JP2002270187A - High polymer electrolyte type fuel cell and manufacturing method therefor - Google Patents
High polymer electrolyte type fuel cell and manufacturing method thereforInfo
- Publication number
- JP2002270187A JP2002270187A JP2001064573A JP2001064573A JP2002270187A JP 2002270187 A JP2002270187 A JP 2002270187A JP 2001064573 A JP2001064573 A JP 2001064573A JP 2001064573 A JP2001064573 A JP 2001064573A JP 2002270187 A JP2002270187 A JP 2002270187A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst layer
- catalyst
- polymer electrolyte
- fuel cell
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高分子電解質型燃
料電池の触媒層と、その製造方法に関する。[0001] The present invention relates to a catalyst layer for a polymer electrolyte fuel cell and a method for producing the same.
【0002】[0002]
【従来の技術】高分子電解質型燃料電池の電極は、一般
的に触媒層を多孔質基材の上に形成したものが用いられ
る。これらの触媒層の形成方法は、貴金属を担持した炭
素微粉末と水素イオン導電性を有する高分子電解質の溶
液に、水、イソプロピルアルコールなどの溶媒を用いて
インク化し、この触媒インクをスクリーン印刷法やスプ
レー法を用いて、電極基材となるカーボンペーパーやカ
ーボンクロス上に塗布し、この後、乾燥あるいは焼成す
るのが一般的である。このようにして作製した電極を、
電解質膜を介してホットプレスにより接合し、これを電
解質膜−電極接合体とする。2. Description of the Related Art Generally, an electrode of a polymer electrolyte fuel cell has a catalyst layer formed on a porous substrate. These catalyst layers are formed by inking a solution of a fine carbon powder supporting a noble metal and a polymer electrolyte having hydrogen ion conductivity using a solvent such as water or isopropyl alcohol, and then printing the catalyst ink by a screen printing method. It is common to apply it on carbon paper or carbon cloth as an electrode substrate by using a spraying method or a spray method, and then dry or fire it. The electrode fabricated in this way is
Joining is performed by hot pressing via the electrolyte membrane, and this is used as an electrolyte membrane-electrode assembly.
【0003】これ以外の方法として、高分子フィルム上
にグラビア印刷やコーター法により、触媒インクを塗布
し、乾燥させて触媒層を形成し、この後に、電解質膜に
転写する方法も考えられている。As another method, a method has been considered in which a catalyst ink is applied to a polymer film by gravure printing or a coater method, dried to form a catalyst layer, and then transferred to an electrolyte membrane. .
【0004】このように、燃料電池に用いる触媒層は、
触媒の利用率を高めるため出来るだけ緻密に作製し、触
媒層の面内で、クラックなどの空隙が出来ないように作
製するのが一般的である。このために、界面活性剤など
を触媒層インクに添加して、炭素粒子の凝集を押さえ、
触媒を担持した炭素粒子の分散性を高め、炭素粒子の粒
子径を出来るだけ小さくしたり、遊星型ボールミルなど
の強力な摩砕力が得られる摩砕装置を用いて、炭素粒子
の粒子径を小さくするなどの方法がとられている。ま
た、塗布した触媒層インクの乾燥工程を出来るだけ低温
で、時間をかけて穏やかに乾燥させるなどの方法によ
り、クラックの発生を抑制している。As described above, the catalyst layer used in the fuel cell is
In general, the catalyst is manufactured as densely as possible in order to increase the utilization of the catalyst, and is manufactured so that voids such as cracks are not formed in the plane of the catalyst layer. For this purpose, a surfactant or the like is added to the catalyst layer ink to suppress aggregation of carbon particles,
The dispersibility of the carbon particles carrying the catalyst is increased, the particle size of the carbon particles is reduced as much as possible, or the particle size of the carbon particles is reduced by using a grinding device such as a planetary ball mill capable of obtaining a strong grinding force. Methods such as reducing the size are taken. In addition, cracks are suppressed by a method such as drying the applied catalyst layer ink at a temperature as low as possible and gently over time.
【0005】一方、触媒層中で電極反応が円滑に進行す
るためには、反応ガスが触媒層中に効率よく供給されな
ければならない。このための手法として、触媒層インク
中に、予め造孔材を加え、塗布した後、焼成してミクロ
的な細孔を電極内に存在させるなどの対策がとられてい
る。On the other hand, in order for the electrode reaction to proceed smoothly in the catalyst layer, the reaction gas must be efficiently supplied into the catalyst layer. As a technique for this, a countermeasure has been taken such that a pore former is added to the catalyst layer ink in advance, applied, and then fired to make microscopic pores exist in the electrode.
【0006】[0006]
【発明が解決しようとする課題】触媒インク中に、界面
活性剤を入れる方法や、インクの分散性を高める方法に
より、触媒粒子を担持した炭素粒子の粒子径を小さくし
て、触媒層を出来るだけ緻密に作製することは、触媒そ
のものの利用率の観点からは有効である。しかしなが
ら、緻密に作製した触媒層は特に厚み方向のガスの拡散
性が悪くなる。高分子電解質型燃料電池を高い電流密度
で運転する時には、反応生成物である水が多量に発生
し、滞留する。このため、触媒層内への反応ガスの拡散
が阻害され、十分な電池性能が得られなくなるという問
題がある。The catalyst layer can be formed by reducing the particle diameter of the carbon particles carrying the catalyst particles by a method of adding a surfactant to the catalyst ink or a method of increasing the dispersibility of the ink. It is effective to manufacture the catalyst only densely from the viewpoint of the utilization rate of the catalyst itself. However, a densely formed catalyst layer is particularly poor in gas diffusion in the thickness direction. When a polymer electrolyte fuel cell is operated at a high current density, a large amount of water, which is a reaction product, is generated and stays. For this reason, there is a problem that diffusion of the reaction gas into the catalyst layer is hindered and sufficient battery performance cannot be obtained.
【0007】界面活性剤を入れる場合には、触媒層イン
クを塗布後、焼成する必要があり、工程が増えプロセス
が複雑化する。また、遊星ボールミルなどの手法で炭素
粒子の粒径を小さくする必要はあるが、逆に小さくしす
ぎてしまうと前述のように触媒層が緻密になりすぎ、電
池性能が低下する。In the case of adding a surfactant, it is necessary to bake after applying the catalyst layer ink, and the number of steps is increased, and the process is complicated. In addition, it is necessary to reduce the particle size of the carbon particles by a method such as a planetary ball mill, but if it is too small, the catalyst layer becomes too dense as described above, and the battery performance is reduced.
【0008】予め触媒層インク中に造孔剤等を入れて、
ガスの拡散性を向上させる方法もあるが、触媒層を塗布
乾燥した後、焼成させる必要があり、工程が増えプロセ
スが複雑になり、好ましくない。また、造孔剤を入れる
場合には触媒層の厚みが厚くなるという問題もある。[0008] A pore-forming agent or the like is put in the catalyst layer ink in advance,
Although there is a method for improving gas diffusivity, it is necessary to apply and dry the catalyst layer and then to bake it, which increases the number of steps and complicates the process, which is not preferable. In addition, when a pore-forming agent is added, there is a problem that the thickness of the catalyst layer is increased.
【0009】塗布した触媒層インクの乾燥を出来るだけ
低温で長く行うことは、乾燥設備が大型になり、低コス
ト化、プロセスの小型化の観点からは好ましくない。It is not preferable to dry the applied catalyst layer ink at a temperature as low as possible for as long as possible, because the size of the drying equipment becomes large, the cost is reduced, and the process is reduced in size.
【0010】以上のことから、触媒層中の触媒利用率を
出来るだけ低下させずに、ガスの拡散性を保つことの出
来る製造方法が求められている。[0010] In view of the above, there is a need for a production method capable of maintaining gas diffusivity without lowering the catalyst utilization in the catalyst layer as much as possible.
【0011】[0011]
【課題を解決するための手段】このような課題を解決す
るため本発明の高分子電解質型燃料電池は、水素イオン
伝導性高分子電解質膜と、前記水素イオン伝導性高分子
電解質膜の両側に配置した一対の電極とを具備した単電
池を、前記電極の一方に水素を含む燃料ガスを供給排出
し、前記電極の他方に酸化剤ガスを供給排出するための
ガス供給溝を形成した一対の導電性セパレータで挟持し
た高分子電解質型燃料電池において、前記電極は前記水
素イオン伝導性高分子電解質膜と接触した触媒層と、前
記触媒層及び前記導電性セパレータに接触したガス拡散
層とを有し、前記触媒層は前記ガス拡散層と接触する面
から前記触媒層の内部に向かって前記燃料ガスまたは前
記酸化剤ガスが流通するガス流通用空隙を有することを
特徴とする。In order to solve the above problems, a polymer electrolyte fuel cell according to the present invention comprises a hydrogen ion conductive polymer electrolyte membrane and two sides of the hydrogen ion conductive polymer electrolyte membrane. A single cell including a pair of electrodes arranged, a pair of electrodes having a gas supply groove for supplying and discharging a fuel gas containing hydrogen to one of the electrodes and supplying and discharging an oxidizing gas to the other of the electrodes. In a polymer electrolyte fuel cell sandwiched between conductive separators, the electrode has a catalyst layer in contact with the hydrogen ion conductive polymer electrolyte membrane, and a gas diffusion layer in contact with the catalyst layer and the conductive separator. The catalyst layer has a gas circulation gap through which the fuel gas or the oxidizing gas flows from a surface in contact with the gas diffusion layer toward the inside of the catalyst layer.
【0012】ここで、触媒層の面内の空隙の割合は、触
媒層の面方向の幾何学的面積の0.1%〜30%であること
が好ましい。Here, the proportion of the voids in the plane of the catalyst layer is preferably 0.1% to 30% of the geometric area in the plane direction of the catalyst layer.
【0013】またその製造方法は、触媒層の作成方法
は、触媒粒子を担持した炭素粒子と水素イオン伝導性高
分子電解質と溶媒とを少なくとも含む触媒インクを塗布
する塗布工程と、前記塗布工程を経た触媒インクを乾燥
する乾燥工程とを有し、前記乾燥工程は加熱温度の異な
る少なくとも2段階以上の乾燥工程を有することを特徴
とする。[0013] In the method for producing the catalyst layer, the catalyst layer may be formed by applying a catalyst ink containing at least carbon particles carrying catalyst particles, a hydrogen ion conductive polymer electrolyte and a solvent; A drying step of drying the passed catalyst ink, wherein the drying step includes at least two or more drying steps having different heating temperatures.
【0014】このとき、触媒インク中の触媒粒子を担持
した炭素粒子のメジアン径が、0.1μm以上でかつ10μ
m以下であることが有効である。At this time, the median diameter of the carbon particles supporting the catalyst particles in the catalyst ink is 0.1 μm or more and 10 μm or more.
m or less is effective.
【0015】また、本発明の固体高分子型燃料電池の製
造方法は、触媒層が、少なくとも、触媒粒子を担持した
炭素粒子、高分子電解質、溶媒成分を含む触媒層インク
を塗布する第1の工程、塗布した触媒層インクを乾燥す
る第2の工程より得られることを特徴とする。Further, in the method for manufacturing a polymer electrolyte fuel cell according to the present invention, the catalyst layer is formed by applying a catalyst layer ink containing at least carbon particles carrying catalyst particles, a polymer electrolyte, and a solvent component. The method is characterized by being obtained from the second step of drying the applied catalyst layer ink.
【0016】ここで、触媒層インクを塗布する第1の工
程における触媒層インク中の触媒粒子を担持した炭素粒
子のメジアン径は、0.1〜10μmであることが好まし
い。Here, the median diameter of the carbon particles supporting the catalyst particles in the catalyst layer ink in the first step of applying the catalyst layer ink is preferably 0.1 to 10 μm.
【0017】また、塗布した触媒層インクを乾燥する第
2の工程は、乾燥温度の異なる少なくとも2段階以上の
工程で、触媒層インクを乾燥することが好ましい。さら
に、後段の乾燥温度が前段の乾燥温度と同じ、または高
いことが好ましい。In the second step of drying the applied catalyst layer ink, it is preferable to dry the catalyst layer ink in at least two or more steps having different drying temperatures. Further, it is preferable that the subsequent drying temperature is the same as or higher than the preceding drying temperature.
【0018】[0018]
【発明の実施の形態】本発明の燃料電池は、触媒層の面
内にガス拡散能を高めるための空隙を設けているため、
緻密に作製した触媒層を用いた電池に比べて、電池性能
が向上する。特に、高い電流密度で運転したときの性能
向上が顕著となる。また、発明者は、この空隙の割合を
0.1〜30%としたとき、触媒の利用率がおおきく低
下しないことを見いだした。この空隙は、基材に塗布さ
れた触媒インクの乾燥条件を制御することで作ることが
出来、空隙を作るために、別途特別な装置を必要としな
い。また、触媒粒子を担持した炭素粒子のメジアン径を
0.1〜10μmとしたとき、炭素粒子が極端に小さくな
る、あるいは大きくなるということがなく、安定した空
隙を持つ触媒層を作製することができた。BEST MODE FOR CARRYING OUT THE INVENTION In the fuel cell of the present invention, a void is provided in the plane of the catalyst layer for enhancing the gas diffusing ability.
Battery performance is improved as compared to a battery using a densely formed catalyst layer. In particular, the performance improvement when operating at a high current density becomes remarkable. Further, the inventors have found that when the ratio of the voids is 0.1 to 30%, the utilization rate of the catalyst does not significantly decrease. This gap can be created by controlling the drying conditions of the catalyst ink applied to the base material, and does not require any special device to create the gap. Also, the median diameter of the carbon particles carrying the catalyst particles is
When the thickness was 0.1 to 10 μm, the carbon particles did not become extremely small or large, and a catalyst layer having stable voids could be produced.
【0019】さらに乾燥温度を2段階以上にすることに
より、造孔剤等を入れることなく、触媒層面内に空隙を
作製することができた。Further, by setting the drying temperature to two or more stages, voids could be formed in the catalyst layer surface without adding a pore-forming agent or the like.
【0020】以下、本発明の燃料電池およびその製造方
法について図面を参照して述べる。まず、図1に、本発
明により形成された触媒層と、従来の触媒層との模式概
念図を示した。図1において、従来例の触媒層では触媒
層面内に空隙がなく、非常に緻密な塗膜になっているの
が分かる。これに対して本発明の触媒層は、触媒層面内
に空隙がランダムに存在し、これが触媒層の厚さ方向に
貫かれていることが分かる。これにより、触媒層厚さ方
向のガスの拡散が従来例よりも促進される。空隙の形状
は図1に示した以外でも問題なく、クラック形状や円状
でも良い。以下実施例に詳細を述べる。Hereinafter, the fuel cell of the present invention and a method of manufacturing the same will be described with reference to the drawings. First, FIG. 1 shows a schematic conceptual diagram of a catalyst layer formed according to the present invention and a conventional catalyst layer. In FIG. 1, it can be seen that the catalyst layer of the conventional example has no voids in the surface of the catalyst layer and has a very dense coating film. On the other hand, in the catalyst layer of the present invention, it can be seen that voids are randomly present in the surface of the catalyst layer and penetrate in the thickness direction of the catalyst layer. Thereby, the diffusion of the gas in the catalyst layer thickness direction is promoted as compared with the conventional example. The shape of the gap is not limited to that shown in FIG. 1 and may be a crack shape or a circular shape. Hereinafter, the embodiment will be described in detail.
【0021】(実施例1)まず、触媒層インクを作製し
た。50重量%白金担持カーボン粉末に、5重量%Na
fion溶液(アルドリッチ製)と、水とを所定の割合
で混合し、触媒層インクを作製した。この触媒層インク
を5つに分け、ビーズミル分散機(独国、GETZMA
NN社製:Dispermat SL−C12Z)を用
いて、白金担持カーボン粉末のメジアン径が0.05、
0.1、5、10,20μmの5種類のインクを作製
し、これを触媒インクA、B、C、DおよびEとした。Example 1 First, a catalyst layer ink was prepared. 50% by weight of platinum-supported carbon powder and 5% by weight of Na
Fion solution (manufactured by Aldrich) and water were mixed at a predetermined ratio to prepare a catalyst layer ink. This catalyst layer ink was divided into five parts, and a bead mill disperser (GETZMA, Germany)
NN: Dispermat SL-C12Z), the median diameter of the platinum-supported carbon powder is 0.05,
Five kinds of inks of 0.1, 5, 10, and 20 μm were prepared, and these were designated as catalyst inks A, B, C, D, and E.
【0022】これらのインクを、図2に示した塗布装置
1を用いて、基材4上に塗布した。基材は、ポリエチレ
ンテレフタレート(PET)のフィルム(厚み50μ
m、幅250mm)を使用した。初めに、タンク2に触
媒層インク6を入れた後、塗布装置の巻出し部3からP
ETフィルムを送り、塗布を行った。塗布は、タンクか
らスリット状のノズル7を経てフィルム上に塗布され
る。この時のノズルとフィルムのギャップは50〜25
0μm、送り速度は1m/分に設定した。触媒層が塗布
されたPETフィルムを、温度60℃に設定された乾燥
室8に送ることによりフィルム上に触媒層を形成した。These inks were applied on the substrate 4 using the coating apparatus 1 shown in FIG. The base material is a polyethylene terephthalate (PET) film (thickness 50μ).
m, width 250 mm). First, after the catalyst layer ink 6 is put into the tank 2, P
The ET film was fed and applied. The coating is performed on the film from a tank through a slit-shaped nozzle 7. At this time, the gap between the nozzle and the film is 50 to 25.
0 μm and the feed speed were set to 1 m / min. The PET layer coated with the catalyst layer was sent to a drying chamber 8 set at a temperature of 60 ° C. to form a catalyst layer on the film.
【0023】次に、触媒層インクAを用いて作製した触
媒層A(以下同様に、触媒層B、触媒層C、触媒層D、
触媒層Eとする)の面内空隙率を測定した。空隙率は画
像処理(2値化処理、測定範囲約30mm2、Imag
e Analyzer V10:東洋紡績株式会社)を
行い求めた。表1に触媒層A〜Eの空隙率を示す。Next, a catalyst layer A prepared using the catalyst layer ink A (hereinafter similarly referred to as a catalyst layer B, a catalyst layer C, a catalyst layer D,
The in-plane porosity of the catalyst layer E) was measured. The porosity is determined by image processing (binarization processing, measurement range about 30 mm2, Imag
e Analyzer V10: Toyobo Co., Ltd.). Table 1 shows the porosity of the catalyst layers A to E.
【0024】[0024]
【表1】 [Table 1]
【0025】これらの触媒層A〜Dを、高分子電解質膜
(Nafion112、デュポン製)を挟んで、ホット
プレスを用いて接合し、電極ー電解質接合体A〜Eを作
製した。次に、これらの電極−電解質接合体を、カーボ
ンペーパー(東レ製;TGP−H−120)とガスケッ
トを介して挟み込み、単電池A〜Eを作製した。これら
を単電池試験装置にセットし各電池特性を調べた。作製
した単電池には、燃料極に改質模擬ガス(二酸化炭素2
5%、一酸化炭素50ppm、水素バランスガス)を、
空気極には空気を流し、電池温度を80℃、燃料利用率
を80%、空気利用率を40%、加湿は改質模擬ガスを
75℃、空気を60℃の露点になるように調整した。These catalyst layers A to D were joined by a hot press with a polymer electrolyte membrane (Nafion 112, manufactured by Dupont) interposed therebetween, to produce electrode-electrolyte assemblies A to E. Next, these electrode-electrolyte assemblies were sandwiched between carbon paper (manufactured by Toray; TGP-H-120) via a gasket, thereby producing cells A to E. These were set in a unit cell test apparatus, and the characteristics of each battery were examined. In the fabricated cell, a reforming simulated gas (carbon dioxide 2
5%, carbon monoxide 50 ppm, hydrogen balance gas)
Air was passed through the air electrode, and the cell temperature was adjusted to 80 ° C, the fuel utilization rate to 80%, the air utilization rate to 40%, and the humidification was adjusted so that the reforming simulation gas was 75 ° C and the air was 60 ° C. .
【0026】図3に、それぞれの電池の電流−電圧特性
を比較して示した。これより空隙率が最も低い触媒層A
を用いた単電池Aの性能は他の電池に比べて、高電流密
度域での特性が低下していることが分かった。また、空
隙率が最も高い触媒層Eを用いた単電池Eの性能は、全
体的に電池特性が低下することが分かった。また、図3
における電流密度が0.7A/cm2時の各電池の電池
電圧と、各電池に用いている触媒層の空隙率の関係を図
4に示した。これより触媒層の面内空隙率が低すぎて
も、逆に高くなりすぎても電池性能が低下することが分
かった。これより触媒層の面内空隙率が0.1〜15%
程度で高性能な電池を提供できることが分かる。FIG. 3 shows the current-voltage characteristics of the respective batteries in comparison. Catalyst layer A having the lowest porosity than this
It has been found that the performance of the unit cell A using the battery has a lower characteristic in the high current density region than the other cells. In addition, it was found that the performance of the single cell E using the catalyst layer E having the highest porosity was deteriorated in battery characteristics as a whole. FIG.
FIG. 4 shows the relationship between the battery voltage of each battery when the current density was 0.7 A / cm 2 and the porosity of the catalyst layer used in each battery. From this, it was found that the battery performance was deteriorated when the in-plane porosity of the catalyst layer was too low or too high. Thus, the in-plane porosity of the catalyst layer is 0.1 to 15%.
It can be seen that a high-performance battery can be provided at a low level.
【0027】次に、触媒層インクCを用いて、乾燥温度
を40℃、60℃、80℃に設定して、同様に触媒層C
1,C2,C3を作製し、空隙率の測定を行った。この
結果、60℃では4%であった空隙率が乾燥温度40℃
のC1では2%、乾燥温度80℃のC3では6%となる
ことが分かった。これらの触媒層を用いて作製した電極
−電解質接合体の単電池性能を調べたところ、先の単電
池Cと同様の性能を示した。Next, using the catalyst layer ink C, the drying temperature was set at 40 ° C., 60 ° C., and 80 ° C.
1, C2 and C3 were prepared, and the porosity was measured. As a result, the porosity, which was 4% at 60 ° C., changed to a drying temperature of 40 ° C.
It was found that C1 was 2% and C3 at a drying temperature of 80 ° C. was 6%. When the cell performance of the electrode-electrolyte assembly manufactured using these catalyst layers was examined, the same performance as that of the cell C was shown.
【0028】以上のことにより、空隙率の小さい触媒層
では、高い電流密度で運転した時に、触媒層内に生成水
が滞留し、反応ガスの拡散を阻害してしまうため、電池
特性が低下したと考えられる。また、空隙率の高い触媒
層では、触媒層の厚みが全体的に大きくなり、高分子電
解質近傍での触媒が不足し、反応面積が低下してしまう
ためと考えられる。As described above, when the catalyst layer having a small porosity is operated at a high current density, the generated water stays in the catalyst layer and inhibits the diffusion of the reaction gas, thereby deteriorating the battery characteristics. it is conceivable that. In addition, it is considered that the catalyst layer having a high porosity has a large overall thickness of the catalyst layer, a shortage of catalyst near the polymer electrolyte, and a reduction in the reaction area.
【0029】この中間の空隙率を持つ触媒層では、適度
な空隙率(0.1〜15%)を保持しているため、高分
子電解質近傍での触媒量が不足することなく、電池反応
によって生成した生成水が、この空隙から速やかにガス
拡散層であるカーボンペーパーに排出され、反応ガスの
拡散を阻害しなくなるために高い電池特性を示したもの
と考えられる。In the catalyst layer having an intermediate porosity, an appropriate porosity (0.1 to 15%) is maintained. It is considered that the generated water was quickly discharged from the gap to the carbon paper as the gas diffusion layer, and did not hinder the diffusion of the reaction gas.
【0030】本方法を用いれば、触媒層インクのメジア
ン径を変え、触媒層の面内空隙率を制御することで触媒
の利用率を低下させずに、高性能な電池を得ることが出
来る。また、乾燥温度を制御することで、空隙率を変え
ることもできる。さらに、空隙率を制御することで燃料
電池の使用用途に合わせた設計も可能となる。本実施例
では、基材にPETフィルムを用いたが、これに限られ
るものではない。また、ガス拡散層となるカーボンペー
パー上に直接触媒層インクを塗布して作製することもで
きる。また、触媒組成、電極インクの組成、乾燥条件な
ども本実施例に限るものではなく、本発明が適応できる
ものであればどんなものでも構わない。According to this method, a high-performance battery can be obtained without changing the catalyst utilization rate by changing the median diameter of the catalyst layer ink and controlling the in-plane porosity of the catalyst layer. In addition, the porosity can be changed by controlling the drying temperature. Further, by controlling the porosity, it becomes possible to design the fuel cell in accordance with the intended use. In this embodiment, the PET film is used as the base material, but the present invention is not limited to this. Alternatively, it can be produced by directly coating the catalyst layer ink on the carbon paper to be the gas diffusion layer. Further, the composition of the catalyst, the composition of the electrode ink, the drying conditions, and the like are not limited to those in the present embodiment, but may be any as long as the present invention can be applied.
【0031】(実施例2)まず、実施例1で使用した塗
布装置1に付属している乾燥室を設計変更し、前段と後
段の2段に分け、乾燥温度を各々制御可能なようにし
た。次に、同じく実施例1で使用した触媒層インクBを
用い、他の条件は実施例1と同じにして、設計変更した
塗布装置1で塗布を行った。この時、乾燥条件を変え
て、触媒層B1〜B4を作製し、実施例1と同様に触媒
層面内の空隙率を測定した。この時の乾燥温度と触媒層
面内空隙率の関係を表2に示した。(Embodiment 2) First, the drying chamber attached to the coating apparatus 1 used in Embodiment 1 was redesigned so as to be divided into two stages, a former stage and a latter stage, so that the drying temperature could be controlled respectively. . Next, using the catalyst layer ink B used in Example 1 and applying the other conditions in the same manner as in Example 1, coating was performed using the coating apparatus 1 whose design was changed. At this time, the catalyst layers B1 to B4 were prepared under different drying conditions, and the porosity in the catalyst layer plane was measured in the same manner as in Example 1. Table 2 shows the relationship between the drying temperature and the porosity in the catalyst layer surface at this time.
【0032】[0032]
【表2】 [Table 2]
【0033】これにより、同じ触媒層インクを用いて
も、乾燥温度を制御することにより、触媒層の面内空隙
率を制御出来ることが分かった。これは乾燥条件を変え
ることで、触媒層中の高分子電解質と触媒担持カーボン
粒子の凝集性が変化し、触媒層面内のクラック状の空隙
が変化するためと考えられる。Thus, it was found that, even when the same catalyst layer ink was used, the in-plane porosity of the catalyst layer could be controlled by controlling the drying temperature. This is presumably because, by changing the drying conditions, the cohesion between the polymer electrolyte and the catalyst-supporting carbon particles in the catalyst layer changes, and crack-like voids in the catalyst layer surface change.
【0034】これらの触媒層B1〜B4を用いて、実施
例1と同様に電極−電解質接合体を作製し、これを単電
池B1〜B4にして電池特性を調べた。電池の試験条件
は実施例1と同じで行った。これらの単電池の電流−電
圧電池特性を図5に示す。Using these catalyst layers B1 to B4, an electrode-electrolyte assembly was prepared in the same manner as in Example 1, and these were used as single cells B1 to B4, and the battery characteristics were examined. The test conditions for the battery were the same as in Example 1. FIG. 5 shows the current-voltage battery characteristics of these cells.
【0035】これにより、触媒層面内の空隙率が小さい
触媒層B1を用いた単電池B1では、高電流密度域の特
性が低下することを見いだした。触媒層B1の場合、前
段の乾燥温度が低いために、空隙率の低い触媒層が形成
されるという利点はあるが、高い電流密度で運転した時
に、触媒層内に生成水が滞留し、反応ガスの拡散を阻害
してしまうため、電池の性能のが低下する。As a result, it has been found that, in the unit cell B1 using the catalyst layer B1 having a small porosity in the plane of the catalyst layer, the characteristics in the high current density region are reduced. In the case of the catalyst layer B1, since the drying temperature in the former stage is low, there is an advantage that a catalyst layer having a low porosity is formed. Since gas diffusion is hindered, the performance of the battery is reduced.
【0036】これとは逆に、触媒層B4の場合、前段の
乾燥温度が後段よりも高くなっているために、前段で急
激な溶媒揮発が発生し、触媒層面内の空隙率が大きくな
る。これにより、空隙率は大きくなるが、触媒層の厚み
が全体的に大きくなり、高分子電解質近傍での触媒が不
足し、反応面積が低下してしまう。このため、電池性能
が低下すると考えらる。Conversely, in the case of the catalyst layer B4, since the drying temperature in the former stage is higher than that in the latter stage, rapid solvent volatilization occurs in the former stage, and the porosity in the catalyst layer surface increases. As a result, the porosity is increased, but the thickness of the catalyst layer is increased as a whole, the catalyst is insufficient in the vicinity of the polymer electrolyte, and the reaction area is reduced. For this reason, it is considered that the battery performance decreases.
【0037】この中間の空隙率を持つ触媒層B2、B3
では、前段の乾燥温度が後段よりも低く設定しており、
適度な空隙率を持つ触媒層が得られ、電池反応によって
生成した生成水が、この空隙から速やかに、ガス拡散層
であるカーボンペーパーに排出されることにより、反応
ガスの拡散を阻害しなくなるため、高い電池特性を示し
たものと考えられる。The catalyst layers B2, B3 having an intermediate porosity
In, the drying temperature of the former stage is set lower than that of the latter stage,
Since a catalyst layer having an appropriate porosity is obtained, and the water generated by the battery reaction is quickly discharged from the voids to the carbon paper serving as the gas diffusion layer, the diffusion of the reaction gas is not hindered. It is considered that the battery exhibited high battery characteristics.
【0038】本方法を用いれば、触媒層インク塗布後の
乾燥温度を制御することにより、適度な空隙率を有する
触媒層を得ることが出来る。これにより従来より高性能
な電池を提供できる。By using this method, a catalyst layer having an appropriate porosity can be obtained by controlling the drying temperature after coating the catalyst layer ink. As a result, a battery with higher performance than before can be provided.
【0039】[0039]
【発明の効果】以上のように、本発明の燃料電池は、触
媒層面内にガス拡散能を高めるための空隙を設けている
ため、緻密に作製した空隙率の小さい触媒層を用いた電
池に比べて、電池性能が向上する。特に、高電流密度運
転域での性能向上が顕著となる。また、触媒の利用率を
低下させることなく電池性能を向上できる。As described above, the fuel cell of the present invention is provided with a void in the surface of the catalyst layer for enhancing the gas diffusivity. In comparison, the battery performance is improved. In particular, the performance improvement in the high current density operation range becomes remarkable. Further, the battery performance can be improved without lowering the utilization rate of the catalyst.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の燃料電池の構成要素である触媒層の模
式概念を示す図FIG. 1 is a diagram showing a schematic concept of a catalyst layer which is a component of the fuel cell of the present invention.
【図2】本発明の第1の実施例で用いた製造装置を示す
図FIG. 2 is a diagram showing a manufacturing apparatus used in the first embodiment of the present invention.
【図3】本発明の第1の実施例の燃料電池の第1の特性
を示す図FIG. 3 is a diagram showing first characteristics of the fuel cell according to the first embodiment of the present invention;
【図4】本発明の第1の実施例の燃料電池の第2の特性
を示す図FIG. 4 is a diagram showing a second characteristic of the fuel cell according to the first embodiment of the present invention.
【図5】本発明の第2の実施例の燃料電池の第1の特性
を示す図FIG. 5 is a diagram showing first characteristics of a fuel cell according to a second embodiment of the present invention.
1 塗布装置 2 タンク 3 巻だし部 4 基材 5 塗布ロール 6 触媒層インク 7 ノズル 8 乾燥室 9 ガイドロール 10 巻き取り部 DESCRIPTION OF SYMBOLS 1 Coating apparatus 2 Tank 3 Unwinding part 4 Substrate 5 Coating roll 6 Catalyst layer ink 7 Nozzle 8 Drying chamber 9 Guide roll 10 Winding part
───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 誠 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 森田 純司 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 菅原 靖 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 行天 久朗 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H018 AA06 AS02 AS03 BB06 BB08 BB12 CC06 DD08 EE03 EE05 EE17 EE18 HH01 5H026 AA06 BB03 BB04 CC01 CC03 CX04 EE02 EE05 EE18 HH01 HH08 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Makoto Uchida 1006 Kadoma Kadoma, Kazuma City, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. 72) Inventor Yasushi Sugawara 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. AS03 BB06 BB08 BB12 CC06 DD08 EE03 EE05 EE17 EE18 HH01 5H026 AA06 BB03 BB04 CC01 CC03 CX04 EE02 EE05 EE18 HH01 HH08
Claims (3)
記水素イオン伝導性高分子電解質膜の両側に配置した一
対の電極とを具備した単電池を、前記電極の一方に水素
を含む燃料ガスを供給排出し、前記電極の他方に酸化剤
ガスを供給排出するためのガス供給溝を形成した一対の
導電性セパレータで挟持した高分子電解質型燃料電池に
おいて、 前記電極は前記水素イオン伝導性高分子電解質膜と接触
した触媒層と、前記触媒層及び前記導電性セパレータに
接触したガス拡散層とを有し、前記触媒層は前記ガス拡
散層と接触する面から前記触媒層の内部に向かって前記
燃料ガスまたは前記酸化剤ガスが流通するガス流通用空
隙を有することを特徴とする高分子電解質型燃料電池。1. A cell comprising a hydrogen ion conductive polymer electrolyte membrane and a pair of electrodes disposed on both sides of the hydrogen ion conductive polymer electrolyte membrane, a fuel gas containing hydrogen on one of the electrodes. And a polymer electrolyte fuel cell sandwiched between a pair of conductive separators formed with a gas supply groove for supplying and discharging an oxidizing gas to the other of the electrodes, wherein the electrode has a high hydrogen ion conductivity. A catalyst layer in contact with the molecular electrolyte membrane, and a gas diffusion layer in contact with the catalyst layer and the conductive separator, wherein the catalyst layer is from the surface in contact with the gas diffusion layer toward the inside of the catalyst layer. A polymer electrolyte fuel cell having a gas circulation gap through which the fuel gas or the oxidizing gas flows.
た炭素粒子と水素イオン伝導性高分子電解質と溶媒とを
少なくとも含む触媒インクを塗布する塗布工程と、前記
塗布工程を経た触媒インクを乾燥する乾燥工程とを有
し、前記乾燥工程は加熱温度の異なる少なくとも2段階
以上の乾燥工程を有することを特徴とする請求項1記載
の高分子電解質型燃料電池の製造方法。2. A method for forming a catalyst layer, comprising: applying a catalyst ink containing at least carbon particles carrying catalyst particles, a hydrogen ion conductive polymer electrolyte, and a solvent; 2. The method for producing a polymer electrolyte fuel cell according to claim 1, further comprising a drying step of drying, wherein the drying step includes at least two or more drying steps having different heating temperatures.
粒子のメジアン径が、0.1μm以上でかつ10μm以下で
あることを特徴とする請求項3に記載の高分子電解質型
燃料電池の製造方法。3. The method for producing a polymer electrolyte fuel cell according to claim 3, wherein the median diameter of the carbon particles carrying the catalyst particles in the catalyst ink is 0.1 μm or more and 10 μm or less. .
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001064573A JP4876318B2 (en) | 2001-03-08 | 2001-03-08 | Polymer electrolyte fuel cell and manufacturing method thereof |
CNB2006100819403A CN100438185C (en) | 2001-03-08 | 2002-03-05 | High polymer electrolyte type fuel cell and manufacturing method therefor |
EP02702748A EP1357617A4 (en) | 2001-03-08 | 2002-03-05 | Gas diffusion electrode and fuel cell using this |
PCT/JP2002/002045 WO2002073721A1 (en) | 2001-03-08 | 2002-03-05 | Gas diffusion electrode and fuel cell using this |
KR10-2002-7014600A KR100474941B1 (en) | 2001-03-08 | 2002-03-05 | Gas diffusion electrode and fuel cell using this |
US10/296,338 US6991870B2 (en) | 2001-03-08 | 2002-03-05 | Gas diffusion electrode and fuel cell using this |
CNB028005155A CN1263186C (en) | 2001-03-08 | 2002-03-05 | Gas diffusion electrode and fuel cell using this |
KR10-2004-7018722A KR100497302B1 (en) | 2001-03-08 | 2002-03-05 | Gas diffusion electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001064573A JP4876318B2 (en) | 2001-03-08 | 2001-03-08 | Polymer electrolyte fuel cell and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002270187A true JP2002270187A (en) | 2002-09-20 |
JP4876318B2 JP4876318B2 (en) | 2012-02-15 |
Family
ID=18923370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001064573A Expired - Lifetime JP4876318B2 (en) | 2001-03-08 | 2001-03-08 | Polymer electrolyte fuel cell and manufacturing method thereof |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4876318B2 (en) |
CN (1) | CN100438185C (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004192950A (en) * | 2002-12-11 | 2004-07-08 | Mitsubishi Electric Corp | Solid polymer fuel cell and its manufacturing method |
JP2007103089A (en) * | 2005-09-30 | 2007-04-19 | Dainippon Printing Co Ltd | Electrode catalyst layer, transfer sheet for manufacturing catalyst layer-electrolyte film laminate, and catalyst layer-electrolyte film laminate |
JP2007179893A (en) * | 2005-12-28 | 2007-07-12 | Dainippon Printing Co Ltd | Catalyst layer-electrolyte membrane laminate, and manufacturing method of same |
CN100388539C (en) * | 2004-09-01 | 2008-05-14 | 新源动力股份有限公司 | Composite catalytic layer proton exchange membrane fuel cell electrode and its preparing method |
JP2008243768A (en) * | 2007-03-29 | 2008-10-09 | Electric Power Dev Co Ltd | Solid polymer electrolyte fuel cell and membrane electrode assembly thereof |
WO2008153113A1 (en) * | 2007-06-12 | 2008-12-18 | Canon Kabushiki Kaisha | Method of manufacturing membrane electrode assembly, method of manufacturing fuel cell, membrane electrode assembly, and fuel cell |
JP2009101351A (en) * | 2007-10-05 | 2009-05-14 | Canon Inc | Production method of catalyst layer |
JP2009266774A (en) * | 2008-04-30 | 2009-11-12 | Toppan Printing Co Ltd | Method for manufacturing membrane-electrode assembly, membrane-electrode assembly, and polymer electrolyte fuel cell |
JP2010123371A (en) * | 2008-11-19 | 2010-06-03 | Toppan Printing Co Ltd | Manufacturing method of membrane electrode assembly |
JP2012243450A (en) * | 2011-05-17 | 2012-12-10 | Toshiba Fuel Cell Power Systems Corp | Solid polymer fuel cell |
JP2013073892A (en) * | 2011-09-29 | 2013-04-22 | Toppan Printing Co Ltd | Method for manufacturing membrane electrode assembly for fuel cell |
JP2013161737A (en) * | 2012-02-08 | 2013-08-19 | Toyota Motor Corp | Membrane electrode assembly, fuel cell, and method for manufacturing membrane electrode assembly |
JP2017084456A (en) * | 2015-10-22 | 2017-05-18 | 本田技研工業株式会社 | Fuel cell |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018062622A1 (en) * | 2016-09-27 | 2018-04-05 | 가드넥 주식회사 | Gas diffusion layer comprising porous carbonaceous film layer for fuel cell |
CN111834638B (en) * | 2019-04-19 | 2022-04-15 | 紫石能源有限公司 | Gas diffusion electrode, preparation method and electrolysis device |
CN112886042A (en) * | 2021-01-29 | 2021-06-01 | 郑州大学 | Electrolyte structure and method for improving long-term stability of solid oxide fuel cell by using same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02162650A (en) * | 1988-12-15 | 1990-06-22 | Mitsubishi Electric Corp | Manufacture of catalyst |
JPH0652871A (en) * | 1992-06-02 | 1994-02-25 | Hitachi Ltd | Solid highpolymer fuel cell |
JPH09274924A (en) * | 1996-02-05 | 1997-10-21 | Honda Motor Co Ltd | Manufacture of electrode structure for fuel cell |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08264192A (en) * | 1995-03-23 | 1996-10-11 | Fuji Electric Co Ltd | Electrode base material for fuel cell and its manufacture |
JPH09283153A (en) * | 1996-04-09 | 1997-10-31 | Ishikawajima Harima Heavy Ind Co Ltd | Solid high molecular electrolyte fuel cell |
WO1998029916A1 (en) * | 1996-12-27 | 1998-07-09 | Japan Storage Battery Co., Ltd. | Gas diffusion electrode, solid polymer electrolyte membrane, method of producing them, and solid polymer electrolyte type fuel cell using them |
KR100201572B1 (en) * | 1997-04-18 | 1999-06-15 | 최수현 | Method producing electrode for fuel cell with method mixing coating and rolling |
JP4528386B2 (en) * | 1999-08-18 | 2010-08-18 | 株式会社東芝 | Solid polymer fuel cell and manufacturing method thereof |
-
2001
- 2001-03-08 JP JP2001064573A patent/JP4876318B2/en not_active Expired - Lifetime
-
2002
- 2002-03-05 CN CNB2006100819403A patent/CN100438185C/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02162650A (en) * | 1988-12-15 | 1990-06-22 | Mitsubishi Electric Corp | Manufacture of catalyst |
JPH0652871A (en) * | 1992-06-02 | 1994-02-25 | Hitachi Ltd | Solid highpolymer fuel cell |
JPH09274924A (en) * | 1996-02-05 | 1997-10-21 | Honda Motor Co Ltd | Manufacture of electrode structure for fuel cell |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004192950A (en) * | 2002-12-11 | 2004-07-08 | Mitsubishi Electric Corp | Solid polymer fuel cell and its manufacturing method |
CN100388539C (en) * | 2004-09-01 | 2008-05-14 | 新源动力股份有限公司 | Composite catalytic layer proton exchange membrane fuel cell electrode and its preparing method |
JP2007103089A (en) * | 2005-09-30 | 2007-04-19 | Dainippon Printing Co Ltd | Electrode catalyst layer, transfer sheet for manufacturing catalyst layer-electrolyte film laminate, and catalyst layer-electrolyte film laminate |
JP2007179893A (en) * | 2005-12-28 | 2007-07-12 | Dainippon Printing Co Ltd | Catalyst layer-electrolyte membrane laminate, and manufacturing method of same |
JP2008243768A (en) * | 2007-03-29 | 2008-10-09 | Electric Power Dev Co Ltd | Solid polymer electrolyte fuel cell and membrane electrode assembly thereof |
US8765323B2 (en) | 2007-06-12 | 2014-07-01 | Canon Kabushiki Kaisha | Membrane electrode assembly and fuel cell with dendritic shape catalyst layer |
WO2008153113A1 (en) * | 2007-06-12 | 2008-12-18 | Canon Kabushiki Kaisha | Method of manufacturing membrane electrode assembly, method of manufacturing fuel cell, membrane electrode assembly, and fuel cell |
JP2009101351A (en) * | 2007-10-05 | 2009-05-14 | Canon Inc | Production method of catalyst layer |
US7741243B2 (en) | 2007-10-05 | 2010-06-22 | Canon Kabushiki Kaisha | Production method of catalyst layer |
JP2009266774A (en) * | 2008-04-30 | 2009-11-12 | Toppan Printing Co Ltd | Method for manufacturing membrane-electrode assembly, membrane-electrode assembly, and polymer electrolyte fuel cell |
JP2010123371A (en) * | 2008-11-19 | 2010-06-03 | Toppan Printing Co Ltd | Manufacturing method of membrane electrode assembly |
JP2012243450A (en) * | 2011-05-17 | 2012-12-10 | Toshiba Fuel Cell Power Systems Corp | Solid polymer fuel cell |
JP2013073892A (en) * | 2011-09-29 | 2013-04-22 | Toppan Printing Co Ltd | Method for manufacturing membrane electrode assembly for fuel cell |
JP2013161737A (en) * | 2012-02-08 | 2013-08-19 | Toyota Motor Corp | Membrane electrode assembly, fuel cell, and method for manufacturing membrane electrode assembly |
JP2017084456A (en) * | 2015-10-22 | 2017-05-18 | 本田技研工業株式会社 | Fuel cell |
Also Published As
Publication number | Publication date |
---|---|
JP4876318B2 (en) | 2012-02-15 |
CN1848503A (en) | 2006-10-18 |
CN100438185C (en) | 2008-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100474941B1 (en) | Gas diffusion electrode and fuel cell using this | |
JP6408562B2 (en) | Self-humidifying membrane / electrode assembly and fuel cell equipped with the same | |
JP3866077B2 (en) | Method for preparing a membrane electrode assembly | |
JP5122149B2 (en) | Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell | |
US7947411B1 (en) | Membrane and electrode assembly and method of producing the same, and polymer electrolyte membrane fuel cell | |
JP4876318B2 (en) | Polymer electrolyte fuel cell and manufacturing method thereof | |
US8614028B2 (en) | Membrane and electrode assembly and method of producing the same, and polymer electrolyte membrane fuel cell | |
JP2010123371A (en) | Manufacturing method of membrane electrode assembly | |
JP2003109606A (en) | High molecular electrolyte fuel cell and method of manufacturing the same | |
CN100377401C (en) | Ink for forming catalyst layer, and electrode and membrane-electrode assembly using the same | |
JP4896393B2 (en) | Method for producing fuel cell electrode paste, method for producing fuel cell electrode, method for producing membrane electrode assembly of fuel cell, and method for producing fuel cell system | |
JP2000182626A (en) | Fuel cell electrode, manufacture thereof and fuel cell | |
JP5425441B2 (en) | FORMING MATERIAL FOR FUEL CELL ELECTRODE LAYER, MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL, FUEL CELL, METHOD FOR PRODUCING FORMING MATERIAL FOR ELECTRODE LAYER FOR CELL CELL, | |
JP4940657B2 (en) | Fuel cell electrode | |
JP2004087267A (en) | Electrocatalyst for fuel cell, its manufacturing method and manufacturing device | |
JP2004164903A (en) | Polymer electrolyte type fuel cell, and manufacturing method of its electrode | |
JP2008311181A (en) | Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly | |
JP2009104905A (en) | Paste for electrode of fuel cell, electrode, membrane electrode assembly, and method for manufacturing fuel cell system | |
KR20220086481A (en) | Membrane-Electrode Assembly and Method for Manufacturing The Same | |
JP2009176545A (en) | Method of manufacturing fuel cell | |
JP4506165B2 (en) | Membrane electrode assembly and method of using the same | |
JP2019186210A (en) | Electrode catalyst layer, membrane-electrode assembly and solid polymer fuel cell | |
JP2006019174A (en) | Gas diffusion electrode, membrane-electrode assembly, its manufacturing method, and solid polymer fuel cell | |
JP2010272356A (en) | Membrane-electrode assembly for fuel cell, method of manufacturing the same, and fuel cell | |
JP2019186191A (en) | Electrode catalyst layer, membrane-electrode assembly and solid polymer fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080123 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20080213 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110823 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111011 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111101 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111114 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4876318 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141209 Year of fee payment: 3 |
|
EXPY | Cancellation because of completion of term |