductor switch element in a non-contact manner. The power supply circuit supplies operating power to the temperature detector and the non-contact temperature transmission device using a gate signal input to the semiconductor switch element as a power supply.

また特開2006−324525号公報(特許文献2)には、チップ(半導体素子)間の信号伝達方法が開示されている。この特許文献2には、第1インダクタ素子が発信した第1信号を第2インダクタ素子が受信して、第2信号として出力する信号伝達方法であって、第2インダクタ素子が第1信号を受信して電磁誘導により受信信号を出力することが開示されている。また、チップは、ゲート電極をパルス発生回路から発生したパルス(駆動信号)によって駆動される。   Japanese Patent Laying-Open No. 2006-324525 (Patent Document 2) discloses a signal transmission method between chips (semiconductor elements). This Patent Document 2 discloses a signal transmission method in which a second inductor element receives a first signal transmitted from a first inductor element and outputs the first signal as a second signal, and the second inductor element receives the first signal. Thus, it is disclosed that a reception signal is output by electromagnetic induction. The chip is driven by a pulse (drive signal) generated from the pulse generation circuit for the gate electrode.

また特開2000−20665号公報(特許文献3)には、LSIチップと、アンテナとを備えた半導体装置が開示されている。この特許文献3には、アンテナに電磁波が受信されて電磁誘導によって発生した電力がLSIチップ(半導体素子)に供給されて、LSIチップが動作することが開示されている。   Japanese Unexamined Patent Publication No. 2000-20665 (Patent Document 3) discloses a semiconductor device including an LSI chip and an antenna. This Patent Document 3 discloses that an LSI chip operates by receiving an electromagnetic wave from an antenna and supplying electric power generated by electromagnetic induction to the LSI chip (semiconductor element).

上記特許文献1〜3では、装置内において半導体素子に駆動信号を伝達するための駆動信号端子と、システム側の信号発信部とを電気的に接続する必要がある。半導体装置は、非常に多岐に渡って適用されており、システム側と半導体装置との電気的接続の信頼性は重要である。   In Patent Documents 1 to 3, it is necessary to electrically connect a drive signal terminal for transmitting a drive signal to a semiconductor element in the apparatus and a signal transmission unit on the system side. Semiconductor devices are applied in a wide variety of ways, and the reliability of electrical connection between the system side and the semiconductor device is important.

このようなシステム側の駆動信号発信部と半導体装置の駆動信号端子との電気的接続は、上記特許文献1〜3には開示されていない。駆動信号発信部と駆動信号端子との電気的接続として、たとえば、以下の3つの技術が挙げられる。1つ目は、はんだ付けにより、駆動信号端子と駆動信号発信部とを接合する。2つ目は、コネクタを用いて、コネクタの摩擦力で信号端子と駆動信号発信部とを電気的に接続する。3つ目は、スプリングを用いて、表面への圧接力で駆動信号端子と駆動信号発信部とを電気的に接続する。   Such electrical connection between the drive signal transmission unit on the system side and the drive signal terminal of the semiconductor device is not disclosed in Patent Documents 1 to 3. Examples of the electrical connection between the drive signal transmission unit and the drive signal terminal include the following three techniques. First, the drive signal terminal and the drive signal transmitter are joined by soldering. Second, the connector is used to electrically connect the signal terminal and the drive signal transmission unit by the frictional force of the connector. Third, the drive signal terminal and the drive signal transmission unit are electrically connected by a pressure contact force to the surface using a spring.

特開2004−87871号公報Japanese Patent Laid-Open No. 2004-87871 特開2006−324525号公報JP 2006-324525 A 特開2000−20665号公報JP 2000-20665 A

しかし、上記1つ目のはんだ付けによる電気的接続は、以下の問題がある。近年、環境面からはんだとして鉛フリーはんだが用いられている。鉛フリーはんだは一般的に融点が高い。このため、駆動信号発信部と駆動信号端子とをはんだ付けする際に加えられる熱により、駆動信号発信部および信号端子の少なくとも一方はダメージを受けやすい。したがって、半導体装置の信頼性が低下するという問題がある。   However, the first electrical connection by soldering has the following problems. In recent years, lead-free solder has been used as a solder from the environmental aspect. Lead-free solder generally has a high melting point. For this reason, at least one of the drive signal transmitter and the signal terminal is easily damaged by heat applied when the drive signal transmitter and the drive signal terminal are soldered. Therefore, there is a problem that the reliability of the semiconductor device is lowered.

また、はんだによる接合部に振動などの応力が加えられると、クラックなどが入る場合がある。この場合、信号発信部と駆動信号端子との電気的接続の信頼性が低下するという問題がある。信号発信部と駆動信号端子との電気的接続の信頼性が低下すると、半導体素子へ駆動信号を確実に伝達することができない。   In addition, when stress such as vibration is applied to the solder joint, cracks may occur. In this case, there is a problem that reliability of electrical connection between the signal transmission unit and the drive signal terminal is lowered. If the reliability of the electrical connection between the signal transmission unit and the drive signal terminal is lowered, the drive signal cannot be reliably transmitted to the semiconductor element.

上記2つ目および3つ目のコネクタおよびスプリングによる電気的接続は、以下の問題がある。振動などの応力が加えられると、駆動信号端子と駆動信号発信部との接触状態が変化する。このため、駆動信号発信部と駆動信号端子との電気的接続が解除される場合が発生し、駆動信号発信部と駆動信号端子との電気的接続の信頼性が低下するという問題がある。その結果、半導体素子へ駆動信号を確実に伝達することができない。   The electrical connection using the second and third connectors and springs has the following problems. When stress such as vibration is applied, the contact state between the drive signal terminal and the drive signal transmitter changes. For this reason, the case where the electrical connection of a drive signal transmission part and a drive signal terminal is cancelled | released generate | occur | produces, and there exists a problem that the reliability of the electrical connection of a drive signal transmission part and a drive signal terminal falls. As a result, the drive signal cannot be reliably transmitted to the semiconductor element.

それゆえ本発明の目的は、駆動信号を半導体素子へ伝達する信頼性を向上する半導体装置を提供することである。   Therefore, an object of the present invention is to provide a semiconductor device that improves the reliability of transmitting a drive signal to a semiconductor element.

本発明の半導体装置は、半導体素子と、駆動信号端子と、ケースと、電極とを備えている。半導体素子は、駆動信号の入力によって主電流のオン動作およびオフ動作の制御をするための電圧駆動型パワーデバイスを有している。駆動信号端子は、駆動信号を発信する発信部と非接触の状態で駆動信号を受信し、かつ駆動信号を半導体素子へ伝達する。ケースは、半導体素子を収容するとともに、半導体装置の外枠を構成する。電極は、ケースの上面上に位置し、半導体素子と電気的に接続され、主電流を流すためのものである。駆動信号端子は、ケースの上面の壁中に埋め込まれている。   The semiconductor device of the present invention includes a semiconductor element, a drive signal terminal, a case, and an electrode. The semiconductor element has a voltage-driven power device for controlling the ON operation and the OFF operation of the main current by inputting a drive signal. The drive signal terminal receives the drive signal in a non-contact state with a transmitter that transmits the drive signal, and transmits the drive signal to the semiconductor element. The case houses a semiconductor element and constitutes an outer frame of the semiconductor device. The electrode is located on the upper surface of the case, is electrically connected to the semiconductor element, and allows the main current to flow. The drive signal terminal is embedded in the wall on the upper surface of the case.

本発明の半導体装置によれば、電圧駆動型パワーデバイスを有している。この電圧駆動型パワーデバイスは半導体装置の外部のシステム側からの駆動信号を受信することで、電圧駆動型パワーデバイスのオン動作またはオフ動作が制御される。この駆動信号は微弱であるため、スプリング力などによる半田付けをしない接続では、駆動信号は小さな振動など使用環境に影響を受け易い。本発明では、システム側の駆動信号を発信する発信部と駆動信号端子とは非接触の状態で駆動信号が伝達される。これにより、発信部と駆動信号端子との電気的接続は、半導体装置の使用環境に影響を受けにくい。このため、信号発信部と駆動信号端子との電気的接続の信頼性を向上することができる。   The semiconductor device of the present invention has a voltage-driven power device. The voltage-driven power device receives a drive signal from the system side outside the semiconductor device, whereby the on / off operation of the voltage-driven power device is controlled. Since this drive signal is weak, the drive signal is easily affected by the usage environment such as small vibrations in a connection without soldering by a spring force or the like. In the present invention, the drive signal is transmitted in a non-contact state between the transmission unit that transmits the drive signal on the system side and the drive signal terminal. Thereby, the electrical connection between the transmitter and the drive signal terminal is not easily affected by the use environment of the semiconductor device. For this reason, the reliability of the electrical connection between the signal transmission unit and the drive signal terminal can be improved.

また発信部と駆動信号端子とを電気的に接続するために、発信部および駆動信号端子に熱が加えられていない。このため、発信部および駆動信号端子の信頼性が高い。   Further, in order to electrically connect the transmitter and the drive signal terminal, heat is not applied to the transmitter and the drive signal terminal. For this reason, the reliability of a transmission part and a drive signal terminal is high.

以上より、半導体素子へ駆動信号を伝達する信頼性を向上することができる。   From the above, it is possible to improve the reliability of transmitting the drive signal to the semiconductor element.

本発明の実施の形態1における半導体装置を概略的に示す断面図である。1 is a cross sectional view schematically showing a semiconductor device in a first embodiment of the present invention. 本発明の実施の形態2における半導体装置を概略的に示す断面図である。It is sectional drawing which shows schematically the semiconductor device in Embodiment 2 of this invention. 本発明の実施の形態3における半導体装置を概略的に示す断面図である。It is sectional drawing which shows schematically the semiconductor device in Embodiment 3 of this invention. 本発明の実施の形態3における信号発信部を概略的に示す模式図である。It is a schematic diagram which shows roughly the signal transmission part in Embodiment 3 of this invention. 本発明の実施の形態4における半導体装置を概略的に示す断面図である。It is sectional drawing which shows schematically the semiconductor device in Embodiment 4 of this invention. 本発明の実施の形態5における半導体装置を概略的に示す断面図である。It is sectional drawing which shows schematically the semiconductor device in Embodiment 5 of this invention. 本実施の形態における比較例における半導体装置を示す概略断面図である。It is a schematic sectional drawing which shows the semiconductor device in the comparative example in this Embodiment.

以下、本発明の実施の形態について図に基づいて説明する。
(実施の形態1)
はじめに本実施の形態の半導体装置の構成について説明する。図1は、本実施の形態における半導体装置を概略的に示す断面図である。図1を参照して、半導体装置10は、基材11と、基板12と、半導体素子13と、制御部としての制御素子14と、ワイヤ15と、コネクタ接続パターン16と、駆動信号端子としてのコネクタ17と、電極18と、ケース19と、接続部20とを主に備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
First, the structure of the semiconductor device of this embodiment will be described. FIG. 1 is a cross-sectional view schematically showing a semiconductor device in the present embodiment. Referring to FIG. 1, a semiconductor device 10 includes a base material 11, a substrate 12, a semiconductor element 13, a control element 14 as a control unit, a wire 15, a connector connection pattern 16, and a drive signal terminal. The connector 17, the electrode 18, the case 19, and the connection portion 20 are mainly provided.

基材11は、放熱性を有するベース材である。ケース19は、この基材11と接続され、半導体装置10の外枠を構成する。ケース19は、半導体装置10の内部を保護する。   The base material 11 is a base material having heat dissipation. The case 19 is connected to the base material 11 and constitutes an outer frame of the semiconductor device 10. The case 19 protects the inside of the semiconductor device 10.

ケース19の内部には、基材11上に基板12が配置されている。基板12は、絶縁基板12aと、導電性のパターン12b、12cとを含んでいる。絶縁基板12aの上面および下面に、パターン12b、12cがそれぞれ形成されている。   A substrate 12 is disposed on the base material 11 inside the case 19. The substrate 12 includes an insulating substrate 12a and conductive patterns 12b and 12c. Patterns 12b and 12c are formed on the upper and lower surfaces of the insulating substrate 12a, respectively.

半導体素子13は、基板12の上面側のパターン12b上にはんだ付けなどで搭載されている。半導体素子13は、電圧駆動型パワーデバイスを有している。この電圧駆動型パワーデバイスは、外部からの駆動信号が入ると、その電位変動を検知して、オン動作またはオフ動作をする。言い換えると、電圧駆動型パワーデバイスは、ゲート電極などに電圧が加えられる、または減少した電圧が加えられることによりオン動作またはオフ動作をする。なお、パワーデバイスとは、インバータに代表されるように、交流の周波数を自由に変えることで電力を効率的に制御する装置のスイッチングに適用するデバイスのことであり、たとえば600V以上の電圧が印加されるIGBT(Insulated gate bipolar transistor:絶縁ゲート型バイポーラトランジスタ)が好適に用いられる。   The semiconductor element 13 is mounted on the pattern 12b on the upper surface side of the substrate 12 by soldering or the like. The semiconductor element 13 has a voltage drive type power device. When an external driving signal is input, this voltage-driven power device detects the potential fluctuation and performs an on operation or an off operation. In other words, the voltage-driven power device is turned on or off when a voltage is applied to the gate electrode or the like or a reduced voltage is applied. A power device is a device applied to switching of a device that efficiently controls power by freely changing the AC frequency, as represented by an inverter. For example, a voltage of 600 V or more is applied. An IGBT (Insulated gate bipolar transistor) is preferably used.

