JP5206074B2 - Membrane / electrode assembly for fuel cell and manufacturing method thereof - Google Patents

Membrane / electrode assembly for fuel cell and manufacturing method thereof Download PDF

Info

Publication number
JP5206074B2
JP5206074B2 JP2008091988A JP2008091988A JP5206074B2 JP 5206074 B2 JP5206074 B2 JP 5206074B2 JP 2008091988 A JP2008091988 A JP 2008091988A JP 2008091988 A JP2008091988 A JP 2008091988A JP 5206074 B2 JP5206074 B2 JP 5206074B2
Authority
JP
Japan
Prior art keywords
catalyst layer
membrane
electrolyte membrane
catalyst
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008091988A
Other languages
Japanese (ja)
Other versions
JP2009245796A (en
Inventor
美和 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2008091988A priority Critical patent/JP5206074B2/en
Publication of JP2009245796A publication Critical patent/JP2009245796A/en
Application granted granted Critical
Publication of JP5206074B2 publication Critical patent/JP5206074B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は燃料電池用膜・電極接合体およびその製造方法に関する。   The present invention relates to a membrane / electrode assembly for a fuel cell and a method for producing the same.

燃料電池を構成する燃料電池用膜・電極接合体(以下、単に「膜・電極接合体」と称する場合もある。)のうち、電解質膜の両主面側に触媒層を配置したもの(即ち、触媒層/電解質膜/触媒層の層構成のもの)は、3層MEAと称されており、さらに、その3層MEAの両主面側に電極基材を配置したもの(即ち、電極基材/触媒層/電解質膜/触媒層/電極基材の層構成のもの)は、5層MEAと称されている。   Among fuel cell membrane / electrode assemblies (hereinafter sometimes simply referred to as “membrane / electrode assemblies”) constituting a fuel cell, catalyst layers are disposed on both principal surfaces of the electrolyte membrane (ie, The catalyst layer / electrolyte membrane / catalyst layer structure) is referred to as a three-layer MEA, and further, electrode substrates are disposed on both principal surface sides of the three-layer MEA (that is, an electrode substrate). Material / catalyst layer / electrolyte membrane / catalyst layer / electrode substrate layer structure) is referred to as a 5-layer MEA.

燃料電池の性能向上においては、これらの膜・電極接合体の構造の最適化が鍵となっている。膜・電極接合体の製造過程では、例えば、下記(1)〜(3)の方法が採用されている。
(1)ガス拡散層(Gas Diffusion Layer、GDL)とも呼ばれる電極基材に触媒層を塗工により形成する方法
(2)デカール法(フィルム上に形成した触媒層を電解質膜に転写する方法)
(3)電解質膜に触媒含有ペーストを直接塗工する方法
Optimization of the structure of these membrane / electrode assemblies is the key to improving the performance of fuel cells. In the manufacturing process of the membrane / electrode assembly, for example, the following methods (1) to (3) are employed.
(1) A method of forming a catalyst layer on an electrode substrate, also called a gas diffusion layer (GDL), by coating (2) A decal method (a method of transferring a catalyst layer formed on a film to an electrolyte membrane)
(3) Method of directly applying catalyst-containing paste to the electrolyte membrane

方法(1)では、多孔質体のGDLに、触媒と電解質バインダーとを含む触媒含有ペーストを塗工するため、GDLへの触媒のしみ込みによる、触媒の無駄発生およびGDLの通気度の低下等の問題がある。   In the method (1), since a catalyst-containing paste containing a catalyst and an electrolyte binder is applied to the porous GDL, waste of the catalyst due to the penetration of the catalyst into the GDL, a decrease in the gas permeability of the GDL, and the like There is a problem.

方法(2)では、形状が安定な2つのフィルム上に各々触媒層を塗工により形成した後、各触媒層を電解質膜に熱プレスにより転写するので、上記GDLへの触媒のしみ込みがなく、触媒と電解質バインダーの分散状態が良好で、細孔構造が均質な触媒層を形成できる。しかし、各フィルム上に形成された触媒層を電解質膜に転写した後、各触媒層からフィルムを剥離しなければならないので、工程数が多い。また、高い性能を確保する観点から最適な、触媒/電解質バインダー配合比率があるが、その値は転写性および量産時の歩留まりの向上の観点から最適な触媒/電解質バインダー配合比率とは一致しない。そのため、高い性能の確保を優先させれば、転写性および量産時の歩留まりの向上を犠牲にしなければならないし、転写性および量産時の歩留まりの向上を優先させれば、高い性能の確保を犠牲にすることになる。また、方法(2)では、固体高分子形燃料電池の一種である直接メタノール型燃料電池(DMFC)の触媒層、特に、触媒の担持量が3〜6mg/cm2程度と多いアノードの触媒層を形成する場合、転写の際に触媒の欠落が生じやすいという問題がある。 In the method (2), after each catalyst layer is formed on two films having stable shapes by coating, each catalyst layer is transferred to the electrolyte membrane by hot pressing, so that there is no penetration of the catalyst into the GDL. A catalyst layer having a good dispersion state of the catalyst and the electrolyte binder and a homogeneous pore structure can be formed. However, since the catalyst layer formed on each film is transferred to the electrolyte membrane and then the film must be peeled off from each catalyst layer, the number of steps is large. Further, there is an optimum catalyst / electrolyte binder blending ratio from the viewpoint of ensuring high performance, but the value does not match the optimum catalyst / electrolyte binder blending ratio from the viewpoint of improving transferability and yield during mass production. For this reason, if priority is given to securing high performance, improvement in transferability and yield during mass production must be sacrificed. If priority is given to improvement in transferability and yield during mass production, high performance is sacrificed. Will be. Further, in the method (2), a catalyst layer of a direct methanol fuel cell (DMFC) which is a kind of a polymer electrolyte fuel cell, particularly an anode catalyst layer having a large amount of supported catalyst of about 3 to 6 mg / cm 2. In the case of forming the catalyst, there is a problem that the catalyst is easily lost during the transfer.

方法(3)では、電解質膜の両面に各々触媒含有ペーストを直接塗るので、工程数が他の方法よりも少なくてすむ。しかし、電解質膜として一般的に用いられるNafion(登録商標)膜等のパーフルオロスルホン酸系の電解質膜を用いた場合、触媒含有ペースト中の溶媒が原因で電解質膜が著しく膨潤し、良好な電解質膜を備えた膜・電極接合体が得られないという問題がある。   In the method (3), since the catalyst-containing paste is directly applied to both surfaces of the electrolyte membrane, the number of steps can be reduced as compared with other methods. However, when a perfluorosulfonic acid type electrolyte membrane such as a Nafion (registered trademark) membrane generally used as an electrolyte membrane is used, the electrolyte membrane swells significantly due to the solvent in the catalyst-containing paste, and a good electrolyte There is a problem that a membrane-electrode assembly provided with a membrane cannot be obtained.

また、膜・電極接合体のその他の製造方法が特許文献1〜4に開示されている。   Further, Patent Documents 1 to 4 disclose other methods for producing a membrane / electrode assembly.

特許文献1に記載の膜・電極接合体の製造過程では、下記のようにして3層MEAが形成される。
1)電解質膜を寸法が安定な第1暫定基板に支持させる。
2)電解質膜の第1暫定基板側の面の反対面(第1表面)に電気触媒コーティング組成物を直接塗工して、第1触媒層を形成する。
3)第1触媒層上に寸法が安定な第2暫定基板を配置し電解質膜を第1触媒層が形成された面側から支持する。
4)第1暫定基板を電解質膜から剥離する。
5)第1暫定基板側の剥離により露出した電解質膜の表面(第2表面)に電気触媒コーティング組成物を直接塗工して第2触媒層を形成する。
In the manufacturing process of the membrane / electrode assembly described in Patent Document 1, a three-layer MEA is formed as follows.
1) The electrolyte membrane is supported on a first temporary substrate having a stable dimension.
2) The electrocatalyst coating composition is directly applied to the surface (first surface) opposite to the surface on the first temporary substrate side of the electrolyte membrane to form the first catalyst layer.
3) A second temporary substrate having a stable dimension is disposed on the first catalyst layer, and the electrolyte membrane is supported from the surface side on which the first catalyst layer is formed.
4) The first temporary substrate is peeled from the electrolyte membrane.
5) The electrocatalyst coating composition is directly applied to the surface (second surface) of the electrolyte membrane exposed by the peeling of the first temporary substrate side to form the second catalyst layer.

特許文献2に記載の膜・電極接合体の製造過程では、下記のようにして3層MEAが形成される。
1)寸法が安定な仮基板上に印刷により第1触媒層を形成する。
2)仮基板の両主面のうちの第1触媒層が形成されている側の面および第1触媒層に、電解質膜形成液を塗工し、塗工された電解質膜形成液を乾燥して、電解質膜を形成する。
3)電解質膜上に印刷により第2触媒層を形成する。
In the manufacturing process of the membrane / electrode assembly described in Patent Document 2, a three-layer MEA is formed as follows.
1) A first catalyst layer is formed on a temporary substrate having a stable dimension by printing.
2) Apply the electrolyte film forming liquid to the surface of the temporary substrate on which the first catalyst layer is formed and the first catalyst layer, and dry the applied electrolyte film forming liquid. Thus, an electrolyte membrane is formed.
3) A second catalyst layer is formed on the electrolyte membrane by printing.

特許文献3では、支持体上に触媒層および電解質膜をこの順で形成した積層体を2つ用意し、それぞれの電解質膜が向かい合うように積層体を貼りあわせた後、各触媒層から支持体を剥離する。   In Patent Document 3, two laminates in which a catalyst layer and an electrolyte membrane are formed in this order on a support are prepared, and the laminate is bonded so that the electrolyte membranes face each other. To peel off.

特許文献4では、まず、支持体上にカソード触媒層を形成する。一方で、シリコン−ンオイル上に電解質膜を形成する。この電解質膜に、カソード触媒層が形成された支持体を、カソード触媒層が電解質膜に接するように重ね、これらを加熱することによりカソード触媒層と電解質膜とを接合する。次いで、電解質膜のカソード触媒層と接合した面の反対面にスクリーン印刷によりアノード触媒層を形成する。
特表2006−507623号公報 特表2005−507150号公報 特開2000−285932号公報 特開2002−280014号公報
In Patent Document 4, a cathode catalyst layer is first formed on a support. On the other hand, an electrolyte membrane is formed on silicon oil. A support on which the cathode catalyst layer is formed is stacked on the electrolyte membrane so that the cathode catalyst layer is in contact with the electrolyte membrane, and these are heated to join the cathode catalyst layer and the electrolyte membrane. Next, an anode catalyst layer is formed by screen printing on the opposite side of the surface of the electrolyte membrane joined to the cathode catalyst layer.
JP-T-2006-507623 JP 2005-507150 gazette JP 2000-285932 A JP 2002-280014 A

特許文献1に記載された方法では、第2暫定基板の電解質膜と向かい合う表面のうちの第1触媒層に接した部分の周囲と電解質膜の第1表面との間に空隙が存在する状態で電解質膜の第2表面に電気触媒コーティング組成物を直接塗工して、第2触媒層を形成するので、上記電解質膜のうちの上記空隙の近傍部分(第1触媒層の周囲)が膨潤する可能性がある。   In the method described in Patent Document 1, there is a gap between the periphery of the portion of the surface facing the electrolyte membrane of the second temporary substrate that is in contact with the first catalyst layer and the first surface of the electrolyte membrane. Since the second catalyst layer is formed by directly applying the electrocatalyst coating composition to the second surface of the electrolyte membrane, a portion in the vicinity of the void (around the first catalyst layer) of the electrolyte membrane swells. there is a possibility.

特許文献2に記載された方法では、触媒層上に電解質膜溶液を塗工するので、触媒層に電解質膜溶液がしみ込み、触媒と電解質とガスの3相がともに接触する界面(いわゆる3相界面)が減少したり、ガス拡散性が低減するなどの問題が生じる。   In the method described in Patent Document 2, since the electrolyte membrane solution is applied onto the catalyst layer, the electrolyte membrane solution penetrates into the catalyst layer, and the interface where the three phases of the catalyst, the electrolyte, and the gas are in contact with each other (so-called three phases). (Interface) is reduced, and gas diffusibility is reduced.

特許文献3に記載された方法では、積層ムラを生じさせることなく電解質膜同士を貼りあわせることは容易ではない。上記積層ムラが生じると、プロトン伝導パスが遮断される等のおそれがある。ここで積層ムラとは、積層体の貼り合わせの際に気泡が混入して、電解質膜同士が接触していない部分が生じたり、ローラー治具の微細な凹凸により電解質膜に凹凸が生じることである。   In the method described in Patent Document 3, it is not easy to bond the electrolyte membranes together without causing uneven lamination. If the stacking unevenness occurs, the proton conduction path may be blocked. Here, stacking unevenness means that air bubbles are mixed when the laminates are bonded together, resulting in a portion where the electrolyte membranes are not in contact with each other, or unevenness in the electrolyte membrane due to minute unevenness of the roller jig. is there.

特許文献4に記載された方法では、特許文献1に記載された方法と同様に、支持体の表面のうちの第1触媒層に接した部分の周囲と電解質膜の支持体と向かい合う面との間に空隙が存在する状態で、電解質膜の上記面の反対面に印刷によりアノード用触媒層が形成される。そのため、上記電解質膜のうちの上記空隙の近傍部分(第1触媒層の周囲)が膨潤する可能性がある。また、電解質膜に付着したシリコン−ンオイルが抵抗成分となるおそれがある。   In the method described in Patent Document 4, similar to the method described in Patent Document 1, the periphery of the portion of the surface of the support that is in contact with the first catalyst layer and the surface facing the support of the electrolyte membrane are formed. An anode catalyst layer is formed by printing on the surface opposite to the above surface of the electrolyte membrane in a state where there are voids therebetween. Therefore, there is a possibility that a portion in the vicinity of the gap (around the first catalyst layer) in the electrolyte membrane swells. Further, silicon oil adhering to the electrolyte membrane may become a resistance component.

本発明では、電解質膜の膨潤を抑制しながら、触媒層を容易に形成可能とする、燃料電池用膜・電極接合体およびその製造方法を提供する。   The present invention provides a membrane / electrode assembly for a fuel cell and a method for producing the same that can easily form a catalyst layer while suppressing swelling of the electrolyte membrane.

本発明の燃料電池用膜・電極接合体の製造方法は、
支持基材に第1触媒含有ペーストを塗工し、塗工された第1触媒含有ペーストを乾燥して、第1触媒層を形成する工程と、
電解質膜内に前記第1触媒層が埋め込まれ、かつ、前記支持基材と前記第1触媒層とからなる積層体と前記電解質膜との間に空隙が生じないように、前記電解質膜を前記積層体に熱圧着させるとともに、前記電解質膜と前記第1触媒層とを接合させる工程と、
前記電解質膜の前記支持基材側の面の反対面に、第2触媒含有ペーストを塗工し、塗工された第2触媒含有ペーストを乾燥して、第2触媒層を形成する工程と、
前記第1触媒層から前記支持基材を剥離する工程と、を含む。
The method for producing a fuel cell membrane / electrode assembly of the present invention comprises:
Applying a first catalyst-containing paste to a support substrate, drying the applied first catalyst-containing paste, and forming a first catalyst layer;
The first electrolyte layer is embedded in the electrolyte membrane, and the electrolyte membrane is formed so that no voids are formed between the electrolyte membrane and the laminate including the support base and the first catalyst layer. A step of thermocompression bonding to the laminate, and bonding the electrolyte membrane and the first catalyst layer;
Applying a second catalyst-containing paste to the opposite surface of the electrolyte membrane on the side of the support substrate, and drying the applied second catalyst-containing paste to form a second catalyst layer;
Peeling the support substrate from the first catalyst layer.

本発明の燃料電池用膜・電極接合体は、本発明の燃料電池用膜・電極接合体の製造方法により形成された燃料電池用膜・電極接合体であって、
前記電解質膜と、
前記電解質膜の一方の主平面に接して配置された前記第2触媒層と、
前記電解質膜の前記第2触媒層側の反対側から前記電解質膜内に埋め込まれた前記第1触媒層とを含み、
前記電解質膜の前記一方の主平面の反対面と、前記1触媒層の前記第2触媒層と向かい合う面の反対面とがほぼ同一平面内にある。
The fuel cell membrane / electrode assembly of the present invention is a fuel cell membrane / electrode assembly formed by the method for producing a fuel cell membrane / electrode assembly of the present invention,
The electrolyte membrane;
The second catalyst layer disposed in contact with one main plane of the electrolyte membrane;
The first catalyst layer embedded in the electrolyte membrane from the opposite side of the electrolyte membrane to the second catalyst layer side,
A surface opposite to the one main plane of the electrolyte membrane and a surface opposite to the surface of the first catalyst layer facing the second catalyst layer are substantially in the same plane.

本発明によれば、電解質膜の膨潤を抑制しながら、触媒層を容易に形成可能とする、燃料電池用膜・電極接合体およびその製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the membrane-electrode assembly for fuel cells and its manufacturing method which can form a catalyst layer easily can be provided, suppressing swelling of an electrolyte membrane.

図1は、本発明の燃料電池用膜・電極接合体の製造方法によって作製される5層MEAの一例の模式断面図であり、図2は、図1に示した5層MEAを構成する3層MEAの模式断面図である。なお、図1を用いて説明する本発明の膜・電極接合体の一例は、5層MEAであるが、本発明の膜・電極接合体は、3層MEAをも含む。   FIG. 1 is a schematic cross-sectional view of an example of a five-layer MEA produced by the method for producing a membrane / electrode assembly for a fuel cell of the present invention, and FIG. 2 is a diagram showing 3 constituting the five-layer MEA shown in FIG. It is a schematic cross section of layer MEA. An example of the membrane / electrode assembly of the present invention described with reference to FIG. 1 is a five-layer MEA, but the membrane / electrode assembly of the present invention also includes a three-layer MEA.

図1および図2に示すように、電解質膜1の一方の主平面1a上に第2触媒層4’と第2電極基材5とからなる燃料極6が配置されている。第1触媒層4と第1電極基材7とからなる空気極8のうちの第1触媒層4は、電解質膜1の第2触媒層4’側の反対側から電解質膜1内に埋め込まれており、電解質膜1の上記一方の主平面1aの反対面1bと、第1触媒層4の第2触媒層4’と向かい合う面4aの反対面4bとが同一平面内にある。電解質膜1と燃料極6と空気極8とからなる積層体(5層MEA)の両主面側に各々リブ付きセパレータおよび集電板(図示せず)がこの順で配置されることによって、単セル(燃料電池)が構成される。プロトンは燃料極6から電解質膜1内を通過して空気極8に流れる。また、電子は燃料極6から外部回路を介して空気極8に流れる。これにより燃料極6と空気極8との間に電気が流れる。   As shown in FIGS. 1 and 2, a fuel electrode 6 including a second catalyst layer 4 ′ and a second electrode substrate 5 is disposed on one main plane 1 a of the electrolyte membrane 1. The first catalyst layer 4 of the air electrode 8 composed of the first catalyst layer 4 and the first electrode substrate 7 is embedded in the electrolyte membrane 1 from the side opposite to the second catalyst layer 4 ′ side of the electrolyte membrane 1. The opposite surface 1b of the one main plane 1a of the electrolyte membrane 1 and the opposite surface 4b of the surface 4a of the first catalyst layer 4 facing the second catalyst layer 4 ′ are in the same plane. By arranging a separator with a rib and a current collector plate (not shown) in this order on both main surface sides of a laminate (5-layer MEA) composed of the electrolyte membrane 1, the fuel electrode 6 and the air electrode 8, A single cell (fuel cell) is configured. Protons flow from the fuel electrode 6 through the electrolyte membrane 1 to the air electrode 8. Further, electrons flow from the fuel electrode 6 to the air electrode 8 through an external circuit. As a result, electricity flows between the fuel electrode 6 and the air electrode 8.

次に、図1に示した5層MEAの製造方法について、図3を用いて説明する。   Next, a method for manufacturing the 5-layer MEA shown in FIG. 1 will be described with reference to FIG.

図3Aおよび図3Bに示されるように、まず、支持基材2を用意し、支持基材2の一方の主面に第1触媒含有ペーストを塗工し、次いで、支持基材2に塗工された第1触媒含有ペーストを乾燥させて、第1触媒層4を得る。   As shown in FIG. 3A and FIG. 3B, first, a support base material 2 is prepared, a first catalyst-containing paste is applied to one main surface of the support base material 2, and then applied to the support base material 2. The first catalyst-containing paste is dried to obtain the first catalyst layer 4.

次に、図3Cに示されるように、電解質膜1を、第1触媒層4と支持基材2とからなる積層体10に熱圧着させる。第1触媒層4は電解質膜1内に埋込され、積層体10と電解質膜1とは空隙を生じさせることなく互いに密着し、熱により電解質膜1と第1触媒層4とが接合される。支持基材2が長尺な帯状シートであり、支持基材2の一方の主面に複数の第1触媒層4が所定間隔ごとに形成される場合、隣り合う第1触媒層4の間が、電解質膜1の一部によって充填されるように、積層体10に電解質膜1が密着される。   Next, as shown in FIG. 3C, the electrolyte membrane 1 is thermocompression bonded to the laminate 10 made of the first catalyst layer 4 and the support base 2. The first catalyst layer 4 is embedded in the electrolyte membrane 1, the laminate 10 and the electrolyte membrane 1 are in close contact with each other without generating a void, and the electrolyte membrane 1 and the first catalyst layer 4 are joined by heat. . When the support base material 2 is a long belt-like sheet and a plurality of first catalyst layers 4 are formed on one main surface of the support base material 2 at predetermined intervals, the space between the adjacent first catalyst layers 4 is between The electrolyte membrane 1 is adhered to the laminate 10 so as to be filled with a part of the electrolyte membrane 1.

次に、図3Dに示されるように、電解質膜1の支持基材2側の面の反対面に、第2触媒含有ペーストを塗工し、塗工された第2触媒含有ペーストを乾燥して、第2触媒層4’を形成する。次いで、第1触媒層4から支持基材2を剥離すれば、3層MEAが得られる。次いで、3層MEAの両主面側に第1電極基材7および第2電極基材5を公知の方法にて接合することにより、5層MEAが得られる。   Next, as shown in FIG. 3D, the second catalyst-containing paste is applied to the surface opposite to the surface of the electrolyte membrane 1 on the support base 2 side, and the applied second catalyst-containing paste is dried. Then, the second catalyst layer 4 ′ is formed. Subsequently, if the support base material 2 is peeled from the first catalyst layer 4, a three-layer MEA is obtained. Next, the first electrode base material 7 and the second electrode base material 5 are bonded to both main surface sides of the three-layer MEA by a known method, whereby a five-layer MEA is obtained.

本発明の膜・電極接合体の製造方法では、追従性のよい電解質膜1を積層体10に熱圧着させるので積層体10と電解質膜1の間に空隙を生じさせること無く両者を密着させる事ができる。それゆえ、第2触媒層4'の形成の際に、電解質膜1と支持基材2との間に空隙が存在することに起因して生じうる電解質膜の膨潤を抑制できる。   In the method for producing a membrane / electrode assembly according to the present invention, the electrolyte membrane 1 having good followability is thermocompression bonded to the laminate 10, so that the two are brought into close contact with each other without generating a gap between the laminate 10 and the electrolyte membrane 1. Can do. Therefore, it is possible to suppress swelling of the electrolyte membrane that may occur due to the presence of voids between the electrolyte membrane 1 and the support base 2 when forming the second catalyst layer 4 ′.

第1触媒層4および第2触媒層4’は、ともに触媒粒子を担持させた炭素粒子(触媒担持炭素粒子)と、水素イオン伝導性高分子電解質とを含有している。触媒粒子としては、例えば、白金、白金化合物等が挙げられる。白金化合物としては、例えば、ルテニウム、パラジウム、ニッケル、モリブデン、イリジウム、鉄、コバルト等からなる群から選ばれる少なくとも1種の金属と白金との合金等が挙げられる。   Both the first catalyst layer 4 and the second catalyst layer 4 ′ contain carbon particles carrying catalyst particles (catalyst-carrying carbon particles) and a hydrogen ion conductive polymer electrolyte. Examples of the catalyst particles include platinum and platinum compounds. Examples of the platinum compound include an alloy of platinum and at least one metal selected from the group consisting of ruthenium, palladium, nickel, molybdenum, iridium, iron, cobalt, and the like.

水素イオン伝導性高分子電解質としては、例えば、パーフルオロスルホン酸系のフッ素イオン交換樹脂等が挙げられる。上記触媒担持炭素粒子と水素イオン伝導性高分子電解質の配合比は、固形分量の重量比率で1:0.1〜1:1であると好ましく、1:0.2〜1:0.5であるとより好ましい。   Examples of the hydrogen ion conductive polymer electrolyte include perfluorosulfonic acid-based fluorine ion exchange resins. The mixing ratio of the catalyst-supporting carbon particles and the hydrogen ion conductive polymer electrolyte is preferably 1: 0.1 to 1: 1 by weight ratio of the solid content, and is preferably 1: 0.2 to 1: 0.5. More preferably.

第1触媒層4および第2触媒層4’の形成には、触媒担持炭素粒子と水素イオン伝導性高分子電解質とを適当な溶剤中で混合し分散することにより得られる、触媒含有ペーストを用いる。   For the formation of the first catalyst layer 4 and the second catalyst layer 4 ′, a catalyst-containing paste obtained by mixing and dispersing the catalyst-supporting carbon particles and the hydrogen ion conductive polymer electrolyte in an appropriate solvent is used. .

上記溶剤としては、例えば、各種アルコール類、各種エーテル類、各種ジアルキルスルホキシド類、水又はこれらの混合物等が挙げられる。   Examples of the solvent include various alcohols, various ethers, various dialkyl sulfoxides, water, or a mixture thereof.

触媒含有ペーストの塗工方法については、特に限定されるものではなく、例えば、ナイフコーター、バーコーター、スプレー、ディップコーター、スピンコーター、ロールコーター、ダイコーター、カーテンコーター、スクリーン印刷等の一般的な方法を適用できる。   The method for applying the catalyst-containing paste is not particularly limited. For example, a general method such as knife coater, bar coater, spray, dip coater, spin coater, roll coater, die coater, curtain coater, screen printing, etc. The method can be applied.

膜・電極接合体が固体高分子型燃料電池用(PEFC)である場合は、第1触媒層4および第2触媒層4'の厚さは、通常、10〜50μmであると好ましく、15〜30μmであるとより好ましい。膜・電極接合体が直接型燃料電池(DMFC)用であり、第1触媒層4がカソードの触媒層、第2触媒層4'がアノードの触媒層である場合、第1触媒層4の厚さは、10〜100μmであると好ましく、15〜50μmであるとより好ましい。第2触媒層4'の厚さは、20〜200μmであると好ましく、30〜100μmであるとより好ましい。   When the membrane / electrode assembly is for a polymer electrolyte fuel cell (PEFC), the thickness of the first catalyst layer 4 and the second catalyst layer 4 ′ is usually preferably 10 to 50 μm, and preferably 15 to 15 μm. More preferably, it is 30 μm. When the membrane / electrode assembly is for a direct fuel cell (DMFC), the first catalyst layer 4 is a cathode catalyst layer, and the second catalyst layer 4 ′ is an anode catalyst layer, the thickness of the first catalyst layer 4 is The thickness is preferably 10 to 100 μm, and more preferably 15 to 50 μm. The thickness of the second catalyst layer 4 ′ is preferably 20 to 200 μm, and more preferably 30 to 100 μm.

また、膜・電極接合体が固体高分子型燃料電池用(PEFC)である場合、第1触媒層4および第2触媒層4'における触媒の担持量は、ともに、0.2〜1.0Pt mg/cm2であると好ましく、0.3〜0.6Pt mg/cm2であるとより好ましい。膜・電極接合体が直接型燃料電池(DMFC)用であり、第1触媒層4がカソードの触媒層、第2触媒層4'がアノードの触媒層である場合、第1触媒層4における触媒の担持量は、0.5〜5.0Pt mg/cm2であると好ましく、0.8〜3.0Pt mg/cm2であるとより好ましい。第2触媒層4'における触媒の担持量は、2.0〜8.0Pt−Ru mg/cm2であると好ましく、3.0〜7.0Pt−Ru mg/cm2であるとより好ましい。 When the membrane / electrode assembly is for a polymer electrolyte fuel cell (PEFC), the amount of catalyst supported in the first catalyst layer 4 and the second catalyst layer 4 ′ is 0.2 to 1.0 Pt. preferable to be mg / cm 2, more preferably a 0.3~0.6Pt mg / cm 2. When the membrane-electrode assembly is for a direct fuel cell (DMFC), the first catalyst layer 4 is a cathode catalyst layer, and the second catalyst layer 4 ′ is an anode catalyst layer, the catalyst in the first catalyst layer 4 the amount of carrier is preferable to be 0.5~5.0Pt mg / cm 2, more preferably a 0.8~3.0Pt mg / cm 2. Loading amount of the catalyst in the second catalyst layer 4 'is preferable to be 2.0~8.0Pt-Ru mg / cm 2, more preferably a 3.0~7.0Pt-Ru mg / cm 2.

本発明の製造方法において、第1触媒層4は支持基材2が有する平坦な表面上に形成され、第2触媒層4'は、やわらかく追従性を有する電解質膜1上に直接塗工することに形成される。そのため、第1触媒層4の電解質膜1と接する面4aの反対面4bの表面粗さは、第2触媒層4'の電解質膜1に接した面の反対面の表面粗さよりも小さい。第1触媒層4の上記反対面4bの表面粗さ(Ra)は、通常、0.05〜2.0μmであり、第2触媒層の上記反対面の表面粗さ(Ra)は、通常、2.5〜10.0μmである。表面粗さ(Ra)は、例えば、実施例に記載の装置を用いて測定できる。   In the production method of the present invention, the first catalyst layer 4 is formed on the flat surface of the support base material 2, and the second catalyst layer 4 ′ is directly applied onto the electrolyte membrane 1 that is soft and follows. Formed. Therefore, the surface roughness of the surface 4b opposite to the surface 4a in contact with the electrolyte membrane 1 of the first catalyst layer 4 is smaller than the surface roughness of the surface opposite to the surface in contact with the electrolyte membrane 1 of the second catalyst layer 4 ′. The surface roughness (Ra) of the opposite surface 4b of the first catalyst layer 4 is usually 0.05 to 2.0 μm, and the surface roughness (Ra) of the opposite surface of the second catalyst layer is usually 2.5 to 10.0 μm. The surface roughness (Ra) can be measured using, for example, the apparatus described in the examples.

電解質膜1には、公知のものを用いることができるが、例えば、パーフルオロスルホン酸系のフッ素イオン交換樹脂膜、より具体的には、炭化水素系イオン交換膜のC−H結合をフッ素で置換したパーフルオロカーボンスルホン酸系ポリマー(PFS系ポリマー)等の、プロトン伝導性高分子電解質からなる膜が挙げられる。電気陰性度の高いフッ素原子を導入することで、化学的に非常に安定し、スルホン酸基の解離度が高く、高いイオン伝導性が実現できる。このようなプロトン伝導性高分子電解質膜の具体例としては、例えば、デュポン社製の「Nafion」(登録商標)、旭硝子(株)製の「Flemion」(登録商標)、旭化成(株)製の「Aciplex」(登録商標)、ゴア(Gore)社製の「Gore Select」(登録商標)等が挙げられる。   As the electrolyte membrane 1, known ones can be used. For example, perfluorosulfonic acid-based fluorine ion exchange resin membranes, more specifically, C—H bonds of hydrocarbon-based ion exchange membranes with fluorine are used. Examples include membranes made of proton conductive polymer electrolytes such as substituted perfluorocarbon sulfonic acid polymers (PFS polymers). By introducing a fluorine atom having high electronegativity, it is chemically very stable, the dissociation degree of the sulfonic acid group is high, and high ion conductivity can be realized. Specific examples of such a proton conductive polymer electrolyte membrane include, for example, “Nafion” (registered trademark) manufactured by DuPont, “Flemion” (registered trademark) manufactured by Asahi Glass Co., Ltd., and manufactured by Asahi Kasei Corporation. “Aciplex” (registered trademark), “Gore Select” (registered trademark) manufactured by Gore, and the like.

膜・電極接合体の製造に用いられる電解質膜の膜厚は、10〜250μmであると好ましく、PEFCの場合は10〜80μmであるとより好ましい。本発明によって製造される膜・電極接合体が直接型燃料電池(DMFC)用である場合、電解質膜の膜厚は、10〜200μmであると好ましく、14〜100μmであるとより好ましい。   The thickness of the electrolyte membrane used for the production of the membrane / electrode assembly is preferably 10 to 250 μm, and more preferably 10 to 80 μm in the case of PEFC. When the membrane / electrode assembly produced according to the present invention is for a direct fuel cell (DMFC), the thickness of the electrolyte membrane is preferably 10 to 200 μm, and more preferably 14 to 100 μm.

支持基材2としては、表面に大きな凸凹を有しておらず、平坦な表面を有する、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリイミド、ポリアミド、アセタール樹脂、ポリフェニレンオキシドポリエチレン、ポリプロピレン等の熱可塑性樹脂等からなる樹脂シート、または、ゴム状弾性体を含むシート等が挙げられるが、ゴム状弾性体を含むシートが好ましい。支持基材がゴム状弾性を有していると、第1触媒層4と支持基材2とからなる積層体10と電解質膜1との間に空隙を生じさせることなく、積層体10を電解質膜1により密着させやすい。また、ゴム状弾性体が有するタック性により比較的小さな加重により電解質膜1を積層体10に固定できる。   The supporting substrate 2 does not have large irregularities on the surface, and has a flat surface, for example, a thermoplastic resin such as polyethylene terephthalate, polybutylene terephthalate, polyimide, polyamide, acetal resin, polyphenylene oxide polyethylene, polypropylene, etc. The sheet | seat containing the resin sheet which consists of etc., or a rubber-like elastic body is mentioned, The sheet | seat containing a rubber-like elastic body is preferable. If the supporting base material has rubber-like elasticity, the laminated body 10 is made to be an electrolyte without causing a gap between the laminated body 10 composed of the first catalyst layer 4 and the supporting base material 2 and the electrolyte membrane 1. It is easier to adhere to the film 1. In addition, the electrolyte membrane 1 can be fixed to the laminate 10 with a relatively small load due to the tackiness of the rubber-like elastic body.

上記ゴム状弾性体の材料としては、天然ゴム、スチレンゴム、ブチルゴム、クロロプレンゴム、シリコンゴム、ウレタンゴム、フッ素ゴム、アクリルゴム、ニトリルゴム、スチレンブタジエンゴム等が挙げられる。なかでも、化学的に活性な第1触媒層と接触しても分解産物を生成することなく、分解産物の第1触媒層への移行により、電池性能および耐久性を劣化させる事がない、化学的に安定な、シリコンゴムまたはフッ素ゴムがより好ましい。支持基材2がゴム状弾性体を含むシートである場合、その全体がゴム状弾性体からなっていてもよいが、シート状ゴム状弾性体とフィルム等との積層体でもよい。また、支持基材2がシリコンゴムまたはフッ素ゴムを含む場合、その全体がシリコンゴムまたはフッ素ゴムから形成されていてもよいが、支持基材2の少なくとも上記第1触媒層4と接する面が、シリコンゴム又はフッ素ゴムを含んでいればよい。   Examples of the rubber-like elastic material include natural rubber, styrene rubber, butyl rubber, chloroprene rubber, silicon rubber, urethane rubber, fluorine rubber, acrylic rubber, nitrile rubber, and styrene butadiene rubber. In particular, there is no generation of decomposition products even when contacted with a chemically active first catalyst layer, and there is no deterioration in battery performance and durability due to the transfer of decomposition products to the first catalyst layer. Silicon rubber or fluoro rubber, which is stable, is more preferable. When the support substrate 2 is a sheet containing a rubber-like elastic body, the whole may be made of a rubber-like elastic body, but may be a laminate of a sheet-like rubber-like elastic body and a film or the like. Further, when the support base 2 includes silicon rubber or fluororubber, the whole may be formed of silicon rubber or fluororubber, but at least the surface of the support base 2 in contact with the first catalyst layer 4 is It only needs to contain silicon rubber or fluorine rubber.

支持基材2の第1触媒含有ペーストが塗工される面の表面粗さ(Ra)は、通常、0.05〜2.0μmであると好ましく、0.5〜1.5μmであるとより好ましい。表面粗さ(Ra)は、例えば、実施例に記載の装置を用いて測定できる。   The surface roughness (Ra) of the surface of the support substrate 2 on which the first catalyst-containing paste is applied is usually preferably 0.05 to 2.0 μm and more preferably 0.5 to 1.5 μm. preferable. The surface roughness (Ra) can be measured using, for example, the apparatus described in the examples.

支持基材2の厚さは、取り扱い性およびRoll to Roll対応巻取装置への適応性が良好であるという理由から、20μm〜1000μmが好ましく、50μm〜300μmがより好ましい。   The thickness of the support substrate 2 is preferably 20 μm to 1000 μm, more preferably 50 μm to 300 μm, from the reason that the handleability and adaptability to a roll to roll compatible winding device are good.

支持基材2がゴム状弾性を有する場合、支持基材2のJIS K 6253に準拠して測定されるゴム硬度は、20〜80が好ましく、40〜60であるとより好ましい。支持基材2のゴム硬度が20〜80であると、支持基材2は、電解質膜1を支持基材2に固定可能とする適度なタック性を備えるとともに、第2触媒含有ペーストが塗工された電解質膜1に膨張しようとする張力が生じても、電解質膜1の支持基材2からの剥離や、シワの発生等を防止できる。   When the support base material 2 has rubber-like elasticity, the rubber hardness measured according to JIS K 6253 of the support base material 2 is preferably 20 to 80, and more preferably 40 to 60. When the rubber hardness of the support base material 2 is 20 to 80, the support base material 2 has an appropriate tackiness that enables the electrolyte membrane 1 to be fixed to the support base material 2 and is coated with the second catalyst-containing paste. Even if a tension to expand the generated electrolyte membrane 1 is generated, it is possible to prevent the electrolyte membrane 1 from being peeled off from the support base material 2 and to be wrinkled.

第1電極基材7および第2電極基材5としては、公知のものを用いることができる。例えば、燃料である燃料ガス等を効率よく第1触媒層4および第2触媒層4'に供給可能な、多孔質の導電性基材、より具体的には、カーボンペーパーまたはカーボンクロス等を用いることができる。   As the 1st electrode base material 7 and the 2nd electrode base material 5, a well-known thing can be used. For example, a porous conductive substrate that can efficiently supply fuel gas or the like as fuel to the first catalyst layer 4 and the second catalyst layer 4 ′, more specifically, carbon paper or carbon cloth is used. be able to.

電解質膜1の積層体10への熱圧着(ホットプレス)は、例えば、ロールプレス、平面プレスを用いて、電解質膜1を、加熱しながら加圧して、積層体10に押し付けることにより行える。熱圧着の際に第1触媒層に加わる圧力は、1〜100kgf/cm2であると好ましく、10〜50kgf/cm2であるとより好ましい。プレス機表面の温度は、80〜200℃であると好ましく、100〜170℃であるとより好ましい。 The thermocompression bonding (hot press) of the electrolyte membrane 1 to the laminated body 10 can be performed by, for example, using a roll press or a flat press to pressurize the electrolyte membrane 1 while heating it and press it against the laminated body 10. Pressure applied to the first catalyst layer during the thermocompression bonding, preferable to be 1~100kgf / cm 2, more preferably a 10~50kgf / cm 2. The temperature of the press machine surface is preferably 80 to 200 ° C, more preferably 100 to 170 ° C.

本発明の膜・電極接合体の製造方法は、固体高分子型燃料電池(PEFC)の膜・電極接合体、直接型燃料電池(DMFC)の膜・電極接合体等の製造に適応できるが、特に、DMFCの膜・電極接合体の製造に好適に適用できる。下記にその理由を説明する。   The method for producing a membrane / electrode assembly of the present invention can be applied to the production of a membrane / electrode assembly of a polymer electrolyte fuel cell (PEFC), a membrane / electrode assembly of a direct fuel cell (DMFC), etc. In particular, it can be suitably applied to the production of DMFC membrane-electrode assemblies. The reason is explained below.

DMFCのカソードの触媒層は、ガス拡散性の良好な構造を有する必要がある。また、カソードの触媒層の厚みは比較的薄い。そのため、カソードの触媒層は、やわらかく追従性を有する電解質膜上に形成されるよりも、形状安定性の良い支持基材が有する平坦な表面上に形成されるほうが、好ましい。   The catalyst layer of the DMFC cathode needs to have a structure with good gas diffusibility. The thickness of the cathode catalyst layer is relatively thin. Therefore, it is preferable that the catalyst layer of the cathode is formed on the flat surface of the support base material having good shape stability, rather than being formed on the soft and followable electrolyte membrane.

一方、DMFCのアノードは、液体と反応するものであるためカソードほどには高いガス拡散性は要求されないが、プロトンを生成する反応が行われるので、プロトン伝導パスが良好に形成される必要がある。また、アノードの触媒層は触媒の担持量が多いので、例えば、支持基材上に形成されたアノードの触媒層を電解質膜に転写させると、触媒の欠落が生じる恐れがある。さらに、アノードの触媒層に含まれる触媒には、転写性が悪い、例えば、ルテニウム、ロジウム,パラジウム、鉄、ニッケル、コバルト、金等からなる群から選ばれる1種又は2種以上の金属と白金との合金が好適であり、白金−ルテニウムが特に好適に用いられる。   On the other hand, since the DMFC anode reacts with a liquid, it does not require as high a gas diffusivity as the cathode, but since a reaction for generating protons is performed, a proton conduction path needs to be well formed. . Further, since the catalyst layer of the anode has a large amount of catalyst, for example, when the anode catalyst layer formed on the support substrate is transferred to the electrolyte membrane, the catalyst may be lost. Further, the catalyst contained in the catalyst layer of the anode has poor transferability, for example, one or more metals selected from the group consisting of ruthenium, rhodium, palladium, iron, nickel, cobalt, gold and platinum and platinum. And platinum-ruthenium is particularly preferably used.

以上のことから、支持基材が有する平坦な表面にカソードの触媒層(第1触媒層)を形成してから、当該触媒層を電解質膜に転写し、アノードの触媒層(第2触媒層)を直接塗工により電解質膜に形成する、本発明の製造方法は、直接型燃料電池(DMFC)の膜・電極接合体の製造に特に好ましく適用できる。   From the above, after forming the cathode catalyst layer (first catalyst layer) on the flat surface of the support substrate, the catalyst layer is transferred to the electrolyte membrane, and the anode catalyst layer (second catalyst layer) The production method of the present invention in which is formed on the electrolyte membrane by direct coating can be particularly preferably applied to the production of a membrane / electrode assembly of a direct fuel cell (DMFC).

以下に実施例によって本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.

なお、表面粗さ(Ra)は、ZYGO社(米国)非接触3次元表面粗さ計(New View5032)を用いて測定した。   The surface roughness (Ra) was measured using a ZYGO (USA) non-contact three-dimensional surface roughness meter (New View 5032).

[実施例1]
PET支持基材(東レ(株)S10,厚さ180μm)の一方の主面(表面粗さ(Ra)0.2μm)に、その一部が第1触媒層の平面形状に対応して切り抜かれたテンシルマスクを重ね、上記PET支持基材の露出部分に下記組成のカソード触媒含有ペーストをスプレーで塗工した後、塗工されたカソード触媒含有ペーストを乾燥して、第1触媒層(厚さ82μm)を形成した。カソード触媒含有ペーストは、Pt担持量が1.0mg/cm2となるよう塗工した。PET支持基材の厚さは、デジタルメーターM−30(ソニー(株)製)を用いて測定した。
[カソード触媒含有ペーストの組成]
触媒(TEC10E50E、田中貴金属(株)製) 1重量部
電解質(NafionDE2020CS、デュポン社製) 0.5重量部
水 3重量部
イソプロパノール 3重量部
1−ブタノール 3重量部
[Example 1]
A part of one of the main surfaces (surface roughness (Ra) 0.2 μm) of the PET support substrate (Toray S10, thickness 180 μm) is cut out corresponding to the planar shape of the first catalyst layer. Then, the cathode catalyst-containing paste having the following composition was sprayed on the exposed portion of the PET support substrate, and the coated cathode catalyst-containing paste was dried to obtain a first catalyst layer (thickness 82 μm). ) Was formed. The cathode catalyst-containing paste was applied so that the amount of Pt supported was 1.0 mg / cm 2 . The thickness of the PET supporting substrate was measured using a digital meter M-30 (manufactured by Sony Corporation).
[Composition of cathode catalyst-containing paste]
Catalyst (TEC10E50E, Tanaka Kikinzoku Co., Ltd.) 1 part by weight electrolyte (NafionDE2020CS, DuPont) 0.5 part by weight Water 3 parts by weight Isopropanol 3 parts by weight 1-butanol 3 parts by weight

次に、電解質膜(Nafion117、デュポン社製)を、第1触媒層上に配置し、熱プレス(110℃、30kgf/cm2)により電解質膜内に第1触媒層を埋め込み、かつ、PET支持基材と第1触媒層とからなる積層体と電解質膜との間に空隙が生じないように、電解質膜を積層体に熱圧着させるとともに、電解質膜と第1触媒層とを接合させた。 Next, an electrolyte membrane (Nafion117, manufactured by DuPont) is placed on the first catalyst layer, the first catalyst layer is embedded in the electrolyte membrane by hot pressing (110 ° C., 30 kgf / cm 2 ), and PET support is provided. The electrolyte membrane was thermocompression bonded to the laminate, and the electrolyte membrane and the first catalyst layer were bonded so that no gap was generated between the laminate comprising the base material and the first catalyst layer and the electrolyte membrane.

次に、電解質膜のPET支持基材側の面の反対面に、その一部が第2触媒層の平面形状に対応して切り抜かれたテンシルマスクを重ね、上記電解質膜の露出部分に下記組成のアノード触媒含有ペーストをスプレーで塗工した後、塗工されたアノード触媒含有ペーストを乾燥して、第2触媒層(厚さ170μm)を形成した。アノード触媒含有ペーストは、Pt−Ru担持量が3.0mg/cm2となるよう塗工した。次に、第1触媒層からPET支持基材を剥離した。第1触媒層の電解質膜と接する面の反対面の表面粗さ(Ra)は、0.6μmであり、第2触媒層の電解質膜に接した面の反対面の表面粗さ(Ra)は、3μmであった。
[アノード触媒含有ペーストの組成]
触媒(TEC81E81、田中貴金属(株)製) 1重量部
電解質(NafionDE2020CS、デュポン社製) 0.5重量部
水 3重量部
n−ブタノール 6重量部
Next, a tencil mask partially cut out corresponding to the planar shape of the second catalyst layer is overlaid on the surface opposite to the surface of the electrolyte membrane on the side of the PET support substrate, and the following composition is formed on the exposed portion of the electrolyte membrane. After the anode catalyst-containing paste was applied by spraying, the applied anode catalyst-containing paste was dried to form a second catalyst layer (thickness: 170 μm). The anode catalyst-containing paste was applied so that the supported amount of Pt—Ru was 3.0 mg / cm 2 . Next, the PET support base material was peeled from the first catalyst layer. The surface roughness (Ra) of the first catalyst layer opposite to the surface in contact with the electrolyte membrane is 0.6 μm, and the surface roughness (Ra) of the second catalyst layer opposite to the surface in contact with the electrolyte membrane is 3 μm.
[Composition of anode catalyst-containing paste]
Catalyst (TEC81E81, Tanaka Kikinzoku Co., Ltd.) 1 part by weight electrolyte (NafionDE2020CS, DuPont) 0.5 part by weight Water 3 parts by weight n-butanol 6 parts by weight

本発明の燃料電池用膜・電極接合体の製造方法によれば、電解質膜の膨潤を抑制しながら、触媒層を容易に形成可能とする、燃料電池用膜・電極接合体を提供でき、本発明の燃料電池用膜・電極接合体の製造方法は、特に、直接メタノール型燃料電池を構成する膜・電極接合体の製造に有用である。   According to the method for manufacturing a fuel cell membrane / electrode assembly of the present invention, it is possible to provide a fuel cell membrane / electrode assembly capable of easily forming a catalyst layer while suppressing swelling of the electrolyte membrane. The method for producing a membrane-electrode assembly for a fuel cell of the invention is particularly useful for producing a membrane-electrode assembly constituting a direct methanol fuel cell.

図1は、本発明の膜・電極接合体の一例の模式断面図FIG. 1 is a schematic cross-sectional view of an example of the membrane / electrode assembly of the present invention. 図2は、図1に示した膜・電極接合体を構成する3層MEAの模式断面図2 is a schematic cross-sectional view of a three-layer MEA constituting the membrane-electrode assembly shown in FIG. 図3のA〜Eは、本発明の燃料電池用の膜・電極接合体の製造方法の一例を説明する工程模式断面図3A to 3E are process schematic cross-sectional views illustrating an example of a method for producing a membrane-electrode assembly for a fuel cell according to the present invention.

符号の説明Explanation of symbols

1 電解質膜
2 支持基材
4 第1触媒層
4’ 第2触媒層
5 第2電極基材
7 第1電極基材
8 空気極
6 燃料極
10 積層体
DESCRIPTION OF SYMBOLS 1 Electrolyte membrane 2 Support base material 4 1st catalyst layer 4 '2nd catalyst layer 5 2nd electrode base material 7 1st electrode base material 8 Air electrode 6 Fuel electrode 10 Laminated body

Claims (8)

支持基材に第1触媒含有ペーストを塗工し、塗工された第1触媒含有ペーストを乾燥して、第1触媒層を形成する工程と、
電解質膜内に前記第1触媒層が埋め込まれ、かつ、前記支持基材と前記第1触媒層とからなる積層体と前記電解質膜との間に空隙が生じないように、前記電解質膜を前記積層体に熱圧着させるとともに、前記電解質膜と前記第1触媒層とを接合させる工程と、
前記電解質膜の前記支持基材側の面の反対面に、第2触媒含有ペーストを塗工し、塗工された第2触媒含有ペーストを乾燥して、第2触媒層を形成する工程と、
前記第1触媒層から前記支持基材を剥離する工程と、を含む燃料電池用膜・電極接合体の製造方法。
Applying a first catalyst-containing paste to a support substrate, drying the applied first catalyst-containing paste, and forming a first catalyst layer;
The first electrolyte layer is embedded in the electrolyte membrane, and the electrolyte membrane is formed so that no voids are formed between the electrolyte membrane and the laminate including the support base and the first catalyst layer. A step of thermocompression bonding to the laminate, and bonding the electrolyte membrane and the first catalyst layer;
Applying a second catalyst-containing paste to the opposite surface of the electrolyte membrane on the side of the support substrate, and drying the applied second catalyst-containing paste to form a second catalyst layer;
Peeling the support substrate from the first catalyst layer. A method for producing a membrane / electrode assembly for a fuel cell.
前記第1触媒層がカソードの触媒層であり、第2触媒層がアノードの触媒層である請求項1に記載の燃料電池用膜・電極接合体の製造方法。   2. The method for producing a membrane-electrode assembly for a fuel cell according to claim 1, wherein the first catalyst layer is a cathode catalyst layer, and the second catalyst layer is an anode catalyst layer. 前記支持基材がゴム状弾性体を含む請求項1又は2に記載の燃料電池用膜・電極接合体の製造方法。   The method for producing a membrane / electrode assembly for a fuel cell according to claim 1 or 2, wherein the support substrate contains a rubber-like elastic body. 前記支持基材のJIS K 6253に準拠して測定されたゴム硬度が、20〜80である請求項1〜3のいずれかの項に記載の燃料電池用膜・電極接合体の製造方法。   The method for producing a membrane / electrode assembly for a fuel cell according to any one of claims 1 to 3, wherein the support substrate has a rubber hardness measured in accordance with JIS K 6253 of 20 to 80. 前記支持基材の前記第1触媒層と接する面が、シリコンゴムまたはフッ素ゴムを含む請求項1〜4のいずれかの項に記載の燃料電池用膜・電極接合体の製造方法。   The method for producing a membrane / electrode assembly for a fuel cell according to any one of claims 1 to 4, wherein a surface of the support base that is in contact with the first catalyst layer contains silicon rubber or fluorine rubber. 前記支持基材の厚さが、20μm〜1000μmである請求項1〜5のいずれかの項に記載の燃料電池用膜・電極接合体の製造方法。   The method for producing a membrane / electrode assembly for a fuel cell according to any one of claims 1 to 5, wherein the support substrate has a thickness of 20 µm to 1000 µm. 請求項1〜6のいずれかの項に記載の燃料電池用膜・電極接合体の製造方法により形成された燃料電池用膜・電極接合体であって、
前記電解質膜と、
前記電解質膜の一方の主平面に接して配置された前記第2触媒層と、
前記電解質膜の前記第2触媒層側の反対側から前記電解質膜内に埋め込まれた前記第1触媒層とを含み、
前記電解質膜の前記一方の主平面の反対面と、前記1触媒層の前記第2触媒層と向かい合う面の反対面とがほぼ同一平面内にある燃料電池用膜・電極接合体。
A fuel cell membrane / electrode assembly formed by the fuel cell membrane / electrode assembly manufacturing method according to any one of claims 1 to 6,
The electrolyte membrane;
The second catalyst layer disposed in contact with one main plane of the electrolyte membrane;
The first catalyst layer embedded in the electrolyte membrane from the opposite side of the electrolyte membrane to the second catalyst layer side,
A membrane / electrode assembly for a fuel cell, wherein a surface opposite to the one main plane of the electrolyte membrane and a surface opposite to the surface of the first catalyst layer facing the second catalyst layer are substantially in the same plane.
前記第1触媒層の前記電解質膜と接する面の反対面の表面粗さは、第2触媒層の電解質膜に接した面の反対面の表面粗さよりも小さい請求項7に記載の燃料電池用膜・電極接合体。   The surface roughness of the surface of the first catalyst layer opposite to the surface in contact with the electrolyte membrane is smaller than the surface roughness of the surface of the second catalyst layer opposite to the surface in contact with the electrolyte membrane. Membrane / electrode assembly.
JP2008091988A 2008-03-31 2008-03-31 Membrane / electrode assembly for fuel cell and manufacturing method thereof Expired - Fee Related JP5206074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008091988A JP5206074B2 (en) 2008-03-31 2008-03-31 Membrane / electrode assembly for fuel cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008091988A JP5206074B2 (en) 2008-03-31 2008-03-31 Membrane / electrode assembly for fuel cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009245796A JP2009245796A (en) 2009-10-22
JP5206074B2 true JP5206074B2 (en) 2013-06-12

Family

ID=41307453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008091988A Expired - Fee Related JP5206074B2 (en) 2008-03-31 2008-03-31 Membrane / electrode assembly for fuel cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5206074B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6319940B2 (en) * 2013-03-12 2018-05-09 凸版印刷株式会社 Method for producing electrolyte membrane with catalyst layer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3256649B2 (en) * 1995-08-29 2002-02-12 三菱電機株式会社 Method for manufacturing polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2000100456A (en) * 1998-09-22 2000-04-07 Aisin Seiki Co Ltd Manufacture of joint of solid polymer electrolyte film and solid polymer electrolyte fuel cell
JP3970704B2 (en) * 2002-07-04 2007-09-05 三菱電機株式会社 Manufacturing method of membrane / electrode assembly
JP4538684B2 (en) * 2002-11-08 2010-09-08 大日本印刷株式会社 Catalyst layer forming sheet for fuel cell, catalyst layer-electrolyte membrane laminate, and production method thereof
JP5082239B2 (en) * 2005-12-28 2012-11-28 大日本印刷株式会社 Catalyst layer-electrolyte membrane laminate and method for producing the same
JP2007200762A (en) * 2006-01-27 2007-08-09 Asahi Glass Co Ltd Membrane electrode assembly for solid polymer fuel cell, and manufacturing method therefor
JP2007265970A (en) * 2006-02-28 2007-10-11 Toray Ind Inc Membrane electrode composite and method of manufacturing same
JP5055874B2 (en) * 2006-07-26 2012-10-24 トヨタ自動車株式会社 Method for producing polymer electrolyte fuel cell
JP5463624B2 (en) * 2008-03-31 2014-04-09 大日本印刷株式会社 Method for producing membrane / electrode assembly for polymer electrolyte fuel cell

Also Published As

Publication number Publication date
JP2009245796A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
CA2430681C (en) Process for the manufacture of membrane-electrode-assemblies using catalyst-coated membranes
JP4540316B2 (en) Catalyst coated ionomer membrane with protective film layer and membrane electrode assembly made from the membrane
JP5552766B2 (en) Edge-sealed catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane assembly, polymer electrolyte fuel cell, catalyst layer-electrolyte membrane laminate production method, and edge-sealed catalyst layer-electrolyte membrane laminate production method
JP4940575B2 (en) ELECTROLYTE MEMBRANE-ELECTRODE ASSEMBLY WITH MASK FILM FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP4843985B2 (en) ELECTROLYTE MEMBRANE-ELECTRODE ASSEMBLY WITH GASKET FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP4810841B2 (en) Method and apparatus for producing electrolyte membrane-catalyst layer assembly for polymer electrolyte fuel cell
JP5286887B2 (en) Membrane / electrode assembly with reinforcing sheet for polymer electrolyte fuel cell and method for producing the same
JP2007179893A (en) Catalyst layer-electrolyte membrane laminate, and manufacturing method of same
JP2004039474A (en) Manufacturing method of solid polymer fuel cell and membrane-electrode jointed body
US11424467B2 (en) Method for manufacturing membrane electrode assembly, and stack
JP5838570B2 (en) Membrane electrode assembly in polymer electrolyte fuel cell
JP5206074B2 (en) Membrane / electrode assembly for fuel cell and manufacturing method thereof
JP5273207B2 (en) ELECTROLYTE MEMBRANE-ELECTRODE ASSEMBLY WITH MASK FILM FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP5463624B2 (en) Method for producing membrane / electrode assembly for polymer electrolyte fuel cell
JP5273212B2 (en) Manufacturing method of electrolyte membrane-electrode assembly with gasket for polymer electrolyte fuel cell
JP5887692B2 (en) Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane-electrode assembly with reinforcing membrane, polymer electrolyte fuel cell, and production method thereof
JP2012069462A (en) Catalyst layer-electrolyte membrane laminate with protective sheet and membrane-electrode assembly with protective sheet
JP2009187872A (en) Method of manufacturing membrane-electrode assembly for fuel cell
JP2008077986A (en) Transfer method of catalyst layer for solid polymer fuel cell and electrolyte membrane-catalyst layer assembly
JP6144651B2 (en) Manufacturing method of electrolyte membrane / electrode structure for fuel cell
JP2007103291A (en) Manufacturing method of membrane/electrode assembly for direct methanol fuel cell
CN102201578B (en) The method manufactured for membrane electrode assembly and membrane electrode assembly
JP2010021023A (en) Catalyst layer transfer sheet, method of manufacturing catalyst layer-electrolyte film laminate using same, method of manufacturing electrode-electrolyte film laminate, and method of manufacturing solid polymer fuel cell
JP5757349B2 (en) Method for producing membrane / electrode assembly for polymer electrolyte fuel cell
WO2013080421A1 (en) Direct oxidation fuel cell and method for producing membrane catalyst layer assembly used in same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees