JP2005174620A - Membrane electrode assembly and fuel cell using this - Google Patents

Membrane electrode assembly and fuel cell using this Download PDF

Info

Publication number
JP2005174620A
JP2005174620A JP2003409740A JP2003409740A JP2005174620A JP 2005174620 A JP2005174620 A JP 2005174620A JP 2003409740 A JP2003409740 A JP 2003409740A JP 2003409740 A JP2003409740 A JP 2003409740A JP 2005174620 A JP2005174620 A JP 2005174620A
Authority
JP
Japan
Prior art keywords
membrane
electrolyte membrane
electrode assembly
polymer electrolyte
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003409740A
Other languages
Japanese (ja)
Inventor
Hidetoshi Honbou
英利 本棒
Shin Morishima
慎 森島
Akira Mogi
亮 茂木
Shuichi Suzuki
修一 鈴木
Yoshiyuki Takamori
良幸 高森
Masahiko Ogino
雅彦 荻野
Kosuke Kuwabara
孝介 桑原
Takuji Ando
拓司 安藤
Akihiro Miyauchi
昭浩 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003409740A priority Critical patent/JP2005174620A/en
Publication of JP2005174620A publication Critical patent/JP2005174620A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane electrode assembly (MEA) in which a problem that surface unevenness is hard to be controlled conventionally, it is difficult to form unevenness evenly on the membrane surface, and furthermore even in every patent document, the unevenness shape is to be described as a mere peak and valley shape, and the unevenness is larger and the surface area can not be increased, and in order to enhance characteristics of the fuel cell, the electrodes and an electrolyte membrane interface are made to be regularly uneven state, and the joining force of the electrodes and the electrolyte membrane is made stronger, and at the same time the interface is three-dimensional and the reaction surface area is increased, and provide a solid polymer fuel cell using this. <P>SOLUTION: This membrane electrode assembly is constituted by using the polyelectrolyte membrane having minute projection groups formed by plastic working on one face or both faces of the polyelectrolyte membrane. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、新規な膜電極接合体及びこれを用いた固体高分子形燃料電池に関する。   The present invention relates to a novel membrane electrode assembly and a polymer electrolyte fuel cell using the same.

高分子電解質膜を用いた燃料電池は、近年電解質膜や触媒技術の発展により性能の向上が著しくなり、低公害自動車用電源や高効率発電方法として注目を集めている。高分子電解質膜を用いた燃料電池の表面に酸化,還元触媒を有する反応層を形成した構造を有している。この場合、高分子電解質膜の表面に凹凸を形成し表面積を増大させると、電気化学反応の効率が向上することが知られている。このような方法としては、特許文献1に開示された化学的,機械的な研磨法等により膜表面に凹凸を付ける方法、特許文献2に開示された固体電解質材料と熱分解材料との混合成形体を焼成してその表面に凹凸を形成する方法、特許文献3に開示された表面に凹凸を有する金属箔を圧着し、その金属箔を溶解除去する方法等が知られている。   In recent years, fuel cells using polymer electrolyte membranes have been remarkably improved in performance due to the development of electrolyte membranes and catalyst technology, and are attracting attention as a low-pollution automobile power source and a high-efficiency power generation method. It has a structure in which a reaction layer having an oxidation / reduction catalyst is formed on the surface of a fuel cell using a polymer electrolyte membrane. In this case, it is known that when the surface area is increased by forming irregularities on the surface of the polymer electrolyte membrane, the efficiency of the electrochemical reaction is improved. Examples of such a method include a method for forming irregularities on the film surface by a chemical and mechanical polishing method disclosed in Patent Document 1, and a mixed molding of a solid electrolyte material and a pyrolysis material disclosed in Patent Document 2. There are known a method of firing a body to form irregularities on the surface, a method of pressure bonding a metal foil having irregularities on the surface disclosed in Patent Document 3, and dissolving and removing the metal foil.

特開平9−320616号公報JP-A-9-320616 特開平9−277226号公報Japanese Patent Laid-Open No. 9-277226 特開2003−68328号公報JP 2003-68328 A

しかしながら、いずれの特許文献においても、表面の凹凸を制御し難く、凹凸を膜表面に均一に形成することが困難である。更に、いずれ特許文献においても、凹凸の形状が山谷状にしかならず、凹凸がより大きく、表面積をさらに増加させることができなかった。   However, in any of the patent documents, it is difficult to control the surface unevenness, and it is difficult to form the unevenness uniformly on the film surface. Further, in any of the patent documents, the shape of the unevenness was only a mountain-valley shape, the unevenness was larger, and the surface area could not be further increased.

本発明の目的は燃料電池の特性を向上させるため、電極と電解質膜界面を規則正しく凹凸状として、電極と電解質膜の接合力を強化すると同時に、界面が立体的で反応表面積を増加させた膜電極接合体(MEA)、及びこれを用いた固体高分子形燃料電池を提供することにある。   In order to improve the characteristics of a fuel cell, the object of the present invention is to provide a membrane electrode in which the interface between the electrode and the electrolyte membrane is regularly uneven, thereby strengthening the bonding force between the electrode and the electrolyte membrane, and at the same time, the interface is three-dimensional and the reaction surface area is increased. An object of the present invention is to provide an assembly (MEA) and a polymer electrolyte fuel cell using the same.

本発明は、高分子電解質膜の片面又は両面に、塑性加工によって形成された微小突起群を有することを特徴とする燃料電池用電解質膜にある。   The present invention resides in a fuel cell electrolyte membrane characterized by having a group of minute protrusions formed by plastic working on one side or both sides of a polymer electrolyte membrane.

前記微小突起群は所定の平面形状に従って形成され、柱状であること、更に、直径が
0.3μm〜50μm、高さが0.3μm〜50μmであり、その高さ(H)に対する相当直径(D)の比(H/D)が1より大きく、5〜100が好ましく、更に5〜30とすることが好ましい。
The microprotrusions are formed according to a predetermined planar shape, are columnar, have a diameter of 0.3 μm to 50 μm, a height of 0.3 μm to 50 μm, and an equivalent diameter (D) with respect to the height (H) ) Ratio (H / D) is greater than 1, preferably 5 to 100, and more preferably 5 to 30.

前記微小突起群の形状として、先端部の相当直径が柱状突起群の底面部の相当直径より小さいこと、形成された根元から先端部に向けて細くなる部分を有し、熱可塑性高分子材料からなることが好ましい。本発明において、柱状微小突起の相当直径とは、突起の中間位置における相当直径である。なお、相当直径という語を用いたのは、突起の断面が必ずしも円形ではなく、楕円,多角形,非対称形などの場合があるので、これらを全て包含するために相当直径とした。   As the shape of the microprojection group, the equivalent diameter of the tip portion is smaller than the equivalent diameter of the bottom surface portion of the columnar projection group, and has a portion that narrows from the formed root toward the tip portion, and is made of a thermoplastic polymer material. It is preferable to become. In the present invention, the equivalent diameter of the columnar microprotrusions is an equivalent diameter at an intermediate position of the protrusions. The term equivalent diameter is used because the cross section of the protrusion is not necessarily circular, but may be an ellipse, a polygon, an asymmetric shape, and the like.

又、本発明は、高分子電解質膜の片面又は両面に、塑性加工によって微小突起群を形成することを特徴とする燃料電池用電解質膜の製造方法にある。   The present invention is also directed to a method for producing an electrolyte membrane for a fuel cell, wherein a group of minute protrusions is formed by plastic working on one or both sides of a polymer electrolyte membrane.

更に、本発明は、高分子電解質膜の片面又は両面に、所定の平面パターンの凹部を有する成形型を押圧し、次いで前記凹部内に形成された前記高分子電解質膜の凸部を引き伸ばしながら前記成形型を前記高分子電解質膜から引き剥がし、微小突起群を形成することを特徴とする燃料電池用電解質膜の製造方法にある。凹部の直径が10μm以下であることが好ましい。   Furthermore, the present invention provides a method of pressing a molding die having a concave portion of a predetermined plane pattern on one or both sides of the polymer electrolyte membrane, and then stretching the convex portion of the polymer electrolyte membrane formed in the concave portion. In the method for producing an electrolyte membrane for a fuel cell, the mold is peeled off from the polymer electrolyte membrane to form a group of minute protrusions. The diameter of the recess is preferably 10 μm or less.

本発明は、高分子電解質膜と、該電解質膜の両面側表面に担体に担持されて形成された各々異なった種類の触媒層と、該各々の触媒層に接して形成された拡散層と、一方の前記拡散層に接して形成されたアノード電極と、他方の前記拡散層に接して形成されたカソード電極とを有する燃料電池において、前記高分子電解質膜は、その表面に微小突起群が塑性加工によって形成され、前記微小突起群に触媒が前記担体に担持されて形成されていることを特徴とする。   The present invention includes a polymer electrolyte membrane, different types of catalyst layers formed on both surfaces of the electrolyte membrane supported by a carrier, diffusion layers formed in contact with the respective catalyst layers, In a fuel cell having an anode electrode formed in contact with one of the diffusion layers and a cathode electrode formed in contact with the other diffusion layer, the polymer electrolyte membrane has a group of microprojections formed on its surface. It is formed by processing, and the catalyst is supported on the carrier and formed on the microprojection group.

前記担体が前記高分子電解質膜の炭化によって形成されていること、前記拡散層が炭素シートであることが好ましい。   It is preferable that the carrier is formed by carbonization of the polymer electrolyte membrane, and the diffusion layer is a carbon sheet.

本発明において高分子電解質膜とは、高分子骨格中にイオン交換能を有する基を持つ重合体を成膜したもの、あるいは高分子膜中にイオン交換能を有する物質を含ませてなるものの総称であり、陽イオン交換膜と陰イオン交換膜に大別される。なお、両交換膜を接合した膜も存在する。陽イオン交換膜としては例えば、スルホン酸基,カルボン酸基,リン酸基を膜中の高分子鎖に有するイオン交換膜,高分子膜中に硫酸,スルホン酸類,リン酸類,カルボン酸類や固体酸の微粒子等の酸性物質を含ませたもの等が挙げられる。   In the present invention, the polymer electrolyte membrane is a general term for a polymer film having a polymer having a group having ion exchange ability or a substance having an ion exchange ability contained in the polymer film. It is roughly divided into a cation exchange membrane and an anion exchange membrane. There are also membranes in which both exchange membranes are joined. Examples of the cation exchange membrane include an ion exchange membrane having a sulfonic acid group, a carboxylic acid group, and a phosphoric acid group in the polymer chain in the membrane, and sulfuric acid, sulfonic acids, phosphoric acids, carboxylic acids and solid acids in the polymer membrane. And those containing acidic substances such as fine particles.

また陰イオン交換膜としては例えば、アミノ基,水酸化第四アンモニウム,グアニジン基等の塩基性基を有する高分・子膜,膜中に固体塩基を分散させた膜等が挙げられる。また、膜中の酸又は塩基部分を塩にしたものや、塩を含浸させたものもある。   Examples of the anion exchange membrane include a polymer molecule having a basic group such as an amino group, quaternary ammonium hydroxide, and guanidine group, and a membrane in which a solid base is dispersed in the membrane. In addition, there are those in which the acid or base portion in the film is made into a salt, and those in which the salt is impregnated.

燃料電池用イオン交換膜として最も典型的なものとして、ポリパーフルオロスルホン酸を成膜した、例えば米国デュポン社製;商品名ナフィオン,旭硝子(株)製:商品名フレミオン,旭化成工業(株)製:商品名アシプレックス等が挙げられる。   As the most typical ion exchange membrane for fuel cells, a polyperfluorosulfonic acid film is formed, for example, manufactured by DuPont, USA; trade name Nafion, Asahi Glass Co., Ltd .: trade name Flemion, Asahi Kasei Kogyo Co., Ltd. : Product name Aciplex and the like.

本発明により製造された表面が粗面化された高分子電解質膜を、燃料電池に用いると反応効率が向上し、その結果電池出力等の性能が向上する。この理由としては、膜の表面に極めて大きな凹凸を形成でき、膜表面積が大きく増加し、その結果、膜表面における電気化学的反応により生成したイオンを効率良く溶かし込む事ができるためと考えられる。本発明の高分子電解質膜はフィルムやシートも含むものである。   When the polymer electrolyte membrane having a roughened surface produced according to the present invention is used in a fuel cell, the reaction efficiency is improved, and as a result, the performance such as battery output is improved. The reason is considered to be that extremely large irregularities can be formed on the surface of the film, and the surface area of the film is greatly increased. As a result, ions generated by an electrochemical reaction on the film surface can be efficiently dissolved. The polymer electrolyte membrane of the present invention includes a film and a sheet.

本発明の微小突起群を備えたフィルムまたは基板は、特定の平面形状を有する凹部(以下、ピットと称する)を形成した微小成形型(精密金型)を用いて、熱可塑性の高分子電解質膜に押圧し、ピット群の型に従ってパターンを形成する。成形型を高分子電解質膜から引き離すときに、ピットに入り込んだ熱可塑性樹脂が引き伸ばされて、所望の平面形状を有する微小突起群を形成することができる。特にモールド(成形型)の凹部面積と深さの比を変えることによって、突起物の高さの調整が可能となり、モールドに形成する凹部の位置と開口面積によって突起物の位置と底面積を調整できる。モールド(成形型)の材質は特に限定されないが、加工性の優れたニッケル,シリコンなどが挙げられる。   The film or substrate provided with the microprojection group of the present invention is a thermoplastic polymer electrolyte membrane using a micromolding die (precision mold) in which concave portions (hereinafter referred to as pits) having a specific planar shape are formed. To form a pattern according to the type of pit group. When the mold is pulled away from the polymer electrolyte membrane, the thermoplastic resin that has entered the pit is stretched to form a group of microprojections having a desired planar shape. In particular, the height of the protrusion can be adjusted by changing the ratio of the recess area and depth of the mold (molding die), and the position and bottom area of the protrusion can be adjusted by the position and opening area of the recess formed in the mold. it can. The material of the mold (molding die) is not particularly limited, and examples thereof include nickel and silicon that are excellent in workability.

微小突起群を構成する突起物は、先端部の相当直径よりも底面部の相当直径がわずかに大きく、樹脂製の微小突起物の自立性,自己支持性を確保することが望ましい。また、微小突起物は、形成の根元から先端部に向けて細くなる部分を有し、一体に形成していることが望ましい。   It is desirable that the projections constituting the microprojection group have a slightly larger equivalent diameter at the bottom surface than the equivalent diameter at the tip, and ensure the self-supporting and self-supporting properties of the resin-made microprojections. Moreover, it is desirable that the microprojections have a portion that becomes narrower from the base of formation toward the tip, and are formed integrally.

本発明の微小突起物集合体は、微小突起物を密集した構造とすることができるため、これにより個々の微小突起物がつぶれにくく、取れにくい性質とすることが可能である。   Since the microprojection aggregate of the present invention can have a structure in which microprojections are densely packed, individual microprojections can be made difficult to collapse and difficult to be removed.

熱可塑性樹脂の薄膜に前述の成形型を押し付け、これを引き剥がす際に、ピット内に圧入された樹脂が引き伸ばされて、ピットよりもわずかに小さい、しかしピット深さよりも長い微小突起物群が形成される。どの程度の相当直径でどの程度の長さの微小突起になるかは、用いる樹脂の種類,物性(分子量など),成形条件(ピット深さ,温度,成形圧力など)によって変わるので、あらかじめ種々の実験によって、確認しておくのが良い。   When the aforementioned mold is pressed against the thin film of thermoplastic resin and peeled off, the resin pressed into the pit is stretched to form a group of microprojections slightly smaller than the pit but longer than the pit depth. It is formed. How much equivalent diameter and length of micro-projections varies depending on the type of resin used, physical properties (molecular weight, etc.), and molding conditions (pit depth, temperature, molding pressure, etc.). It is good to confirm by experiment.

本発明によれば、燃料電池の特性として、電極と電解質膜の接合力が増し耐久性向上すると共に、反応表面の凹凸が大きく発電効率を向上する。   According to the present invention, as the characteristics of the fuel cell, the bonding force between the electrode and the electrolyte membrane is increased to improve the durability, and the unevenness of the reaction surface is large to improve the power generation efficiency.

以下に、本発明を実施するための最良の形態を説明する。なお、本発明は、以下に示す実施例に限定されるものではない。   The best mode for carrying out the present invention will be described below. In addition, this invention is not limited to the Example shown below.

図1は高分子電解質膜の片面に形成した突起物集合体の走査型電子顕微鏡によって観察した図である。図1に示すように、突起物集合体は多数の極めて微細な突起物からなる柱状微小突起物101から成る。高分子電解質膜として、10cm角に切り出した米国デュボン社製:Nafion115(登録商標)を用い、金型を用いてプレス成形によって柱状微小突起物101形成した。   FIG. 1 is a view of a projection aggregate formed on one surface of a polymer electrolyte membrane, observed with a scanning electron microscope. As shown in FIG. 1, the projection aggregate is composed of columnar microprojections 101 made of a large number of extremely fine projections. As the polymer electrolyte membrane, a columnar microprojection 101 was formed by press molding using a mold using a Nafion 115 (registered trademark) manufactured by Dubon, USA, cut into a 10 cm square.

柱状微小突起物101は、高さが約3μm、一辺の長さが根元で約0.3μm の四角形である。柱状微小突起物101は上部約1μmの部分は滑らかな表面状態であり、根元部分の約2μmは縞模様である。柱状微小突起物101は1μmの周期(ピッチ)で配列している。   The columnar microprojection 101 is a quadrangle having a height of about 3 μm and a side length of about 0.3 μm at the root. The columnar microprojection 101 has a smooth surface state at the upper portion of about 1 μm, and the root portion has a striped pattern at about 2 μm. The columnar microprojections 101 are arranged with a period (pitch) of 1 μm.

また、柱状微小突起物101の高さと一辺の比(アスペクト比)は10となり、1より十分大きいことが分かる。柱状微小突起物101の先端部の断面積が、底面部の断面積より小さく、末広がり状であり、柱状微小突起物の形状は根本から先端にかけて細くなっていく形状であるが、根本から先端にかけて細くなり先端部に太い部分を有するきのこのような形状でもよい。   In addition, it can be seen that the ratio of the height and one side (aspect ratio) of the columnar microprojection 101 is 10, which is sufficiently larger than 1. The cross-sectional area of the tip of the columnar microprojection 101 is smaller than the cross-sectional area of the bottom surface and is divergent, and the shape of the columnar microprojection is a shape that narrows from the root to the tip, but from the root to the tip. It may be a mushroom shape that is thin and has a thick portion at the tip.

また、柱状微小突起物101は高分子電解質膜102と一体化しており、先端から底面部にかけて末広がり状であるため、ベースの高分子電解質膜から取れにくいものである。   Further, the columnar microprojections 101 are integrated with the polymer electrolyte membrane 102 and have a divergent shape from the front end to the bottom surface portion, and thus are difficult to remove from the base polymer electrolyte membrane.

図2は柱状微小突起物101の製造工程を示す図である。図2(a)に金属製台201に高分子電解質膜202を載置する工程を示す。高分子電解質膜202の表面は所定の平面形状を有している。続き、図2(b)に表面に深さ1μm,直径0.5μm のピット
(凹部)をピッチ1μmで形成した凹型の精密金型のモールド203によってプレス成形する工程を示す。さらに、図2(c)にそのモールド203を垂直に引き上げる工程を示す。これにより、柱状微小突起物101を形成することができる。なお、モールド203として凸型の精密金型を用いることによって、電解質膜に穴を形成することもできる。
FIG. 2 is a diagram showing a manufacturing process of the columnar microprojection 101. FIG. 2A shows a process of placing the polymer electrolyte membrane 202 on the metal table 201. The surface of the polymer electrolyte membrane 202 has a predetermined planar shape. Next, FIG. 2B shows a step of press molding with a mold 203 of a concave precision mold in which pits (concave portions) having a depth of 1 μm and a diameter of 0.5 μm are formed on the surface at a pitch of 1 μm. Further, FIG. 2C shows a process of pulling up the mold 203 vertically. Thereby, the columnar microprojection 101 can be formed. A hole can be formed in the electrolyte membrane by using a convex precision mold as the mold 203.

本実施例では、柱状微小突起物101の先端部が柱状微小突起物の底面部より小さく末広がり状であること、及び柱状微小突起群が下地の材料と同じであることから、柱状微小突起群が基板から取れにくい。   In this embodiment, the tip of the columnar microprojection 101 is smaller than the bottom of the columnar microprojection, and the columnar microprojection group is the same as the underlying material. It is difficult to remove from the substrate.

図1に示す柱状微小突起物101の高さ(H)に対する相当直径(D)の比(H/D)は、約10であるが、モールド203の凹部の深さや高分子電解質膜202の硬度を調整することで柱状微小突起物101の直径や高さを制御できる。更に、モールド203の凹部の開口面積を大きくすることで柱状微小突起物101の底部の大きさを制御できる。モールド203の凹部の位置を制御することで柱状微小突起物101を形成する位置を制御できる。また、熱可塑性の高分子電解質膜202を用い柱状微小突起物101の形成時の温度を調整することでその形状を容易に制御できる。   The ratio (H / D) of the equivalent diameter (D) to the height (H) of the columnar microprojection 101 shown in FIG. 1 is about 10, but the depth of the recess of the mold 203 and the hardness of the polymer electrolyte membrane 202 are It is possible to control the diameter and height of the columnar microprojection 101 by adjusting. Furthermore, the size of the bottom of the columnar microprojection 101 can be controlled by increasing the opening area of the recess of the mold 203. By controlling the position of the concave portion of the mold 203, the position where the columnar microprojections 101 are formed can be controlled. Moreover, the shape can be easily controlled by adjusting the temperature when forming the columnar microprojections 101 using the thermoplastic polymer electrolyte membrane 202.

図3に、上記に述べた柱状微小突起物を有する電解質膜を用いて作製した本発明の膜電極接合体(MEA)を示す。301が高分子電解質膜、302及び303は燃料極(アノード)及び空気極(カソード)となる電極層である。   FIG. 3 shows a membrane electrode assembly (MEA) of the present invention produced using the electrolyte membrane having the columnar microprojections described above. 301 is a polymer electrolyte membrane, and 302 and 303 are electrode layers that serve as a fuel electrode (anode) and an air electrode (cathode).

アノード及びカソードとして、カーボンブラックに白金を50wt%担持した電極触媒を用いた。電極触媒にDuPont社のNafion(登録商標)を溶解したNafion溶液(濃度5wt%,アルドリッチ製)を電極触媒対Nafion溶液の重量比が1:9となる割合で合せて電極触媒ペーストを調整した。この電極触媒ペーストをアプリケータ法によって柱状微小突起物を有する電解質膜の両面に塗布し、本発明のMEAを作製した。なお、本発明のMEAの作製において必要に応じて触媒塗布後、100から200℃の範囲でホットプレスする。   As an anode and a cathode, an electrode catalyst in which platinum was supported on carbon black at 50 wt% was used. An electrocatalyst paste was prepared by combining a Nafion solution (concentration: 5 wt%, manufactured by Aldrich) in which NaPoion (registered trademark) of DuPont was dissolved in the electrocatalyst at a ratio of 1: 9 by weight of the electrocatalyst to the Nafion solution. This electrocatalyst paste was applied to both surfaces of an electrolyte membrane having columnar microprojections by an applicator method to produce an MEA of the present invention. In the production of the MEA of the present invention, hot pressing is performed in the range of 100 to 200 ° C. after applying the catalyst as necessary.

図3におけるF部分の電極と電解質膜の界面部分の拡大を図4に示す。図4に示すように、電解質膜の表面に存在する柱状微小突起物が電極層に突き刺さった構造であるため、電極と電解質膜の接合強度が強くMEAの耐久性が優れる。また、電極と電解質膜の接触面積が増加し、そのことによって反応面積が増し発電特性が向上する。   FIG. 4 shows an enlargement of the interface portion between the electrode of F portion and the electrolyte membrane in FIG. As shown in FIG. 4, since the columnar microprojections existing on the surface of the electrolyte membrane are pierced into the electrode layer, the bonding strength between the electrode and the electrolyte membrane is strong and the durability of the MEA is excellent. In addition, the contact area between the electrode and the electrolyte membrane is increased, thereby increasing the reaction area and improving the power generation characteristics.

実施例1と精密金型のモールドのパターン形状を変え、電解質膜に直径約2μm,深さ5μmの穴を形成した。さらに、実施例1と同様にして、表面に穴を形成した電解質膜を用いてMEAを作製した。図5に実施例2において作製したMEAの電極と電解質膜の界面部分の拡大図を示す。表面に形成した穴に電極触媒が充填され電極層のアンカーとして働くため、電極と電解質膜の接合強度が強くMEAの耐久性が優れる。また、電極と電解質膜の接触面積が増加し、そのことによって反応面積が増し発電特性が向上する。   The pattern shape of the mold of Example 1 and the precision mold was changed, and a hole having a diameter of about 2 μm and a depth of 5 μm was formed in the electrolyte membrane. Further, in the same manner as in Example 1, an MEA was produced using an electrolyte membrane having holes formed on the surface. FIG. 5 shows an enlarged view of the interface portion between the electrode of the MEA produced in Example 2 and the electrolyte membrane. Since the hole formed in the surface is filled with the electrode catalyst and serves as an anchor for the electrode layer, the bonding strength between the electrode and the electrolyte membrane is strong and the durability of the MEA is excellent. In addition, the contact area between the electrode and the electrolyte membrane is increased, thereby increasing the reaction area and improving the power generation characteristics.

実施例1において作製した柱状微小突起物を有する電解質膜に、別の種類の電解質材料としてスルホン化ポリスチレンを塗布して複合膜を作製した。さらに、実施例1と同様にしてアプリケータ法によって電極を塗布してMEAを作製した。複合膜の界面は柱状微小突起物が突き刺さった構造であるため、膜同士が剥離せずMEAの耐久性が優れる。   A composite membrane was produced by applying sulfonated polystyrene as another type of electrolyte material to the electrolyte membrane having columnar microprojections produced in Example 1. Further, an electrode was applied by the applicator method in the same manner as in Example 1 to produce an MEA. Since the interface of the composite film has a structure in which columnar microprojections are pierced, the films do not peel off and the MEA has excellent durability.

実施例1において作製した柱状微小突起物を有する電解質膜及び電極触媒ペーストを用いて、スプレー法によって柱状微小突起物を有する電解質膜の両面に塗布し、本発明の
MEAを作製した。スプレー法では柱状微小突起物を反映して電極層の表面が凹凸となる。このような構造は燃料あるいは酸化ガスの拡散性がよく、優れた発電特性を有する。
The MEA of the present invention was produced by applying the electrolyte membrane having columnar microprojections and the electrode catalyst paste prepared in Example 1 to both surfaces of the electrolyte membrane having columnar microprojections by a spray method. In the spray method, the surface of the electrode layer becomes uneven reflecting the columnar microprojections. Such a structure has good diffusibility of fuel or oxidizing gas and has excellent power generation characteristics.

実施例1において精密金型のモールドのパターン形状を変え、柱状微小突起物の凹凸を高さが約3及び1μmの大小2種類となるようにした。実施例5において作製した柱状微小突起物を有する電解質膜を用い、実施例4と同じようにしてMEAを作製した。電極層の表面の凹凸が大きく燃料あるいは酸化ガスの拡散性がよく、優れた発電特性を有する。   In Example 1, the pattern shape of the mold of the precision mold was changed so that the projections and depressions of the columnar microprojections were of two types, a height of about 3 and 1 μm. An MEA was produced in the same manner as in Example 4 using the electrolyte membrane having columnar microprojections produced in Example 5. The electrode layer has large irregularities on the surface, good diffusibility of fuel or oxidizing gas, and has excellent power generation characteristics.

実施例1において作製した柱状微小突起物を有する電解質膜の表面を加熱処理して脱スルホン化して柱状微小突起物を撥水化処理した。実施例6において作製した電解質膜を用い、実施例4と同じようにしてMEAを作製した。柱状微小突起物は撥水化されており、生成水の排出性が高く優れた発電特性を有する。
〔比較例1〕
柱状微小突起物を持たない通常のNafion115(登録商標)を用いて実施例1と同様にしてMEAを作製した。
The surface of the electrolyte membrane having columnar microprojections produced in Example 1 was heat-treated and desulfonated to render the columnar microprojections water repellent. An MEA was produced in the same manner as in Example 4 using the electrolyte membrane produced in Example 6. The columnar microprotrusions are water repellent and have excellent power generation characteristics with high discharge of generated water.
[Comparative Example 1]
An MEA was produced in the same manner as in Example 1 using ordinary Nafion 115 (registered trademark) having no columnar microprojections.

実施例1から6及び比較例1のMEAを用いて発電試験を行った。図10に燃料電池の構造を示す。1は燃料あるいは酸化ガスを供給する溝が設けられたセパレータである。2から4がMEAでそれぞれ2が電解質膜、3がアノード、4がカソードである。また、5は拡散層であり、撥水化したカーボンペーパーあるいはカーボンクロスを使用する。6はガスケットであり、密封性や耐熱性に優れた材料が適している。   A power generation test was conducted using the MEAs of Examples 1 to 6 and Comparative Example 1. FIG. 10 shows the structure of the fuel cell. Reference numeral 1 denotes a separator provided with a groove for supplying fuel or oxidizing gas. 2 to 4 are MEAs, 2 is an electrolyte membrane, 3 is an anode, and 4 is a cathode. Reference numeral 5 denotes a diffusion layer, which uses water-repellent carbon paper or carbon cloth. 6 is a gasket, and a material excellent in sealing performance and heat resistance is suitable.

燃料に水素,酸化ガスに空気を用いて発電試験を行い、表1に電流密度500mA/
cm2 における発電電圧を示す。実施例1から6のMEAは比較例よりも発電電圧が高く優れた特性を示した。さらに、連続発電を行ったところ実施例1から6のMEAは1000時間までほとんど電圧低下が見られないのに対して比較例1のMEAは200時間で50mVほど発電電圧が低下した。実施例1から6のMEAは耐久性も優れる。
A power generation test was conducted using hydrogen as the fuel and air as the oxidizing gas. Table 1 shows a current density of 500 mA /
The generated voltage in cm 2 is shown. The MEAs of Examples 1 to 6 had higher power generation voltage than the comparative example and exhibited excellent characteristics. Furthermore, when continuous power generation was performed, the MEA of Examples 1 to 6 showed almost no voltage drop until 1000 hours, whereas the MEA of Comparative Example 1 had a power generation voltage reduced by 50 mV in 200 hours. The MEAs of Examples 1 to 6 are excellent in durability.

Figure 2005174620
Figure 2005174620

また、燃料を水素からメタノール水溶液に変えた場合も実施例1から6のMEAは比較例1より高い発電電圧が得られた。   Also, when the fuel was changed from hydrogen to a methanol aqueous solution, the MEA of Examples 1 to 6 produced a higher power generation voltage than that of Comparative Example 1.

柱状微小突起群の構造を示す走査型電子顕微鏡によって観察した図。The figure observed with the scanning electron microscope which shows the structure of a columnar microprotrusion group. 本発明の柱状微小突起群の製造工程を示すフロー図。The flowchart which shows the manufacturing process of the columnar microprotrusion group of this invention. 本発明のMEA。MEA of the present invention. 本発明のMEAの電極層と電解質膜の界面の断面図。Sectional drawing of the interface of the electrode layer and electrolyte membrane of MEA of this invention. 本発明のMEAの電極層と電解質膜の界面の断面図。Sectional drawing of the interface of the electrode layer and electrolyte membrane of MEA of this invention. 本発明のMEAの電極層と電解質膜の界面の断面図。Sectional drawing of the interface of the electrode layer and electrolyte membrane of MEA of this invention. 本発明のMEAの電極層と電解質膜の界面の断面図。Sectional drawing of the interface of the electrode layer and electrolyte membrane of MEA of this invention. 本発明のMEAの電極層と電解質膜の界面の断面図。Sectional drawing of the interface of the electrode layer and electrolyte membrane of MEA of this invention. 本発明のMEAの電極層と電解質膜の界面の断面図。Sectional drawing of the interface of the electrode layer and electrolyte membrane of MEA of this invention. 本発明の燃料電池。The fuel cell of the present invention.

符号の説明Explanation of symbols

1…セパレータ、2…電解質膜、3…アノード、4…カソード、5…拡散層、6…ガスケット、101,401…柱状微小突起物、102,202,301,402…高分子電解質膜、201…金属製台、203…モールド、302,303,403…燃料極(アノード)及び空気極(カソード)となる電極層、404…穴、405…下地と異なる高分子電解質膜、406…撥水化した柱状微小突起。

DESCRIPTION OF SYMBOLS 1 ... Separator, 2 ... Electrolyte membrane, 3 ... Anode, 4 ... Cathode, 5 ... Diffusion layer, 6 ... Gasket, 101, 401 ... Columnar microprotrusion, 102, 202, 301, 402 ... Polymer electrolyte membrane, 201 ... Metal base, 203 ... mold, 302, 303,403 ... electrode layer for fuel electrode (anode) and air electrode (cathode), 404 ... hole, 405 ... polymer electrolyte membrane different from base, 406 ... water repellent Columnar microprojections.

Claims (7)

高分子電解質膜の片面又は両面に、塑性加工によって形成された微小突起群を有する高分子電解質膜を用いた膜電極接合体。   The membrane electrode assembly using the polymer electrolyte membrane which has the microprotrusion group formed in the single side | surface or both surfaces of the polymer electrolyte membrane by plastic working. 高分子電解質膜の片面又は両面に、塑性加工によって形成された微小穴群を有する高分子電解質膜を用いた膜電極接合体。   A membrane electrode assembly using a polymer electrolyte membrane having a group of micro holes formed by plastic working on one side or both sides of the polymer electrolyte membrane. 請求項1において、前記微小突起群が直径が0.3μm〜50μm、高さが0.3μm〜50μmであることを特徴とする膜電極接合体。   2. The membrane electrode assembly according to claim 1, wherein the microprojection group has a diameter of 0.3 μm to 50 μm and a height of 0.3 μm to 50 μm. 請求項1において、前記固体高分子膜が2種類以上の複合膜からなることを特徴とする膜電極接合体。   2. The membrane electrode assembly according to claim 1, wherein the solid polymer membrane is composed of two or more kinds of composite membranes. 高分子電解質膜の片面又は両面に、塑性加工によって形成された微小突起群を有する高分子電解質膜及び電極層からなる膜電極接合体において、前記電極層表面に前記微小突起群を反映した凹凸が存在することを特徴とする膜電極接合体。   In a membrane / electrode assembly comprising a polymer electrolyte membrane having a microprojection group formed by plastic working on one or both surfaces of the polymer electrolyte membrane and an electrode layer, irregularities reflecting the microprojection group are formed on the surface of the electrode layer. A membrane electrode assembly, characterized in that it exists. 請求項1または5において、前記微小突起群が撥水性であることを特徴とする膜電極接合体。   6. The membrane electrode assembly according to claim 1, wherein the microprojection group is water repellent. 請求項1から6の膜電極接合体を用いた燃料電池。
A fuel cell using the membrane electrode assembly according to claim 1.
JP2003409740A 2003-12-09 2003-12-09 Membrane electrode assembly and fuel cell using this Pending JP2005174620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003409740A JP2005174620A (en) 2003-12-09 2003-12-09 Membrane electrode assembly and fuel cell using this

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003409740A JP2005174620A (en) 2003-12-09 2003-12-09 Membrane electrode assembly and fuel cell using this

Publications (1)

Publication Number Publication Date
JP2005174620A true JP2005174620A (en) 2005-06-30

Family

ID=34730996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003409740A Pending JP2005174620A (en) 2003-12-09 2003-12-09 Membrane electrode assembly and fuel cell using this

Country Status (1)

Country Link
JP (1) JP2005174620A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179893A (en) * 2005-12-28 2007-07-12 Dainippon Printing Co Ltd Catalyst layer-electrolyte membrane laminate, and manufacturing method of same
JP2007227080A (en) * 2006-02-22 2007-09-06 National Institute Of Advanced Industrial & Technology Fuel cell
JPWO2007032266A1 (en) * 2005-09-12 2009-03-19 独立行政法人科学技術振興機構 Rapid detection of antigens using fluorescence correlation spectroscopy or fluorescence cross-correlation spectroscopy
JP2009170271A (en) * 2008-01-16 2009-07-30 Toyota Motor Corp Manufacturing method of membrane electrode assembly
WO2011096149A1 (en) * 2010-02-04 2011-08-11 Panasonic Corporation A method for fabricating a polymer electrolyte membrane for a fuel cell
WO2012160779A1 (en) * 2011-05-20 2012-11-29 三洋電機株式会社 Fuel cell
CN103515633A (en) * 2013-09-02 2014-01-15 清华大学 Ordered solid oxide membrane electrode
WO2014020849A1 (en) * 2012-08-02 2014-02-06 パナソニック株式会社 Method for producing molecularly oriented perfluorosulfone electrolyte membrane
CN104701549A (en) * 2013-12-06 2015-06-10 中国科学院上海高等研究院 A carbon-free membrane electrode assembly
KR20160047377A (en) * 2014-10-20 2016-05-02 한국전자통신연구원 Method for manufacturing ion-exchange membrane
US20210336275A1 (en) * 2020-04-27 2021-10-28 Hyundai Motor Company Electrode for membrane-electrode assembly and method of manufacturing same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007032266A1 (en) * 2005-09-12 2009-03-19 独立行政法人科学技術振興機構 Rapid detection of antigens using fluorescence correlation spectroscopy or fluorescence cross-correlation spectroscopy
JP2007179893A (en) * 2005-12-28 2007-07-12 Dainippon Printing Co Ltd Catalyst layer-electrolyte membrane laminate, and manufacturing method of same
JP2007227080A (en) * 2006-02-22 2007-09-06 National Institute Of Advanced Industrial & Technology Fuel cell
JP2009170271A (en) * 2008-01-16 2009-07-30 Toyota Motor Corp Manufacturing method of membrane electrode assembly
WO2011096149A1 (en) * 2010-02-04 2011-08-11 Panasonic Corporation A method for fabricating a polymer electrolyte membrane for a fuel cell
CN102484260A (en) * 2010-02-04 2012-05-30 松下电器产业株式会社 A method for fabricating a polymer electrolyte membrane for a fuel cell
US8337732B2 (en) 2010-02-04 2012-12-25 Panasonic Corporation Method for fabricating a polymer electrolyte membrane for a fuel cell
US9385389B2 (en) 2011-05-20 2016-07-05 Sanyo Electric Co., Ltd. Fuel cell
WO2012160779A1 (en) * 2011-05-20 2012-11-29 三洋電機株式会社 Fuel cell
JP6005635B2 (en) * 2011-05-20 2016-10-12 三洋電機株式会社 Fuel cell
WO2014020849A1 (en) * 2012-08-02 2014-02-06 パナソニック株式会社 Method for producing molecularly oriented perfluorosulfone electrolyte membrane
JP5588087B2 (en) * 2012-08-02 2014-09-10 パナソニック株式会社 Process for producing perfluorosulfone electrolyte membrane with molecular orientation
CN103515633A (en) * 2013-09-02 2014-01-15 清华大学 Ordered solid oxide membrane electrode
CN104701549A (en) * 2013-12-06 2015-06-10 中国科学院上海高等研究院 A carbon-free membrane electrode assembly
KR20160047377A (en) * 2014-10-20 2016-05-02 한국전자통신연구원 Method for manufacturing ion-exchange membrane
KR102034147B1 (en) * 2014-10-20 2019-11-11 한국전자통신연구원 Method for manufacturing ion-exchange membrane
US20210336275A1 (en) * 2020-04-27 2021-10-28 Hyundai Motor Company Electrode for membrane-electrode assembly and method of manufacturing same
US11973230B2 (en) * 2020-04-27 2024-04-30 Hyundai Motor Company Electrode for membrane-electrode assembly and method of manufacturing same

Similar Documents

Publication Publication Date Title
JP4870350B2 (en) Fuel cell membrane electrode assembly with sealing surface
KR100409042B1 (en) Membrane Electrode Assembly and method for producing the same
JP5383015B2 (en) Membrane-electrode assembly for direct oxidation fuel cell using hydrocarbon fuel, method for producing the same, and fuel cell system including the same
US20170179498A1 (en) Fuel cell gas diffusion layer, fuel cell, and method for manufacturing fuel cell gas diffusion layer
JP2005174620A (en) Membrane electrode assembly and fuel cell using this
JP2008270143A (en) Fuel cell stack and its manufacturing method
CN1599111A (en) Electrolytic membrane for fuel cell and its manufacturing method and fuel cell using it
JP5195286B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
JP4824946B2 (en) Electrolyte membrane with protective film and production method thereof.
JP2005521564A (en) Adaptive cutting die apparatus for cutting fuel cell material layers
JP2005174565A (en) Polymer electrolyte membrane for fuel cell, membrane/electrode joint body, its manufacturing method, and fuel cell using it
JP2007012424A (en) Gas diffusion electrode, membrane-electrode joined body and its manufacturing method, and solid polymer fuel cell
JP4826075B2 (en) ELECTROLYTE MEMBRANE FOR FUEL CELL, PROCESS FOR PRODUCING THE SAME AND FUEL CELL USING THE SAME
JP2005174621A (en) Fuel cell component, method for manufacturing the same, and fuel cell using the method
JP2000100456A (en) Manufacture of joint of solid polymer electrolyte film and solid polymer electrolyte fuel cell
JP2007273141A (en) Fuel cell and manufacturing method of fuel cell
JP2009032692A (en) Gas diffusion layer, its manufacturing method, and fuel cell containing gas diffusion layer manufactured by this manufacturing method
JP2008098070A (en) Membrane electrode assembly and fuel cell
KR20140146012A (en) Method for manufacturing membrane eletrode assembly, membrane eletrode assembly and fuel cell comprising the same
KR102325855B1 (en) Ditch-Structured Microporous Layer for Polymer Electrolyte Fuel Cell Prepared by Laser Ablation and Gas Diffusion Layer Comprising The Same
JP4828864B2 (en) Gas diffusion electrode for polymer electrolyte fuel cell, membrane-electrode assembly for polymer electrolyte fuel cell, production method thereof, and polymer electrolyte fuel cell
JP5234878B2 (en) Fuel cell
KR20170090193A (en) Liquid stream inducing type polymer membrane, method of preparing the same and fuel cell comprising the same
JP4988963B2 (en) Method for producing polymer electrolyte membrane for fuel cell
JP2006318790A (en) Solid polymer type fuel cell, gas diffusion electrode therefor, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051028

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108