コネクタ17は、ケース19の上部に形成されている。本実施の形態では、コネクタ17はケース19の内部に埋め込まれ、コネクタ17の上面とケース19の上面とが同一平面に位置している。   The connector 17 is formed on the upper portion of the case 19. In the present embodiment, the connector 17 is embedded in the case 19, and the upper surface of the connector 17 and the upper surface of the case 19 are located on the same plane.

このコネクタ17は、システム側のコネクタなど駆動信号を発信する発信部(図示せず)と接触しないように配置されている。コネクタ17は、駆動信号を発信する発信部と非接触の状態で駆動信号を受信し、かつ受信した駆動信号を半導体素子13へ伝達する。   The connector 17 is arranged so as not to come into contact with a transmitter (not shown) that transmits a drive signal such as a connector on the system side. The connector 17 receives the drive signal in a non-contact state with a transmitter that transmits the drive signal, and transmits the received drive signal to the semiconductor element 13.

コネクタ17は、たとえばコイルまたはホール素子を含んでおり、コイルを用いた電磁誘導により駆動信号を受信することが好ましい。   The connector 17 includes, for example, a coil or a hall element, and preferably receives a drive signal by electromagnetic induction using the coil.

基板12上には、導電性のコネクタ接続パターン16が形成されている。このコネクタ接続パターン16は、接続部20を介してコネクタ17と電気的に接続されている。   A conductive connector connection pattern 16 is formed on the substrate 12. The connector connection pattern 16 is electrically connected to the connector 17 via the connection portion 20.

制御素子14は、基板12の上面側のパターン12b上に形成されている。制御素子14は、ワイヤ15でコネクタ接続パターン16と電気的に接続され、かつワイヤ15で半導体素子13と電気的に接続されている。電気的な接続は、本実施の形態ではワイヤを示したが、特にこれに限定されず、たとえばバンプ接続などでも良い。制御素子14は、コネクタ17で受信した駆動信号を適正な電圧値に変換して半導体素子13へ伝達する。ここで、適正な電圧値とは、半導体素子13が駆動するために適正な電圧値である。このように適正な電圧値に変換するために、制御素子14は、たとえば検知回路を含んでいる。   The control element 14 is formed on the pattern 12 b on the upper surface side of the substrate 12. The control element 14 is electrically connected to the connector connection pattern 16 via a wire 15 and electrically connected to the semiconductor element 13 via a wire 15. In the present embodiment, the electrical connection is indicated by the wire. However, the electrical connection is not particularly limited to this. For example, bump connection may be used. The control element 14 converts the drive signal received by the connector 17 into an appropriate voltage value and transmits it to the semiconductor element 13. Here, the appropriate voltage value is an appropriate voltage value for driving the semiconductor element 13. Thus, in order to convert into an appropriate voltage value, the control element 14 contains the detection circuit, for example.

電極18は、基板12のパターン12bと接続されている。つまり、電極18は、このパターン12bを介して半導体素子13と電気的に接続されている。電極18は、半導体素子13に主電流を流す。電極18の上面は、ケース19よりも高い位置に配置されている。つまり、水平方向に平行に配置した基板12上に半導体素子13を載置した状態で、コネクタ17の上面は、電極18の上面よりも低い位置に配置されている。   The electrode 18 is connected to the pattern 12 b of the substrate 12. That is, the electrode 18 is electrically connected to the semiconductor element 13 through the pattern 12b. The electrode 18 allows a main current to flow through the semiconductor element 13. The upper surface of the electrode 18 is disposed at a position higher than the case 19. That is, the upper surface of the connector 17 is disposed at a position lower than the upper surface of the electrode 18 in a state where the semiconductor element 13 is placed on the substrate 12 disposed in parallel with the horizontal direction.

また、半導体装置10は、一旦半導体素子13のオン動作またはオフ動作が始まると、次の駆動信号が伝達されるまでは、その動作を継続させるための制御回路(図示せず)をさらに備えていてもよい。この制御回路は、入力信号が0の時にも感知する機能を有していることが好ましい。   The semiconductor device 10 further includes a control circuit (not shown) for continuing the operation once the semiconductor element 13 is turned on or off until the next drive signal is transmitted. May be. This control circuit preferably has a function of sensing even when the input signal is zero.

続いて、本実施の形態における半導体装置10の動作について説明する。
まず、半導体装置10のオン動作について説明する。
Next, the operation of the semiconductor device 10 in the present embodiment will be described.
First, the on operation of the semiconductor device 10 will be described.

システム側のコネクタなど駆動信号を発信する発信部から、駆動信号としてたとえば約+15Vのオン信号が入力されると、コネクタ17により電位が発生する。コネクタ17がコイルを含んでいる場合には、電磁誘導により電位が発生する。この電位は接続部20を介してコネクタ接続パターン16に伝達され、コネクタ接続パターン16からワイヤ15を介して、制御素子14に伝達される。電磁誘導で発生させる電位が小さい場合に、誤動作を抑制するために、制御素子14は、検知回路などにより半導体素子13が適正に駆動する電圧値に変換する。この変換された電圧値は、ワイヤ15を介して半導体素子13へ伝達される。これにより、オン動作をする駆動信号が半導体素子13へ伝達されることで、半導体素子13はオン動作をして電極18間に主電流が流れる。その後は、制御回路などにより、半導体素子13へ次の信号が伝達されるまで、オン動作を続ける。   When an ON signal of about +15 V, for example, is input as a drive signal from a transmitter that transmits a drive signal, such as a connector on the system side, a potential is generated by the connector 17. When the connector 17 includes a coil, a potential is generated by electromagnetic induction. This potential is transmitted to the connector connection pattern 16 via the connection portion 20, and is transmitted from the connector connection pattern 16 to the control element 14 via the wire 15. When the potential generated by electromagnetic induction is small, the control element 14 converts it into a voltage value that the semiconductor element 13 is driven appropriately by a detection circuit or the like in order to suppress malfunction. The converted voltage value is transmitted to the semiconductor element 13 through the wire 15. As a result, the drive signal for performing the on operation is transmitted to the semiconductor element 13, so that the semiconductor element 13 is turned on and a main current flows between the electrodes 18. Thereafter, the ON operation is continued until the next signal is transmitted to the semiconductor element 13 by the control circuit or the like.

次に、半導体装置10のオフ動作について説明する。
システム側のコネクタなど駆動信号を発信する発信部から、駆動信号としてたとえば0Vまたは約−10V程度のオフ信号が入力されると、コネクタ17により電位が発生する。コネクタ17がコイルを含んでいる場合には、オン信号が入力されたときとは逆方向の電位が発生する。この電位は、接続部20、コネクタ接続パターン16およびワイヤ15を介して制御素子14に上述したように伝達される。制御素子14では、伝達された電位を半導体素子13が適正に駆動する電圧値に変換する。この電圧値を半導体素子13にワイヤ15を介して伝達することで、半導体素子13はオフ動作をして電極18間の主電流の流れが遮断される。その後は、制御回路などにより、半導体素子13へ次の信号が伝達されるまで、オフ動作を続ける。なお、この制御回路は、始動時および休止時には、半導体素子13に加えられる電圧をたとえば0Vまたは約−10Vに保持することが好ましい。
Next, the off operation of the semiconductor device 10 will be described.
When an off signal of about 0 V or about −10 V, for example, is input as a drive signal from a transmission unit that transmits a drive signal such as a connector on the system side, a potential is generated by the connector 17. When the connector 17 includes a coil, a potential in the direction opposite to that when the ON signal is input is generated. This potential is transmitted to the control element 14 through the connection portion 20, the connector connection pattern 16 and the wire 15 as described above. The control element 14 converts the transmitted potential into a voltage value that the semiconductor element 13 properly drives. By transmitting this voltage value to the semiconductor element 13 via the wire 15, the semiconductor element 13 is turned off and the flow of the main current between the electrodes 18 is interrupted. Thereafter, the off operation is continued until the next signal is transmitted to the semiconductor element 13 by the control circuit or the like. The control circuit preferably maintains the voltage applied to the semiconductor element 13 at, for example, 0 V or about −10 V during start-up and rest.

続いて、本実施の形態における半導体装置の作用効果について図7に示す比較例と比較して説明する。図7は、本実施の形態における比較例における半導体装置を示す概略断面図である。   Next, the function and effect of the semiconductor device in this embodiment will be described in comparison with the comparative example shown in FIG. FIG. 7 is a schematic cross-sectional view showing a semiconductor device in a comparative example in the present embodiment.

図7に示すように、比較例の半導体装置100は、システム側のコネクタなど駆動信号を発信する発信部と半導体素子13とを直接接触している点において、本実施の形態の半導体装置10と異なっている。   As shown in FIG. 7, the semiconductor device 100 of the comparative example is different from the semiconductor device 10 of the present embodiment in that the semiconductor element 13 is in direct contact with the transmitter that transmits a drive signal such as a system-side connector. Is different.

具体的には、比較例の半導体装置100は、コネクタ17を備えておらず、接続部としての導電性部材120が信号端子接続パターン116とシステム側の駆動信号を発信する発信部と直接接触している信号端子である。このため、システム側の発信部からの駆動電圧は、導電性部材120、信号端子接続パターン116、ワイヤ115、制御素子14およびワイヤ15を介して半導体素子13で伝達される。   Specifically, the semiconductor device 100 of the comparative example does not include the connector 17, and the conductive member 120 as the connection portion is in direct contact with the signal terminal connection pattern 116 and the transmission portion that transmits the drive signal on the system side. Signal terminal. For this reason, the drive voltage from the transmission part on the system side is transmitted by the semiconductor element 13 via the conductive member 120, the signal terminal connection pattern 116, the wire 115, the control element 14 and the wire 15.

比較例の半導体装置100は、導電性部材120と半導体装置100の信号端子接続パターン116とは、たとえばはんだ、コネクタ、スプリングなどにより接続されている。また、導電性部材120と、システム側の信号発信部とは、たとえばはんだ、コネクタ、スプリングなどにより接続されている。このため、上述したような問題が生じるので、比較例の半導体装置100において駆動信号を半導体素子13へ伝達する信頼性が悪いという問題がある。   In the semiconductor device 100 of the comparative example, the conductive member 120 and the signal terminal connection pattern 116 of the semiconductor device 100 are connected by, for example, solder, a connector, a spring, or the like. In addition, the conductive member 120 and the signal transmission unit on the system side are connected by, for example, solder, a connector, a spring, or the like. For this reason, the above-described problem occurs, and thus there is a problem that the reliability of transmitting the drive signal to the semiconductor element 13 in the semiconductor device 100 of the comparative example is poor.

また、システム側の発信部および半導体装置100の信号端子接続パターン116と、導電性部材120およびシステム側の信号発信部とがはんだにより接合されている場合には、駆動信号を伝達するために要する端子数が多いと、はんだ付け箇所が多くなることから作業工程が増加するという問題があった。   Further, in the case where the system-side transmitter and the signal terminal connection pattern 116 of the semiconductor device 100 are joined to the conductive member 120 and the system-side signal transmitter by solder, it is necessary to transmit the drive signal. When the number of terminals is large, there are problems that the number of soldering points increases and the number of work steps increases.

また、システム側の発信部および半導体装置100の信号端子接続パターン116と、導電性部材120およびシステム側の信号発信部とが、コネクタおよびスプリングにより接合されている場合には、半導体装置の使用環境による影響を低減するために、摩擦力を大きくすることが考えられる。しかし、この場合には、コネクタおよびスプリングの交換が必要になっても、交換が難しいという問題があった。   Further, when the system-side transmitter and the signal terminal connection pattern 116 of the semiconductor device 100, and the conductive member 120 and the system-side signal transmitter are joined by a connector and a spring, the use environment of the semiconductor device In order to reduce the influence of the above, it is conceivable to increase the frictional force. However, in this case, there is a problem that even if it is necessary to replace the connector and the spring, the replacement is difficult.

一方、本実施の形態の半導体装置10は、駆動信号の入力によって主電流のオン動作およびオフ動作の制御をするための電圧駆動型パワーデバイスを有する半導体素子13と、駆動信号を発信する発信部と非接触の状態で駆動信号を受信し、かつ駆動信号を半導体素子13へ伝達するコネクタ17とを備えている。   On the other hand, the semiconductor device 10 of the present embodiment includes a semiconductor element 13 having a voltage-driven power device for controlling the ON operation and the OFF operation of the main current according to the input of the drive signal, and a transmitter that transmits the drive signal. And a connector 17 that receives the drive signal in a non-contact state and transmits the drive signal to the semiconductor element 13.

本実施の半導体装置10によれば、電圧駆動型パワーデバイスを有している。この電圧駆動型パワーデバイスは半導体装置10の外部のシステム側からの駆動信号を受信することで、電圧駆動型パワーデバイスのオン動作またはオフ動作が制御される。電圧駆動型パワーデバイスにおいて、コネクタ17で受信される駆動信号は微弱であり、電極18から流れる主電流は大きい。一般的に駆動信号は微弱であるため、はんだ接続をしない接続、たとえばスプリング力などによる接触接続においては、駆動信号は小さな振動など使用環境に影響を受け易く、小さな振動などで正確に駆動信号が伝達されにくい。しかし、本実施の形態では、システム側の駆動信号を発信する発信部とコネクタ17とは非接触の状態で駆動信号が伝達される。これにより、発信部とコネクタ17との電気的接続は、振動が生じるなどの半導体装置10の使用環境による影響を受けにくい。このため、信号発信部と駆動信号端子との電気的接続の信頼性を向上することができる。   According to the semiconductor device 10 of the present embodiment, it has a voltage drive type power device. The voltage-driven power device receives a drive signal from the system side outside the semiconductor device 10 so that the on-operation or the off-operation of the voltage-driven power device is controlled. In the voltage drive type power device, the drive signal received by the connector 17 is weak and the main current flowing from the electrode 18 is large. In general, since the drive signal is weak, in connection without solder connection, for example, contact connection by spring force, the drive signal is easily affected by the usage environment such as small vibrations, and the drive signal is accurately output by small vibrations. It is hard to be transmitted. However, in the present embodiment, the drive signal is transmitted in a non-contact state between the transmitter 17 that transmits the drive signal on the system side and the connector 17. Thereby, the electrical connection between the transmitter and the connector 17 is not easily affected by the use environment of the semiconductor device 10 such as vibration. For this reason, the reliability of the electrical connection between the signal transmission unit and the drive signal terminal can be improved.

また発信部とコネクタ17とを電気的に接続するために発信部およびコネクタに熱が加えられていない。このため、発信部およびコネクタ17自体の信頼性が高い。   Further, in order to electrically connect the transmitter and the connector 17, heat is not applied to the transmitter and the connector. For this reason, the reliability of the transmitter and the connector 17 itself is high.

したがって、半導体素子13へ駆動信号を伝達する信頼性を向上することができる。
さらに、パワーデバイスは、電極18には大きな主電流が流れる。このため、電極18は、はんだ付けや、ネジによる締結等で外部回路と接続するのが一般的である。
Therefore, the reliability of transmitting the drive signal to the semiconductor element 13 can be improved.
In the power device, a large main current flows through the electrode 18. For this reason, the electrode 18 is generally connected to an external circuit by soldering or fastening with a screw.

以上より、本実施の形態の半導体装置10は、システム側の発信部からコネクタ17への駆動信号の伝達は非接触方式で、かつ電極18から半導体素子13への主電流の伝達は直接接触方式である。このため、半導体素子13への駆動信号の伝達の信頼性を向上するとともに、パワーデバイスを有する半導体素子13への主電流の供給を円滑に行なうことができる。   As described above, in the semiconductor device 10 according to the present embodiment, the drive signal is transmitted from the transmission unit on the system side to the connector 17 by the non-contact method, and the main current is transmitted from the electrode 18 to the semiconductor element 13 by the direct contact method. It is. Therefore, it is possible to improve the reliability of transmission of the drive signal to the semiconductor element 13 and to smoothly supply the main current to the semiconductor element 13 having the power device.

さらには、システム側の発信部とコネクタ17とは、非接触であり、はんだにより接合されていない。このため、駆動信号を伝達するために要する端子数が多い場合にも、端子として非接触のコネクタ17を配置するのみであるので、作業工程が増加することを抑制できる。   Furthermore, the transmitter on the system side and the connector 17 are not in contact with each other and are not joined by solder. For this reason, even when the number of terminals required for transmitting the drive signal is large, only the non-contact connector 17 is arranged as a terminal, so that it is possible to suppress an increase in work steps.

また、システム側の発信部とコネクタ17とは、非接触であり、コネクタおよびスプリングにより接合されていない。このため、コネクタ17の交換が必要になった場合には、必要になったコネクタのみを交換することができる。したがって、半導体装置10は利便性を向上することができる。   Further, the transmission unit on the system side and the connector 17 are not in contact with each other and are not joined by the connector and the spring. For this reason, when it is necessary to replace the connector 17, only the necessary connector can be replaced. Therefore, the semiconductor device 10 can improve convenience.

上記半導体装置10において好ましくは、コネクタ17で受信した駆動信号を電圧値に変換して半導体素子13へ伝達するための制御部としての制御素子14をさらに備えている。   Preferably, the semiconductor device 10 further includes a control element 14 as a control unit for converting the drive signal received by the connector 17 into a voltage value and transmitting it to the semiconductor element 13.

制御素子14により、適正な駆動電圧を半導体素子13へ伝達することができる。このため、コネクタ17で半導体素子13へ駆動信号を伝達するために適正な電位を発生する必要がない。その結果、コネクタ17を小さくすることができる。したがって、半導体装置10の小型化を図ることができる。   An appropriate driving voltage can be transmitted to the semiconductor element 13 by the control element 14. For this reason, it is not necessary to generate an appropriate potential for transmitting a drive signal to the semiconductor element 13 by the connector 17. As a result, the connector 17 can be made small. Therefore, the semiconductor device 10 can be reduced in size.

上記半導体装置10において好ましくは、コネクタ17は、電磁誘導により駆動信号を受信する。   In the semiconductor device 10, the connector 17 preferably receives a drive signal by electromagnetic induction.

システム側の駆動信号を発信する発信部がコイルを含む場合などは、コイルによる電磁誘導により起電力が生じ、この起電力による電位を駆動信号として半導体素子13へ伝達することができる。このため、発信部と非接触方式で駆動信号を伝達できるコネクタ17を備えた半導体装置10を実現できる。   When the transmission unit that transmits the drive signal on the system side includes a coil, an electromotive force is generated by electromagnetic induction by the coil, and the potential due to the electromotive force can be transmitted to the semiconductor element 13 as a drive signal. For this reason, the semiconductor device 10 provided with the connector 17 that can transmit a drive signal in a non-contact manner with the transmitter can be realized.

(実施の形態2)
図2は、本実施の形態における半導体装置を概略的に示す断面図である。図2を参照して、本実施の形態における半導体装置30は、基本的には実施の形態1における半導体装置10と同様の構成を備えているが、コネクタ17の周囲を囲むように配置された金属部材32をさらに備えている点において異なっている。
(Embodiment 2)
FIG. 2 is a cross-sectional view schematically showing the semiconductor device in the present embodiment. Referring to FIG. 2, semiconductor device 30 in the present embodiment basically has the same configuration as semiconductor device 10 in the first embodiment, but is arranged so as to surround the periphery of connector 17. The difference is that a metal member 32 is further provided.

具体的には、金属部材32は、コネクタ17の周囲を覆うように、ケース19に埋め込まれている。この金属部材32は、コネクタ17の全周を覆っていることが好ましい。金属部材32は、たとえば、導電率が高い観点から金、銀、銅などを、透磁率が高い観点から鉄、コバルト、ニッケルなどを用いることができる。   Specifically, the metal member 32 is embedded in the case 19 so as to cover the periphery of the connector 17. The metal member 32 preferably covers the entire circumference of the connector 17. For the metal member 32, for example, gold, silver, copper, or the like can be used from the viewpoint of high electrical conductivity, and iron, cobalt, nickel, or the like can be used from the viewpoint of high magnetic permeability.

なお、これ以外の構成については上述した実施の形態1の構成とほぼ同様であるため、同一の要素については同一の符号を付し、その説明は繰り返さない。   Since the configuration other than this is substantially the same as the configuration of the first embodiment described above, the same components are denoted by the same reference numerals, and description thereof will not be repeated.

以上より、本実施の形態における半導体装置30は、コネクタ17の周囲を囲むように配置された金属部材32をさらに備えている。   As described above, the semiconductor device 30 according to the present embodiment further includes the metal member 32 arranged so as to surround the connector 17.

これにより、渦電流による表皮効果を利用することができるので、金属部材32がコネクタ17の電磁シールドとなる。このため、駆動信号が入力されたときに、コネクタ17において電磁誘導により誘起される磁束の変化が外部に漏れることを抑制できる。したがって、駆動信号をより確実に半導体素子13へ伝達することができる。   As a result, the skin effect due to eddy current can be used, so that the metal member 32 serves as an electromagnetic shield for the connector 17. For this reason, when a drive signal is input, it can suppress that the change of the magnetic flux induced by electromagnetic induction in the connector 17 leaks outside. Therefore, the drive signal can be transmitted to the semiconductor element 13 more reliably.

(実施の形態3)
図3は、本実施の形態における半導体装置を概略的に示す断面図である。図3を参照して、本実施の形態における半導体装置40は、基本的には実施の形態1における半導体装置10と同様の構成を備えているが、システム側の信号発信部41をさらに備えている点において異なっている。
(Embodiment 3)
FIG. 3 is a cross-sectional view schematically showing the semiconductor device in the present embodiment. Referring to FIG. 3, semiconductor device 40 in the present embodiment basically has the same configuration as that of semiconductor device 10 in the first embodiment, but further includes a signal transmitter 41 on the system side. Is different.

具体的には、制御基板42は、その上面および下面にパターンを有している。この制御基板42は、電極18の上面に接するように設けられている。つまり、制御基板42の下面のパターンと電極18とは電気的に接続されている。制御基板は、たとえばプリント基板を用いることができ、パターンに大きな電流を流すことができるパワーボードを用いることが好ましい。   Specifically, the control board 42 has a pattern on its upper and lower surfaces. The control board 42 is provided in contact with the upper surface of the electrode 18. That is, the pattern on the lower surface of the control board 42 and the electrode 18 are electrically connected. As the control board, for example, a printed board can be used, and a power board capable of flowing a large current through the pattern is preferably used.

信号発信部41は、コネクタ17と対向するように、制御基板42上に配置されている。半導体素子13を基板12上に載置した状態で、信号発信部41とコネクタ17との間隔は、かつケースから露出している電極18の厚さおよび制御基板42の厚さの合計の距離を隔てて保持されている。   The signal transmission unit 41 is disposed on the control board 42 so as to face the connector 17. With the semiconductor element 13 placed on the substrate 12, the distance between the signal transmitter 41 and the connector 17 is the total distance of the thickness of the electrode 18 exposed from the case and the thickness of the control substrate 42. Are held apart.

信号発信部41は、駆動信号を発信する。この信号発信部41は、コネクタ17と非接触の状態で駆動信号を伝達することができる。   The signal transmission part 41 transmits a drive signal. The signal transmission unit 41 can transmit a drive signal in a non-contact state with the connector 17.

コネクタ17がコイルを含んでいる場合には、信号発信部41はたとえばコイルを含んでいる。このようなコイルを含む信号発信部41について図4を参照して説明する。図4は、本実施の形態における信号発信部を概略的に示す模式図である。なお、図4において、実線は制御基板42の表面側のパターン42aを示し、点線は制御基板42の裏面側のパターン42aを示す。図4に示すように、制御基板42のパターン42aは螺旋状である。このパターン42a下にスルーホールが形成されており、このスルーホールに導電性の部材が充填されている。このため、制御基板42の上面から下面まで充填された導電性部材により電気的に接続することで、コイルを形成している。   In the case where the connector 17 includes a coil, the signal transmission unit 41 includes, for example, a coil. The signal transmission part 41 containing such a coil is demonstrated with reference to FIG. FIG. 4 is a schematic diagram schematically showing a signal transmission unit in the present embodiment. In FIG. 4, the solid line indicates the pattern 42 a on the front surface side of the control board 42, and the dotted line indicates the pattern 42 a on the back surface side of the control board 42. As shown in FIG. 4, the pattern 42a of the control board 42 is spiral. A through hole is formed under the pattern 42a, and the through hole is filled with a conductive member. For this reason, the coil is formed by being electrically connected by the conductive member filled from the upper surface to the lower surface of the control board 42.

なお、これ以外の構成については上述した実施の形態1の構成とほぼ同様であるため、同一の要素については同一の符号を付し、その説明は繰り返さない。   Since the configuration other than this is substantially the same as the configuration of the first embodiment described above, the same components are denoted by the same reference numerals, and description thereof will not be repeated.

また、本実施の形態における半導体装置40は、実施の形態1のみならず、実施の形態2の構成を適宜組み合わせることもできる。   In addition, the semiconductor device 40 in the present embodiment can be combined with the structure of the second embodiment as appropriate as well as the first embodiment.

以上説明したように、本実施の形態における半導体装置40は、半導体素子13と電気的に接続され、主電流を流すための電極18を備え、コネクタ17の上面は、電極18よりも低い位置に配置されている。   As described above, the semiconductor device 40 in the present embodiment includes the electrode 18 that is electrically connected to the semiconductor element 13 and allows the main current to flow, and the upper surface of the connector 17 is at a position lower than the electrode 18. Has been placed.

これにより、電極18上に制御基板42を配置し、この制御基板42上にシステム側のコネクタである信号発信部41を配置した場合、電極18のケース19からの突出部分と制御基板42との合計の厚みの差を保持して、半導体装置40のコネクタ17とシステム側のコネクタである信号発信部41とを配置することができる。このため、この差を小さくすることにより、半導体装置40のコネクタ17とシステム側のコネクタである信号発信部41とを半導体装置40の使用環境に影響を受けにくく、安定して配置することができる。したがって、駆動信号をより確実に半導体素子13へ伝達することができるので、半導体装置40の信頼性を向上することができる。   As a result, when the control board 42 is arranged on the electrode 18 and the signal transmission unit 41 which is a system-side connector is arranged on the control board 42, the protruding portion of the electrode 18 from the case 19 and the control board 42 The connector 17 of the semiconductor device 40 and the signal transmission unit 41 that is a system-side connector can be arranged while maintaining the total thickness difference. For this reason, by reducing this difference, the connector 17 of the semiconductor device 40 and the signal transmission unit 41 which is a system-side connector are hardly affected by the use environment of the semiconductor device 40 and can be stably arranged. . Therefore, since the drive signal can be transmitted to the semiconductor element 13 more reliably, the reliability of the semiconductor device 40 can be improved.

(実施の形態4)
図5は、本実施の形態における半導体装置を概略的に示す断面図である。図5を参照して、本実施の形態における半導体装置50は、コネクタ17の上面と、電極の上面とが同一平面に位置するように配置されている点において異なっている。
(Embodiment 4)
FIG. 5 is a cross-sectional view schematically showing the semiconductor device in the present embodiment. Referring to FIG. 5, semiconductor device 50 according to the present embodiment is different in that the upper surface of connector 17 and the upper surface of the electrode are arranged on the same plane.

具体的には、ケース59は、本体部59aと、コネクタ17が位置する領域を突出させた突起部59bとを有している。突起部59bの上面と、電極18の上面とは同一平面に位置する。この突起部59bの内部にコネクタ17は埋め込まれており、コネクタ17の上面は突起部59bから露出している。   Specifically, the case 59 has a main body 59a and a protrusion 59b that projects a region where the connector 17 is located. The upper surface of the protrusion 59b and the upper surface of the electrode 18 are located on the same plane. The connector 17 is embedded in the protrusion 59b, and the upper surface of the connector 17 is exposed from the protrusion 59b.

システム側の制御基板42は、電極18およびケース59の突起部59b上に配置されている。この制御基板42の上面上に信号発信部41が形成されている。このため、水平方向に平行に配置した基板12上に半導体素子13を載置した状態で、信号発信部41とコネクタ17との間隔は、制御基板42の厚さ分だけ保持されている。   The system-side control board 42 is disposed on the electrode 18 and the protrusion 59 b of the case 59. A signal transmitter 41 is formed on the upper surface of the control board 42. Therefore, the distance between the signal transmission unit 41 and the connector 17 is maintained by the thickness of the control board 42 in a state where the semiconductor element 13 is placed on the board 12 arranged in parallel in the horizontal direction.

なお、これ以外の構成については上述した実施の形態1の構成とほぼ同様であるため、同一の要素については同一の符号を付し、その説明は繰り返さない。   Since the configuration other than this is substantially the same as the configuration of the first embodiment described above, the same components are denoted by the same reference numerals, and description thereof will not be repeated.

また、本実施の形態における半導体装置50は、実施の形態1のみならず、実施の形態2または3の構成を適宜組み合わせることもできる。   In addition, the semiconductor device 50 according to the present embodiment can be appropriately combined with the configuration of the second or third embodiment as well as the first embodiment.

以上説明したように、本実施の形態における半導体装置50によれば、主電流を流すための電極18を備え、コネクタ17の上面は、電極18と同じ位置に配置されている。   As described above, according to the semiconductor device 50 in the present embodiment, the electrode 18 for flowing the main current is provided, and the upper surface of the connector 17 is disposed at the same position as the electrode 18.

これにより、電極18およびコネクタ17上にシステム側の制御基板42を配置し、この制御基板42上にシステム側の信号発信部41を配置した場合、制御基板42の厚み分の差をあけて、半導体装置50のコネクタ17とシステム側の信号発信部41とを配置することができる。このため、この差を小さくすることにより、半導体装置50のコネクタ17とシステム側の信号発信部41とを近接して配置することができる。したがって、たとえば電磁誘導により駆動信号を伝達する場合、漏れ磁束を低減することができるので、駆動信号をより確実に半導体素子13へ伝達することができる。   Thereby, when the control board 42 on the system side is arranged on the electrode 18 and the connector 17, and the signal transmission unit 41 on the system side is arranged on the control board 42, a difference corresponding to the thickness of the control board 42 is opened, The connector 17 of the semiconductor device 50 and the signal transmission unit 41 on the system side can be arranged. Therefore, by reducing this difference, the connector 17 of the semiconductor device 50 and the signal transmitter 41 on the system side can be disposed close to each other. Therefore, for example, when the drive signal is transmitted by electromagnetic induction, the leakage magnetic flux can be reduced, so that the drive signal can be transmitted to the semiconductor element 13 more reliably.

また、半導体装置50のコネクタ17とシステム側の信号発信部41とを制御基板42の幅を保持して配置できる。このため、半導体装置50のコネクタ17とシステム側の信号発信部41とを安定に保持できる。したがって、半導体装置50の使用環境の影響をより受けにくい。   In addition, the connector 17 of the semiconductor device 50 and the signal transmission unit 41 on the system side can be arranged while maintaining the width of the control board 42. For this reason, the connector 17 of the semiconductor device 50 and the signal transmission unit 41 on the system side can be stably held. Therefore, it is less susceptible to the usage environment of the semiconductor device 50.

以上より、半導体素子13への駆動信号の伝達の信頼性を向上することができる。
(実施の形態5)
図6は、本実施の形態における半導体装置を概略的に示す断面図である。図6を参照して、本実施の形態における半導体装置60は、コネクタ17の上面は、電極18の上面よりも低い位置に配置されている点において異なっている。
As described above, the reliability of transmission of the drive signal to the semiconductor element 13 can be improved.
(Embodiment 5)
FIG. 6 is a cross-sectional view schematically showing the semiconductor device in the present embodiment. Referring to FIG. 6, semiconductor device 60 in the present embodiment is different in that the upper surface of connector 17 is arranged at a position lower than the upper surface of electrode 18.

具体的には、ケース69は、本体部69aと、コネクタ17が位置する領域以外の領域を突出させた突起部69bとを有している。突起部69bよりも下方に位置する本体部69aに、コネクタ17は埋め込まれている。コネクタ17の上面は、本体部69aから露出している。電極18の上面は、ケース69の突起部69bから突出している。   Specifically, the case 69 has a main body 69a and a protrusion 69b that projects an area other than the area where the connector 17 is located. The connector 17 is embedded in the main body 69a positioned below the protrusion 69b. The upper surface of the connector 17 is exposed from the main body 69a. The upper surface of the electrode 18 protrudes from the protrusion 69 b of the case 69.

システム側の制御基板42は、電極18上に配置されている。この制御基板42の下面において突起部69bと対向していない位置であって、かつコネクタ17と対向する位置に、コネクタ17と接触しないように、システム側の信号発信部41が配置されている。このため、水平方向に平行に配置した基板12上に半導体素子13を載置した状態で、コネクタ17の上面は、電極18よりも低い位置に配置される。   The system-side control board 42 is disposed on the electrode 18. The signal transmission unit 41 on the system side is arranged at a position not facing the protrusion 69 b on the lower surface of the control board 42 and at a position facing the connector 17 so as not to contact the connector 17. For this reason, the upper surface of the connector 17 is arranged at a position lower than the electrode 18 in a state where the semiconductor element 13 is placed on the substrate 12 arranged in parallel in the horizontal direction.

なお、これ以外の構成については上述した実施の形態1の構成とほぼ同様であるため、同一の要素については同一の符号を付し、その説明は繰り返さない。   Since the configuration other than this is substantially the same as the configuration of the first embodiment described above, the same components are denoted by the same reference numerals, and description thereof will not be repeated.

また、本実施の形態における半導体装置60は、実施の形態1のみならず、実施の形態2〜4の構成を適宜組み合わせることもできる。   In addition, the semiconductor device 60 in the present embodiment can be combined with the configurations of the second to fourth embodiments as well as the first embodiment.

以上説明したように、本実施の形態における半導体装置60によれば、主電流を流すための電極18を備え、コネクタ17の上面は、電極18よりも低い位置に配置されている。   As described above, according to the semiconductor device 60 in the present embodiment, the electrode 18 for flowing the main current is provided, and the upper surface of the connector 17 is disposed at a position lower than the electrode 18.

これにより、電極18上に制御基板42を配置し、この制御基板42下に、半導体装置60のコネクタ17との間隔をあけて信号発信部41配置することで、半導体装置60のコネクタ17とシステム側の信号発信部41とを近接して配置することができる。したがって、漏れ磁束を低減することができるので、駆動信号をより確実に半導体素子13へ伝達することができる。よって、半導体素子13への駆動信号の伝達の信頼性を向上することができる。   As a result, the control board 42 is arranged on the electrode 18, and the signal transmission unit 41 is arranged below the control board 42 at a distance from the connector 17 of the semiconductor device 60. The signal transmitter 41 on the side can be disposed close to the signal transmitter 41. Therefore, since the leakage magnetic flux can be reduced, the drive signal can be transmitted to the semiconductor element 13 more reliably. Therefore, the reliability of transmission of the drive signal to the semiconductor element 13 can be improved.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above-described embodiment but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

この発明は、電圧駆動型のパワーデバイスを有する半導体装置に特に有利に適用される。   The present invention is particularly advantageously applied to a semiconductor device having a voltage-driven power device.

10,30,40,50,60 半導体装置、11 基材、12 基板、12a 絶縁基板、12b,42a パターン、13 半導体素子、14 制御素子、15 ワイヤ、16 コネクタ接続パターン、17 コネクタ、18 電極、19,59,69 ケース、20 接続部、32 金属部材、41 信号発信部、42 制御基板、59a,69a 本体部、59b,69b 突起部。   10, 30, 40, 50, 60 Semiconductor device, 11 base material, 12 substrate, 12a insulating substrate, 12b, 42a pattern, 13 semiconductor element, 14 control element, 15 wire, 16 connector connection pattern, 17 connector, 18 electrode, 19, 59, 69 Case, 20 connection part, 32 metal member, 41 signal transmission part, 42 control board, 59a, 69a main body part, 59b, 69b protrusion part.

Claims (4)

半導体装置であって、
駆動信号の入力によって主電流のオン動作およびオフ動作の制御をするための電圧駆動型パワーデバイスを有する半導体素子と、
前記駆動信号を発信する発信部と非接触の状態で前記駆動信号を受信し、かつ前記駆動信号を前記半導体素子へ伝達するための駆動信号端子と、
前記半導体素子を収容するとともに、前記半導体装置の外枠を構成するケースと、
前記ケースの上面上に位置し、前記半導体素子と電気的に接続され、前記主電流を流すための電極とを備え、
前記駆動信号端子は、前記ケースの前記上面の壁中に埋め込まれている、半導体装置。
A semiconductor device,
A semiconductor element having a voltage-driven power device for controlling on and off operations of a main current by inputting a drive signal;
A drive signal terminal for receiving the drive signal in a non-contact state with a transmitter for transmitting the drive signal, and for transmitting the drive signal to the semiconductor element;
A case for housing the semiconductor element and constituting an outer frame of the semiconductor device;
An electrode located on the upper surface of the case, electrically connected to the semiconductor element, and for flowing the main current;
The semiconductor device, wherein the drive signal terminal is embedded in a wall of the upper surface of the case.
前記駆動信号端子で受信した前記駆動信号を電圧値に変換して前記半導体素子へ伝達するための制御部をさらに備えた、請求項1に記載の半導体装置。   The semiconductor device according to claim 1, further comprising a control unit configured to convert the drive signal received at the drive signal terminal into a voltage value and transmit the voltage value to the semiconductor element. 前記駆動信号端子は、電磁誘導により前記駆動信号を受信する、請求項1または2に記載の半導体装置。   The semiconductor device according to claim 1, wherein the drive signal terminal receives the drive signal by electromagnetic induction. 前記駆動信号端子の周囲を囲むように配置された金属部材をさらに備えた、請求項1〜3のいずれかに記載の半導体装置。   The semiconductor device according to claim 1, further comprising a metal member disposed so as to surround the drive signal terminal.
JP2011148234A 2011-07-04 2011-07-04 Semiconductor device Active JP5209090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011148234A JP5209090B2 (en) 2011-07-04 2011-07-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011148234A JP5209090B2 (en) 2011-07-04 2011-07-04 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008161845A Division JP4781400B2 (en) 2008-06-20 2008-06-20 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2011193031A JP2011193031A (en) 2011-09-29
JP5209090B2 true JP5209090B2 (en) 2013-06-12

Family

ID=44797559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011148234A Active JP5209090B2 (en) 2011-07-04 2011-07-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JP5209090B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6083109B2 (en) * 2012-01-18 2017-02-22 富士電機株式会社 Semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4965710A (en) * 1989-11-16 1990-10-23 International Rectifier Corporation Insulated gate bipolar transistor power module
JPH11164483A (en) * 1997-11-28 1999-06-18 Nissin Electric Co Ltd Inverter operating device for power equipment
JP4957183B2 (en) * 2006-10-30 2012-06-20 三菱電機株式会社 Semiconductor device using backside high voltage integrated circuit

Also Published As

Publication number Publication date
JP2011193031A (en) 2011-09-29

Similar Documents

Publication Publication Date Title
JP6233285B2 (en) Semiconductor module, power converter
JP4985810B2 (en) Semiconductor device
EP1868244B1 (en) Semiconductor device
JP6218898B2 (en) Power semiconductor device
JP5100694B2 (en) Semiconductor device
JP5168438B2 (en) Power transmission system and power receiving jacket
JP4874324B2 (en) Inter-substrate transmission device, electronic device and equipment
JP4781400B2 (en) Semiconductor device
JPWO2020039787A1 (en) Circuit equipment and power conversion equipment
CN106469695B (en) Electronic and electric apparatus
JP5209090B2 (en) Semiconductor device
JP6493174B2 (en) Electronics
CN106611758B (en) Integrated power module packaging structure
JP2013098200A (en) Semiconductor module
JP2004241734A (en) Semiconductor module
CN105744758A (en) Power semiconductor control
JP2010251559A (en) Electronic circuit device
JP2007138833A (en) Electric compressor integrated with inverter device
JP2010073836A (en) Power circuit device
US20230078859A1 (en) Fluid device
JP2008171876A (en) Semiconductor device
KR101168068B1 (en) Connecting structure for metal substrate, led module having the same and connecting method for metal substrate
JP3194140U (en) Shield plate connection structure
CN110168709A (en) Semiconductor module and manufacturing method with the first and second connecting elements for connecting semiconductor chip
JP5991355B2 (en) COIL MODULE AND ELECTRONIC DEVICE HAVING THE COIL MODULE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5209090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250