JP2012164422A - Method and apparatus of manufacturing membrane electrode assembly for fuel cell - Google Patents

Method and apparatus of manufacturing membrane electrode assembly for fuel cell Download PDF

Info

Publication number
JP2012164422A
JP2012164422A JP2011021555A JP2011021555A JP2012164422A JP 2012164422 A JP2012164422 A JP 2012164422A JP 2011021555 A JP2011021555 A JP 2011021555A JP 2011021555 A JP2011021555 A JP 2011021555A JP 2012164422 A JP2012164422 A JP 2012164422A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
fixing
membrane
electrode assembly
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011021555A
Other languages
Japanese (ja)
Inventor
Yohei Kobayashi
洋平 小林
Tomohide Shibuya
智秀 渋谷
Hiroshi Kurata
洋志 蔵田
Gen Okiyama
玄 沖山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011021555A priority Critical patent/JP2012164422A/en
Publication of JP2012164422A publication Critical patent/JP2012164422A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Laminated Bodies (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing apparatus of a membrane electrode assembly for fuel cell in which the membrane electrode assembly obtained by coating an electrolytic membrane with an electrode layer can be prevented from creasing.SOLUTION: The manufacturing apparatus of a membrane electrode assembly for fuel cell where an electrode layer is formed by coating an electrolyte membrane 2 of solid polymer with an electrode paste 1 containing alcohol as a solvent comprises three first fixed rollers 3 which fix the electrolyte membrane 2 coated with the electrode paste 1 so as not to deform and dries the electrolyte membrane 2, two second fixed rollers 4 which fix the electrolyte membrane 2 fed out by these first fixed rollers 3 so as not to deform and makes the electrolyte membrane 2 absorb moisture, and six small diameter rollers 5 arranged between these fixed rollers 3, 4. Moisture is absorbed into the electrolyte membrane 2 by leaving the electrolyte membrane 2, as it is, in normal temperature environment. Humidity of the working environment is preferably adjusted to 30-60%.

Description

本発明は、固体高分子の電解質膜に電極層を塗工してなる燃料電池用膜電極接合体の製造方法及びその装置に関する。   The present invention relates to a method and apparatus for producing a membrane electrode assembly for a fuel cell obtained by coating an electrode layer on a solid polymer electrolyte membrane.

燃料電池は、近年車両などの動力源として開発が進められている。燃料電池に使用する膜電極接合体は、触媒をアルコールなどの溶媒に分散させた電極インクやペーストを、ダイコータなどを用いて電解質膜の表面に塗工することにより作製される。ところが、電解質膜は電極インク中の溶媒や水分などの吸収状態により膨潤・収縮を生じ易いという性質があり、電極インクの塗工・乾燥により電解質膜に皺が発生するという問題があった。 In recent years, fuel cells have been developed as power sources for vehicles and the like. A membrane electrode assembly used in a fuel cell is produced by applying electrode ink or paste in which a catalyst is dispersed in a solvent such as alcohol to the surface of an electrolyte membrane using a die coater or the like. However, the electrolyte membrane has a property that it easily swells and shrinks due to the absorption state of the solvent and moisture in the electrode ink, and there is a problem that wrinkles are generated in the electrolyte membrane due to coating and drying of the electrode ink.

このような問題を解決するために、特許文献1には、電解質膜が面方向に変形しないよう、電解質膜を粘着シート上に固着して電極インクの塗工・乾燥を行う技術が開示されている。また、特許文献2には、ヒータ付きプレートに電解質膜の周囲を押えて取り付け、電極インクを塗工する技術が開示されている。 In order to solve such a problem, Patent Document 1 discloses a technique for fixing an electrolyte membrane on an adhesive sheet and applying and drying electrode ink so that the electrolyte membrane does not deform in the surface direction. Yes. Patent Document 2 discloses a technique in which the periphery of an electrolyte membrane is attached to a plate with a heater, and electrode ink is applied.

特開2006−339062号公報JP 2006-339062 A 特開2007−53064号公報JP 2007-53064 A

しかし、特許文献1や特許文献2に記載の技術のように、電解質膜を面方向に変形しないように固定して電極インクを電解質膜に塗工・乾燥するだけでは、電解質膜に発生する皺を防止するには十分ではなかった。例えば、乾燥後に電解質膜の固定を直ちに解放すると、その後に皺が生じる場合があった。 However, as in the techniques described in Patent Document 1 and Patent Document 2, if the electrolyte membrane is fixed so as not to be deformed in the surface direction and the electrode ink is simply applied to the electrolyte membrane and dried, it should be generated in the electrolyte membrane. Was not enough to prevent. For example, when the electrolyte membrane is immediately released after drying, wrinkles may occur after that.

これは、電極インクに含まれるアルコールが電解質膜を変性させるため、電極インクが塗工された部分が乾燥により収縮し易くなり、電極インクが塗工されていない部分との間に膨潤・収縮性の差が生じ、乾燥後の電解質膜が水分を吸収する際の電極インクの塗工部・非塗工部との間の内部応力に差が生じるためであると考えられる。 This is because the alcohol contained in the electrode ink denatures the electrolyte membrane, so that the portion coated with the electrode ink tends to shrink due to drying, and the portion that is not coated with the electrode ink swells / shrinks. This is considered to be due to the difference in internal stress between the coated and non-coated portions of the electrode ink when the dried electrolyte membrane absorbs moisture.

本発明は、従来の技術が有するこのような問題点に鑑みてなされたものであり、その目的とするところは、電解質膜に電極層を塗工してなる膜電極接合体に皺が発生するのを防止することができる燃料電池用膜電極接合体の製造方法及びその装置を提供しようとするものである。   The present invention has been made in view of such problems of the prior art, and the object of the present invention is to generate wrinkles in a membrane electrode assembly formed by coating an electrode layer on an electrolyte membrane. It is an object of the present invention to provide a method and apparatus for manufacturing a membrane electrode assembly for a fuel cell capable of preventing the above-described problem.

上記課題を解決すべく請求項1に係る発明は、固体高分子の電解質膜に電極層を塗工してなる燃料電池用膜電極接合体の製造方法であって、電解質膜に溶媒としてアルコールを含む電極ペーストを塗工する塗工工程と、この塗工工程で電極ペーストが塗工された電解質膜を固定部材に固定して乾燥させる乾燥工程と、この乾燥工程で乾燥させた電解質膜を固定部材に固定しつつ電解質膜に水分を吸収させる吸湿工程を備えるものである。 In order to solve the above problems, the invention according to claim 1 is a method of manufacturing a membrane electrode assembly for a fuel cell, which is obtained by coating an electrode layer on a solid polymer electrolyte membrane, wherein alcohol is used as a solvent in the electrolyte membrane. A coating process for coating the electrode paste, a drying process for fixing the electrolyte membrane coated with the electrode paste in the coating process to a fixing member, and a drying process for fixing the electrolyte film dried in the drying process. A moisture absorption process is provided in which the electrolyte membrane absorbs moisture while being fixed to the member.

また、前記吸湿工程では、前記電解質膜を加熱せず、雰囲気中の水分を前記電解質膜に吸収させることができる。   Further, in the moisture absorption step, the electrolyte membrane can be absorbed by the electrolyte membrane without heating the electrolyte membrane.

請求項3に係る発明は、固体高分子の電解質膜に溶媒としてアルコールを含む電極ペーストを塗工して電極層を形成する燃料電池用膜電極接合体の製造装置であって、前記製造装置は、電解質膜に塗工された電極ペーストを乾燥させる乾燥部と、この乾燥部を経た電解質膜に水分を吸収させる吸湿部を備え、前記乾燥部は電極ペーストが塗工された電解質膜が変形しないように固定する一つ又は複数の第1固定手段と、この第1固定手段に固定された電解質膜を乾燥させる乾燥手段を備え、前記吸湿部は乾燥された電解質膜が変形しないように固定する第2固定手段を備えるものである。 The invention according to claim 3 is an apparatus for manufacturing a fuel cell membrane electrode assembly, in which an electrode paste containing alcohol as a solvent is applied to a solid polymer electrolyte membrane to form an electrode layer, the manufacturing apparatus comprising: A drying unit that dries the electrode paste applied to the electrolyte membrane, and a moisture absorption unit that absorbs moisture in the electrolyte membrane that has passed through the drying unit, and the electrolyte membrane coated with the electrode paste does not deform One or a plurality of first fixing means to be fixed and a drying means for drying the electrolyte membrane fixed to the first fixing means, and the moisture absorbing part is fixed so that the dried electrolyte membrane is not deformed. The second fixing means is provided.

前記乾燥手段は加熱乾燥炉であり、前記第1固定手段は平板の載置台の表面に電解質膜を固定する固定ステージであり、前記第2固定手段として前記第1固定手段を用い、前記第1固定手段を前記加熱乾燥炉から前記吸湿部へ移動させる移動手段を備えることができる。   The drying means is a heating and drying furnace, the first fixing means is a fixing stage for fixing an electrolyte membrane on the surface of a flat mounting table, the first fixing means is used as the second fixing means, and the first fixing means is used. A moving means for moving the fixing means from the heating / drying furnace to the moisture absorption part can be provided.

また、前記乾燥手段は加熱乾燥炉であり、前記第1固定手段および前記第2固定手段は、側面に吸引孔を設け、この吸引孔から真空吸引して電解質膜を固定する固定ローラであり、前記第1固定手段の固定ローラは前記加熱乾燥炉内に設けられ、前記第2固定手段の固定ローラは前記加熱乾燥炉外の前記吸湿部に設けることができる。   Further, the drying means is a heating and drying furnace, and the first fixing means and the second fixing means are fixing rollers that are provided with suction holes on the side surfaces and vacuum sucked from the suction holes to fix the electrolyte membrane, The fixing roller of the first fixing means may be provided in the heating / drying furnace, and the fixing roller of the second fixing means may be provided in the moisture absorption part outside the heating / drying furnace.

また、前記第1固定手段および前記第2固定手段は、側面に吸引孔を設け、この吸引孔から真空吸引して電解質膜を固定する固定ローラであり、前記乾燥手段は、前記第1固定手段の固定ローラを加熱させることにより電解質膜を乾燥させ、前記第2固定手段の固定ローラは前記吸湿部を設けることができる。   Further, the first fixing means and the second fixing means are fixing rollers provided with suction holes on the side surfaces and vacuum-suctioned from the suction holes to fix the electrolyte membrane, and the drying means is the first fixing means. The electrolyte membrane is dried by heating the fixed roller, and the fixed roller of the second fixing means can be provided with the moisture absorbing portion.

更に、前記固定ローラの間に前記固定ローラより小径のローラを配設し、これらの小径のローラの中心は前記固定ローラの中心を通る直線上に位置することができる。   Furthermore, a roller having a smaller diameter than the fixed roller may be disposed between the fixed rollers, and the center of the small diameter roller may be positioned on a straight line passing through the center of the fixed roller.

請求項1に係る発明によれば、面内方向に変形しないよう固定部材に電解質膜を固定して乾燥させた後、電解質膜を固定したまま電解質膜に水分を吸収させる工程を設けることにより、面内変形が抑制された状態で水分が吸収される。すると、電極ペーストの塗工部・非塗工部の膨潤・収縮性による内部応力の差は、電解質膜に水分が吸収されるに従い、減少していく。そこで、電解質膜の吸水量が所定量を超えた段階で電解質膜の固定を解放すると、その後の皺の発生を抑制することができる。 According to the first aspect of the present invention, by fixing the electrolyte membrane to the fixing member so as not to be deformed in the in-plane direction and drying, by providing a step of absorbing moisture in the electrolyte membrane while fixing the electrolyte membrane, Moisture is absorbed with in-plane deformation suppressed. Then, the difference in internal stress due to the swelling / shrinkage of the coated part and the non-coated part of the electrode paste decreases as moisture is absorbed by the electrolyte membrane. Therefore, if the electrolyte membrane is released when the water absorption amount of the electrolyte membrane exceeds a predetermined amount, the subsequent generation of soot can be suppressed.

また、電解質膜を加熱せず、雰囲気中の水分を電解質膜に吸収させたりすれば、強制的に水分を供給せず、電解質膜に自発的に水分を吸収させることにより、電解質の膨潤が均質になり、局所的な内部応力差の発生を抑制することができる。 Also, if the electrolyte membrane is not heated and the moisture in the atmosphere is absorbed by the electrolyte membrane, the electrolyte is not forcedly supplied, and the electrolyte membrane absorbs moisture spontaneously, so that the electrolyte swells uniformly. Thus, the occurrence of local internal stress difference can be suppressed.

請求項3に係る発明によれば、電解質膜を固定した状態のまま、途中で固定を解放することなく電解質膜の乾燥・吸湿を行うことができるので、皺の発生を抑制することができる。   According to the invention of claim 3, since the electrolyte membrane can be dried and absorbed without releasing the fixing in the middle while the electrolyte membrane is fixed, the generation of wrinkles can be suppressed.

また、第1固定手段および第2固定手段を、側面に吸引孔を設け、この吸引孔から真空吸引して電解質膜を固定する固定ローラとしたり、固定ローラ自体が電解質膜を加熱する加熱ローラとしたりすれば、電解質膜を連続体の状態で製造することができ、製造効率を高めることができる。   Further, the first fixing means and the second fixing means may be a fixing roller provided with a suction hole on the side surface and vacuum-suctioned from the suction hole to fix the electrolyte membrane, or a heating roller that the fixing roller itself heats the electrolyte membrane. If so, the electrolyte membrane can be manufactured in a continuous state, and the manufacturing efficiency can be increased.

更に、固定ローラの間に、固定ローラより小径のローラを配設し、これらの小径のローラの中心を固定ローラの中心を通る直線上に位置させて、小径のローラを介して固定ローラ間を電解質膜の連続体が通るようにすれば、固定ローラ間の電解質膜の連続体の非固定状態の部分を短くすることができ、電解質膜の皺の発生を一層抑制することができる。   Further, a roller having a smaller diameter than the fixed roller is disposed between the fixed rollers, the center of these small diameter rollers is positioned on a straight line passing through the center of the fixed roller, and the space between the fixed rollers is interposed via the small diameter roller. If the electrolyte membrane continuum passes, the non-fixed portion of the electrolyte membrane continuum between the fixed rollers can be shortened, and the generation of wrinkles of the electrolyte membrane can be further suppressed.

本発明に係る燃料電池用膜電極接合体の製造装置の第1実施の形態の概要説明図Outline explanatory drawing of 1st Embodiment of the manufacturing apparatus of the membrane electrode assembly for fuel cells which concerns on this invention 小径のローラの作用説明図で、(a)は小径のローラを固定ローラの間に配設した場合、(b)は小径のローラを配設しない場合(A) When a small diameter roller is disposed between fixed rollers, (b) When a small diameter roller is not disposed 本発明に係る燃料電池用膜電極接合体の製造装置の第2実施の形態の説明図で、(a)は固定ステージの説明図、(b)は全体の説明図It is explanatory drawing of 2nd Embodiment of the manufacturing apparatus of the membrane electrode assembly for fuel cells which concerns on this invention, (a) is explanatory drawing of a fixed stage, (b) is explanatory drawing of the whole. 本発明に係る燃料電池用膜電極接合体の製造装置の第3実施の形態の概要説明図Outline explanatory drawing of 3rd Embodiment of the manufacturing apparatus of the membrane electrode assembly for fuel cells which concerns on this invention

以下に本発明の実施の形態を添付図面に基づいて説明する。本発明に係る燃料電池用膜電極接合体の製造装置の第1実施の形態は、図1に示すように、電極ペースト(電極インク)1が塗工された電解質膜2が変形しないように固定すると共に電解質膜2を乾燥させる3つの第1固定ローラ3と、これらの第1固定ローラ3により送り出された電解質膜2が変形しないように固定すると共に電解質膜2に水分を吸収させる2つの第2固定ローラ4と、これらの固定ローラ3,4の間などに配設された6つの小径のローラ5などを備えてなる。   Embodiments of the present invention will be described below with reference to the accompanying drawings. As shown in FIG. 1, the first embodiment of the fuel cell membrane electrode assembly manufacturing apparatus according to the present invention is fixed so that the electrolyte membrane 2 coated with the electrode paste (electrode ink) 1 is not deformed. In addition, three first fixed rollers 3 for drying the electrolyte membrane 2 and two first fixed rollers 3 for fixing the electrolyte membrane 2 sent out by these first fixed rollers 3 so as not to be deformed and for allowing the electrolyte membrane 2 to absorb moisture. 2 fixed rollers 4 and six small-diameter rollers 5 disposed between these fixed rollers 3 and 4.

ここで、6は巻き出し用の電解質膜ロール、7は巻き取られた電解質膜ロール、8は電解質膜2に電極ペースト1を塗布するダイヘッド、9は第1固定ローラ3と同じ構造の塗工用ローラ、10はガイドローラ、11は電極ペースト1を電解質膜2に施したペースト塗工部である。 Here, 6 is an electrolyte membrane roll for unwinding, 7 is a wound electrolyte membrane roll, 8 is a die head for applying the electrode paste 1 to the electrolyte membrane 2, and 9 is a coating having the same structure as the first fixed roller 3 A roller 10, a guide roller 10, and a paste coating portion 11 in which the electrode paste 1 is applied to the electrolyte membrane 2.

第1固定ローラ3と第2固定ローラ4は、その側面に吸引孔(不図示)が設けられ、この吸引孔から真空吸引して電解質膜2を吸引固定する。また、第1固定ローラ3は、ローラ自身が昇温する加熱ローラであり、固定している電解質膜2を乾燥させる。一方、第2固定ローラ4は、電解質膜2を吸引固定するものの、電解質膜2を加熱せず電解質膜2に水分を吸収させる。小径のローラ5は、固定ローラ3,4より小径で、その中心は固定ローラ3,4の中心を通る直線上に位置している。 The first fixed roller 3 and the second fixed roller 4 are provided with suction holes (not shown) on their side surfaces, and the electrolyte membrane 2 is sucked and fixed by vacuum suction from the suction holes. The first fixed roller 3 is a heating roller that raises the temperature of the roller itself, and dries the fixed electrolyte membrane 2. On the other hand, the second fixed roller 4 sucks and fixes the electrolyte membrane 2 but does not heat the electrolyte membrane 2 and allows the electrolyte membrane 2 to absorb moisture. The small-diameter roller 5 has a smaller diameter than the fixed rollers 3 and 4, and the center thereof is located on a straight line passing through the centers of the fixed rollers 3 and 4.

電解質膜2は、プロトン伝導性を有する高分子よりなり、例えばデュポン社製のナフィオン(製品名)などのパーフルオロスルホン酸系高分子膜を用いることができる。電極ペースト1は、白金或いは白金と他の金属との合金などの触媒と、電解質膜2と同様のプロトン伝導性を有する高分子を混合し、水・アルコールなどの溶媒に分散させたものである。 The electrolyte membrane 2 is made of a polymer having proton conductivity. For example, a perfluorosulfonic acid polymer membrane such as Nafion (product name) manufactured by DuPont can be used. The electrode paste 1 is a mixture of a catalyst such as platinum or an alloy of platinum and other metals and a polymer having proton conductivity similar to that of the electrolyte membrane 2 and dispersed in a solvent such as water or alcohol. .

アルコールとしては、エタノールやプロパノールが好適に用いられる。なお、電極ペースト1中には触媒と高分子の他、炭素繊維などの他の材料を加えることもできる。また、触媒としては、白金やその合金を炭素粒子に坦持させたものを用いることもできる。 As the alcohol, ethanol or propanol is preferably used. In addition to the catalyst and polymer, other materials such as carbon fiber can be added to the electrode paste 1. In addition, a catalyst in which platinum or an alloy thereof is supported on carbon particles can also be used as the catalyst.

以上のように構成された本発明に係る燃料電池用膜電極接合体の製造装置の第1実施の形態の作用及び燃料電池用膜電極接合体の製造方法について説明する。先ず、電解質膜ロール6から巻き出され、塗工用ローラ9に吸引固定された電解質膜2の一面に電極ペースト1をダイコータが備えるダイヘッド8により塗工する(塗工工程)。電解質膜2に塗工された電極ペースト1の塗工形状は、適宜決定することができるが、例えば方形形状とすることができる。 The operation of the fuel cell membrane electrode assembly manufacturing apparatus according to the first embodiment configured as described above and the method of manufacturing the fuel cell membrane electrode assembly will be described. First, the electrode paste 1 is applied to one surface of the electrolyte membrane 2 unwound from the electrolyte membrane roll 6 and sucked and fixed to the coating roller 9 by the die head 8 provided in the die coater (application step). Although the application shape of the electrode paste 1 applied to the electrolyte membrane 2 can be determined as appropriate, it can be, for example, a rectangular shape.

次いで、電極ペースト1中の溶媒成分を蒸発させ、電極層を形成するために電極ペースト1を塗工した電解質膜2を、3つの第1固定ローラ3に順次吸引固定した状態で加熱したローラにより乾燥させる(乾燥工程)。電解質膜2を第1固定ローラ3に吸引固定させることにより、電解質膜2の面内方向の変形が生じないようにすることができる。乾燥は、電解質膜2を例えば80〜120℃に加熱することにより行われる。 Next, the solvent component in the electrode paste 1 is evaporated, and the electrolyte membrane 2 coated with the electrode paste 1 to form an electrode layer is heated by a roller heated while being sequentially sucked and fixed to the three first fixed rollers 3. Dry (drying process). By fixing the electrolyte membrane 2 to the first fixed roller 3 by suction, deformation in the in-plane direction of the electrolyte membrane 2 can be prevented. Drying is performed by heating the electrolyte membrane 2 to, for example, 80 to 120 ° C.

次いで、3つの第1固定ローラ3で乾燥させた電解質膜2を、更に2つの第2固定ローラ4に順次吸引固定した状態で電解質膜2に水分を吸収させる(吸湿工程)。水分の電解質膜2への吸収は、常温環境下で放置することにより行う。なお、作業環境の湿度を30%〜60%に調整しておくことが好ましい。   Next, the electrolyte membrane 2 dried by the three first fixed rollers 3 is further sucked and fixed to the two second fixed rollers 4 in order, and the electrolyte membrane 2 absorbs moisture (moisture absorption step). The absorption of moisture into the electrolyte membrane 2 is performed by leaving it in a room temperature environment. In addition, it is preferable to adjust the humidity of the working environment to 30% to 60%.

このように作業環境湿度を調整することにより、水分の吸収条件を一定にすることができ、また作業環境湿度を60%以下とすることで、急激な水分吸収を防止できるため、皺の防止効果を一層高めることができる。 By adjusting the working environment humidity in this way, moisture absorption conditions can be made constant, and by setting the working environment humidity to 60% or less, rapid moisture absorption can be prevented, thus preventing wrinkles. Can be further enhanced.

次いで、このような状態で電解質膜2に水分を吸収させ、電解質膜2の吸水量が所定量を超えた時点(例えば、飽和吸水量の30%以上になった時点)で、第2固定ローラ4による電解質膜2の固定を解放する。このように、電解質膜2の乾燥後、電解質膜2を直ちに固定から解放させることなく、固定した状態で水分を吸収させることにより皺の発生を抑制することができる。   Next, when the electrolyte membrane 2 absorbs moisture in such a state and the water absorption amount of the electrolyte membrane 2 exceeds a predetermined amount (for example, when the saturated water absorption amount is 30% or more), the second fixed roller 4 to release the fixing of the electrolyte membrane 2. As described above, after the electrolyte membrane 2 is dried, the generation of wrinkles can be suppressed by absorbing the moisture in the fixed state without immediately releasing the electrolyte membrane 2 from the fixed state.

なお、小径のローラ5は、図2(a)に示すように、第1固定ローラ3よりも小径で第1固定ローラ3の間に配設されている。更に、小径のローラ5の中心は、第1固定ローラ3の中心を通る直線12上に位置している。小径のローラ5は、第1固定ローラ3と第2固定ローラ4の間及び第2固定ローラ4の間についても同様に配設されている。   The small-diameter roller 5 is disposed between the first fixed rollers 3 having a smaller diameter than the first fixed rollers 3 as shown in FIG. Further, the center of the small diameter roller 5 is located on a straight line 12 passing through the center of the first fixed roller 3. The small-diameter roller 5 is similarly disposed between the first fixed roller 3 and the second fixed roller 4 and between the second fixed roller 4.

このように、小径のローラ5を介して固定ローラ3間を電解質膜2の連続体が通るようにすれば、固定ローラ3間の電解質膜2の連続体の非固定状態の部分(渡りの部分)13を短くすることができる。すると、図2(b)に示すように、小径のローラ5を用いないために渡り部分13が長くなる場合と比べて、電解質膜2の皺の発生を一層抑制することができる。   As described above, if the continuous body of the electrolyte membrane 2 passes between the fixed rollers 3 via the small-diameter roller 5, the non-fixed portion of the continuous body of the electrolyte membrane 2 between the fixed rollers 3 (crossover portion) ) 13 can be shortened. Then, as shown in FIG. 2 (b), the generation of wrinkles in the electrolyte membrane 2 can be further suppressed as compared with the case where the transition portion 13 becomes longer because the small-diameter roller 5 is not used.

また、小径のローラ5を介して固定ローラ3間を電解質膜2の連続体が通るようにすれば、図2(a)に示すように、電極ペースト1が固定ローラ3と直接接触することがない。一方、小径のローラ5を用いない場合には、図2(b)に示すように、電極ペースト1が接触面の大きい固定ローラ3と直接接触することになり、加熱された固定ローラ3によって電極ペースト1が乾燥され、固定ローラ3に付着してしまう虞がある。 Further, if the continuous body of the electrolyte membrane 2 passes between the fixed rollers 3 via the small-diameter rollers 5, the electrode paste 1 may be in direct contact with the fixed rollers 3 as shown in FIG. Absent. On the other hand, when the small-diameter roller 5 is not used, the electrode paste 1 comes into direct contact with the fixed roller 3 having a large contact surface as shown in FIG. There is a possibility that the paste 1 is dried and adheres to the fixed roller 3.

次に、本発明に係る燃料電池用膜電極接合体の製造装置の第2実施の形態は、図3に示すように、電解質膜2が変形しないように固定する固定ステージ21と、固定ステージ21に固定された状態で電極インク1が塗工された電解質膜2を乾燥させる加熱乾燥炉22と、電解質膜2を固定した状態の固定ステージ21を加熱乾燥炉22内から加熱乾燥炉22外の吸湿部23へ移動させる移動手段24などを備える。   Next, the second embodiment of the fuel cell membrane electrode assembly manufacturing apparatus according to the present invention includes, as shown in FIG. 3, a fixing stage 21 for fixing the electrolyte membrane 2 so as not to deform, and a fixing stage 21. A heating / drying furnace 22 for drying the electrolyte membrane 2 coated with the electrode ink 1 in a state of being fixed to the electrode, and a fixing stage 21 in a state of fixing the electrolyte membrane 2 from the inside of the heating / drying oven 22 to the outside of the heating / drying oven 22 The moving means 24 etc. which are moved to the moisture absorption part 23 are provided.

固定ステージ21は、図3(a)に示すように、電解質膜2を載置する平板の載置台25と、載置台25の表面25aに設けられ、電解質膜2をエア吸引するための複数の吸引孔25bを備えてなる。移動手段24としては、電解質膜2を固定した固定ステージ21を載置して搬送するコンベアなどが用いられる。   As shown in FIG. 3A, the fixed stage 21 is provided on a flat plate mounting table 25 on which the electrolyte membrane 2 is mounted and a plurality of surfaces 25 a of the mounting table 25. A suction hole 25b is provided. As the moving means 24, a conveyor or the like that carries and transports the fixed stage 21 to which the electrolyte membrane 2 is fixed is used.

以上のように構成された本発明に係る燃料電池用膜電極接合体の製造装置の第2実施の形態の作用について説明する。先ず、固定ステージ21に固定された状態の電解質膜2に電極インク1を塗工する(塗工工程)。   The operation of the second embodiment of the fuel cell membrane electrode assembly manufacturing apparatus according to the present invention configured as described above will be described. First, the electrode ink 1 is applied to the electrolyte membrane 2 fixed to the fixed stage 21 (coating process).

次いで、電解質膜2を固定した状態の固定ステージ21をコンベア24により加熱乾燥炉22に投入し、電極インク1が塗工された電解質膜2を乾燥させる(乾燥工程)。乾燥作業は、電極インク1中の溶媒成分を蒸発させ、電極層を形成するために電解質膜2を例えば80〜120℃に加熱することにより行われる。 Next, the fixed stage 21 in a state where the electrolyte membrane 2 is fixed is put into the heating and drying furnace 22 by the conveyor 24, and the electrolyte membrane 2 coated with the electrode ink 1 is dried (drying step). The drying operation is performed by evaporating the solvent component in the electrode ink 1 and heating the electrolyte membrane 2 to, for example, 80 to 120 ° C. in order to form an electrode layer.

次いで、乾燥した電解質膜2を固定した状態の固定ステージ21をコンベア24により加熱乾燥炉22内から加熱乾燥炉22外の吸湿部23へ移動させる。吸湿部23では、水分の電解質膜2への吸収は、常温環境下で放置することにより行う(吸湿工程)。なお、作業環境の湿度を30%〜60%に調整しておくことが好ましい。   Next, the fixed stage 21 in a state where the dried electrolyte membrane 2 is fixed is moved by the conveyor 24 from the inside of the heating / drying furnace 22 to the moisture absorption part 23 outside the heating / drying furnace 22. In the moisture absorption part 23, the moisture is absorbed into the electrolyte membrane 2 by leaving it in a room temperature environment (a moisture absorption process). In addition, it is preferable to adjust the humidity of the working environment to 30% to 60%.

このように作業環境湿度を調整することにより、水分の吸収条件を一定にすることができ、また作業環境湿度を60%以下とすることで、急激な水分吸収を防止できるため、皺の防止効果を一層高めることができる。 By adjusting the working environment humidity in this way, moisture absorption conditions can be made constant, and by setting the working environment humidity to 60% or less, rapid moisture absorption can be prevented, thus preventing wrinkles. Can be further enhanced.

次いで、このような状態で電解質膜2に水分を吸収させ、電解質膜2の吸水量が飽和吸水量の30%以上になった時点で、固定ステージ21による電解質膜2の固定を解放する。   Next, in such a state, the electrolyte membrane 2 absorbs moisture, and when the water absorption amount of the electrolyte membrane 2 becomes 30% or more of the saturated water absorption amount, the fixation of the electrolyte membrane 2 by the fixing stage 21 is released.

次に、本発明に係る燃料電池用膜電極接合体の製造装置の第3実施の形態は、図4に示すように、電極ペースト(電極インク)1が塗工された電解質膜2が変形しないように固定する3つの第1固定ローラ30を加熱乾燥炉31内に配置し、この加熱乾燥炉31より送り出された電解質膜2が変形しないように固定すると共に電解質膜2に水分を吸収させる2つの第2固定ローラ32を吸湿部33に配置している。 Next, in the third embodiment of the fuel cell membrane electrode assembly manufacturing apparatus according to the present invention, as shown in FIG. 4, the electrolyte membrane 2 coated with the electrode paste (electrode ink) 1 is not deformed. The three first fixing rollers 30 are fixed in the heating / drying furnace 31 so that the electrolyte membrane 2 sent from the heating / drying furnace 31 is fixed so as not to be deformed, and the electrolyte membrane 2 absorbs moisture. Two second fixed rollers 32 are arranged in the moisture absorption part 33.

第1固定ローラ30と第2固定ローラ32の側面には、吸引孔(不図示)が設けられ、この吸引孔から真空吸引して電解質膜2を吸引固定する。その他の構成は、図1に示す第1実施の形態の構成と同様である。 Suction holes (not shown) are provided on the side surfaces of the first fixed roller 30 and the second fixed roller 32, and the electrolyte membrane 2 is sucked and fixed by vacuum suction from the suction holes. Other configurations are the same as those of the first embodiment shown in FIG.

以上のように構成された本発明に係る燃料電池用膜電極接合体の製造装置の第3実施の形態の作用について説明する。先ず、電解質膜ロール6から巻き出され、塗工用ローラ9に吸引固定された電解質膜2の一面に電極ペースト1をダイコータが備えるダイヘッド8により塗工する(塗工工程)。電解質膜2に塗工された電極ペースト1の塗工形状は、適宜決定することができるが、例えば方形形状とすることができる。 The operation of the third embodiment of the fuel cell membrane electrode assembly manufacturing apparatus according to the present invention configured as described above will be described. First, the electrode paste 1 is applied to one surface of the electrolyte membrane 2 unwound from the electrolyte membrane roll 6 and sucked and fixed to the coating roller 9 by the die head 8 provided in the die coater (application step). Although the application shape of the electrode paste 1 applied to the electrolyte membrane 2 can be determined as appropriate, it can be, for example, a rectangular shape.

次いで、電極ペースト1中の溶媒成分を蒸発させ、電極層を形成するために電極ペースト1を塗工した電解質膜2を、加熱乾燥炉31内に配置した3つの第1固定ローラ30に順次吸引固定した状態で加熱し乾燥させる(乾燥工程)。電解質膜2を第1固定ローラ30に吸引固定させることにより、電解質膜2の面内方向の変形が生じないようにすることができる。乾燥は、電解質膜2を例えば80〜120℃に加熱することにより行われる。 Next, the solvent component in the electrode paste 1 is evaporated, and the electrolyte membrane 2 coated with the electrode paste 1 to form an electrode layer is sequentially sucked by the three first fixed rollers 30 disposed in the heating and drying furnace 31. Heat and dry in a fixed state (drying process). By fixing the electrolyte membrane 2 to the first fixed roller 30 by suction, deformation in the in-plane direction of the electrolyte membrane 2 can be prevented. Drying is performed by heating the electrolyte membrane 2 to, for example, 80 to 120 ° C.

次いで、加熱乾燥炉31で乾燥させた電解質膜2を、更に吸湿部33に配置した2つの第2固定ローラ32に順次吸引固定した状態で電解質膜2に水分を吸収させる(吸湿工程)。水分の電解質膜2への吸収は、常温環境下で放置することにより行う。なお、作業環境の湿度を30%〜60%に調整しておくことが好ましい。   Subsequently, the electrolyte membrane 2 dried in the heating and drying furnace 31 is further sucked and fixed to the two second fixed rollers 32 arranged in the moisture absorption section 33 in order to absorb moisture in the electrolyte membrane 2 (moisture absorption step). The absorption of moisture into the electrolyte membrane 2 is performed by leaving it in a room temperature environment. In addition, it is preferable to adjust the humidity of the working environment to 30% to 60%.

このように作業環境湿度を調整することにより、水分の吸収条件を一定にすることができ、また作業環境湿度を60%以下とすることで、急激な水分吸収を防止できるため、皺の防止効果を一層高めることができる。 By adjusting the working environment humidity in this way, moisture absorption conditions can be made constant, and by setting the working environment humidity to 60% or less, rapid moisture absorption can be prevented, thus preventing wrinkles. Can be further enhanced.

次いで、このような状態で電解質膜2に水分を吸収させ、電解質膜2の吸水量が所定量を超えた時点(例えば、飽和吸水量の30%以上になった時点)で、第2固定ローラ32による電解質膜2の固定を解放する。このように、電解質膜2の乾燥後、電解質膜2を直ちに固定から解放させることなく、固定した状態で水分を吸収させることにより皺の発生を抑制することができる。 Next, when the electrolyte membrane 2 absorbs moisture in such a state and the water absorption amount of the electrolyte membrane 2 exceeds a predetermined amount (for example, when the saturated water absorption amount is 30% or more), the second fixed roller The fixing of the electrolyte membrane 2 by 32 is released. As described above, after the electrolyte membrane 2 is dried, the generation of wrinkles can be suppressed by absorbing the moisture in the fixed state without immediately releasing the electrolyte membrane 2 from the fixed state.

本発明によれば、電解質膜を固定した状態のまま、途中で固定を解放することなく電解質膜の乾燥・吸湿を行うことができるので、皺の発生が抑制される燃料電池用膜電極接合体の製造方法及びその装置を提供することができる。 According to the present invention, since the electrolyte membrane can be dried and moisture-absorbed without releasing the fixing in the middle while the electrolyte membrane is fixed, the membrane electrode assembly for a fuel cell in which the generation of soot is suppressed The manufacturing method and apparatus thereof can be provided.

1…電極ペースト(電極インク)、2…電解質膜、3,30…第1固定ローラ、4,32…第2固定ローラ、5…小径のローラ、6…巻き出し用の電解質膜ロール、7…巻き取られた電解質膜ロール、8…ダイヘッド、9…塗工用ローラ、11…ペースト塗工部、12…直線、21…固定ステージ21、22,31…加熱乾燥炉、23,33…吸湿部、24…コンベア(移動手段)、25…載置台、25a…表面、25b…吸引孔。 DESCRIPTION OF SYMBOLS 1 ... Electrode paste (electrode ink), 2 ... Electrolyte membrane, 3, 30 ... 1st fixed roller, 4, 32 ... 2nd fixed roller, 5 ... Small diameter roller, 6 ... Electrolyte membrane roll for unwinding, 7 ... Rolled electrolyte membrane roll, 8 ... Die head, 9 ... Coating roller, 11 ... Paste coating part, 12 ... Straight line, 21 ... Fixed stage 21, 22, 31 ... Heating and drying furnace, 23, 33 ... Hygroscopic part 24 ... conveyor (moving means), 25 ... mounting table, 25a ... surface, 25b ... suction hole.

Claims (7)

固体高分子の電解質膜に電極層を塗工してなる燃料電池用膜電極接合体の製造方法であって、電解質膜に溶媒としてアルコールを含む電極ペーストを塗工する塗工工程と、この塗工工程で電極ペーストが塗工された電解質膜を固定部材に固定して乾燥させる乾燥工程と、この乾燥工程で乾燥させた電解質膜を固定部材に固定しつつ電解質膜に水分を吸収させる吸湿工程を備えることを特徴とする燃料電池用膜電極接合体の製造方法。 A method for producing a membrane-electrode assembly for a fuel cell by coating an electrode layer on an electrolyte membrane of a solid polymer, the coating step of coating an electrode paste containing alcohol as a solvent on the electrolyte membrane, and this coating A drying process in which the electrolyte membrane coated with the electrode paste in the construction process is fixed to a fixing member and dried, and a moisture absorption process in which the electrolyte membrane absorbs moisture while fixing the electrolyte membrane dried in this drying process to the fixing member A process for producing a membrane electrode assembly for a fuel cell, comprising: 請求項1に記載の燃料電池用膜電極接合体の製造方法において、前記吸湿工程は、前記電解質膜を加熱せず、雰囲気中の水分を前記電解質膜に吸収させることを特徴とする燃料電池用膜電極接合体の製造方法。 2. The method for producing a membrane electrode assembly for a fuel cell according to claim 1, wherein the moisture absorption step does not heat the electrolyte membrane and allows the electrolyte membrane to absorb moisture in the atmosphere. Manufacturing method of membrane electrode assembly. 固体高分子の電解質膜に溶媒としてアルコールを含む電極ペーストを塗工して電極層を形成する燃料電池用膜電極接合体の製造装置であって、前記製造装置は、電解質膜に塗工された電極ペーストを乾燥させる乾燥部と、この乾燥部を経た電解質膜に水分を吸収させる吸湿部を備え、前記乾燥部は電極ペーストが塗工された電解質膜が変形しないように固定する一つ又は複数の第1固定手段と、この第1固定手段に固定された電解質膜を乾燥させる乾燥手段を備え、前記吸湿部は乾燥された電解質膜が変形しないように固定する第2固定手段を備えることを特徴とする燃料電池用膜電極接合体の製造装置。 An apparatus for manufacturing a fuel cell membrane electrode assembly in which an electrode paste containing alcohol as a solvent is applied to a solid polymer electrolyte membrane to form an electrode layer, wherein the manufacturing device is applied to an electrolyte membrane A drying unit that dries the electrode paste, and a moisture absorption unit that absorbs moisture in the electrolyte membrane that has passed through the drying unit, and the drying unit is fixed to prevent the electrolyte membrane coated with the electrode paste from being deformed. A first fixing means and a drying means for drying the electrolyte membrane fixed to the first fixing means, and the moisture absorbing portion includes a second fixing means for fixing the dried electrolyte membrane so as not to be deformed. A fuel cell membrane electrode assembly manufacturing apparatus. 請求項3に記載の燃料電池用膜電極接合体の製造装置において、前記乾燥手段は加熱乾燥炉であり、前記第1固定手段は平板の載置台の表面に電解質膜を固定する固定ステージであり、前記第2固定手段として前記第1固定手段を用い、前記第1固定手段を前記加熱乾燥炉から前記吸湿部へ移動させる移動手段を備えることを特徴とする燃料電池用膜電極接合体の製造装置。 4. The apparatus for producing a membrane electrode assembly for a fuel cell according to claim 3, wherein the drying means is a heating and drying furnace, and the first fixing means is a fixing stage for fixing the electrolyte membrane to the surface of a flat mounting table. The fuel cell membrane electrode assembly is manufactured by using the first fixing means as the second fixing means, and moving means for moving the first fixing means from the heating and drying furnace to the moisture absorption section. apparatus. 請求項3に記載の燃料電池用膜電極接合体の製造装置において、前記乾燥手段は加熱乾燥炉であり、前記第1固定手段および前記第2固定手段は、側面に吸引孔を設け、この吸引孔から真空吸引して電解質膜を固定する固定ローラであり、前記第1固定手段の固定ローラは前記加熱乾燥炉内に設けられ、前記第2固定手段の固定ローラは前記加熱乾燥炉外の前記吸湿部に設けられていることを特徴とする燃料電池用膜電極接合体の製造装置。 4. The apparatus for manufacturing a membrane electrode assembly for a fuel cell according to claim 3, wherein the drying means is a heating and drying furnace, and the first fixing means and the second fixing means are provided with suction holes on the side surfaces thereof. A fixed roller for fixing the electrolyte membrane by vacuum suction from a hole, wherein the fixed roller of the first fixing means is provided in the heating and drying furnace, and the fixing roller of the second fixing means is the outside of the heating and drying furnace An apparatus for manufacturing a membrane electrode assembly for a fuel cell, which is provided in a moisture absorption part. 請求項3に記載の燃料電池用膜電極接合体の製造装置において、前記第1固定手段および前記第2固定手段は、側面に吸引孔を設け、この吸引孔から真空吸引して電解質膜を固定する固定ローラであり、前記乾燥手段は、前記第1固定手段の固定ローラを加熱させることにより電解質膜を乾燥させ、前記第2固定手段の固定ローラは前記吸湿部を設けていることを特徴とする燃料電池用膜電極接合体の製造装置。 4. The fuel cell membrane electrode assembly manufacturing apparatus according to claim 3, wherein the first fixing means and the second fixing means are provided with suction holes on the side surfaces, and the electrolyte membrane is fixed by vacuum suction from the suction holes. A fixing roller that heats the fixing roller of the first fixing means, and the fixing roller of the second fixing means is provided with the moisture absorbing portion. An apparatus for manufacturing a membrane electrode assembly for a fuel cell. 請求項5又は6に記載の燃料電池用膜電極接合体の製造装置において、前記固定ローラの間に前記固定ローラより小径のローラを配設し、これらの小径のローラの中心は前記固定ローラの中心を通る直線上に位置することを特徴とする燃料電池用膜電極接合体の製造装置。 7. The fuel cell membrane electrode assembly manufacturing apparatus according to claim 5, wherein a roller having a smaller diameter than the fixed roller is disposed between the fixed rollers, and the center of the small diameter roller is the center of the fixed roller. An apparatus for manufacturing a membrane electrode assembly for a fuel cell, which is located on a straight line passing through the center.
JP2011021555A 2011-02-03 2011-02-03 Method and apparatus of manufacturing membrane electrode assembly for fuel cell Pending JP2012164422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011021555A JP2012164422A (en) 2011-02-03 2011-02-03 Method and apparatus of manufacturing membrane electrode assembly for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011021555A JP2012164422A (en) 2011-02-03 2011-02-03 Method and apparatus of manufacturing membrane electrode assembly for fuel cell

Publications (1)

Publication Number Publication Date
JP2012164422A true JP2012164422A (en) 2012-08-30

Family

ID=46843648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011021555A Pending JP2012164422A (en) 2011-02-03 2011-02-03 Method and apparatus of manufacturing membrane electrode assembly for fuel cell

Country Status (1)

Country Link
JP (1) JP2012164422A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018152231A (en) * 2017-03-13 2018-09-27 株式会社Soken Carbon paper transport device from entrainment roll
US10505200B2 (en) 2013-05-20 2019-12-10 SCREEN Holdings Co., Ltd. Apparatus and method manufacturing composite membrane

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160405A (en) * 1999-12-02 2001-06-12 Asahi Glass Co Ltd Manufacturing method of solid polymer fuel cell
JP2003257449A (en) * 2002-02-28 2003-09-12 Omg Ag & Co Kg Membrane coated with catalyst and processes for manufacturing membrane electrode assembly for fuel cell
JP2005038758A (en) * 2003-07-16 2005-02-10 Toyota Motor Corp Apparatus for forming electrode catalyst layer of fuel cell
JP2005063780A (en) * 2003-08-11 2005-03-10 Nordson Corp Electrolyte membrane. electrolyte membrane complex, manufacturing method of electrolyte membrane complex, electrolyte membrane/electrode assembly for fuel cell, manufacturing method of electrolyte membrane/electrode assembly for fuel cell, and fuel cell
JP2005149847A (en) * 2003-11-13 2005-06-09 Denso Corp Manufacturing method of fuel cell
JP2006310237A (en) * 2005-05-02 2006-11-09 Nissan Motor Co Ltd Manufacturing method of membrane electrode junction
JP2007035612A (en) * 2005-06-20 2007-02-08 Matsushita Electric Ind Co Ltd Manufacturing method of membrane-electrode assembly
JP2007042591A (en) * 2005-07-07 2007-02-15 Fujifilm Holdings Corp Solid electrolyte film and its manufacturing method, equipment, electrode membrane assembly, and fuel cell
JP2007095464A (en) * 2005-09-28 2007-04-12 Honda Motor Co Ltd Method of manufacturing electrolyte structure
JP2007123239A (en) * 2005-09-28 2007-05-17 Honda Motor Co Ltd Method of producing electrolyte structure
JP2008047431A (en) * 2006-08-17 2008-02-28 Honda Motor Co Ltd Holding sheet for manufacturing membrane electrode assembly for fuel cell and manufacturing method of membrane electrode assembly for fuel cell
JP2009129777A (en) * 2007-11-26 2009-06-11 Toyota Motor Corp Manufacturing method for membrane-electrode assembly of fuel cell
JP2009170387A (en) * 2008-01-21 2009-07-30 Toyota Motor Corp Manufacturing method of membrane-electrode assembly
JP2009245795A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Method for manufacturing membrane-electrode assembly for solid polymer electrolyte fuel cell

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160405A (en) * 1999-12-02 2001-06-12 Asahi Glass Co Ltd Manufacturing method of solid polymer fuel cell
JP2003257449A (en) * 2002-02-28 2003-09-12 Omg Ag & Co Kg Membrane coated with catalyst and processes for manufacturing membrane electrode assembly for fuel cell
JP2005038758A (en) * 2003-07-16 2005-02-10 Toyota Motor Corp Apparatus for forming electrode catalyst layer of fuel cell
JP2005063780A (en) * 2003-08-11 2005-03-10 Nordson Corp Electrolyte membrane. electrolyte membrane complex, manufacturing method of electrolyte membrane complex, electrolyte membrane/electrode assembly for fuel cell, manufacturing method of electrolyte membrane/electrode assembly for fuel cell, and fuel cell
JP2005149847A (en) * 2003-11-13 2005-06-09 Denso Corp Manufacturing method of fuel cell
JP2006310237A (en) * 2005-05-02 2006-11-09 Nissan Motor Co Ltd Manufacturing method of membrane electrode junction
JP2007035612A (en) * 2005-06-20 2007-02-08 Matsushita Electric Ind Co Ltd Manufacturing method of membrane-electrode assembly
JP2007042591A (en) * 2005-07-07 2007-02-15 Fujifilm Holdings Corp Solid electrolyte film and its manufacturing method, equipment, electrode membrane assembly, and fuel cell
JP2007095464A (en) * 2005-09-28 2007-04-12 Honda Motor Co Ltd Method of manufacturing electrolyte structure
JP2007123239A (en) * 2005-09-28 2007-05-17 Honda Motor Co Ltd Method of producing electrolyte structure
JP2008047431A (en) * 2006-08-17 2008-02-28 Honda Motor Co Ltd Holding sheet for manufacturing membrane electrode assembly for fuel cell and manufacturing method of membrane electrode assembly for fuel cell
JP2009129777A (en) * 2007-11-26 2009-06-11 Toyota Motor Corp Manufacturing method for membrane-electrode assembly of fuel cell
JP2009170387A (en) * 2008-01-21 2009-07-30 Toyota Motor Corp Manufacturing method of membrane-electrode assembly
JP2009245795A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Method for manufacturing membrane-electrode assembly for solid polymer electrolyte fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10505200B2 (en) 2013-05-20 2019-12-10 SCREEN Holdings Co., Ltd. Apparatus and method manufacturing composite membrane
JP2018152231A (en) * 2017-03-13 2018-09-27 株式会社Soken Carbon paper transport device from entrainment roll

Similar Documents

Publication Publication Date Title
CA2935992C (en) Apparatus and method for manufacturing composite membrane
JP6352727B2 (en) Membrane / catalyst layer assembly manufacturing apparatus and manufacturing method
JP4879372B2 (en) Method and apparatus for manufacturing membrane-catalyst layer assembly
US11335933B2 (en) Device and method for manufacturing membrane-electrode assembly of fuel cell
JP2016048612A (en) Device for manufacturing membrane-catalyst layer assembly, and manufacturing method thereof
JP2013161557A (en) Manufacturing method of film-catalyst layer junction and manufacturing apparatus of film-catalyst layer junction
JP2016046091A (en) Coater, coating method, device for manufacturing membrane-catalyst layer assembly and manufacturing method thereof
JP4550784B2 (en) Manufacturing method of electrolyte structure
WO2015122081A1 (en) Electrolyte membrane modification apparatus and electrolyte membran modification method, and system and process for producing catalyst-coated membrane
JP4861025B2 (en) Electrode for solid polymer electrolyte fuel cell and method for producing the same
JP2015035256A (en) Method and device of manufacturing membrane electrode assembly
JP2015178087A (en) Intermittent coating method and intermittent coating device
WO2012081169A1 (en) Method for manufacturing membrane-catalyst layer assembly
JP2012164422A (en) Method and apparatus of manufacturing membrane electrode assembly for fuel cell
EP3001491B1 (en) Catalyst layer forming method and catalyst layer forming apparatus
CN110828869A (en) Fuel cell membrane electrode, preparation method thereof and fuel cell
JP2015069739A (en) Device and method of manufacturing membrane-catalyst layer assembly
JP2009289692A (en) Method of manufacturing electrode layer for fuel cell
JP2018022663A (en) Device for manufacturing catalyst layer-attached substrate, device for manufacturing membrane-electrode assembly, method for manufacturing catalyst layer-attached resin substrate, and method for manufacturing membrane-electrode assembly
JP5853194B2 (en) Membrane-catalyst layer assembly manufacturing method and manufacturing apparatus thereof
JP6254877B2 (en) Catalyst layer forming method and catalyst layer forming apparatus
JP2004259509A (en) Forming method of catalyst layer for fuel cell electrode and manufacturing method of electrode
JP6950562B2 (en) Manufacturing method of membrane electrode assembly
JP5720321B2 (en) Manufacturing method of gas diffusion electrode
JP2010251033A (en) Method of manufacturing membrane-catalyst assembly, membrane-catalyst assembly, and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141007