JP2007179893A - Catalyst layer-electrolyte membrane laminate, and manufacturing method of same - Google Patents

Catalyst layer-electrolyte membrane laminate, and manufacturing method of same Download PDF

Info

Publication number
JP2007179893A
JP2007179893A JP2005377577A JP2005377577A JP2007179893A JP 2007179893 A JP2007179893 A JP 2007179893A JP 2005377577 A JP2005377577 A JP 2005377577A JP 2005377577 A JP2005377577 A JP 2005377577A JP 2007179893 A JP2007179893 A JP 2007179893A
Authority
JP
Japan
Prior art keywords
catalyst layer
electrolyte membrane
catalyst
membrane laminate
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005377577A
Other languages
Japanese (ja)
Other versions
JP5082239B2 (en
Inventor
Yoshikazu Nakagawa
美和 中川
Hironobu Nishimura
浩宣 西村
Rei Hiromitsu
礼 弘光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2005377577A priority Critical patent/JP5082239B2/en
Publication of JP2007179893A publication Critical patent/JP2007179893A/en
Application granted granted Critical
Publication of JP5082239B2 publication Critical patent/JP5082239B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst layer-electrolyte membrane laminate provided with excellent battery characteristics, capable of effectively supplying fuel to electrolyte membranes, and to provide a manufacturing method of the same. <P>SOLUTION: The catalyst layer-electrolyte membrane laminate contains catalyst carrying carbon particles and hydrogen ion conductive polymer electrolyte, and two or more layers of catalyst layer having cracks are laminated on one face or both faces of the electrolyte membrane. At least a part of the catalyst layer is embedded in the electrolyte membrane. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、触媒層−電解質膜積層体及びその製造方法に関する。   The present invention relates to a catalyst layer-electrolyte membrane laminate and a method for producing the same.

燃料電池は、電解質膜の両面に触媒層を配置し、水素と酸素の電気化学反応により発電する発電するシステムであり、発電時に発生するのは水のみである。燃料電池は、従来の内燃機関と異なり、二酸化炭素等の環境負荷ガスを発生しないために、次世代のクリーンエネルギーシステムとして注目されている。   A fuel cell is a system that generates electricity by an electrochemical reaction between hydrogen and oxygen by arranging catalyst layers on both sides of an electrolyte membrane, and only water is generated during power generation. Unlike conventional internal combustion engines, fuel cells are attracting attention as a next-generation clean energy system because they do not generate environmentally harmful gases such as carbon dioxide.

固体高分子型燃料電池は、電解質膜として水素イオン伝導性高分子電解質膜を用い、その両面に触媒層を配置し、次いでその両面に電極基材を配置し、更にこれをセパレータで挟んだ構造をしている。電解質膜の両面に触媒層を配置したものは触媒層−電解質膜積層体と、また、更にその両面に電極基材を配置したものは電極−電解質膜接合体と称されている。   The polymer electrolyte fuel cell has a structure in which a hydrogen ion conductive polymer electrolyte membrane is used as an electrolyte membrane, a catalyst layer is arranged on both sides thereof, an electrode base material is arranged on both sides thereof, and this is further sandwiched between separators. I am doing. Those in which the catalyst layers are arranged on both sides of the electrolyte membrane are referred to as catalyst layer-electrolyte membrane laminates, and those in which the electrode base material is further arranged on both sides thereof are referred to as electrode-electrolyte membrane assemblies.

この触媒層−電解質膜積層体の性能は、燃料電池の電池性能に大きく影響を与えるものであり、特に重要視されている。この触媒層−電解質膜積層体の性能向上の対策として、(1)触媒層を厚膜化して白金担持量を増やす、(2)触媒層−電解質膜界面の表面積を増大させる等の対策が提案されている(特許文献1及び2)。   The performance of the catalyst layer-electrolyte membrane laminate has a great influence on the cell performance of the fuel cell, and is regarded as particularly important. As measures to improve the performance of this catalyst layer-electrolyte membrane laminate, measures such as (1) increasing the thickness of the catalyst layer to increase the amount of platinum supported and (2) increasing the surface area of the catalyst layer-electrolyte membrane interface are proposed. (Patent Documents 1 and 2).

特許文献1は、ガス拡散層と、当該ガス拡散層と高分子電解質膜との間に配置される複数の触媒層と、を備えており、触媒層に含有されているイオン交換樹脂のイオン交換容量が所定の条件を満たしている触媒層−電解質膜積層体を具備する固体高分子型燃料電池を開示している。   Patent Document 1 includes a gas diffusion layer and a plurality of catalyst layers disposed between the gas diffusion layer and the polymer electrolyte membrane, and ion exchange of an ion exchange resin contained in the catalyst layer. Disclosed is a polymer electrolyte fuel cell including a catalyst layer-electrolyte membrane laminate having a capacity satisfying a predetermined condition.

しかしながら、特許文献1に記載の触媒層−電解質膜積層体は、触媒層形成インクを2度塗り、噴霧等によって電解質膜上に2層以上を形成するものである。このような方法で積層体を製造する場合、最初に形成された触媒層の空隙及び細孔中に、触媒層形成インクが入り込み、空隙及び細孔が塞がれてしまう。その結果として、製造された積層体は、燃料ガスの供給を効率よく行うことができず、電池に高出力密度等の優れた電池性能を付与できない問題が生じる。   However, the catalyst layer-electrolyte membrane laminate described in Patent Document 1 is one in which two or more layers are formed on the electrolyte membrane by applying the catalyst layer forming ink twice and spraying. In the case of producing a laminate by such a method, the catalyst layer forming ink enters the voids and pores of the catalyst layer formed first, and the voids and pores are blocked. As a result, there is a problem that the manufactured laminate cannot efficiently supply the fuel gas and cannot give excellent battery performance such as high power density to the battery.

特許文献2は、高分子電解質膜の片面又は両面に、微小突起を有する燃料電池用電解質膜を開示している。   Patent Document 2 discloses a fuel cell electrolyte membrane having fine protrusions on one or both sides of a polymer electrolyte membrane.

しかしながら、この燃料電池用電解質膜は、電解質膜表面の微小突起の形状等から、電解質膜上に触媒を担持する方法に制約を受けたり、触媒層と当該電解質膜との密着性が弱くなったりするため、多量の触媒を当該電解質膜上に形成することは困難であり、結果、高出力密度を達成できなくなる問題がある。   However, this electrolyte membrane for fuel cells is subject to restrictions on the method of supporting the catalyst on the electrolyte membrane due to the shape of the minute projections on the surface of the electrolyte membrane, and the adhesion between the catalyst layer and the electrolyte membrane is weakened. Therefore, it is difficult to form a large amount of catalyst on the electrolyte membrane. As a result, there is a problem that a high output density cannot be achieved.

従って、本発明は、燃料を効率的に電解質膜に供給することが可能であり、優れた電池性能を備えた触媒層−電解質膜積層体及びその製造方法を提供することを主な目的とする。
特開2001−338654号公報 特開2005−108822号公報
Therefore, the main object of the present invention is to provide a catalyst layer-electrolyte membrane laminate and a method for producing the same that can efficiently supply fuel to the electrolyte membrane and have excellent battery performance. .
JP 2001-338654 A JP 2005-108822 A

本発明者らは、このような実情に鑑み、上記目的を達成すべく鋭意研究を重ねてきた。その結果、特定の工程を備えた製造方法により製造された特定の構造を有する触媒層−電解質膜積層体を用いることにより、上記目的を達成することを見出し、本発明を完成するに至った。   In view of such a situation, the present inventors have intensively studied to achieve the above object. As a result, the inventors have found that the above object can be achieved by using a catalyst layer-electrolyte membrane laminate having a specific structure manufactured by a manufacturing method including a specific process, and completed the present invention.

項1.触媒担持炭素粒子及び水素イオン伝導性高分子電解質を含み、かつクラックを有する触媒層が、電解質膜の片面又は両面に2層以上積層されてなる触媒層−電解質膜積層体であって、
当該触媒層の少なくとも一部が当該電解質膜に埋没されている、触媒層−電解質膜積層体。
Item 1. A catalyst layer-electrolyte membrane laminate in which two or more layers of catalyst layers containing catalyst-carrying carbon particles and hydrogen ion conductive polymer electrolyte and having cracks are laminated on one side or both sides of the electrolyte membrane,
A catalyst layer-electrolyte membrane laminate, wherein at least a part of the catalyst layer is buried in the electrolyte membrane.

項2.前記触媒層の少なくとも1層が前記電解質膜に埋没されている、項1に記載の触媒層−電解質膜積層体。   Item 2. Item 2. The catalyst layer-electrolyte membrane laminate according to Item 1, wherein at least one of the catalyst layers is buried in the electrolyte membrane.

項3.各触媒層のクラック同士が互いに重なり合っておらず、触媒層全体としてはクラックが厚み方向に実質的に貫通していない、項1又は2に記載の触媒層−電解質膜積層体。   Item 3. Item 3. The catalyst layer-electrolyte membrane laminate according to Item 1 or 2, wherein cracks of the catalyst layers do not overlap each other, and cracks do not substantially penetrate in the thickness direction as the entire catalyst layer.

項4.触媒担持炭素粒子に担持している触媒が白金又は白金化合物である、項1〜3のいずれかに記載の触媒層−電解質膜積層体。   Item 4. Item 4. The catalyst layer-electrolyte membrane laminate according to any one of Items 1 to 3, wherein the catalyst supported on the catalyst-supporting carbon particles is platinum or a platinum compound.

項5.各触媒層に含まれる白金の担持量が、それぞれ0.1mg/cm〜1.3mg/cmである、項4に記載の触媒層−電解質膜積層体。 Item 5. The supported amount of platinum contained in the catalyst layer, respectively 0.1mg / cm 2 ~1.3mg / cm 2 , the catalyst layer according to claim 4 - membrane laminate.

項6.前記各触媒層の厚みが、それぞれ1μm〜80μmである、項1〜5のいずれかに記載の触媒層−電解質膜積層体。   Item 6. Item 6. The catalyst layer-electrolyte membrane laminate according to any one of Items 1 to 5, wherein each catalyst layer has a thickness of 1 μm to 80 μm.

項7.項1〜6のいずれかに記載の触媒層−電解質膜積層体を具備する電極−電解質膜接合体。   Item 7. Item 7. An electrode-electrolyte membrane assembly comprising the catalyst layer-electrolyte membrane laminate according to any one of Items 1 to 6.

項8.クラックを有する触媒層が電解質膜の片面又は両面に2層以上積層されてなり、かつ触媒層の少なくとも一部が電解質膜に埋没されている触媒層−電解質膜積層体の製造方法であって、
(1)触媒担持炭素粒子の水分散液、(2)水素イオン伝導性高分子電解質及び(3)粘度調整用の溶剤を含む触媒層形成用ペースト組成物を用いて転写基材上に触媒層を形成させて触媒層転写シートを得る第1工程、
第1工程で得られた触媒層転写シートを電解質膜に熱プレスすることにより触媒層を電解質膜に積層させる第2工程、及び
第2工程で得られた積層体の触媒層上に、さらに上記触媒層転写シートを熱プレスすることにより触媒層を積層させる第3工程、
を備えた触媒層−電解質膜積層体の製造方法。
Item 8. A method for producing a catalyst layer-electrolyte membrane laminate in which two or more catalyst layers having cracks are laminated on one side or both sides of an electrolyte membrane, and at least a part of the catalyst layer is buried in the electrolyte membrane,
A catalyst layer is formed on a transfer substrate using a paste composition for forming a catalyst layer comprising (1) an aqueous dispersion of catalyst-supporting carbon particles, (2) a hydrogen ion conductive polymer electrolyte, and (3) a solvent for adjusting viscosity. A first step of forming a catalyst layer transfer sheet by forming
The catalyst layer transfer sheet obtained in the first step is hot-pressed on the electrolyte membrane, the second step of laminating the catalyst layer on the electrolyte membrane, and the catalyst layer of the laminate obtained in the second step, A third step of laminating the catalyst layer by hot pressing the catalyst layer transfer sheet;
A method for producing a catalyst layer-electrolyte membrane laminate comprising:

(A)触媒層−電解質膜積層体
本発明の触媒層−電解質膜積層体は、
触媒担持炭素粒子及び水素イオン伝導性高分子電解質を含み、かつクラックを有する触媒層が、電解質膜の片面又は両面に2層以上積層されてなる触媒層−電解質膜積層体であって、
当該触媒層の少なくとも一部が当該電解質膜に埋没されている、ことを特徴とする。
(A) Catalyst layer-electrolyte membrane laminate The catalyst layer-electrolyte membrane laminate of the present invention comprises:
A catalyst layer-electrolyte membrane laminate in which two or more layers of catalyst layers containing catalyst-carrying carbon particles and hydrogen ion conductive polymer electrolyte and having cracks are laminated on one side or both sides of the electrolyte membrane,
At least a part of the catalyst layer is buried in the electrolyte membrane.

触媒層
本発明の触媒層は、触媒担持炭素粒子及び水素イオン伝導性高分子電解質を含み、かつクラックを有する。
Catalyst Layer The catalyst layer of the present invention contains catalyst-supporting carbon particles and hydrogen ion conductive polymer electrolyte, and has cracks.

本発明の触媒層は、実質的に触媒担持炭素粒子及び水素イオン伝導性高分子電解質からなる。   The catalyst layer of the present invention consists essentially of catalyst-supporting carbon particles and a hydrogen ion conductive polymer electrolyte.

触媒粒子としては、例えば白金及び白金化合物等が挙げられる。白金化合物としては、例えば、ルテニウム、パラジウム、ニッケル、モリブデン、イリジウム、鉄等からなる群から選ばれる少なくとも1種の金属と白金との合金等が挙げられる。   Examples of the catalyst particles include platinum and platinum compounds. Examples of the platinum compound include an alloy of platinum and at least one metal selected from the group consisting of ruthenium, palladium, nickel, molybdenum, iridium, iron and the like.

担持体である炭素粒子としては、例えばアセチレンブラック、ケッチェンブラック、ファーネスブラック、活性炭、カーボンナノチューブ、フラーレン等を使用できる。   As the carbon particles as the support, for example, acetylene black, ketjen black, furnace black, activated carbon, carbon nanotube, fullerene, or the like can be used.

炭素粒子の比表面積は限定的でなく、通常は50m/g〜1500m/g程度、より好ましくは500m/g〜1300m/g程度である。この範囲とすることにより、触媒活性を向上させ、より一層高い出力密度の電池が得ることができる。 The specific surface area of the carbon particles is not limited, usually 50m 2 / g~1500m 2 / g approximately, and more preferably 500m 2 / g~1300m 2 / g approximately. By setting it within this range, the catalytic activity can be improved, and a battery having a higher power density can be obtained.

一般的には、カソード触媒層として用いられる場合の触媒粒子は白金であり、アノード触媒層として用いられる場合の触媒粒子は上述した合金である。   Generally, the catalyst particles when used as the cathode catalyst layer are platinum, and the catalyst particles when used as the anode catalyst layer are the alloys described above.

水素イオン伝導性高分子電解質としては、例えば、パーフルオロスルホン酸系のフッ素イオン交換樹脂等が挙げられる。電気陰性度の高いフッ素原子を導入する事で化学的に非常に安定し、スルホン酸基の乖離度が高く、高いイオン導電性が実現できる。このような水素イオン伝導性高分子電解質の具体例としてはデュポン社製の「Nafion」、旭硝子(株)製の「Flemion」、旭化成(株)製の「Aciplex」、ゴア(Gore)社製の「Gore Select」等が挙げられる。   Examples of the hydrogen ion conductive polymer electrolyte include perfluorosulfonic acid-based fluorine ion exchange resins. By introducing a fluorine atom having a high electronegativity, it is chemically very stable, the degree of sulfonic acid group detachment is high, and high ionic conductivity can be realized. Specific examples of such a hydrogen ion conductive polymer electrolyte include “Nafion” manufactured by DuPont, “Flemion” manufactured by Asahi Glass Co., Ltd., “Aciplex” manufactured by Asahi Kasei Co., Ltd., and Gore manufactured by Gore. Examples include “Gore Select”.

水素イオン性高分子電解質の配合割合は、触媒担持炭素粒子1重量部に対して、通常0.3〜3重量部程度、好ましくは0.4〜2重量部である。   The blending ratio of the hydrogen ion polymer electrolyte is usually about 0.3 to 3 parts by weight, preferably 0.4 to 2 parts by weight with respect to 1 part by weight of the catalyst-supporting carbon particles.

本発明の各触媒層は、クラックを有する。各触媒層のクラックは実質的に触媒層の厚み方向に貫通してなる。クラックは、触媒層平面方向に連続又は不連続であってもよい。   Each catalyst layer of the present invention has a crack. The cracks in each catalyst layer are substantially penetrated in the thickness direction of the catalyst layer. The crack may be continuous or discontinuous in the planar direction of the catalyst layer.

本発明の各触媒層のクラック率(開口率)は、通常2〜50%程度であり、好ましくは3〜40%程度である。クラックが上記範囲にあると、触媒層に一定の強度を付与できると共に、触媒層へ燃料が浸透し易くなり、高い出力密度の電池が得られる。   The crack rate (opening ratio) of each catalyst layer of the present invention is usually about 2 to 50%, preferably about 3 to 40%. When the crack is in the above range, a certain strength can be imparted to the catalyst layer, and the fuel can easily penetrate into the catalyst layer, so that a battery having a high output density can be obtained.

なお、本発明のクラック率とは、触媒層を写真に取り込み、2値化(白/黒)し、触媒層部分及びクラック部分の面積率(%)を算出して下記式(1)によって決定されるものである。2値化は写真の色彩を255段階に分割し、0〜50までを触媒層部、51〜255までの触媒層のない部分(クラック部分)と判断するものである。   The crack rate of the present invention is determined by the following formula (1) by taking the catalyst layer into a photograph, binarizing (white / black), calculating the area ratio (%) of the catalyst layer portion and the crack portion. It is what is done. In binarization, the color of a photograph is divided into 255 steps, and 0 to 50 are judged as catalyst layer portions and 51 to 255 portions without cracks (crack portions).

[クラック率]=[クラック部分]÷[触媒層全面積] (1)
クラックの平均最大幅は限定的でないが、燃料を浸透し易くする観点から、通常0.5μm〜15μm程度とすればよい。
[Crack rate] = [Crack part] ÷ [Total area of catalyst layer] (1)
Although the average maximum width of cracks is not limited, it is usually about 0.5 μm to 15 μm from the viewpoint of facilitating fuel penetration.

触媒層の厚さは限定的でないが、それぞれ通常1μm〜80μm程度、好ましくは10μm〜60μm程度である。   The thickness of the catalyst layer is not limited, but is usually about 1 μm to 80 μm, preferably about 10 μm to 60 μm.

各触媒層の白金の担持量は、それぞれ通常0.1mg/cm〜1.3mg/cm程度である。これにより、より一層高い出力密度を達成できる。 Supported amount of platinum in the catalyst layers, respectively is typically 0.1mg / cm 2 ~1.3mg / cm 2 approximately. Thereby, a higher power density can be achieved.

電解質膜
使用される電解質膜は、公知のものである。電解質膜の膜厚は、通常20μm〜250μm程度、好ましくは20μm〜80μm程度である。電解質膜の具体例としては、デュポン社製の「Nafion」膜、旭硝子(株)製の「Flemion」膜、旭化成(株)製の「Aciplex」膜、ゴア(Gore)社製の「Gore Select」膜等が挙げられる。
The electrolyte membrane used is a known one. The thickness of the electrolyte membrane is usually about 20 μm to 250 μm, preferably about 20 μm to 80 μm. Specific examples of electrolyte membranes include “Nafion” membrane manufactured by DuPont, “Flemion” membrane manufactured by Asahi Glass Co., Ltd., “Aciplex” membrane manufactured by Asahi Kasei Co., Ltd., and “Gore Select” manufactured by Gore. Examples include membranes.

触媒層−電解質膜積層体
本発明の触媒層−電解質膜積層体は、上記触媒層が、上記電解質膜の片面又は両面に2層以上積層されてなり、かつ上記触媒層の少なくとも一部が上記電解質膜に埋没している。本発明の触媒層−電解質膜積層の断面図の一例を図1に示す。
Catalyst layer-electrolyte membrane laminate The catalyst layer-electrolyte membrane laminate of the present invention comprises two or more layers of the catalyst layer laminated on one or both sides of the electrolyte membrane, and at least a part of the catalyst layer is the above. It is buried in the electrolyte membrane. An example of a cross-sectional view of the catalyst layer-electrolyte membrane laminate of the present invention is shown in FIG.

片面あたりに積層される触媒層の数は、2層以上であればよく、好ましくは3〜6層である。   The number of catalyst layers laminated on one side may be two or more, and preferably 3 to 6 layers.

本発明の触媒層−電解質膜積層体は、複数の触媒層が積層されてなるため、触媒層全体としてクラック(空隙)が実質的に貫通していない。すなわち、個々の触媒層のクラックは実質的に貫通しているが、この触媒層が複数積層されることにより、触媒層全体としてはクラックが貫通していない構成となっている。これにより、クロスオーバー(燃料極に供給された燃料が電解質膜をすり抜けて酸化極で反応することにより、燃料極での発電を打ち消してしまう現象)をより効果的に防止できる。また、燃料に改質ガスを用いた場合には、改質ガスによる発生する一酸化酸素が触媒層内に侵入することを防ぐことができ、触媒層の触媒活性の劣化をより効果的に防止できる。   Since the catalyst layer-electrolyte membrane laminate of the present invention is formed by laminating a plurality of catalyst layers, cracks (voids) do not substantially penetrate through the entire catalyst layer. That is, the cracks of the individual catalyst layers are substantially penetrated, but by laminating a plurality of catalyst layers, the cracks are not penetrated as a whole catalyst layer. This can more effectively prevent crossover (a phenomenon in which the fuel supplied to the fuel electrode passes through the electrolyte membrane and reacts at the oxidation electrode, thereby canceling power generation at the fuel electrode). In addition, when reformed gas is used for the fuel, oxygen monoxide generated by the reformed gas can be prevented from entering the catalyst layer, and deterioration of the catalyst activity of the catalyst layer can be more effectively prevented. it can.

本発明の触媒層の少なくとも一部は、電解質膜に埋没している。すなわち、複数の触媒層のうち少なくとも一つの触媒層の一部が電解質膜内に入り込み、当該層のクラックに電解質膜の一部が充填されている。このような構成を取ることにより、アノード触媒層とカソード触媒層との距離(プロトン伝導パス)が短くなり、電気抵抗が減少し、電圧の向上が見込める。また、クラックの側壁部分も電解質と接触するため、触媒層−電解質膜の接触面積が増大し出力密度が向上する。さらに、埋没されている触媒層によって固定されているため、電解質膜の膨潤及び収縮を防止し、ひいては電解質膜の劣化を防止する。   At least a part of the catalyst layer of the present invention is buried in the electrolyte membrane. That is, a part of at least one catalyst layer among the plurality of catalyst layers enters the electrolyte membrane, and a part of the electrolyte membrane is filled in the crack of the layer. By adopting such a configuration, the distance (proton conduction path) between the anode catalyst layer and the cathode catalyst layer is shortened, the electric resistance is reduced, and the voltage can be improved. Further, since the side wall portion of the crack is also in contact with the electrolyte, the contact area between the catalyst layer and the electrolyte membrane is increased, and the output density is improved. Furthermore, since it is fixed by the buried catalyst layer, the electrolyte membrane is prevented from swelling and shrinking, and thus the electrolyte membrane is prevented from deteriorating.

電解質膜に埋没されている触媒層の厚みは限定的ではないが、複数積層されている触媒層のうち最も電解質膜側に位置する触媒層(すなわち、最初に埋没される触媒層を示す。以下、この層を「第1触媒層」ともいう。)は通常1/2程度以上埋没されている。触媒層全体(複数の触媒層全部)の厚みからみると、通常1/5〜1/2程度埋没されている。それ以下の埋没であると、上記電圧向上及び高出力密度が達成できなくなるおそれがある。それ以上厚く埋没すると、長期運転時における電解質膜の耐久性が低減するおそれがある。また、電解質膜が薄くなり過ぎ、長期稼動時の触媒層−電解質膜積層体の劣化が加速するおそれがある。   Although the thickness of the catalyst layer buried in the electrolyte membrane is not limited, the catalyst layer located closest to the electrolyte membrane among the plurality of stacked catalyst layers (that is, the catalyst layer buried first is shown below). This layer is also referred to as a “first catalyst layer.”) Is usually buried about ½ or more. When seen from the thickness of the entire catalyst layer (all the plurality of catalyst layers), it is usually buried about 1/5 to 1/2. If it is less than that, there is a possibility that the above voltage improvement and high output density cannot be achieved. If it is buried thicker than that, the durability of the electrolyte membrane during long-term operation may be reduced. In addition, the electrolyte membrane becomes too thin, and the deterioration of the catalyst layer-electrolyte membrane laminate during long-term operation may be accelerated.

本発明では、特に、積層されている2層以上の触媒層のうち、少なくとも1層が埋没されていることが好ましい。すなわち、第1触媒層が完全に埋没されていることが好ましい。埋没されている触媒層の上限は限定的でないが、通常3層程度である。1層以上埋没させることにより、第1触媒層のクラック部分から電解質が浸透し、次に位置する触媒層(第2触媒層)の電解質側面にも電解質が接する。このため、第1触媒層のクラックの側壁部分以外にも触媒層−電解質膜の接触面積が増大することとなり、より一層出力密度を向上させることができる。   In the present invention, it is particularly preferable that at least one of the two or more laminated catalyst layers is buried. That is, it is preferable that the first catalyst layer is completely buried. The upper limit of the buried catalyst layer is not limited, but is usually about 3 layers. By burying one or more layers, the electrolyte permeates from the crack portion of the first catalyst layer, and the electrolyte also contacts the electrolyte side surface of the next catalyst layer (second catalyst layer). For this reason, the contact area of the catalyst layer-electrolyte membrane increases in addition to the side wall portion of the crack of the first catalyst layer, and the power density can be further improved.

電極−電解質膜接合体
本発明の電極−電解質膜接合体は、上記の触媒層−電解質膜積層体の両面に電極基材を配置し、加圧することにより製造される。
Electrode-electrolyte membrane assembly The electrode-electrolyte membrane assembly of the present invention is produced by placing an electrode substrate on both sides of the catalyst layer-electrolyte membrane laminate and pressurizing it.

電極基材は、公知であり、燃料極、空気極を構成する各種のカーボンペーパー、カーボンクロスなどを使用できる。   The electrode base material is well-known, and various carbon papers, carbon cloths, etc. constituting the fuel electrode and the air electrode can be used.

加圧レベルは、通常0.1Mpa〜100Mpa程度、好ましくは5Mpa〜15Mpa程度がよい。この加圧操作の際に加熱するのが好ましく、加熱温度は通常120〜150℃程度でよい。この際、触媒層に積層した導電層が電極基材と触媒層を電気的に接続する。また、電極基材は、フラッディングを防止するため撥水性の高いものが望ましく導電層の材料も撥水カーボンなどが望ましい
(B)触媒層−電解質膜積層体の製造方法
本発明の触媒層−電解質膜積層体の製造方法は、
クラックを有する触媒層が電解質膜の片面又は両面に2層以上積層されてなり、かつ触媒層の少なくとも一部が電解質膜に埋没されている触媒層−電解質膜積層体の製造方法であって、
(1)触媒担持炭素粒子の水分散液、(2)水素イオン伝導性高分子電解質及び(3)粘度調整用の溶剤を含む触媒層形成用ペースト組成物を用いて転写基材上に触媒層を形成させて触媒層転写シートを得る第1工程、
第1工程で得られた触媒層転写シートを電解質膜に熱プレスすることにより触媒層を電解質膜に積層させる第2工程、及び
第2工程で得られた積層体の触媒層上に、さらに上記触媒層転写シートを熱プレスすることにより触媒層を積層させる第3工程、
を備えることを特徴とする。
The pressure level is usually about 0.1 Mpa to 100 Mpa, preferably about 5 Mpa to 15 Mpa. It is preferable to heat at the time of this pressurization operation, and heating temperature may be about 120-150 degreeC normally. At this time, the conductive layer laminated on the catalyst layer electrically connects the electrode substrate and the catalyst layer. The electrode base material is preferably highly water-repellent to prevent flooding, and the conductive layer material is preferably water-repellent carbon.
(B) Method for producing catalyst layer-electrolyte membrane laminate
The method for producing the catalyst layer-electrolyte membrane laminate of the present invention comprises:
A method for producing a catalyst layer-electrolyte membrane laminate in which two or more catalyst layers having cracks are laminated on one side or both sides of an electrolyte membrane, and at least a part of the catalyst layer is buried in the electrolyte membrane,
A catalyst layer is formed on a transfer substrate using a paste composition for forming a catalyst layer comprising (1) an aqueous dispersion of catalyst-supporting carbon particles, (2) a hydrogen ion conductive polymer electrolyte, and (3) a solvent for adjusting viscosity. A first step of forming a catalyst layer transfer sheet by forming
The catalyst layer transfer sheet obtained in the first step is hot-pressed on the electrolyte membrane, the second step of laminating the catalyst layer on the electrolyte membrane, and the catalyst layer of the laminate obtained in the second step, A third step of laminating the catalyst layer by hot pressing the catalyst layer transfer sheet;
It is characterized by providing.

第1工程
本発明の第1工程は、(1)触媒担持炭素粒子の水分散液、(2)水素イオン伝導性高分子電解質及び(3)粘度調整用の溶剤を含む触媒層形成用ペースト組成物を用いて転写基材上に触媒層を形成させて触媒層転写シートを得る工程である。
First Step The first step of the present invention comprises (1) an aqueous dispersion of catalyst-supporting carbon particles, (2) a hydrogen ion conductive polymer electrolyte, and (3) a paste composition for forming a catalyst layer containing a solvent for adjusting viscosity. In this step, a catalyst layer transfer sheet is obtained by forming a catalyst layer on a transfer substrate using a product.

触媒層転写シートは、(1)触媒担持炭素粒子の水分散液、(2)水素イオン伝導性高分子電解質及び(3)粘度調整用の溶剤を含む触媒層形成用ペースト組成物を用いて転写基材上に触媒層を形成したものである。   The catalyst layer transfer sheet is transferred using a paste composition for forming a catalyst layer containing (1) an aqueous dispersion of catalyst-supporting carbon particles, (2) a hydrogen ion conductive polymer electrolyte, and (3) a solvent for viscosity adjustment. A catalyst layer is formed on a substrate.

(1)触媒担持炭素及び(2)水素イオン伝導性高分子電解質は、上述したものが使用できる。   As (1) catalyst-supporting carbon and (2) hydrogen ion conductive polymer electrolyte, those described above can be used.

(3)粘度調整用の溶剤としては、例えば、各種アルコール類、各種エーテル類、各種ジアルキルスルホキシド、水又はこれらの混合物が挙げられる。これらの溶剤の中でも、アルコールが好ましい。アルコールとしては、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、s−ブタノール、t−ブタノール等の炭素数1〜4の一価アルコール、プロピレングリコール、エチレングリコール、ジエチレングリコール、グリセリン等の各種の多価アルコール等が挙げられる。これらの溶剤は単独で用いてもよいし、二種以上を混合して用いてもよい。   (3) Examples of the viscosity adjusting solvent include various alcohols, various ethers, various dialkyl sulfoxides, water, and mixtures thereof. Among these solvents, alcohol is preferable. Examples of the alcohol include monohydric alcohols having 1 to 4 carbon atoms such as methanol, ethanol, n-propanol, isopropanol, n-butanol, s-butanol, and t-butanol, propylene glycol, ethylene glycol, diethylene glycol, and glycerin. Various polyhydric alcohols are mentioned. These solvents may be used alone or in combination of two or more.

本発明の触媒層形成用ペースト組成物中に含まれる上記(1)〜(3)成分の割合は、限定されるものではなく、広い範囲内で適宜選択され得る。   The proportion of the above components (1) to (3) contained in the catalyst layer forming paste composition of the present invention is not limited and can be appropriately selected within a wide range.

例えば、本発明の触媒層形成用ペースト組成物中に、(1)の触媒担持炭素粒子を1重量部に対して、(2)成分が0.3〜3重量部(好ましくは0.4〜2重量部、(3)成分が5〜50重量部程度(好ましくは10〜25重量部)含まれているのがよく、残りが水である。水の割合は、通常、触媒担持炭素粒子に対して、等重量〜10倍重量である。   For example, in the paste composition for forming a catalyst layer of the present invention, the component (2) is 0.3 to 3 parts by weight (preferably 0.4 to 4 parts per 1 part by weight of the catalyst-supporting carbon particles of (1). 2 parts by weight, and the component (3) should be contained in an amount of about 5 to 50 parts by weight (preferably 10 to 25 parts by weight), with the balance being water. On the other hand, the weight is equal to 10 times the weight.

触媒層形成用ペースト組成物は、上記(1)〜(3)成分を混合することにより、製造される。(1)〜(3)成分の混合順序は、特に制限されない。例えば、(1)成分、(2)成分、及び(3)成分を順次又は同時に混合し、分散させることにより、触媒層形成用ペースト組成物を調製できる。混合には、公知の混合手段を広く適用できる。   The catalyst layer forming paste composition is produced by mixing the components (1) to (3). The order of mixing the components (1) to (3) is not particularly limited. For example, a paste composition for forming a catalyst layer can be prepared by mixing and dispersing component (1), component (2), and component (3) sequentially or simultaneously. For mixing, known mixing means can be widely applied.

転写基材としては、例えば、ポリイミド、ポリエチレンテレフタレート、ポリパルバン酸アラミド、ポリアミド(ナイロン)、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレート、ポリプロピレン等の高分子フィルムを挙げることができる。また、エチレンテトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロパーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)等の耐熱性フッ素樹脂を用いることもできる。   As the transfer substrate, for example, polyimide, polyethylene terephthalate, polyparvanic acid aramid, polyamide (nylon), polysulfone, polyethersulfone, polyphenylene sulfide, polyether ether ketone, polyetherimide, polyarylate, polyethylene naphthalate, polypropylene And the like. In addition, heat resistance of ethylene tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroperfluoroalkyl vinyl ether copolymer (PFA), polytetrafluoroethylene (PTFE), etc. Fluorine resin can also be used.

更に、転写基材は、高分子フィルム以外に、アート紙、コート紙、軽量コート紙等の塗工紙、ノート用紙、コピー用紙等の非塗工紙等の紙であってもよい。   Further, in addition to the polymer film, the transfer substrate may be paper such as art paper, coated paper, lightweight coated paper, or other non-coated paper such as notebook paper or copy paper.

転写基材の厚さは、取り扱い性及び経済性の観点から、通常6μm〜100μm程度、好ましくは10μm〜35μm程度、より好ましくは10μm〜25μm程度とするのがよい。   The thickness of the transfer substrate is usually about 6 μm to 100 μm, preferably about 10 μm to 35 μm, more preferably about 10 μm to 25 μm, from the viewpoints of handleability and economy.

従って、転写基材としては、安価で入手が容易な高分子フィルムが好ましく、ポリエチレンテレフタレート等がより好ましい。   Therefore, as the transfer substrate, a polymer film that is inexpensive and easily available is preferable, and polyethylene terephthalate or the like is more preferable.

ペースト組成物を転写基材に形成する方法としては、特に限定されるものではなく、例えば、ナイフコーター、バーコーター、スプレー、ディップコーター、スピンコーター、ロールコーター、ダイコーター、カーテンコーター、スクリーン印刷等の一般的な塗布方法を適用できる。   The method for forming the paste composition on the transfer substrate is not particularly limited. For example, knife coater, bar coater, spray, dip coater, spin coater, roll coater, die coater, curtain coater, screen printing, etc. The general coating method can be applied.

斯かるペーストを塗布した後、乾燥することにより、本発明の触媒層が形成される。乾燥温度は、ワックスの融点以下であることが望ましく、通常40〜100℃ 程度、好ましくは60〜80℃ 程度である。乾燥時間は、乾燥温度にもよるが、通常5分〜2時間程度、好ましくは30分〜1時間程度である。これらの乾燥温度、時間及び上記ペースト組成物の溶媒等を適宜変更することにより、触媒層に形成されるクラックを適宜調節することができる。   After applying such a paste, the catalyst layer of the present invention is formed by drying. The drying temperature is desirably not higher than the melting point of the wax, and is usually about 40 to 100 ° C., preferably about 60 to 80 ° C. Although depending on the drying temperature, the drying time is usually about 5 minutes to 2 hours, preferably about 30 minutes to 1 hour. By appropriately changing the drying temperature, time, solvent of the paste composition, and the like, cracks formed in the catalyst layer can be appropriately adjusted.

また、転写基材の少なくとも一方面に離型層を介して触媒層が形成されていてもよい。離型層は、例えば、ワックスから構成される。ワックスとしては、具体的には、石油系ワックス、植物系ワックス、動物系ワックス、鉱物系ワックス、合成系ワックス等を挙げることができる。本発明で用いられるワックスには、例えば、C16〜C32の脂肪酸とアルコールとのエステルが包含される。本発明において、これらワックスは、1種単独で又は2種以上混合して使用される。 Further, a catalyst layer may be formed on at least one surface of the transfer substrate via a release layer. The release layer is made of wax, for example. Specific examples of the wax include petroleum wax, plant wax, animal wax, mineral wax, and synthetic wax. The wax used in the present invention includes, for example, an ester of a C 16 -C 32 fatty acid and an alcohol. In the present invention, these waxes are used singly or in combination of two or more.

本発明で用いられるワックスは、好ましくは融点が60〜140℃、より好ましくは融点が60〜100℃の範囲にあるのがよい。   The wax used in the present invention preferably has a melting point of 60 to 140 ° C, more preferably a melting point of 60 to 100 ° C.

本発明において、好ましいワックスは植物系ワックスであり、より好ましいワックスはカルナウバワックス、カンデリラワックス等である。   In the present invention, preferred waxes are plant-based waxes, and more preferred waxes are carnauba wax and candelilla wax.

離型層は、公知のフッ素系樹脂でコーティングされたプラスチックフィルム(例えば、ポリエチレンテレフタレート等のフィルム)からなっていてもよい。   The release layer may be made of a plastic film (for example, a film of polyethylene terephthalate or the like) coated with a known fluorine-based resin.

離型層の厚さは、通常0.1μm〜3μm程度、好ましくは0.5μm〜1μm程度がよい。   The thickness of the release layer is usually about 0.1 μm to 3 μm, preferably about 0.5 μm to 1 μm.

転写基材上に離型層を形成させるに当たっては、所望の層厚になるように、上記ワックスを公知の方法に従い塗布するのがよい。   In forming the release layer on the transfer substrate, the wax is preferably applied according to a known method so as to have a desired layer thickness.

第2工程
本発明の第2工程は、第1工程で得られた触媒層転写シートを電解質膜に熱プレスすることにより、触媒層を電解質膜に積層させる工程である。
Second Step The second step of the present invention is a step of laminating the catalyst layer on the electrolyte membrane by hot pressing the catalyst layer transfer sheet obtained in the first step onto the electrolyte membrane.

具体的には、触媒層転写シートの触媒層面が電解質膜面に対面するように転写シートを配置し、熱プレスした後、当該転写シートの転写基材を剥離すればよい。   Specifically, the transfer sheet may be disposed so that the catalyst layer surface of the catalyst layer transfer sheet faces the electrolyte membrane surface and hot-pressed, and then the transfer substrate of the transfer sheet is peeled off.

作業性を考慮すると、触媒層面を電解質膜の両面に同時に積層するのがよい。この場合には、例えば、上記触媒層転写シートの触媒層面が電解質膜の両面に対面するように転写シートを配置し、加圧した後、当該転写シートの転写基材を剥離すればよい。   In consideration of workability, the catalyst layer surface is preferably laminated on both surfaces of the electrolyte membrane at the same time. In this case, for example, the transfer sheet may be disposed such that the catalyst layer surface of the catalyst layer transfer sheet faces both surfaces of the electrolyte membrane, and after pressing, the transfer substrate of the transfer sheet may be peeled off.

熱プレスは、常法に従って行うことができる。加圧レベルは、転写不良を避けるために、通常0.5Mpa〜20Mpa程度、好ましくは1Mpa〜10Mpa程度がよい。また、この加圧操作の際に、さらに転写不良を避けるために、加圧面を加熱するのが好ましい。加熱温度は、電解質膜の破損、変性等を避けるために、通常200℃以下、好ましくは150℃以下がよい。これら条件を適宜変更することにより、電解質膜に埋没する触媒層の深さを適宜調節することができる。   Hot pressing can be performed according to a conventional method. The pressure level is usually about 0.5 Mpa to 20 Mpa, preferably about 1 Mpa to 10 Mpa in order to avoid transfer defects. In addition, it is preferable to heat the pressure surface during this pressure operation in order to avoid further transfer defects. The heating temperature is usually 200 ° C. or lower, preferably 150 ° C. or lower in order to avoid breakage, modification, etc. of the electrolyte membrane. By appropriately changing these conditions, the depth of the catalyst layer buried in the electrolyte membrane can be adjusted as appropriate.

第3工程
本発明の第3工程は、第2工程で得られた積層体の触媒層上に、さらに上記触媒層転写シートを熱プレスすることにより触媒層を積層させる工程である。この工程を得ることにより、上記した本発明の触媒層−電解質膜積層体を製造することができる。
3rd process The 3rd process of this invention is a process of laminating | stacking a catalyst layer on the catalyst layer of the laminated body obtained at the 2nd process by further hot-pressing the said catalyst layer transfer sheet. By obtaining this step, the above-described catalyst layer-electrolyte membrane laminate of the present invention can be produced.

触媒層転写シートは、上気した第1工程で得られた触媒層転写シートである。   The catalyst layer transfer sheet is the catalyst layer transfer sheet obtained in the first step.

熱プレスする条件等は、第2工程と同様であり、これらの条件を適宜変更することにより、電解質膜に埋没する触媒層の深さを適宜調節することができる。   The conditions for hot pressing are the same as in the second step, and by appropriately changing these conditions, the depth of the catalyst layer buried in the electrolyte membrane can be adjusted as appropriate.

3層以上触媒層を積層させたい場合は、この第3工程を1回又は複数回繰り返せばよい。   When it is desired to stack three or more catalyst layers, this third step may be repeated once or a plurality of times.

本発明によれば、触媒層は適度な大きさのクラックを有するため、触媒層全体に効率よく燃料を供給できる。その結果として、本発明の触媒層−電解質膜積層体を用いた燃料電池は、高出力密度等の優れた電池性能を発揮できる。   According to the present invention, since the catalyst layer has cracks of an appropriate size, fuel can be efficiently supplied to the entire catalyst layer. As a result, the fuel cell using the catalyst layer-electrolyte membrane laminate of the present invention can exhibit excellent battery performance such as high output density.

本発明の触媒層−電解質膜積層体は、複数の触媒層が積層され、かつ触媒層全体として実質的にクラックが貫通していない構造を有するため、クロスオーバーをより効果的に防止できる。また、燃料に改質ガスを用いた場合には、一酸化酸素による触媒層の触媒活性の劣化をより効果的に防止できる。さらに、埋没されている触媒層によって固定されているため、電解質膜の膨潤及び収縮を防止し、ひいては電解質膜の劣化を防止する。これらにより、本発明の触媒層−電解質膜積層体を用いた燃料電池は、高耐久性等の優れた電池性能を有する。   Since the catalyst layer-electrolyte membrane laminate of the present invention has a structure in which a plurality of catalyst layers are laminated and cracks are not substantially penetrated as a whole catalyst layer, crossover can be prevented more effectively. Further, when the reformed gas is used as the fuel, it is possible to more effectively prevent the catalytic activity of the catalyst layer from being deteriorated by oxygen monoxide. Furthermore, since it is fixed by the buried catalyst layer, the electrolyte membrane is prevented from swelling and shrinking, and thus the electrolyte membrane is prevented from deteriorating. Accordingly, the fuel cell using the catalyst layer-electrolyte membrane laminate of the present invention has excellent battery performance such as high durability.

以下に実施例及び比較例を掲げて、本発明をより一層明らかにする。なお、本発明は下記実施例に限定されるものではない。   The present invention will be further clarified by the following examples and comparative examples. In addition, this invention is not limited to the following Example.

実施例1
(1)アノード触媒層用ペースト組成物Aの調製
白金ルテニウム触媒担持カーボン(Pt:29.7%、Ru:23.1%、田中貴金属工業製、「TEC61V54」、(炭素粒子:「バルカンXC-72R」、Cabot社製、比表面積254m/g)1.00g及び水10.00gを分散機にて攪拌混合して、白金ルテニウム担持カーボンの水分散液を調製した。この調製された水分散液に5wt%ナフィオン溶液(DE521、デュポン社製)6.00g及びプロピレングリコール0.30gを配合し、攪拌混合することにより、アノード触媒層用ペースト組成物Aを調製した。
Example 1
(1) Preparation of anode catalyst layer paste composition A Platinum ruthenium catalyst-supported carbon (Pt: 29.7%, Ru: 23.1%, manufactured by Tanaka Kikinzoku Kogyo, "TEC61V54", (carbon particles: "Vulcan XC- 72R ", manufactured by Cabot, specific surface area of 254 m 2 / g) and 1.00 g of water and 10.00 g of water were stirred and mixed in a disperser to prepare an aqueous dispersion of platinum-ruthenium-supported carbon. A paste composition A for an anode catalyst layer was prepared by blending 6.00 g of a 5 wt% Nafion solution (DE521, manufactured by DuPont) and 0.30 g of propylene glycol into the liquid and stirring and mixing them.

(2)カソード触媒層用ペースト組成物の調製
白金触媒担持カーボン(Pt:46.7%、田中貴金属工業製、TEC10E50E)1.00g及び水10.00gを分散機にて攪拌混合して、白金担持カーボンの水分散液を調製した。この調製された水分散液に5wt%ナフィオン溶液(DE521、デュポン社製)4.00g、n−ブタノール4.00g及びt−ブタノール4.00gを配合し、攪拌混合することにより、カソード触媒層用ペースト組成物を調製した。
(2) Preparation of cathode catalyst layer paste composition Platinum catalyst-supported carbon (Pt: 46.7%, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., TEC10E50E) 1.00 g and water 10.00 g were stirred and mixed with a disperser, platinum An aqueous dispersion of supported carbon was prepared. For the cathode catalyst layer, 4.00 g of 5 wt% Nafion solution (DE521, manufactured by DuPont), 4.00 g of n-butanol and 4.00 g of t-butanol were mixed in the prepared aqueous dispersion and stirred. A paste composition was prepared.

(3)触媒層転写シートの作製
上記アノード触媒層用ペースト組成物及びカソード触媒層用ペースト組成物をそれぞれPETフィルム(E3120、東洋紡績(株)製、厚さ13μm)上にドクターブレードにより乾燥後の厚さが50μmとなるように塗布及び乾燥して、それぞれアノード触媒層転写シートA及びカソード触媒層転写シートを得た。これらの触媒層の白金担持量及びクラック率はそれぞれアノード触媒層では0.9mg/cm、35%であり、カソード触媒層では1.0mg/cm、39%であった。
(3) Production of catalyst layer transfer sheet The anode catalyst layer paste composition and the cathode catalyst layer paste composition were each dried on a PET film (E3120, manufactured by Toyobo Co., Ltd., thickness 13 μm) with a doctor blade. The anode catalyst layer transfer sheet A and the cathode catalyst layer transfer sheet were obtained by coating and drying so as to have a thickness of 50 μm. The platinum loading and crack rate of these catalyst layers were 0.9 mg / cm 2 and 35% for the anode catalyst layer and 1.0 mg / cm 2 and 39% for the cathode catalyst layer, respectively.

(4)触媒層−電解質膜積層体の作製
このアノード触媒層転写シートA及びカソード触媒層転写シートの間に電解質膜Nafion115(デュポン社製)を挟んで熱プレス(加圧レベル6Mpa、加圧時間2.5分)することにより、電解質膜の両面にそれぞれアノード触媒層及びカソード触媒層を形成した。
(4) Production of catalyst layer-electrolyte membrane laminate Hot press (pressure level 6 Mpa, pressure time) with electrolyte membrane Nafion 115 (manufactured by DuPont) sandwiched between anode catalyst layer transfer sheet A and cathode catalyst layer transfer sheet 2.5 minutes), an anode catalyst layer and a cathode catalyst layer were formed on both surfaces of the electrolyte membrane, respectively.

この操作をアノード触媒層側においてのみさらに2回繰り返した。これにより、アノード触媒層側の白金担持量が2.7mg/cm、カソード触媒層側の白金担持量が1.0mg/cmである触媒層-電解質膜積層体(アノード触媒層A/アノード触媒層A/アノード触媒層A/電解質膜/カソード触媒層)を得た。 This operation was repeated two more times only on the anode catalyst layer side. Thus, a catalyst layer-electrolyte membrane laminate (anode catalyst layer A / anode) having a platinum loading on the anode catalyst layer side of 2.7 mg / cm 2 and a platinum loading on the cathode catalyst layer side of 1.0 mg / cm 2. Catalyst layer A / anode catalyst layer A / electrolyte membrane / cathode catalyst layer).

この積層体の断面をSEMで観察すると、アノード触媒層及びカソード触媒層のいずれの第1触媒層(第1回目の熱プレスで積層させた触媒層)も完全に電解質膜に埋没していた。   When the cross section of this laminate was observed with an SEM, both the first catalyst layer of the anode catalyst layer and the cathode catalyst layer (the catalyst layer laminated by the first heat press) were completely buried in the electrolyte membrane.

実施例2
(1)アノード触媒層用ペースト組成物Bの調製
実施例1の白金ルテニウム担持炭素をTEC61V54(Pt:29.7%、Ru23.1%、田中貴金属工業製、(炭素粒子:「バルカンXC-72R」、Cabot社製、比表面積254m/g))1.00gの代わりに、TEC61E54(Pt:30.3%、Ru:23.1%、田中貴金属工業製、(炭素粒子:「ケッチェンブラック」、AKUZO社製、比表面積800m/g))1.00gとした以外は、実施例1と同様にして、アノード触媒層用ペースト組成物Bを調製した。
Example 2
(1) Preparation of anode catalyst layer paste composition B The platinum-ruthenium-supported carbon of Example 1 was prepared from TEC61V54 (Pt: 29.7%, Ru23.1%, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd. (carbon particles: “Vulcan XC-72R”). , TEC61E54 (Pt: 30.3%, Ru: 23.1%, Tanaka Kikinzoku Kogyo Co., Ltd., (carbon particles: “Ketjen Black”, manufactured by Cabot, specific surface area 254 m 2 / g)) The anode catalyst layer paste composition B was prepared in the same manner as in Example 1 except that the specific surface area was 800 m 2 / g, manufactured by AKUZO Corporation, and 1.00 g.

(2)カソード触媒層用ペースト組成物
実施例1のカソード触媒層用ペースト組成物を用いた。
(2) Paste composition for cathode catalyst layer The paste composition for cathode catalyst layer of Example 1 was used.

(3)アノード触媒層転写シートBの作製
アノード触媒層用ペーストBをPETフィルム(E3120、東洋紡績(株) 製、厚さ13μm)上にドクターブレードにより乾燥後の厚さが50μmとなるように塗布及び乾燥することにより、アノード触媒層転写シートBを得た。このフィルムBの白金担持量及びクラック率はそれぞれ1.1mg/cm、37%であった。
(3) Preparation of anode catalyst layer transfer sheet B The anode catalyst layer paste B was dried on a PET film (E3120, manufactured by Toyobo Co., Ltd., thickness 13 μm) with a doctor blade so that the thickness after drying was 50 μm. The anode catalyst layer transfer sheet B was obtained by coating and drying. The platinum loading and crack rate of this film B were 1.1 mg / cm 2 and 37%, respectively.

(4)触媒層−電解質膜積層体の作製
まず、このアノード触媒層転写シートA及びカソード触媒層転写シートの間に電解質膜Nafion115(デュポン社製)を挟んで熱プレス(加圧レベル6Mpa、加圧時間2.5分)することにより、電解質膜の両面にそれぞれアノード触媒層及びカソード触媒層を形成した。
(4) Production of catalyst layer-electrolyte membrane laminate First, an electrolyte membrane Nafion 115 (manufactured by DuPont) is sandwiched between the anode catalyst layer transfer sheet A and the cathode catalyst layer transfer sheet, and a hot press (pressure level 6 Mpa, applied) Pressure time 2.5 minutes), an anode catalyst layer and a cathode catalyst layer were formed on both surfaces of the electrolyte membrane, respectively.

さらに、この操作をアノード触媒層転写シートAで2回、アノード触媒層転写シートBで1回繰り返す事により、アノード側の白金担持量3.8mg/cm、カソード側の白金担持量1.0mg/cmの触媒層−電解質膜積層体(アノード触媒層B/アノード触媒層A/アノード触媒層A/アノード触媒層A/電解質膜/カソード触媒層)を得た。 Further, by repeating this operation twice for the anode catalyst layer transfer sheet A and once for the anode catalyst layer transfer sheet B, the platinum loading on the anode side is 3.8 mg / cm 2 and the platinum loading on the cathode side is 1.0 mg. / Cm 2 catalyst layer-electrolyte membrane laminate (anode catalyst layer B / anode catalyst layer A / anode catalyst layer A / anode catalyst layer A / electrolyte membrane / cathode catalyst layer) was obtained.

この積層体の断面をSEMで観察すると、アノード触媒層及びカソード触媒層のいずれの第1触媒層(第1回目の熱プレスで積層させた触媒層)も全て電解質膜に埋没していた。   When the cross section of this laminate was observed with an SEM, all of the first catalyst layers (catalyst layers laminated by the first heat press) of the anode catalyst layer and the cathode catalyst layer were all buried in the electrolyte membrane.

比較例1
実施例1で用いたアノード触媒層用ペースト組成物AをPETフィルムに乾燥後の厚さが80μmとなるように塗布し、乾燥することにより、比較例1のアノード触媒用転写シートA’を作製した。また、実施例1で用いたカソード触媒層用ペースト組成物をPETフィルムに乾燥後の厚さが50μmとなるように塗布し、乾燥することにより比較例1のカソード触媒層転写シートを作製した。
Comparative Example 1
The anode catalyst layer paste composition A used in Example 1 was applied to a PET film so that the thickness after drying was 80 μm, and dried to prepare an anode catalyst transfer sheet A ′ of Comparative Example 1. did. Moreover, the cathode catalyst layer transfer sheet of Comparative Example 1 was prepared by applying the cathode catalyst layer paste composition used in Example 1 to a PET film so that the thickness after drying was 50 μm and drying.

この比較例1のアノード触媒層転写シートA’及びカソード触媒層転写シートの間に電解質膜Nafion115(デュポン社製)を挟んで熱プレス(加圧レベル6Mpa、加圧時間2.5分)することにより、電解質膜の両面にそれぞれアノード触媒層及びカソード触媒層を形成し、比較例1の触媒層−電解質膜積層体を作製した。   The anode catalyst layer transfer sheet A ′ and the cathode catalyst layer transfer sheet of Comparative Example 1 are hot pressed (pressure level 6 Mpa, pressure time 2.5 minutes) with an electrolyte membrane Nafion 115 (manufactured by DuPont) interposed therebetween. Thus, an anode catalyst layer and a cathode catalyst layer were formed on both surfaces of the electrolyte membrane, respectively, and a catalyst layer-electrolyte membrane laminate of Comparative Example 1 was produced.

アノード触媒層側の白金担持量は3.0mg/cm、クラック率は48%であった。カソード触媒層側の白金担持量は、1.2mg/cm、クラック率は45%であった。 The amount of platinum supported on the anode catalyst layer side was 3.0 mg / cm 2 , and the crack rate was 48%. The amount of platinum supported on the cathode catalyst layer side was 1.2 mg / cm 2 , and the crack rate was 45%.

試験例
実施例1、2及び比較例1で得た触媒層−電解質膜積層体を用いて、単電池を組み立てた。カソード極に合成空気(カソード流量200ml/min)、アノード極に3%メタノール(アノード流量4ml/min)を導入し、電池性能(セル温度60℃)を測定した。
Test Example Using the catalyst layer-electrolyte membrane laminate obtained in Examples 1 and 2 and Comparative Example 1, a unit cell was assembled. Synthetic air (cathode flow rate 200 ml / min) was introduced into the cathode electrode, and 3% methanol (anode flow rate 4 ml / min) was introduced into the anode electrode, and battery performance (cell temperature 60 ° C.) was measured.

結果を下表1に示す。耐久性の試験において、100時間後の出力密度が測定初期の90%以上である場合を「○」と、100時間後の出力密度が測定初期の90%以下である場合を「×」と評価した。   The results are shown in Table 1 below. In the durability test, a case where the output density after 100 hours is 90% or more at the beginning of the measurement is evaluated as “◯”, and a case where the output density after 100 hours is 90% or less at the beginning of the measurement is evaluated as “×”. did.

Figure 2007179893
Figure 2007179893

図1は、本発明の触媒層−電解質膜積層体の断面図の一例を示す。FIG. 1 shows an example of a cross-sectional view of the catalyst layer-electrolyte membrane laminate of the present invention.

Claims (8)

触媒担持炭素粒子及び水素イオン伝導性高分子電解質を含み、かつクラックを有する触媒層が、電解質膜の片面又は両面に2層以上積層されてなる触媒層−電解質膜積層体であって、
当該触媒層の少なくとも一部が当該電解質膜に埋没されている、触媒層−電解質膜積層体。
A catalyst layer-electrolyte membrane laminate in which two or more layers of catalyst layers containing catalyst-carrying carbon particles and hydrogen ion conductive polymer electrolyte and having cracks are laminated on one side or both sides of the electrolyte membrane,
A catalyst layer-electrolyte membrane laminate, wherein at least a part of the catalyst layer is buried in the electrolyte membrane.
前記触媒層の少なくとも1層が前記電解質膜に埋没されている、請求項1に記載の触媒層−電解質膜積層体。   The catalyst layer-electrolyte membrane laminate according to claim 1, wherein at least one of the catalyst layers is buried in the electrolyte membrane. 各触媒層のクラック同士が互いに重なり合っておらず、触媒層全体としてはクラックが厚み方向に実質的に貫通していない、請求項1又は2に記載の触媒層−電解質膜積層体。   The catalyst layer-electrolyte membrane laminate according to claim 1 or 2, wherein cracks of each catalyst layer do not overlap each other, and cracks do not substantially penetrate through the thickness of the catalyst layer as a whole. 触媒担持炭素粒子に担持している触媒が白金又は白金化合物である、請求項1〜3のいずれかに記載の触媒層−電解質膜積層体。     The catalyst layer-electrolyte membrane laminate according to any one of claims 1 to 3, wherein the catalyst supported on the catalyst-supporting carbon particles is platinum or a platinum compound. 各触媒層に含まれる白金の担持量が、それぞれ0.1mg/cm〜1.3mg/cmである、請求項4に記載の触媒層−電解質膜積層体。 The supported amount of platinum contained in the catalyst layer, respectively 0.1mg / cm 2 ~1.3mg / cm 2 , the catalyst layer according to claim 4 - membrane laminate. 前記各触媒層の厚みが、それぞれ1μm〜80μmである、請求項1〜5のいずれかに記載の触媒層−電解質膜積層体。     The catalyst layer-electrolyte membrane laminate according to claim 1, wherein each catalyst layer has a thickness of 1 μm to 80 μm. 請求項1〜6のいずれかに記載の触媒層−電解質膜積層体を具備する電極−電解質膜接合体。     An electrode-electrolyte membrane assembly comprising the catalyst layer-electrolyte membrane laminate according to claim 1. クラックを有する触媒層が電解質膜の片面又は両面に2層以上積層されてなり、かつ触媒層の少なくとも一部が電解質膜に埋没されている触媒層−電解質膜積層体の製造方法であって、
(1)触媒担持炭素粒子の水分散液、(2)水素イオン伝導性高分子電解質及び(3)粘度調整用の溶剤を含む触媒層形成用ペースト組成物を用いて転写基材上に触媒層を形成させて触媒層転写シートを得る第1工程、
第1工程で得られた触媒層転写シートを電解質膜に熱プレスすることにより触媒層を電解質膜に積層させる第2工程、及び
第2工程で得られた積層体の触媒層上に、さらに上記触媒層転写シートを熱プレスすることにより触媒層を積層させる第3工程、
を備えた触媒層−電解質膜積層体の製造方法。
A method for producing a catalyst layer-electrolyte membrane laminate in which two or more catalyst layers having cracks are laminated on one side or both sides of an electrolyte membrane, and at least a part of the catalyst layer is buried in the electrolyte membrane,
A catalyst layer is formed on a transfer substrate using a paste composition for forming a catalyst layer comprising (1) an aqueous dispersion of catalyst-supporting carbon particles, (2) a hydrogen ion conductive polymer electrolyte, and (3) a solvent for adjusting viscosity. A first step of forming a catalyst layer transfer sheet by forming
The catalyst layer transfer sheet obtained in the first step is hot-pressed on the electrolyte membrane, the second step of laminating the catalyst layer on the electrolyte membrane, and the catalyst layer of the laminate obtained in the second step, A third step of laminating the catalyst layer by hot pressing the catalyst layer transfer sheet;
A method for producing a catalyst layer-electrolyte membrane laminate comprising:
JP2005377577A 2005-12-28 2005-12-28 Catalyst layer-electrolyte membrane laminate and method for producing the same Expired - Fee Related JP5082239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005377577A JP5082239B2 (en) 2005-12-28 2005-12-28 Catalyst layer-electrolyte membrane laminate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005377577A JP5082239B2 (en) 2005-12-28 2005-12-28 Catalyst layer-electrolyte membrane laminate and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011184686A Division JP5375898B2 (en) 2011-08-26 2011-08-26 Method for producing catalyst layer-electrolyte membrane laminate

Publications (2)

Publication Number Publication Date
JP2007179893A true JP2007179893A (en) 2007-07-12
JP5082239B2 JP5082239B2 (en) 2012-11-28

Family

ID=38304864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005377577A Expired - Fee Related JP5082239B2 (en) 2005-12-28 2005-12-28 Catalyst layer-electrolyte membrane laminate and method for producing the same

Country Status (1)

Country Link
JP (1) JP5082239B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243768A (en) * 2007-03-29 2008-10-09 Electric Power Dev Co Ltd Solid polymer electrolyte fuel cell and membrane electrode assembly thereof
JP2008282645A (en) * 2007-05-10 2008-11-20 Toyota Motor Corp Membrane electrode assembly used for fuel cell and its manufacturing method
JP2009245796A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Membrane-electrode assembly for fuel cell and its method for manufacturing
JP2012243450A (en) * 2011-05-17 2012-12-10 Toshiba Fuel Cell Power Systems Corp Solid polymer fuel cell
WO2013183132A1 (en) * 2012-06-06 2013-12-12 株式会社日本マイクロニクス Electrode structure of solid type rechargeable battery
JP2015220052A (en) * 2014-05-16 2015-12-07 株式会社フジクラ Membrane-electrode assembly for fuel cell
JP2017176460A (en) * 2016-03-30 2017-10-05 富士フイルム株式会社 Method of manufacturing sheet with needle-like protrusion part

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10648092B2 (en) 2015-11-10 2020-05-12 Kabushiki Kaisha Toshiba Electrode, membrane electrode assembly, electrochemical cell, and stack

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325983A (en) * 1992-05-20 1993-12-10 Mitsubishi Electric Corp Manufacture of electrochemical device using solid high molecular electrolytic film
JPH08130020A (en) * 1994-10-28 1996-05-21 Tanaka Kikinzoku Kogyo Kk Manufacture of electrode for polymer solid-electrolytic electrochemical cell
JPH0963622A (en) * 1995-08-29 1997-03-07 Mitsubishi Electric Corp Manufacture of solid polymer fuel cell and solid polymer fuel cell
JP2002025561A (en) * 2000-07-03 2002-01-25 Matsushita Electric Ind Co Ltd High polymer molecule electrolyte fuel cell and its manufacturing method
JP2002184415A (en) * 2000-10-18 2002-06-28 General Motors Corp <Gm> Method of preparing membrane electrode assembly
JP2002270187A (en) * 2001-03-08 2002-09-20 Matsushita Electric Ind Co Ltd High polymer electrolyte type fuel cell and manufacturing method therefor
JP2003017071A (en) * 2001-07-02 2003-01-17 Honda Motor Co Ltd Electrode for fuel cell, its manufacturing method and fuel cell having it
JP2004192950A (en) * 2002-12-11 2004-07-08 Mitsubishi Electric Corp Solid polymer fuel cell and its manufacturing method
JP2005032681A (en) * 2003-07-11 2005-02-03 Matsushita Electric Ind Co Ltd Junction body of electrolyte film for fuel cell and electrode, as well as its manufacturing method
JP2005174565A (en) * 2003-12-08 2005-06-30 Hitachi Ltd Polymer electrolyte membrane for fuel cell, membrane/electrode joint body, its manufacturing method, and fuel cell using it
JP2005174620A (en) * 2003-12-09 2005-06-30 Hitachi Ltd Membrane electrode assembly and fuel cell using this
JP2005197195A (en) * 2003-12-09 2005-07-21 Nissan Motor Co Ltd Solid polymer fuel cell
JP2005317492A (en) * 2004-03-31 2005-11-10 Dainippon Printing Co Ltd Fuel cell, electrode-electrolyte film assembly, electrode substrate with catalyst layer, those process of manufacturing, and transcription sheet

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325983A (en) * 1992-05-20 1993-12-10 Mitsubishi Electric Corp Manufacture of electrochemical device using solid high molecular electrolytic film
JPH08130020A (en) * 1994-10-28 1996-05-21 Tanaka Kikinzoku Kogyo Kk Manufacture of electrode for polymer solid-electrolytic electrochemical cell
JPH0963622A (en) * 1995-08-29 1997-03-07 Mitsubishi Electric Corp Manufacture of solid polymer fuel cell and solid polymer fuel cell
JP2002025561A (en) * 2000-07-03 2002-01-25 Matsushita Electric Ind Co Ltd High polymer molecule electrolyte fuel cell and its manufacturing method
JP2002184415A (en) * 2000-10-18 2002-06-28 General Motors Corp <Gm> Method of preparing membrane electrode assembly
JP2002270187A (en) * 2001-03-08 2002-09-20 Matsushita Electric Ind Co Ltd High polymer electrolyte type fuel cell and manufacturing method therefor
JP2003017071A (en) * 2001-07-02 2003-01-17 Honda Motor Co Ltd Electrode for fuel cell, its manufacturing method and fuel cell having it
JP2004192950A (en) * 2002-12-11 2004-07-08 Mitsubishi Electric Corp Solid polymer fuel cell and its manufacturing method
JP2005032681A (en) * 2003-07-11 2005-02-03 Matsushita Electric Ind Co Ltd Junction body of electrolyte film for fuel cell and electrode, as well as its manufacturing method
JP2005174565A (en) * 2003-12-08 2005-06-30 Hitachi Ltd Polymer electrolyte membrane for fuel cell, membrane/electrode joint body, its manufacturing method, and fuel cell using it
JP2005174620A (en) * 2003-12-09 2005-06-30 Hitachi Ltd Membrane electrode assembly and fuel cell using this
JP2005197195A (en) * 2003-12-09 2005-07-21 Nissan Motor Co Ltd Solid polymer fuel cell
JP2005317492A (en) * 2004-03-31 2005-11-10 Dainippon Printing Co Ltd Fuel cell, electrode-electrolyte film assembly, electrode substrate with catalyst layer, those process of manufacturing, and transcription sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243768A (en) * 2007-03-29 2008-10-09 Electric Power Dev Co Ltd Solid polymer electrolyte fuel cell and membrane electrode assembly thereof
JP2008282645A (en) * 2007-05-10 2008-11-20 Toyota Motor Corp Membrane electrode assembly used for fuel cell and its manufacturing method
JP2009245796A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Membrane-electrode assembly for fuel cell and its method for manufacturing
JP2012243450A (en) * 2011-05-17 2012-12-10 Toshiba Fuel Cell Power Systems Corp Solid polymer fuel cell
WO2013183132A1 (en) * 2012-06-06 2013-12-12 株式会社日本マイクロニクス Electrode structure of solid type rechargeable battery
US9865908B2 (en) 2012-06-06 2018-01-09 Kabushiki Kaisha Nihon Micronics Electrode structure of solid type secondary battery
JP2015220052A (en) * 2014-05-16 2015-12-07 株式会社フジクラ Membrane-electrode assembly for fuel cell
JP2017176460A (en) * 2016-03-30 2017-10-05 富士フイルム株式会社 Method of manufacturing sheet with needle-like protrusion part

Also Published As

Publication number Publication date
JP5082239B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP5082239B2 (en) Catalyst layer-electrolyte membrane laminate and method for producing the same
US8507151B2 (en) Membrane electrode assembly having low surface ionomer concentration
EP1369948A1 (en) Process for the manufacture of membrane-electrode-assemblies using catalyst-coated membranes and adhesives
JP5266794B2 (en) Catalyst layer for polymer electrolyte fuel cell and method for producing the same
JP5194336B2 (en) Electrode substrate with catalyst layer, method for producing electrode substrate with catalyst layer, method for producing electrode-electrolyte membrane assembly, and method for producing fuel cell
EP1914825A1 (en) Membrane-electrode assembly for fuel cell, method of preparing same, and fuel cell system cpmrising same
JP2008186798A (en) Electrolyte membrane-electrode assembly
JP5482066B2 (en) Microporous layer for fuel cell, gas diffusion electrode with microporous layer, catalyst layer with microporous layer, gas diffusion electrode with catalyst layer and membrane-electrode assembly, and polymer electrolyte fuel cell
US20110183232A1 (en) Structures for gas diffusion electrodes
EP2365569B1 (en) A membrane-electrode assembly for a fuel cell
JP5375898B2 (en) Method for producing catalyst layer-electrolyte membrane laminate
JP5230064B2 (en) Electrode catalyst layer, catalyst layer-electrolyte membrane laminate production transfer sheet and catalyst layer-electrolyte membrane laminate
US10868311B2 (en) Membrane-electrode assembly for fuel cell, method for manufacturing same, and fuel cell system comprising same
US20090104508A1 (en) Membrane electrode assembly for fuel cell, preparing method for same, and fuel cell system including same
JP2007123253A (en) Paste composition for catalyst layer formation, transfer sheet for manufacturing catalyst layer-electrolyte membrane laminate, and catalyst layer-electrolyte membrane laminate
US8445163B2 (en) Membrane electrode assembly for fuel cell having catalyst layer with mesopore volume, method of preparing same, and fuel cell system including the same
JP5151210B2 (en) Electrode for polymer electrolyte fuel cell
JP2007103083A (en) Transfer sheet for manufacturing catalyst layer-electrolyte film laminate for fuel cell, and catalyst layer-electrolyte film laminate
JP2012243693A (en) Method for manufacturing electrolyte membrane-electrode assembly
JP2006185800A (en) Transfer sheet for manufacturing electrode-polyelectrolyte membrane junction, electrode-polyelectrolyte membrane junction and their manufacturing methods
KR101312971B1 (en) Hydrocarbon based polyelectrolyte separation membrane surface-treated with fluorinated ionomer, membrane electrode assembly, and fuel cell
JP4826190B2 (en) Catalyst layer forming paste composition, catalyst layer-electrolyte membrane laminate transfer sheet, and catalyst layer-electrolyte membrane laminate
JP5051203B2 (en) Membrane-electrode assembly of fuel cell, transfer sheet for electrode production, and production method thereof
JP2006147522A (en) Manufacturing method for membrane electrode assembly, fuel cell and manufacturing method for conductive particle layer
JP4688453B2 (en) Paste composition for forming catalyst layer and catalyst layer transfer sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees