JP5463624B2 - Method for producing membrane / electrode assembly for polymer electrolyte fuel cell - Google Patents

Method for producing membrane / electrode assembly for polymer electrolyte fuel cell Download PDF

Info

Publication number
JP5463624B2
JP5463624B2 JP2008091987A JP2008091987A JP5463624B2 JP 5463624 B2 JP5463624 B2 JP 5463624B2 JP 2008091987 A JP2008091987 A JP 2008091987A JP 2008091987 A JP2008091987 A JP 2008091987A JP 5463624 B2 JP5463624 B2 JP 5463624B2
Authority
JP
Japan
Prior art keywords
membrane
substrate
catalyst layer
electrolyte membrane
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008091987A
Other languages
Japanese (ja)
Other versions
JP2009245795A (en
Inventor
美和 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2008091987A priority Critical patent/JP5463624B2/en
Publication of JP2009245795A publication Critical patent/JP2009245795A/en
Application granted granted Critical
Publication of JP5463624B2 publication Critical patent/JP5463624B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

本発明は固体高分子型燃料電池用膜・電極接合体の製造方法に関する。   The present invention relates to a method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell.

固体高分子型燃料電池を構成する固体高分子型燃料電池用膜・電極接合体(以下、単に「膜・電極接合体」と称する場合もある。)のうち、電解質膜の両主面側に触媒層を配置したもの(即ち、触媒層/電解質膜/触媒層の層構成のもの)は、3層MEAと称されており、さらに、その3層MEAの両主面側に電極基材を配置したもの(即ち、電極基材/触媒層/電解質膜/触媒層/電極基材の層構成のもの)は、5層MEAと称されている。   Of the membrane / electrode assembly for a polymer electrolyte fuel cell constituting the polymer electrolyte fuel cell (hereinafter, also simply referred to as “membrane / electrode assembly”), it is disposed on both main surfaces of the electrolyte membrane. A catalyst layer (that is, a catalyst layer / electrolyte membrane / catalyst layer structure) is called a three-layer MEA, and electrode substrates are provided on both main surface sides of the three-layer MEA. An arrangement (that is, a layer structure of electrode substrate / catalyst layer / electrolyte membrane / catalyst layer / electrode substrate) is referred to as a five-layer MEA.

固体高分子型燃料電池の性能向上においては、膜・電極接合体の構造の最適化が鍵となっている。膜・電極接合体の製造方法としては、例えば、下記方法(1)〜(3)が挙げられる。
(1)ガス拡散層(GDL)とも呼ばれる電極基材に触媒層を塗工により形成する方法
(2)デカール法(フィルム上に形成した触媒層を電解質膜に転写する方法)
(3)電解質膜に触媒含有ペーストを直接塗工する方法
In order to improve the performance of a polymer electrolyte fuel cell, optimization of the structure of the membrane / electrode assembly is the key. Examples of the method for producing a membrane / electrode assembly include the following methods (1) to (3).
(1) A method for forming a catalyst layer on an electrode substrate, also called a gas diffusion layer (GDL), by coating (2) A decal method (a method for transferring a catalyst layer formed on a film to an electrolyte membrane)
(3) Method of directly applying catalyst-containing paste to the electrolyte membrane

方法(1)では、多孔質体のGDLに触媒含有ペーストを塗工するため、GDLへの触媒のしみ込みによる、触媒の無駄発生およびGDLの通気度の低下等の問題がある。方法(2)では、形状が安定なフィルム上に触媒層を塗工により形成した後、触媒層を電解質膜に熱プレスにより転写するので、細孔構造が均質な触媒層を形成できるが、熱プレスにより電解質膜がダメージを受けて、セルの長期耐久性が確保できないことがある。また、触媒の種類によっては転写しにくいものがあり、その場合は、量産時の歩留まりが低い点が問題となる。方法(3)では、電解質膜に触媒含有ペーストを直接塗るので、工程数が他の方法よりも少なくてすむ。また、プレスによる電解質膜のへこみが生じないのでセルの長期耐久性が確保できると考えられる。しかし、電解質膜として一般的に用いられるNafion(登録商標)膜等のパーフルオロスルホン酸系の電解質膜を用いた場合、触媒含有ペースト中の溶媒が原因で電解質膜が著しく膨潤し、良好な電解質膜を備えた膜・電極接合体が得られないという問題がある。   In the method (1), since the catalyst-containing paste is applied to the porous GDL, there are problems such as waste of the catalyst due to the penetration of the catalyst into the GDL and a decrease in the gas permeability of the GDL. In method (2), a catalyst layer is formed on a film having a stable shape by coating, and then the catalyst layer is transferred to the electrolyte membrane by hot pressing, so that a catalyst layer having a uniform pore structure can be formed. The electrolyte membrane may be damaged by the press, and the long-term durability of the cell may not be ensured. In addition, depending on the type of catalyst, there are some which are difficult to transfer, and in that case, the problem is that the yield during mass production is low. In the method (3), since the catalyst-containing paste is directly applied to the electrolyte membrane, the number of steps can be reduced as compared with other methods. Moreover, since the electrolyte membrane does not dent due to pressing, it is considered that the long-term durability of the cell can be secured. However, when a perfluorosulfonic acid electrolyte membrane such as a Nafion (registered trademark) membrane generally used as an electrolyte membrane is used, the electrolyte membrane swells significantly due to the solvent in the catalyst-containing paste, and a good electrolyte There is a problem that a membrane-electrode assembly provided with a membrane cannot be obtained.

また、膜・電極接合体のその他の製造方法が特許文献1〜3に開示されている。   Further, Patent Documents 1 to 3 disclose other methods for producing a membrane / electrode assembly.

特許文献1には、上記電解質膜の膨潤を回避するために、通常のプロトン型の電解質膜を、触媒含有ペーストに含まれる溶媒に対して安定なNa+型に変換してから、触媒含有ペーストを電解質膜に塗工する方法が開示されている。特許文献2には、寸法安定性のある基材により支持された電解質膜に電解触媒コーティング組成物を直接塗工して触媒層を形成する方法が開示されている。特許文献3には下記方法が開示されている。まず、その一部が電極形状に対応して切り抜かれたマスクフィルムを電解質膜の一方の面に、電極形状に対応して弱化線が施されたマスクフィルムを電解質膜の他方の面に、おのおの熱圧着により貼り付ける。次いで、その一部が電極形状に対応して切り抜かれたマスクフィルムをマスクとしてカソードペーストを塗布して第1触媒層を形成する。次に、弱化線で囲まれているマスクフィルムを剥離し、露出された電解質膜上にアノードペーストを塗布して第2触媒層を形成する。
登録3554321号 特表2006−507623号公報 特開2006−120433号公報
In Patent Document 1, in order to avoid the swelling of the electrolyte membrane, a normal proton type electrolyte membrane is converted into a Na + type that is stable with respect to the solvent contained in the catalyst-containing paste, and then the catalyst-containing paste is used. A method of coating the electrolyte membrane is disclosed. Patent Document 2 discloses a method of forming a catalyst layer by directly applying an electrocatalyst coating composition to an electrolyte membrane supported by a dimensionally stable substrate. Patent Document 3 discloses the following method. First, a mask film partially cut out corresponding to the electrode shape is applied to one surface of the electrolyte membrane, and a mask film provided with a weakened line corresponding to the electrode shape is applied to the other surface of the electrolyte membrane. Affix by thermocompression bonding. Next, the first catalyst layer is formed by applying a cathode paste using a mask film, a part of which is cut out corresponding to the electrode shape, as a mask. Next, the mask film surrounded by the weakening line is peeled off, and an anode paste is applied on the exposed electrolyte membrane to form a second catalyst layer.
Registration No. 3554321 JP-T-2006-507623 JP 2006-120433 A

しかし、特許文献1に記載の方法では、Na+型に変換された電解質膜を、膜・電極接合体の使用前に、強酸の液で処理してプロトン型にもどさなければならない。 However, in the method described in Patent Document 1, the electrolyte membrane converted to the Na + type must be returned to the proton type by treatment with a strong acid solution before use of the membrane-electrode assembly.

特許文献2に記載された方法では、第1暫定基板上に配置された電解質膜の第1表面に電気触媒コーティング組成物を直接塗工して、第1触媒層を形成することについては問題ない。しかし、第2触媒層の形成は、まず、1対のロールを含む低圧ラミネータ用いて第1触媒層に第2暫定基板を押し付け、次いで、電解質膜から第1暫定基板を剥離してから行われるので、電解質膜がダメージ受ける可能性がある。また、第2暫定基板の表面のうちの第1触媒層に接した部分の周囲と電解質膜の第1表面との間に空隙が存在する状態で電解質膜の第2表面(第1表面の反対面)に電気触媒コーティング組成物を直接塗工して、第2触媒層を形成するので、上記電解質膜のうちの上記空隙の近傍部分が膨潤する可能性がある。   In the method described in Patent Document 2, there is no problem in forming the first catalyst layer by directly applying the electrocatalyst coating composition to the first surface of the electrolyte membrane disposed on the first temporary substrate. . However, the formation of the second catalyst layer is performed after first pressing the second temporary substrate against the first catalyst layer using a low-pressure laminator including a pair of rolls, and then peeling the first temporary substrate from the electrolyte membrane. Therefore, the electrolyte membrane may be damaged. In addition, the second surface of the electrolyte membrane (opposite of the first surface) in a state where a gap exists between the periphery of the portion of the surface of the second temporary substrate in contact with the first catalyst layer and the first surface of the electrolyte membrane. Since the second catalyst layer is formed by directly applying the electrocatalyst coating composition to the surface), there is a possibility that the portion in the vicinity of the void in the electrolyte membrane swells.

特許文献3に記載された方法では、電解質膜の一方の面に、その一部が電極形状に対応して切り抜かれたマスクフィルムを熱圧着により貼り付けるので、電解質膜の一方の面のマスクフィルムに接する部分がへこみ、電解質膜にダメージが生じるおそれがある。また、マスクフィルムを構成するタック樹脂層に含まれ、耐熱性および耐酸性が低い、スチレンーエチレンーブタジエン共重合体の一部が、第2触媒層に転移して、長期耐久性等の電池特性に悪い影響を及ぼす可能性がある。   In the method described in Patent Document 3, a mask film partially cut out corresponding to the electrode shape is attached to one surface of the electrolyte membrane by thermocompression bonding. Therefore, the mask film on one surface of the electrolyte membrane There is a possibility that the portion in contact with the dent will dent and damage the electrolyte membrane. In addition, a battery such as long-term durability, which is contained in the tack resin layer constituting the mask film and has a part of the styrene-ethylene-butadiene copolymer having low heat resistance and low acid resistance, is transferred to the second catalyst layer. May adversely affect properties.

本発明は、電解質膜が受ける機械的負荷によるダメージおよび電解質膜の膨潤を抑制しながら、細孔構造が均質な触媒層を形成可能とする、固体高分子型燃料電池用膜・電極接合体の製造方法を提供する。また、本発明は、電解質膜の厚みの均一性が高く、性能が良好でかつ長期安定な固体高分子型燃料電池用膜・電極接合体を提供する。   The present invention provides a membrane / electrode assembly for a polymer electrolyte fuel cell that can form a catalyst layer having a homogeneous pore structure while suppressing damage due to mechanical load applied to the electrolyte membrane and swelling of the electrolyte membrane. A manufacturing method is provided. In addition, the present invention provides a membrane / electrode assembly for a polymer electrolyte fuel cell that has high uniformity in the thickness of the electrolyte membrane, good performance, and long-term stability.

本発明の固体高分子型燃料電池用膜・電極接合体の製造方法は、
第1基板上に固定された電解質膜の前記第1基板側の面の反対面に第1触媒含有ペーストを塗工し、次いで、前記電解質膜に塗工された前記第1触媒含有ペーストを乾燥させる、第1触媒層形成工程と、
前記第1触媒層とゴム状弾性を有する第2基板とが接し、かつ、前記第1触媒層と前記電解質膜と前記第1基板とからなる積層体と前記第2基板との間に空隙を生じさせることなく、前記積層体を前記第2基板に固定させた後、前記電解質膜の前記第1触媒層が形成された面の反対面に、第2触媒含有ペーストを塗工し、次いで、前記電解質膜に塗工された前記第2触媒含有ペーストを乾燥させる、第2触媒層形成工程と、を含む。
The method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell according to the present invention comprises:
A first catalyst-containing paste is applied to the surface of the electrolyte membrane fixed on the first substrate opposite to the surface on the first substrate side, and then the first catalyst-containing paste applied to the electrolyte membrane is dried. A first catalyst layer forming step,
The first catalyst layer and the second substrate having rubber-like elasticity are in contact with each other, and a gap is formed between the second substrate and the laminate including the first catalyst layer, the electrolyte membrane, and the first substrate. Without causing the laminate to be fixed to the second substrate, a second catalyst-containing paste is applied to the surface of the electrolyte membrane opposite to the surface on which the first catalyst layer is formed, And a second catalyst layer forming step of drying the second catalyst-containing paste applied to the electrolyte membrane.

本発明の固体高分子型燃料電池用膜・電極接合体は、本発明の固体高分子型燃料電池用膜・電極接合体の製造方法により形成された固体高分子型燃料電池用膜・電極接合体であって、
前記電解質膜と、
前記電解質膜の一方の主面に接して配置された第1触媒層と、
前記電解質膜の他方の主面に接して配置された第2触媒層とを含み、
前記電解質膜のうちの、前記第1触媒層と前記第2触媒層のうちの少なくとも一方と接した部分において、最も厚い箇所の厚みをT1とし、最も薄い箇所の厚みをT2とすると、
前記T2が前記T1の80%以上である。
The membrane / electrode assembly for a polymer electrolyte fuel cell of the present invention is a membrane / electrode assembly for a polymer electrolyte fuel cell formed by the method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell of the present invention. Body,
The electrolyte membrane;
A first catalyst layer disposed in contact with one main surface of the electrolyte membrane;
A second catalyst layer disposed in contact with the other main surface of the electrolyte membrane,
Of the electrolyte membrane, at least one and contact portions of said first catalyst layer and the second catalyst layer, the thickness of the thickest portion and T 1, when the thickness of the thinnest portion and T 2,
T 2 is 80% or more of T 1 .

本発明によれば、電解質膜が受ける機械的負荷によるダメージおよび電解質膜の膨潤を抑制しながら、細孔構造が均質な触媒層を形成可能とする、固体高分子型燃料電池用膜・電極接合体の製造方法を提供できる。また、本発明によれば、電解質膜の厚みの均一性が高く、性能が良好でかつ長期安定な固体高分子型燃料電池用膜・電極接合体を提供できる。   According to the present invention, a membrane / electrode joint for a polymer electrolyte fuel cell that can form a catalyst layer having a homogeneous pore structure while suppressing damage due to a mechanical load applied to the electrolyte membrane and swelling of the electrolyte membrane. A method of manufacturing a body can be provided. Further, according to the present invention, it is possible to provide a membrane / electrode assembly for a polymer electrolyte fuel cell having high uniformity in the thickness of the electrolyte membrane, good performance, and long-term stability.

図1は、本発明の膜・電極接合体の製造方法によって作製される膜・電極接合体の一例の模式断面図であり、図2は、図1に示した膜・電極接合体を構成する3層MEAの模式断面図である。なお、図1を用いて説明する本発明の膜・電極接合体の一例は、5層MEAであるが、本発明の膜・電極接合体は、3層MEAをも含む。   FIG. 1 is a schematic cross-sectional view of an example of a membrane / electrode assembly produced by the method for producing a membrane / electrode assembly of the present invention, and FIG. 2 constitutes the membrane / electrode assembly shown in FIG. It is a schematic cross section of 3 layer MEA. An example of the membrane / electrode assembly of the present invention described with reference to FIG. 1 is a five-layer MEA, but the membrane / electrode assembly of the present invention also includes a three-layer MEA.

図1および図2に示すように、電解質膜1の一方の主面上に第1触媒層4と第1電極基材5とからなる燃料極6が配置され、電解質膜1の他方の主面上に第2触媒層4’と第2電極基材7とからなる空気極8が配置されている。電解質膜1と燃料極6と空気極8とからなる積層体の両主面側に各々リブ付きセパレータおよび集電板(図示せず)がこの順で配置されることによって、単セル(燃料電池)が構成される。プロトンは燃料極6から電解質膜1内を通過して空気極8に流れる。また、電子は燃料極6から外部回路を介して空気極8に流れる。これにより燃料極6と空気極8との間に電気が流れる。なお、以下、第1触媒層4と第2触媒層4'とを総称して「触媒層」と称する場合もある。   As shown in FIGS. 1 and 2, a fuel electrode 6 composed of a first catalyst layer 4 and a first electrode substrate 5 is disposed on one main surface of the electrolyte membrane 1, and the other main surface of the electrolyte membrane 1. An air electrode 8 composed of the second catalyst layer 4 ′ and the second electrode base material 7 is disposed thereon. By disposing a ribbed separator and a current collector plate (not shown) in this order on both principal surface sides of the laminate comprising the electrolyte membrane 1, the fuel electrode 6 and the air electrode 8, a single cell (fuel cell) ) Is configured. Protons flow from the fuel electrode 6 through the electrolyte membrane 1 to the air electrode 8. Further, electrons flow from the fuel electrode 6 to the air electrode 8 through an external circuit. As a result, electricity flows between the fuel electrode 6 and the air electrode 8. Hereinafter, the first catalyst layer 4 and the second catalyst layer 4 ′ may be collectively referred to as “catalyst layer”.

次に、図1に示した膜・電極接合体の製造方法について、図3を用いて説明する。   Next, a method for manufacturing the membrane-electrode assembly shown in FIG. 1 will be described with reference to FIG.

図3Aに示されるように、まず、第1基板2上に電解質膜1が直接固定された積層体を用意する。次いで、図3Bに示されるように、電解質膜1の第1基板2側の面の反対面に、第1触媒含有ペーストを塗工し、次いで、電解質膜1に塗工された第1触媒含有ペーストを乾燥させて、第1触媒層4を得る(第1触媒層形成工程)。   As shown in FIG. 3A, first, a laminate in which the electrolyte membrane 1 is directly fixed on the first substrate 2 is prepared. Next, as shown in FIG. 3B, the first catalyst-containing paste is applied to the surface opposite to the surface on the first substrate 2 side of the electrolyte membrane 1, and then the first catalyst-containing material applied to the electrolyte membrane 1 is applied. The paste is dried to obtain the first catalyst layer 4 (first catalyst layer forming step).

次に、図3Cに示されるように、第1触媒層4とゴム状弾性を有する第2基板3とが接し、かつ、第1触媒層4と電解質膜1と第1基板2とからなる積層体10と第2基板3との間に空隙を生じさせることなく、積層体10を第2基板3に固定させる。すなわち、第2基板3を弾性変形させることにより、積層体10の第2基板3と向かい合う面と、第2基板3の積層体10と向かい合う面とを、空隙を生じさせることなく密着させる。第1基板3および電解質膜1が長尺な帯状シートであり、電解質膜1上に複数の第1触媒層を所定間隔ごとに形成する場合、隣合う第1触媒層の間が、弾性変形する第2基板3の一部によって充填されるように、積層体10を第2基板3に密着させる。   Next, as shown in FIG. 3C, the first catalyst layer 4 and the second substrate 3 having rubber-like elasticity are in contact with each other, and the first catalyst layer 4, the electrolyte membrane 1, and the first substrate 2 are stacked. The laminated body 10 is fixed to the second substrate 3 without generating a gap between the body 10 and the second substrate 3. That is, by elastically deforming the second substrate 3, the surface of the stacked body 10 facing the second substrate 3 and the surface of the second substrate 3 facing the stacked body 10 are brought into close contact with each other without generating a gap. When the first substrate 3 and the electrolyte membrane 1 are long belt-like sheets and a plurality of first catalyst layers are formed on the electrolyte membrane 1 at predetermined intervals, the adjacent first catalyst layers are elastically deformed. The stacked body 10 is brought into close contact with the second substrate 3 so as to be filled with a part of the second substrate 3.

次に、電解質膜1から第1基板2を剥離する(図3D参照)。次いで、図3Eに示されるように、電解質膜1の第1触媒層4が形成された面の反対面に、第2触媒含有ペーストを塗工し、次いで、電解質膜1に塗工された第2触媒含有ペーストを乾燥させて第2触媒層4'を形成する(第2触媒層形成工程)。次に、第1触媒層4から第2基板3を剥離し、3層MEAを得る。次いで、3層MEAの両主面側に第1電極基材5および第2電極基材7を公知の方法にて接合することにより、膜・電極接合体(5層MEA)を得る。   Next, the first substrate 2 is peeled from the electrolyte membrane 1 (see FIG. 3D). Next, as shown in FIG. 3E, the second catalyst-containing paste is applied to the surface opposite to the surface on which the first catalyst layer 4 of the electrolyte membrane 1 is formed, and then the second coating applied to the electrolyte membrane 1 is performed. The 2 catalyst-containing paste is dried to form the second catalyst layer 4 ′ (second catalyst layer forming step). Next, the 2nd board | substrate 3 is peeled from the 1st catalyst layer 4, and 3 layer MEA is obtained. Subsequently, the membrane electrode assembly (5-layer MEA) is obtained by bonding the first electrode base material 5 and the second electrode base material 7 to both main surface sides of the 3-layer MEA by a known method.

第1触媒層4および第2触媒層4’は、ともに触媒粒子を担持させた炭素粒子(触媒担持炭素粒子)と、水素イオン伝導性高分子電解質とを含有している。触媒粒子としては、例えば、白金、白金化合物等が挙げられる。白金化合物としては、例えば、ルテニウム、パラジウム、ニッケル、モリブデン、イリジウム、鉄、コバルト等からなる群から選ばれる少なくとも1種の金属と白金との合金等が挙げられる。第1触媒層4、第2触媒層4’に含まれる触媒は、同一であってもよいし異なっていてもよい。   Both the first catalyst layer 4 and the second catalyst layer 4 ′ contain carbon particles carrying catalyst particles (catalyst-carrying carbon particles) and a hydrogen ion conductive polymer electrolyte. Examples of the catalyst particles include platinum and platinum compounds. Examples of the platinum compound include an alloy of platinum and at least one metal selected from the group consisting of ruthenium, palladium, nickel, molybdenum, iridium, iron, cobalt, and the like. The catalysts contained in the first catalyst layer 4 and the second catalyst layer 4 'may be the same or different.

水素イオン伝導性高分子電解質としては、例えば、パーフルオロスルホン酸系のフッ素イオン交換樹脂等が挙げられる。上記触媒担持炭素粒子と水素イオン伝導性高分子電解質の配合比は、固形分量の重量比率で1:0.1〜1:1であると好ましく、1:0.2〜1:0.5であるとより好ましい。   Examples of the hydrogen ion conductive polymer electrolyte include perfluorosulfonic acid-based fluorine ion exchange resins. The mixing ratio of the catalyst-supporting carbon particles and the hydrogen ion conductive polymer electrolyte is preferably 1: 0.1 to 1: 1 by weight ratio of the solid content, and is preferably 1: 0.2 to 1: 0.5. More preferably.

第1触媒層4または第2触媒層4’を形成には、触媒担持炭素粒子と水素イオン伝導性高分子電解質とを適当な溶剤に混合し分散することにより得られる、第1触媒含有ペーストまたは第2触媒含有ペーストを用いる。   To form the first catalyst layer 4 or the second catalyst layer 4 ′, the first catalyst-containing paste obtained by mixing and dispersing the catalyst-supporting carbon particles and the hydrogen ion conductive polymer electrolyte in an appropriate solvent, or A second catalyst-containing paste is used.

上記溶剤としては、例えば、各種アルコール類、各種エーテル類、各種ジアルキルスルホキシド類、水又はこれらの混合物等が挙げられる。   Examples of the solvent include various alcohols, various ethers, various dialkyl sulfoxides, water, or a mixture thereof.

第1触媒含有ペーストおよび第2触媒含有ペーストの塗布には、特に限定されるものではなく、例えば、ナイフコーター、バーコーター、スプレー、ディップコーター、スピンコーター、ロールコーター、ダイコーター、カーテンコーター、スクリーン印刷等の一般的な方法を適用できる。   The application of the first catalyst-containing paste and the second catalyst-containing paste is not particularly limited. For example, knife coater, bar coater, spray, dip coater, spin coater, roll coater, die coater, curtain coater, screen A general method such as printing can be applied.

第1触媒層4および第2触媒層4'の厚さは、通常、10〜50μmであると好ましく、15〜30μmであるとより好ましい。   The thicknesses of the first catalyst layer 4 and the second catalyst layer 4 ′ are usually preferably 10 to 50 μm and more preferably 15 to 30 μm.

電解質膜1には、公知のものを用いることができるが、例えば、パーフルオロスルホン酸系のフッ素イオン交換樹脂膜、より具体的には、炭化水素系イオン交換膜のC−H結合をフッ素で置換したパーフルオロカーボンスルホン酸系ポリマー(PFS系ポリマー)等の、プロトン伝導性高分子電解質からなる膜が挙げられる。電気陰性度の高いフッ素原子を導入することで、化学的に非常に安定し、スルホン酸基の解離度が高く、高いイオン伝導性が実現できる。このようなプロトン伝導性高分子電解質膜の具体例としては、例えば、デュポン社製の「Nafion」(登録商標)、旭硝子(株)製の「Flemion」(登録商標)、旭化成(株)製の「Aciplex」(登録商標)、ゴア(Gore)社製の「Gore Select」(登録商標)等が挙げられる。   As the electrolyte membrane 1, known ones can be used. For example, perfluorosulfonic acid-based fluorine ion exchange resin membranes, more specifically, C—H bonds of hydrocarbon-based ion exchange membranes with fluorine are used. Examples include membranes made of proton conductive polymer electrolytes such as substituted perfluorocarbon sulfonic acid polymers (PFS polymers). By introducing a fluorine atom having high electronegativity, it is chemically very stable, the dissociation degree of the sulfonic acid group is high, and high ion conductivity can be realized. Specific examples of such a proton conductive polymer electrolyte membrane include, for example, “Nafion” (registered trademark) manufactured by DuPont, “Flemion” (registered trademark) manufactured by Asahi Glass Co., Ltd., and manufactured by Asahi Kasei Corporation. “Aciplex” (registered trademark), “Gore Select” (registered trademark) manufactured by Gore, and the like.

膜・電極接合体の製造に用いられる電解質膜の膜厚は、通常20〜250μmであると好ましく、20〜80μmであるとより好ましい。   The thickness of the electrolyte membrane used for the production of the membrane / electrode assembly is usually preferably 20 to 250 μm and more preferably 20 to 80 μm.

電解質膜1を支持する第1基板2としては、電解質膜1に対して機械的負荷等による変形をもたらすことなく第1触媒層4を形成可能であれば特に制限はないが、例えば、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン、ナイロン、ポリイミド、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロプレン共重合体(FEP)等の樹脂を含む樹脂シート、または、シート状のゴム状弾性体等が挙げられる。なかでも、電解質膜1がキャスト成形により第1基板2上に形成される場合、上記樹脂のうちなかでも、化学的安定性、耐薬品性、および耐熱性の優れた、ポリエチレンテレフタレート、ポリイミド等が望ましい。既に成膜されている電解質膜を第1基板2に固定する場合は、上記樹脂シートに加え、ゴム状弾性体が望ましい。上記ゴム状弾性体の材料としては、後述の第2基板と同様のものが挙げられる。   The first substrate 2 that supports the electrolyte membrane 1 is not particularly limited as long as the first catalyst layer 4 can be formed without causing deformation due to a mechanical load or the like to the electrolyte membrane 1, but for example, polyethylene terephthalate , Polyethylene, polypropylene, nylon, polyimide, polytetrafluoroethylene (PTFE), resin sheets containing a resin such as tetrafluoroethylene / hexafluoropropylene copolymer (FEP), or a sheet-like rubber-like elastic body. Can be mentioned. In particular, when the electrolyte membrane 1 is formed on the first substrate 2 by cast molding, among the above resins, polyethylene terephthalate, polyimide, etc. excellent in chemical stability, chemical resistance, and heat resistance are used. desirable. When fixing the already formed electrolyte membrane to the first substrate 2, a rubber-like elastic body is desirable in addition to the resin sheet. Examples of the material for the rubber-like elastic body include the same materials as those for the second substrate described later.

第1基板2の厚さについて特に制限はないが、取り扱い性が良好かつRoll to Roll対応巻取装置への適応が良好であるので、通常、10μm〜100μmが好ましく、20μm〜60μmがより好ましい。   Although there is no restriction | limiting in particular about the thickness of the 1st board | substrate 2, Usually 10 micrometers-100 micrometers are preferable, and 20 micrometers-60 micrometers are more preferable, since a handleability is favorable and the adaptation to a Roll to Roll corresponding | compatible winding apparatus is favorable.

第2基板3としては、ゴム状弾性体を含むものが用いられる。ゴム状弾性体の材料としては、天然ゴム、スチレンゴム、ブチルゴム、クロロプレンゴム、シリコンゴム、ウレタンゴム、フッ素ゴム、アクリルゴム、ニトリルゴム、スチレンブタジエンゴム等が挙げられる。なかでも、化学的に活性な触媒層と接触しても分解産物を生成することなく、分解産物の触媒層への移行により、電池性能および耐久性を劣化させる事がない、化学的に安定な、シリコンゴムまたはフッ素ゴムがより好ましい。第2基板3は、その全体がゴム状弾性体からなっていてもよいが、シート状ゴム状弾性体とフィルム等との積層体でもよい。また、第2基板3がシリコンゴムまたはフッ素ゴムを含む場合、その全体がシリコンゴムまたはフッ素ゴムから形成されていてもよいが、第2基板3の少なくとも上記積層体10の第1触媒層4と接する面が、シリコンゴム又はフッ素ゴムを含んでいればよい。   As the 2nd board | substrate 3, what contains a rubber-like elastic body is used. Examples of the rubber-like elastic material include natural rubber, styrene rubber, butyl rubber, chloroprene rubber, silicon rubber, urethane rubber, fluorine rubber, acrylic rubber, nitrile rubber, and styrene butadiene rubber. In particular, it does not generate degradation products even when in contact with a chemically active catalyst layer, and does not degrade battery performance and durability due to migration of degradation products to the catalyst layer. Silicon rubber or fluorine rubber is more preferable. The second substrate 3 may be entirely made of a rubber-like elastic body, but may be a laminate of a sheet-like rubber-like elastic body and a film. Further, when the second substrate 3 includes silicon rubber or fluororubber, the whole may be formed of silicon rubber or fluororubber, but at least the first catalyst layer 4 of the laminate 10 of the second substrate 3 and It is only necessary that the contacting surface contains silicon rubber or fluorine rubber.

第2基板3のJIS K 6253に準拠して測定されるゴム硬度は、20〜80が好ましく、40〜60であるとより好ましい。第2基板3の硬度が20〜80であると、第2基板3は、電解質膜1を第2基板3に固定可能とする適度なタック性と、第2基板3が接する凹凸表面に対する良好な追従性とを兼ね備えることができる。また、第2基板3の硬度が20〜80であると、第2触媒含有ペーストが塗工された電解質膜に膨張しようとする張力が生じても、電解質膜1の第2基板3からの剥離や、シワの発生等を防止できる。   20-80 are preferable and, as for the rubber hardness measured based on JISK6253 of the 2nd board | substrate 3, it is more preferable in it being 40-60. When the hardness of the second substrate 3 is 20 to 80, the second substrate 3 has an appropriate tack property that allows the electrolyte membrane 1 to be fixed to the second substrate 3 and good for the uneven surface that the second substrate 3 is in contact with. It is possible to combine the following ability. Further, when the hardness of the second substrate 3 is 20 to 80, the electrolyte membrane 1 is peeled off from the second substrate 3 even if tension is generated in the electrolyte membrane coated with the second catalyst-containing paste. And generation of wrinkles can be prevented.

第1電極基材および第2電極基材としては、公知のものを用いることができる。例えば、燃料である燃料ガス等を効率よく第1触媒層4および第2触媒層4'に供給可能な、多孔質の導電性基材、より具体的には、カーボンペーパーまたはカーボンクロス等を用いることができる。   A well-known thing can be used as a 1st electrode base material and a 2nd electrode base material. For example, a porous conductive substrate that can efficiently supply fuel gas or the like as fuel to the first catalyst layer 4 and the second catalyst layer 4 ′, more specifically, carbon paper or carbon cloth is used. be able to.

第2基板3の厚さは、取り扱い性が良好およびRoll to Roll対応巻取装置への適応が良好であり、かつ、高いクッション性を有するという理由から、20μm〜1000μmが好ましく、50μm〜300μmがより好ましい。   The thickness of the second substrate 3 is preferably 20 μm to 1000 μm, preferably 50 μm to 300 μm, because it is easy to handle and adapts well to a roll-to-roll winding device and has a high cushioning property. More preferred.

電解質膜1の第1基板2への固定は、電解質膜1がキャスト成形により第1基板2上に形成されることにより行われていてもよいし、第1基板2が例えばゴム状弾性体である場合は、ゴム状弾性体が有するタック性により行われていてもよい。電解質膜1のキャスト成形は、プロトン伝導性高分子電解質を含有する溶液を第1基板2上に塗工し、塗布されたプロトン伝導性高分子電解質を含有する溶液を乾燥させることにより行える。上記溶液中に含まれるプロトン伝導性高分子電解質の濃度は、通常、5〜60重量%であると好ましく、20〜40重量%であるとより好ましい。   The electrolyte membrane 1 may be fixed to the first substrate 2 by forming the electrolyte membrane 1 on the first substrate 2 by casting, or the first substrate 2 may be a rubber-like elastic body, for example. In some cases, it may be performed by the tackiness of the rubber-like elastic body. The electrolyte membrane 1 can be cast by applying a solution containing the proton conductive polymer electrolyte on the first substrate 2 and drying the applied solution containing the proton conductive polymer electrolyte. The concentration of the proton conductive polymer electrolyte contained in the solution is usually preferably 5 to 60% by weight and more preferably 20 to 40% by weight.

電解質膜1の第2基板3への固定は、ゴム状弾性を有する第2基板3のタック性により行われる。例えば、熱プレスを行った場合、触媒層と電解質膜の熱収縮率の相違に起因して、触媒層周辺の電解質膜にシワが発生し、このシワの発生がセル組みの際にガスケットとの接触不良をもたらし、耐久性低減の原因となる。上記タック性を利用して、熱をかけない圧着により、積層体10を第2基板3に固定すれば、熱収縮率の相違に起因して生じる上記問題の発生を防止できる。   The electrolyte membrane 1 is fixed to the second substrate 3 by the tackiness of the second substrate 3 having rubber-like elasticity. For example, when hot pressing is performed, wrinkles are generated in the electrolyte membrane around the catalyst layer due to the difference in thermal contraction rate between the catalyst layer and the electrolyte membrane. It causes poor contact and causes a reduction in durability. If the laminated body 10 is fixed to the second substrate 3 by pressure bonding without applying heat using the tack property, the occurrence of the above-described problem due to the difference in thermal shrinkage rate can be prevented.

電解質膜1の第1基板2への固定は、例えば、ロールプレス、平面プレスにより行える。また、積層体10の第2基板3への固定も、ロールプレス、平面プレスにより行える。これらの固定の際に電解質膜1に加わる圧力は、0.01〜5kgf/cm2であると好ましい。 The electrolyte membrane 1 can be fixed to the first substrate 2 by, for example, a roll press or a plane press. Further, the laminate 10 can be fixed to the second substrate 3 by a roll press or a plane press. The pressure applied to the electrolyte membrane 1 during these fixations is preferably 0.01 to 5 kgf / cm 2 .

本発明の膜・電極接合体の製造方法では、第1触媒層と電解質膜と第1基板とからなる積層体10と第2基板3との間に空隙を生じさせることなく、積層体10を第2基板3に固定させた後、電解質膜1の第1触媒層4が形成された面の反対面に、第2触媒含有ペーストを塗工しているので、上記空隙の存在に起因して生じる電解質膜の膨潤が抑制されている。また、第2基板3がゴム状弾性を有するので、電解質膜1が受ける機械的負荷によるダメージも抑制されている。そのため、本発明の膜・電極接合体の製造方法にて作製された膜・電極接合体を構成する電解質膜の厚みの均一性は高い。   In the method for producing a membrane / electrode assembly according to the present invention, the laminate 10 is formed without causing a gap between the laminate 10 and the second substrate 3 composed of the first catalyst layer, the electrolyte membrane, and the first substrate. After fixing to the second substrate 3, the second catalyst-containing paste is applied to the surface opposite to the surface on which the first catalyst layer 4 of the electrolyte membrane 1 is formed. Swelling of the resulting electrolyte membrane is suppressed. Moreover, since the 2nd board | substrate 3 has rubber-like elasticity, the damage by the mechanical load which the electrolyte membrane 1 receives is also suppressed. Therefore, the thickness uniformity of the electrolyte membrane constituting the membrane / electrode assembly produced by the method for producing a membrane / electrode assembly of the present invention is high.

具体的には、例えば、図4に示すように、電解質膜1のうちの、第1触媒層4と第2触媒層4のうちの少なくとも一方と接した部分において、最も厚い箇所の厚みをT1とし、最も薄い箇所の厚みをT2とすると、T2がT1の80%以上であり、好ましくは90%以上であり、より好ましくは95%以上である。触媒層の電解質膜1へのめり込みは、触媒層の周縁部で生じ易いので、一般に、T2は、電解質膜1のうちの触媒層の周縁部に接した部分の厚みであることが多い。電解質膜1のうちの触媒層と接した部分において、厚みが極端に薄い部分があると、長期稼動を行う場合に、上記厚みが薄い部分に劣化反応が集中し、セルの劣化が促進される可能性がある。 Specifically, for example, as shown in FIG. 4, the thickness of the thickest portion of the electrolyte membrane 1 in contact with at least one of the first catalyst layer 4 and the second catalyst layer 4 is T When the thickness of the thinnest portion is T 2 , T 2 is 80% or more of T 1 , preferably 90% or more, and more preferably 95% or more. Since the penetration of the catalyst layer into the electrolyte membrane 1 is likely to occur at the peripheral portion of the catalyst layer, in general, T 2 is often the thickness of the portion of the electrolyte membrane 1 in contact with the peripheral portion of the catalyst layer. In the portion of the electrolyte membrane 1 that is in contact with the catalyst layer, if there is an extremely thin portion, the deterioration reaction concentrates on the thin portion when long-term operation is performed, and the deterioration of the cell is promoted. there is a possibility.

本発明の膜・電極接合体の一例では、T2がT1の80%以上であり、電解質膜の厚みの均一性が高いので、本発明の膜・電極接合体を用いれば、性能な良好でかつ長期安定な固体高分子型燃料電池を提供できる。 In an example of the membrane / electrode assembly of the present invention, T 2 is 80% or more of T 1 , and the thickness of the electrolyte membrane is highly uniform. And a long-term stable polymer electrolyte fuel cell can be provided.

以下に実施例によって本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.

[実施例1]
PET基板にキャスト成形されている電解質膜(NAFION212CS、デュポン社製)に、その一部が第1触媒層の平面形状に対応して切り抜かれたテンシルマスクを重ね、上記電解質膜の露出部分に下記組成の触媒含有ペーストをスプレーで塗工した後、塗布された触媒含有ペーストを風乾(室温)して、第1触媒層(厚さ32μm)を形成した。触媒含有ペーストは、Pt担持量が0.5mg/cm2となるよう塗工した。
[触媒含有ペーストの組成]
触媒(TEC10E70TPM、田中貴金属(株)製) 1重量部
電解質(nafionDE2020 CS) 0.25重量部
水 2重量部
n−ブタノール 6重量部
[Example 1]
An electrolyte membrane cast on a PET substrate (NAFION212CS, manufactured by DuPont) is overlaid with a tencil mask partially cut out corresponding to the planar shape of the first catalyst layer, and the following composition is formed on the exposed portion of the electrolyte membrane. After applying the catalyst-containing paste by spraying, the applied catalyst-containing paste was air-dried (room temperature) to form a first catalyst layer (thickness 32 μm). The catalyst-containing paste was applied so that the amount of Pt supported was 0.5 mg / cm 2 .
[Composition of catalyst-containing paste]
Catalyst (TEC10E70TPM, Tanaka Kikinzoku Co., Ltd.) 1 part by weight electrolyte (nafionDE2020 CS) 0.25 part by weight water 2 parts by weight n-butanol 6 parts by weight

次に、シリコンゴム基板(厚さ200μm、ゴム硬度55(JIS K 6253)、三菱樹脂(株)製)を、第1触媒層と電解質膜とPET基板とからなる積層体にハンドローラー(<0.1kgf/cm2)を用いて、室温雰囲気下で圧着させた後、電解質膜からPET基板を剥離した。次に、電解質膜の第1触媒層が形成された面の反対面上に、その一部が第2触媒層の平面形状に対応して切り抜かれテンシルマスクを配置し、上記組成の触媒含有ペーストをスプレーで塗工した後、塗工された触媒含有ペーストを風乾して、第2触媒層(厚さ32μm)を形成した。触媒含有ペーストは、Pt担持量が0.5mg/cm2となるよう塗工した。このようにして、3層MEAを得た。なお、シリコンゴム基板の厚さは、デジタルメーターM−30(ソニー(株)製)を用いて測定した。 Next, a silicon rubber substrate (thickness: 200 μm, rubber hardness: 55 (JIS K 6253), manufactured by Mitsubishi Plastics Co., Ltd.) is placed on a laminate composed of a first catalyst layer, an electrolyte membrane and a PET substrate (<0 0.1 kgf / cm 2 ), the PET substrate was peeled from the electrolyte membrane after being pressure-bonded at room temperature. Next, on the surface opposite to the surface on which the first catalyst layer of the electrolyte membrane is formed, a part thereof is cut out corresponding to the planar shape of the second catalyst layer, and a tencil mask is disposed. After coating by spraying, the coated catalyst-containing paste was air-dried to form a second catalyst layer (thickness 32 μm). The catalyst-containing paste was applied so that the amount of Pt supported was 0.5 mg / cm 2 . In this way, a three-layer MEA was obtained. The thickness of the silicon rubber substrate was measured using a digital meter M-30 (manufactured by Sony Corporation).

[比較例1]
シリコンゴム基板を上記積層体に圧着させたことに代えて、PET基板(ルミラーX−S10、厚み200μm、東レ(株)製)を上記積層体に熱圧着(100℃、30kgf/cm2)させたこと以外は実施例1と同様にして、3層MEAを得た。
[Comparative Example 1]
Instead of pressure bonding the silicon rubber substrate to the laminate, a PET substrate (Lumirror X-S10, thickness 200 μm, manufactured by Toray Industries, Inc.) is thermocompression bonded (100 ° C., 30 kgf / cm 2 ) to the laminate. A three-layer MEA was obtained in the same manner as in Example 1 except that.

[比較例2]
PETフィルム(ルミラーX43、厚み50μm、東レ(株)製)に、実施例1で用いた触媒含有ペーストをスプレーで塗工した後、塗工された触媒含有ペーストを風乾(室温)して、第1触媒層(厚さ30μm)を形成した。触媒含有ペーストは、Pt担持量が0.5mg/cm2となるよう塗工した。また、上記PETフィルムとは別のPETフィルム(ルミラーX43、厚み50μm、東レ(株)製)に、実施例1で用いた触媒含有ペーストをスプレーで塗工した後、塗工された触媒含有ペーストを風乾(室温)して、第2触媒層(厚さ30μm)を形成した。触媒含有ペーストは、Pt担持量が0.5mg/cm2となるよう塗工した。次に、電解質膜(NAFION212CS、デュポン社製)の一方の主面に第1触媒層を、他方の主面に第2触媒層を、それぞれ配置し、プレス機(プレス板の温度:130℃)で熱転写して、3層MEAを得た。
[Comparative Example 2]
After spraying the catalyst-containing paste used in Example 1 on a PET film (Lumirror X43, thickness 50 μm, manufactured by Toray Industries, Inc.), the applied catalyst-containing paste was air-dried (room temperature), One catalyst layer (thickness 30 μm) was formed. The catalyst-containing paste was applied so that the amount of Pt supported was 0.5 mg / cm 2 . In addition, the catalyst-containing paste applied after spraying the catalyst-containing paste used in Example 1 on a PET film (Lumirror X43, thickness 50 μm, manufactured by Toray Industries, Inc.) different from the above PET film. Was air-dried (room temperature) to form a second catalyst layer (thickness 30 μm). The catalyst-containing paste was applied so that the amount of Pt supported was 0.5 mg / cm 2 . Next, a first catalyst layer is arranged on one main surface of the electrolyte membrane (NAFION212CS, manufactured by DuPont), and a second catalyst layer is arranged on the other main surface, respectively, and a press machine (press plate temperature: 130 ° C.). To obtain a three-layer MEA.

実施例および比較例の3層MEAの断面のSEM(走査型電子顕微鏡)写真の概念図を図4〜図6に示している。図4〜図6において、図の理解の容易化ためにハチングは省略している。なお、サンプルは以下のように作製し、SEMの観察条件は下記のとおりとした。
[サンプル作製]
実施例および比較例の3層MEAをエポキシ樹脂で樹脂封止し、3層MEAの断面が観察できるよう、封止樹脂および3層MEAを研磨して、断面を形成した。
[SEMの観察条件]
電子顕微鏡JIB―4500(日本電子社製)を用いて100倍の倍率で上記断面を観察した。
Conceptual images of SEM (scanning electron microscope) photographs of cross sections of the three-layer MEA of Examples and Comparative Examples are shown in FIGS. In FIGS. 4 to 6, hatching is omitted for easy understanding of the drawings. Samples were prepared as follows, and SEM observation conditions were as follows.
[Sample preparation]
The three-layer MEAs of Examples and Comparative Examples were resin-sealed with an epoxy resin, and the cross-section was formed by polishing the sealing resin and the three-layer MEA so that the cross-section of the three-layer MEA could be observed.
[SEM observation conditions]
The cross section was observed at a magnification of 100 using an electron microscope JIB-4500 (manufactured by JEOL Ltd.).

[電解質膜の厚みの測定]
図4〜図6に示されるように、第1触媒層または第2触媒層の周縁部と接した部分の厚み(電解質膜のうちの、第1触媒層と第2触媒層のうちの少なくとも一方と接した部分において、最も薄い箇所の厚み)T2と、第1触媒層および前記第2触媒層の中央部と接した部分の厚み(電解質膜のうちの、第1触媒層と第2触媒層のうちの少なくとも一方と接した部分において、最も厚い箇所の厚み)T1を、断面SEM写真(100倍)より測定した値から換算して得た。尚、サンプルは、実施例1、比較例1および比較例2の各々について5点作製した。T1およびT2は5つのサンプルの平均値である。T1およびT2を表1に示した。
[Measurement of electrolyte membrane thickness]
As shown in FIGS. 4 to 6, the thickness of the portion in contact with the peripheral portion of the first catalyst layer or the second catalyst layer (at least one of the first catalyst layer and the second catalyst layer in the electrolyte membrane) in the portion in contact with, the thinnest portion of the thickness) T 2, of the first catalyst layer and the second central portion and contact portion of the thickness of the catalyst layer (the electrolyte membrane, the first catalyst layer and the second catalyst The thickness (thickness of the thickest portion) T 1 in a portion in contact with at least one of the layers was obtained by conversion from a value measured from a cross-sectional SEM photograph (100 times). In addition, five samples were prepared for each of Example 1, Comparative Example 1, and Comparative Example 2. T 1 and T 2 are average values of 5 samples. T 1 and T 2 are shown in Table 1.

Figure 0005463624
Figure 0005463624

表1に示されるように、実施例1の3層MEAでは、T2とT1がほとんど変わらず、T2がT1の80%以上であった。一方、比較例1および比較例2の3層MEAでは、T2がT1よりかなり小さく、T2はT1の80%未満であった。 As shown in Table 1, in the three-layer MEA of Example 1, T 2 and T 1 were hardly changed, and T 2 was 80% or more of T 1 . On the other hand, in the three-layer MEA of Comparative Example 1 and Comparative Example 2, T 2 was much smaller than T 1 and T 2 was less than 80% of T 1 .

本発明の膜・電極接合体の製造方法によれば、電解質膜が受ける機械的負荷によるダメージおよび電解質膜の膨潤を抑制しながら、細孔構造が均質な触媒層を形成できるので、本発明の膜・電極接合体の製造方法は有用である。また、本発明の膜・電極接合体の製造方法により作製されたの本発明の膜・電極接合体は、電解質膜の厚みの均一性が良好なので、本発明の膜・電極接合体を用いれば、性能が良好でかつ長期安定な固体高分子型燃料電池を提供できる。   According to the method for producing a membrane / electrode assembly of the present invention, a catalyst layer having a uniform pore structure can be formed while suppressing damage due to mechanical load applied to the electrolyte membrane and swelling of the electrolyte membrane. A method for producing a membrane / electrode assembly is useful. In addition, since the membrane / electrode assembly of the present invention produced by the method of manufacturing a membrane / electrode assembly of the present invention has good uniformity in the thickness of the electrolyte membrane, the membrane / electrode assembly of the present invention can be used. Thus, it is possible to provide a polymer electrolyte fuel cell with good performance and long-term stability.

図1は、本発明の膜・電極接合体の一例の模式断面図FIG. 1 is a schematic cross-sectional view of an example of the membrane / electrode assembly of the present invention. 図2は、図1に示した膜・電極接合体を構成する3層MEAの模式断面図2 is a schematic cross-sectional view of a three-layer MEA constituting the membrane-electrode assembly shown in FIG. 図3のA〜Fは、本発明の膜・電極接合体の製造方法の一例を説明する工程模式断面図3A to 3F are process schematic cross-sectional views illustrating an example of a method for producing a membrane / electrode assembly of the present invention. 図4は、実施例1の膜・触媒層接合体の断面のSEM写真の概念図4 is a conceptual diagram of a SEM photograph of a cross section of the membrane / catalyst layer assembly of Example 1. FIG. 図5は、比較例1の膜・触媒層接合体の断面のSEM写真の概念図FIG. 5 is a conceptual diagram of an SEM photograph of a cross section of the membrane / catalyst layer assembly of Comparative Example 1. 図6は、比較例2の膜・触媒層接合体の断面のSEM写真の概念図6 is a conceptual diagram of an SEM photograph of a cross section of the membrane / catalyst layer assembly of Comparative Example 2. FIG.

符号の説明Explanation of symbols

1 電解質膜
4 第1触媒層
4’ 第2触媒層
5 第1電極基材
7 第2電極基材
8 燃料極
6 空気極
2 第1基板
3 第2基板
10 積層体
DESCRIPTION OF SYMBOLS 1 Electrolyte membrane 4 1st catalyst layer 4 '2nd catalyst layer 5 1st electrode base material 7 2nd electrode base material 8 Fuel electrode 6 Air electrode 2 1st board | substrate 3 2nd board | substrate 10 laminated body

Claims (7)

第1基板上に固定された電解質膜の前記第1基板側の面の反対面に第1触媒含有ペーストを塗工し、次いで、前記電解質膜に塗工された前記第1触媒含有ペーストを乾燥させる、第1触媒層形成工程と、
前記第1触媒層とゴム状弾性を有する第2基板とが接し、かつ、前記第1触媒層と前記電解質膜と前記第1基板とからなる積層体と前記第2基板との間に空隙を生じさせることなく、前記積層体を前記第2基板に固定させた後、前記電解質膜から前記第1基板を剥離し、前記電解質膜の前記第1触媒層が形成された面の反対面に、第2触媒含有ペーストを塗工し、次いで、前記電解質膜に塗工された前記第2触媒含有ペーストを乾燥させる、第2触媒層形成工程と、を含む固体高分子型燃料電池用膜・電極接合体の製造方法。
A first catalyst-containing paste is applied to the surface of the electrolyte membrane fixed on the first substrate opposite to the surface on the first substrate side, and then the first catalyst-containing paste applied to the electrolyte membrane is dried. A first catalyst layer forming step,
The first catalyst layer and the second substrate having rubber-like elasticity are in contact with each other, and a gap is formed between the second substrate and the laminate including the first catalyst layer, the electrolyte membrane, and the first substrate. Without causing the stack to be fixed to the second substrate, the first substrate is peeled from the electrolyte membrane, and the surface of the electrolyte membrane opposite to the surface on which the first catalyst layer is formed, Applying a second catalyst-containing paste, and then drying the second catalyst-containing paste applied to the electrolyte membrane, and forming a second catalyst layer, and a membrane / electrode for a polymer electrolyte fuel cell Manufacturing method of joined body.
前記第2基板のJIS K 6253に準拠して測定されたゴム硬度が、20〜80である請求項1に記載の固体高分子型燃料電池用膜・電極接合体の製造方法。   The method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell according to claim 1, wherein the rubber hardness of the second substrate measured in accordance with JIS K 6253 is 20-80. 前記第2基板の前記積層体と接する面が、シリコンゴムまたはフッ素ゴムを含む請求項1または2に記載の固体高分子型燃料電池用膜・電極接合体の製造方法。   3. The method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell according to claim 1, wherein a surface of the second substrate in contact with the laminate includes silicon rubber or fluorine rubber. 前記第2基板の厚さが、20μm〜1000μmである請求項1〜3のいずれかの項に記載の固体高分子型燃料電池用膜・電極接合体の製造方法。   4. The method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell according to claim 1, wherein the thickness of the second substrate is 20 μm to 1000 μm. 前記第2触媒層形成工程において、熱をかけない圧着により前記積層体を前記第2基板に固定する請求項1〜4のいずれかの項に記載の固体高分子型燃料電池用膜・電極接合体の製造方法。   The membrane / electrode joint for a polymer electrolyte fuel cell according to any one of claims 1 to 4, wherein in the second catalyst layer forming step, the laminate is fixed to the second substrate by pressure bonding without applying heat. Body manufacturing method. 前記第1基板が、ゴム状弾性体である請求項1〜5のいずれかの項に記載の固体高分子型燃料電池用膜・電極接合体の製造方法。   The method for producing a membrane-electrode assembly for a polymer electrolyte fuel cell according to any one of claims 1 to 5, wherein the first substrate is a rubber-like elastic body. 請求項1〜6のいずれかの項に記載の固体高分子型燃料電池用膜・電極接合体の製造方法により形成された固体高分子型燃料電池用膜・電極接合体であって、
前記電解質膜と、
前記電解質膜の一方の主面に接して配置された第1触媒層と、
前記電解質膜の他方の主面に接して配置された第2触媒層とを含み、
前記電解質膜のうちの、前記第1触媒層と前記第2触媒層のうちの少なくとも一方と接した部分において、最も厚い箇所の厚みをT1とし、最も薄い箇所の厚みをT2とすると、前記T2が前記T1の80%以上である、固体高分子型燃料電池用膜・電極接合体。
A membrane / electrode assembly for a polymer electrolyte fuel cell formed by the method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell according to any one of claims 1 to 6,
The electrolyte membrane;
A first catalyst layer disposed in contact with one main surface of the electrolyte membrane;
A second catalyst layer disposed in contact with the other main surface of the electrolyte membrane,
Of the electrolyte membrane, at least one and contact portions of said first catalyst layer and the second catalyst layer, the thickness of the thickest portion and T 1, when the thickness of the thinnest portion and T 2, A membrane / electrode assembly for a polymer electrolyte fuel cell, wherein T 2 is 80% or more of T 1 .
JP2008091987A 2008-03-31 2008-03-31 Method for producing membrane / electrode assembly for polymer electrolyte fuel cell Expired - Fee Related JP5463624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008091987A JP5463624B2 (en) 2008-03-31 2008-03-31 Method for producing membrane / electrode assembly for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008091987A JP5463624B2 (en) 2008-03-31 2008-03-31 Method for producing membrane / electrode assembly for polymer electrolyte fuel cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014009703A Division JP5757349B2 (en) 2014-01-22 2014-01-22 Method for producing membrane / electrode assembly for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2009245795A JP2009245795A (en) 2009-10-22
JP5463624B2 true JP5463624B2 (en) 2014-04-09

Family

ID=41307452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008091987A Expired - Fee Related JP5463624B2 (en) 2008-03-31 2008-03-31 Method for producing membrane / electrode assembly for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP5463624B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5206074B2 (en) * 2008-03-31 2013-06-12 大日本印刷株式会社 Membrane / electrode assembly for fuel cell and manufacturing method thereof
JP5044062B2 (en) * 2010-12-16 2012-10-10 パナソニック株式会社 Method for producing membrane-catalyst layer assembly
JP2012164422A (en) * 2011-02-03 2012-08-30 Honda Motor Co Ltd Method and apparatus of manufacturing membrane electrode assembly for fuel cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158014A (en) * 2000-11-17 2002-05-31 Asahi Glass Co Ltd Manufacturing method of catalyst layer.film joined body for solid polymer fuel cell
JP4251261B2 (en) * 2000-12-28 2009-04-08 富士電機ホールディングス株式会社 Method for producing matrix layer for phosphoric acid fuel cell
JP2002216789A (en) * 2001-01-19 2002-08-02 Matsushita Electric Ind Co Ltd Method of producing polymer electrolyte fuel cell
JP2002289207A (en) * 2001-03-26 2002-10-04 Matsushita Electric Ind Co Ltd Manufacturing method for hydrogen ion conductive polymer membrane with catalyst layer for fuel cell
JP4318316B2 (en) * 2006-01-20 2009-08-19 日立マクセル株式会社 Manufacturing method of fuel cell
JP4959253B2 (en) * 2006-08-17 2012-06-20 本田技研工業株式会社 MANUFACTURING SHEET FOR FUEL CELL MEMBRANE ELECTRODE STRUCTURE AND METHOD FOR PRODUCING FUEL CELL MEMBRANE ELECTRODE STRUCTURE

Also Published As

Publication number Publication date
JP2009245795A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
CA2430681C (en) Process for the manufacture of membrane-electrode-assemblies using catalyst-coated membranes
JP5196717B2 (en) Catalyst layer transfer sheet, method for producing catalyst layer-electrolyte membrane laminate, method for producing electrode-electrolyte membrane assembly, and method for producing fuel cell
JP2009193860A (en) Membrane-electrode assembly for polymer electrolyte fuel cell and method of manufacturing the same
JP7385014B2 (en) membrane electrode assembly
JP5153130B2 (en) Membrane electrode assembly
US11552318B2 (en) Method of manufacturing electricity-generating assembly
JP5286887B2 (en) Membrane / electrode assembly with reinforcing sheet for polymer electrolyte fuel cell and method for producing the same
JP2010170892A (en) Fuel cell
JP6571961B2 (en) ELECTRODE FOR FUEL CELL, MEMBRANE ELECTRODE COMPLEX FOR FUEL CELL, AND FUEL CELL
JP2011009146A (en) Solid alkaline fuel cell
JP5463624B2 (en) Method for producing membrane / electrode assembly for polymer electrolyte fuel cell
WO2017154475A1 (en) Catalyst composition, method for producing polymer electrolyte membrane electrode assembly, and polymer electrolyte membrane electrode assembly
JP5194631B2 (en) Manufacturing method of membrane-electrode assembly for fuel cell and membrane-electrode assembly
JP5273207B2 (en) ELECTROLYTE MEMBRANE-ELECTRODE ASSEMBLY WITH MASK FILM FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP5676615B2 (en) Improved catalyst coated membrane with composite, thin film, and thin cathode for direct methanol fuel cells
JP2009170387A (en) Manufacturing method of membrane-electrode assembly
JP5109502B2 (en) Electrolyte membrane with catalyst layer
KR20230065232A (en) Membrane-seal assembly
JP5757349B2 (en) Method for producing membrane / electrode assembly for polymer electrolyte fuel cell
JP2010021023A (en) Catalyst layer transfer sheet, method of manufacturing catalyst layer-electrolyte film laminate using same, method of manufacturing electrode-electrolyte film laminate, and method of manufacturing solid polymer fuel cell
JP2009080974A (en) Fuel cell
JP5206074B2 (en) Membrane / electrode assembly for fuel cell and manufacturing method thereof
JP2007103291A (en) Manufacturing method of membrane/electrode assembly for direct methanol fuel cell
JP2012074224A (en) Solid polymer fuel battery membrane electrode assembly, solid polymer fuel battery single cell, solid polymer fuel battery stack, solid polymer fuel battery membrane electrode assembly manufacturing method
JP2011003420A (en) Anode electrode for solid alkaline fuel cell, and anion conductive polymer electrolyte membrane-electrode assembly and solid alkaline fuel cell using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees