JP2008047431A - Holding sheet for manufacturing membrane electrode assembly for fuel cell and manufacturing method of membrane electrode assembly for fuel cell - Google Patents

Holding sheet for manufacturing membrane electrode assembly for fuel cell and manufacturing method of membrane electrode assembly for fuel cell Download PDF

Info

Publication number
JP2008047431A
JP2008047431A JP2006222357A JP2006222357A JP2008047431A JP 2008047431 A JP2008047431 A JP 2008047431A JP 2006222357 A JP2006222357 A JP 2006222357A JP 2006222357 A JP2006222357 A JP 2006222357A JP 2008047431 A JP2008047431 A JP 2008047431A
Authority
JP
Japan
Prior art keywords
fuel cell
catalyst layer
polymer electrolyte
holding sheet
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006222357A
Other languages
Japanese (ja)
Other versions
JP4959253B2 (en
Inventor
Hidetaka Ogishi
秀高 大岸
Fumiyoshi Kurosu
文美 黒須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006222357A priority Critical patent/JP4959253B2/en
Publication of JP2008047431A publication Critical patent/JP2008047431A/en
Application granted granted Critical
Publication of JP4959253B2 publication Critical patent/JP4959253B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To form an electrode catalyst layer by coating without generating wrinkles in a polymer electrolyte membrane and suppress contamination of the polymer electrolyte membrane caused by a holding sheet composition. <P>SOLUTION: The holding sheet used for manufacturing the membrane electrode assembly for a fuel cell having the electrode catalyst on both sides of a solid polymer electrolyte membrane is held by coming in contact with the solid polymer electrolyte membrane or the electrode catalyst layer, the holding sheet contains a polymer composition having main chains crosslinked with -N-(CH<SB>2</SB>)<SB>6</SB>-N- and carbon, and the contents of the carbon is 36-53 wt.% of the total amount of the polymer composition and the carbon. The manufacturing method of the membrane electrode assembly contains a first fixing process for fixing the solid polymer electrolyte membrane to the holding sheet, a first coating process for coating the fixed solid polymer electrolyte membrane with cathode catalyst layer paste or anode catalyst layer paste, and a first removing process for removing the holding sheet for manufacturing the membrane electrode assembly for the fuel cell from the solid polymer electrolyte membrane. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料電池用膜電極構造体の製造方法に係り、特に、電解質膜に触媒を形成する際に発生する皺を抑制する技術に関する。   The present invention relates to a method for manufacturing a membrane electrode structure for a fuel cell, and more particularly to a technique for suppressing soot generated when a catalyst is formed on an electrolyte membrane.

現在、石油資源の枯渇が重大な問題となっており、さらに、化石燃料の消費による大気汚染や地球温暖化等の環境問題が深刻化している。このような状況にあって、二酸化炭素の発生を伴わないクリーンな電動機用電力源として燃料電池が注目されて広範に開発されるとともに、一部では実用化され始めている。   Currently, depletion of petroleum resources is a serious problem, and environmental problems such as air pollution and global warming due to consumption of fossil fuels are becoming more serious. Under such circumstances, fuel cells have attracted attention as a clean electric power source for electric motors that does not generate carbon dioxide and have been extensively developed, and some have begun to be put into practical use.

燃料電池を自動車等に搭載する場合には、高電圧と大電流とが得やすいことから、高分子電解質膜を用いる固体高分子型燃料電池が好適に用いられる。固体高分子型燃料電池に用いる膜電極構造体として、イオン導伝可能な高分子電解質膜を一対の電極触媒層の間に挟持し、各電極触媒層の上に、拡散層を積層したものが知られている。電極触媒層は、白金等の触媒がカーボンブラック等の触媒担体に担持され、イオン導伝性高分子バインダーにより一体化されることにより形成されている。この膜電極構造体は、さらに各電極触媒層の上に、ガス通路を兼ねたセパレータを積層することにより、固体高分子型燃料電池を構成する。   When a fuel cell is mounted on an automobile or the like, a solid polymer fuel cell using a polymer electrolyte membrane is preferably used because a high voltage and a large current can be easily obtained. As a membrane electrode structure used for a polymer electrolyte fuel cell, an ion conductive polymer electrolyte membrane is sandwiched between a pair of electrode catalyst layers, and a diffusion layer is laminated on each electrode catalyst layer. Are known. The electrode catalyst layer is formed by supporting a catalyst such as platinum on a catalyst carrier such as carbon black and integrating them with an ion conductive polymer binder. This membrane electrode structure forms a polymer electrolyte fuel cell by further laminating a separator also serving as a gas passage on each electrode catalyst layer.

このような固体高分子型燃料電池では、一方の電極触媒層を燃料極として、拡散層を介して水素、メタノール等の還元性ガスを導入するとともに、他方の電極触媒層を酸素極として、拡散層を介して空気、酸素等の酸化性ガスを導入する。燃料極側では、電極触媒層に含まれる触媒の作用により、還元性ガスからプロトン(H+)及び電子が生成し、プロトンは高分子電解質膜を介して、酸素極側の電極触媒層に移動する。そして、プロトンは、酸素極側の電極触媒層で、電極触媒層に含まれる触媒の作用により、酸素極に導入される酸化性ガス及び電子と反応して水を生成する。したがって、燃料極と酸素極とを導線により接続することにより、燃料極で生成した電子を酸素極に送る回路が形成され、電流を取り出すことができる。   In such a polymer electrolyte fuel cell, one electrode catalyst layer is used as a fuel electrode, a reducing gas such as hydrogen or methanol is introduced through a diffusion layer, and the other electrode catalyst layer is used as an oxygen electrode for diffusion. An oxidizing gas such as air or oxygen is introduced through the layer. On the fuel electrode side, protons (H +) and electrons are generated from the reducing gas by the action of the catalyst contained in the electrode catalyst layer, and the protons move to the electrode catalyst layer on the oxygen electrode side through the polymer electrolyte membrane. . Then, protons react with the oxidizing gas and electrons introduced into the oxygen electrode by the action of the catalyst contained in the electrode catalyst layer in the electrode catalyst layer on the oxygen electrode side to generate water. Therefore, by connecting the fuel electrode and the oxygen electrode with a conducting wire, a circuit for sending electrons generated at the fuel electrode to the oxygen electrode is formed, and a current can be taken out.

このような膜電極構造体を作製するには、従来、別途支持体上に電極触媒層を形成し、これと高分子電解質膜を貼り合わせて熱圧着する方法が一般的であった。しかしながら、この方法では、電極触媒層を固化・形成した後に電解質膜上に貼り合わせるので、互いに密着させることが難しく、接触抵抗が高いという問題を有していた。   In order to produce such a membrane electrode structure, conventionally, a method in which an electrode catalyst layer is separately formed on a support, and this and a polymer electrolyte membrane are bonded together and thermocompression bonded is generally used. However, in this method, since the electrode catalyst layer is solidified and formed and then bonded onto the electrolyte membrane, there is a problem that it is difficult to make them adhere to each other and the contact resistance is high.

このような問題に対し、電解質膜上にスクリーン印刷、バーコータ、ドクターブレード等によって電極触媒ペーストを直接印刷し、乾燥させて膜電極構造体を製造する技術(例えば、特許文献1参照)や、多孔板上に真空引きによって固体高分子電解質膜を吸着保持しながら電極触媒層スラリーを塗布する技術(例えば、特許文献2参照)、さらに、保持シート上に固体高分子電解質膜を保持しながら電極触媒層スラリーを塗布し、乾燥後に保持シートを除去して膜電極構造体を得る技術(例えば、特許文献3参照)が提案されている。   For such problems, a technique for producing a membrane electrode structure by directly printing an electrode catalyst paste on the electrolyte membrane by screen printing, a bar coater, a doctor blade or the like and drying it (see, for example, Patent Document 1), A technique of applying an electrode catalyst layer slurry while adsorbing and holding a solid polymer electrolyte membrane on a plate by vacuuming (see, for example, Patent Document 2), and further, an electrode catalyst while holding the solid polymer electrolyte membrane on a holding sheet A technique for applying a layer slurry and removing the holding sheet after drying to obtain a membrane electrode structure (see, for example, Patent Document 3) has been proposed.

特開2000−268829号公報JP 2000-268829 A 特開2003−100314号公報JP 2003-100314 A 特開2005−163808号公報JP-A-2005-163808

しかしながら、特許文献1に記載の製造方法では、印刷された電極触媒ペーストに含まれる溶媒成分によって高分子電解質膜が膨潤し、また、印刷後の乾燥によって電極触媒層および高分子電解質膜が収縮することによって、高分子電解質膜に皺が発生するという問題があった。さらに、高分子電解質膜上に所望の形状・寸法を確保した電極触媒層を塗布によって形成するのが困難であるという問題を有していた。また、特許文献2に記載の方法では、真空引きを行っている多孔板から固体高分子電解質膜を乾燥工程に移し替える際の取扱いが困難であり、固体高分子電解質膜を破損する虞があった。さらに、特許文献3に記載の方法では、保持シート上に保持しながら膜電極構造体を形成するので皺の発生という問題は解決できるものの、シートの粘着力によって、保持シートを構成する樹脂成分の一部(SiやSiO)が剥離後の膜電極構造体に転写されてこれを汚染し、後の膜電極構造体の加熱処理等を経て悪影響を及ぼし、導電率低下や耐久性悪化の原因となるという問題があった。   However, in the production method described in Patent Document 1, the polymer electrolyte membrane swells due to the solvent component contained in the printed electrode catalyst paste, and the electrode catalyst layer and the polymer electrolyte membrane shrink due to drying after printing. As a result, there is a problem that wrinkles are generated in the polymer electrolyte membrane. Furthermore, there is a problem that it is difficult to form an electrode catalyst layer having a desired shape and size on the polymer electrolyte membrane by coating. In addition, in the method described in Patent Document 2, it is difficult to handle the transfer of the solid polymer electrolyte membrane from the perforated plate being evacuated to the drying step, and the solid polymer electrolyte membrane may be damaged. It was. Furthermore, in the method described in Patent Document 3, the membrane electrode structure is formed while being held on the holding sheet, so that the problem of wrinkles can be solved. However, the resin component of the holding sheet is formed by the adhesive force of the sheet. A part (Si or SiO) is transferred to the membrane electrode structure after peeling and contaminates it, and after the subsequent heat treatment of the membrane electrode structure, it has an adverse effect, causing a decrease in conductivity and deterioration of durability. There was a problem of becoming.

本発明は上記状況に鑑みてなされたものであり、保持シート上に高分子電解質膜を固定することにより高分子電解質膜に皺を発生させることなく高分子電解質膜上に電極触媒層を塗布によって形成することができ、しかも所望の形状の電極触媒層を形成することができ、さらに、保持シートを膜電極構造体から剥離する際に保持シートの成分が膜電極構造体に残存せずに膜電極構造体汚染を防止することができる燃料電池用膜電極構造体製造用保持シートおよびこのシートを用いた燃料電池用膜電極構造体の製造方法を提供することを目的としている。   The present invention has been made in view of the above situation, and by applying an electrode catalyst layer on a polymer electrolyte membrane without causing wrinkles on the polymer electrolyte membrane by fixing the polymer electrolyte membrane on a holding sheet. In addition, an electrode catalyst layer having a desired shape can be formed. Further, when the holding sheet is peeled from the membrane electrode structure, the components of the holding sheet do not remain in the membrane electrode structure. An object of the present invention is to provide a fuel cell membrane electrode structure manufacturing holding sheet capable of preventing electrode structure contamination, and a fuel cell membrane electrode structure manufacturing method using the sheet.

本発明の燃料電池用膜電極構造体製造用保持シートは、固体高分子電解質膜の両面に電極触媒層を備えた燃料電池用膜電極構造体を製造する際に用いられる燃料電池用膜電極構造体製造用保持シートであって、固体高分子電解質膜または電極触媒層に接することで保持を行い、主鎖間に−N−(CH−N−の架橋がなされているポリマー成分とカーボンとを含有し、カーボンの含有量が、ポリマー成分とカーボンの合計量に対して36〜53重量%であることを特徴としている。 The fuel cell membrane electrode structure production holding sheet of the present invention is a fuel cell membrane electrode structure used when producing a fuel cell membrane electrode structure comprising electrode catalyst layers on both sides of a solid polymer electrolyte membrane. A body-manufacturing holding sheet, which is held by contacting a solid polymer electrolyte membrane or an electrode catalyst layer, and a polymer component in which —N— (CH 2 ) 6 —N— is crosslinked between main chains; Carbon is contained, and the carbon content is 36 to 53% by weight based on the total amount of the polymer component and carbon.

上記構成の本発明によれば、燃料電池用膜電極構造体製造用保持シートが適正な範囲の粘着力を有するので、電極触媒層の成形時に固体高分子電解質膜を固定し、皺の発生を抑制しつつ、成形後は固体高分子電解質膜および電極触媒層を破損させることなく保持シートから剥離することができる。また、保持シートの成分によって固体高分子電解質膜が汚染されることを抑制することができる。   According to the present invention having the above-described configuration, since the holding sheet for manufacturing a fuel cell membrane electrode structure has an appropriate range of adhesive strength, the solid polymer electrolyte membrane is fixed at the time of forming the electrode catalyst layer, and soot is generated. While being suppressed, it can be peeled from the holding sheet after the molding without damaging the solid polymer electrolyte membrane and the electrode catalyst layer. Moreover, it can suppress that a solid polymer electrolyte membrane is contaminated with the component of a holding sheet.

上記燃料電池用膜電極構造体製造用保持シートにおいては、ポリマー成分の主鎖が、下記化学式(1)で示されるカルボキシル基系アクリルゴムであり、上記主鎖のカルボキシル基に−N−(CH−N−の架橋がなされていることを好ましい形態としている。 In the holding sheet for producing the membrane electrode structure for a fuel cell, the main chain of the polymer component is a carboxyl group-based acrylic rubber represented by the following chemical formula (1), and —N— (CH 2 ) A preferred form is that 6 -N-crosslinking is performed.

Figure 2008047431
(Y、Zは整数、Rはアルキル基)
Figure 2008047431
(Y and Z are integers, R is an alkyl group)

上記主鎖のカルボキシル基における−N−(CH−N−架橋は、主鎖のカルボキシル基にヘキサメチレンジアミンを反応させることによって形成することが好ましい。 The —N— (CH 2 ) 6 —N— bridge in the carboxyl group of the main chain is preferably formed by reacting the carboxyl group of the main chain with hexamethylenediamine.

また、本発明の燃料電池用膜電極構造体の製造方法は、固体高分子電解質膜にカソード電極触媒層およびアノード電極触媒層をそれぞれ形成した燃料電池用膜電極構造体の製造方法であって、 固体高分子電解質膜を上述の燃料電池用膜電極構造体製造用保持シート上に設置する第1固定工程と、 固定された固体高分子電解質膜上にカソード電極触媒層ペーストまたはアノード電極触媒層ペーストの一方を塗布する第1塗布工程と、 保持シートを固体高分子電解質膜から除去する第1除去工程とを有することを特徴としている。   The method for producing a fuel cell membrane electrode structure of the present invention is a method for producing a fuel cell membrane electrode structure in which a cathode electrode catalyst layer and an anode electrode catalyst layer are formed on a solid polymer electrolyte membrane, respectively. A first fixing step of installing the solid polymer electrolyte membrane on the above-mentioned holding sheet for manufacturing a fuel cell membrane electrode structure; and a cathode electrode catalyst layer paste or an anode electrode catalyst layer paste on the fixed solid polymer electrolyte membrane It has the 1st application process which apply | coats one of these, and the 1st removal process which removes a holding sheet from a solid polymer electrolyte membrane, It is characterized by the above-mentioned.

本発明の燃料電池用電極構造体の製造方法によれば、カソード(またはアノード)電極触媒層ペースト塗布時において、固体高分子電解質膜が保持シートの固着によって、ペースト塗布面の裏側から固定されているので、ペーストに含まれる溶媒による固体高分子電解質膜の膨潤に起因する高分子電解質膜の皺の発生を抑制することができる。   According to the method for producing an electrode structure for a fuel cell of the present invention, when applying the cathode (or anode) electrode catalyst layer paste, the solid polymer electrolyte membrane is fixed from the back side of the paste application surface by the fixing of the holding sheet. Therefore, generation | occurrence | production of the wrinkle of the polymer electrolyte membrane resulting from the swelling of the solid polymer electrolyte membrane by the solvent contained in a paste can be suppressed.

本発明は、第1塗布工程と第1除去工程との間に、固体高分子電解質膜上に電極触媒層が設けられてなる複合体の第1乾燥工程を有することを好ましい形態としている。   The present invention preferably includes a first drying step of a composite in which an electrode catalyst layer is provided on a solid polymer electrolyte membrane between the first coating step and the first removal step.

電極触媒層ペースト塗布後の複合体の乾燥工程は任意の段階に行うことができるが、特に、このような形態によれば、第1塗布工程と第1除去工程との間においては、固体高分子電解質膜が保持シートの固着によって固定されているので、乾燥時における固体高分子電解質膜の収縮を抑制するだけでなく、乾燥時に工程の上流から下流にかけて前後に移動させて扱う際の破損を抑制することができる。   The drying process of the composite after the application of the electrode catalyst layer paste can be performed at an arbitrary stage. In particular, according to such an embodiment, the solids high between the first application process and the first removal process. Since the molecular electrolyte membrane is fixed by fixing the holding sheet, it not only suppresses the shrinkage of the solid polymer electrolyte membrane during drying, but also breaks when handling it by moving it back and forth from the upstream to the downstream of the process during drying. Can be suppressed.

また、本発明は、第1除去工程の後に、複合体を裏返して保持シート上に複合体の電極触媒層側を設置する第2固定工程と、固定された複合体の固体高分子電解質膜側にアノード電極触媒層ペーストまたはカソード電極触媒層ペーストの他方を塗布する第2塗布工程と、保持シートを複合体から除去する第2除去工程とを有することを好ましい形態としている。   In addition, the present invention includes a second fixing step in which the composite is turned over and the electrode catalyst layer side of the composite is placed on the holding sheet after the first removal step, and the solid polymer electrolyte membrane side of the fixed composite It is preferable to have a second application step of applying the other of the anode electrode catalyst layer paste or the cathode electrode catalyst layer paste and a second removal step of removing the holding sheet from the composite.

このような形態によれば、電極触媒層ペースト塗布時において、すでに形成された電極触媒層が保持シートの固着によって固定され、この電極触媒層がさらに固体高分子電解質膜を固定しているので、ペーストに含まれる溶媒による固体高分子電解質膜の膨潤に起因する固体高分子電解質膜の皺の発生を抑制することができる。   According to such a form, when the electrode catalyst layer paste is applied, the already formed electrode catalyst layer is fixed by fixing the holding sheet, and this electrode catalyst layer further fixes the solid polymer electrolyte membrane. Occurrence of wrinkles of the solid polymer electrolyte membrane due to swelling of the solid polymer electrolyte membrane by the solvent contained in the paste can be suppressed.

本発明は、第2塗布工程と第2除去工程との間に、複合体の第2乾燥工程を有することを好ましい形態としている。   This invention makes it a preferable form to have a 2nd drying process of a composite_body | complex between a 2nd application | coating process and a 2nd removal process.

このような形態によれば、第1塗布工程と第1除去工程との間における乾燥工程と同様に、第2塗布工程と第2除去工程との間においても、すでに塗布された電極触媒層が保持シートの固着によって固定されているので、固体高分子電解質膜の収縮を抑制することができる。   According to such a form, like the drying process between the first application process and the first removal process, the electrode catalyst layer already applied is also applied between the second application process and the second removal process. Since it is fixed by the fixing of the holding sheet, the shrinkage of the solid polymer electrolyte membrane can be suppressed.

以下、本発明の好適な実施形態について、説明する。
本発明の燃料電池用膜電極構造体製造用保持シートは、固体高分子電解質膜の両面に電極触媒層を備えた燃料電池用膜電極構造体を製造する際に用いられる固定用のシートである。本保持シートは、主鎖間に−N−(CH−N−の架橋がなされているポリマー成分とカーボンとを含有し、カーボンの含有量が、上記ポリマー成分とカーボンの合計量に対して36〜53重量%であることを特徴としている。
Hereinafter, preferred embodiments of the present invention will be described.
The fuel cell membrane electrode structure production holding sheet of the present invention is a fixing sheet used when producing a fuel cell membrane electrode structure having electrode catalyst layers on both sides of a solid polymer electrolyte membrane. . This holding sheet contains a polymer component and carbon in which —N— (CH 2 ) 6 —N— is cross-linked between main chains, and the carbon content is equal to the total amount of the polymer component and carbon. It is characterized by being 36 to 53% by weight.

このようなポリマー成分の一例としては、下記化学式(1)に示すゴムポリマー構造を有するカルボキシル基系アクリルゴムを用いることが好ましい。   As an example of such a polymer component, it is preferable to use a carboxyl group-based acrylic rubber having a rubber polymer structure represented by the following chemical formula (1).

Figure 2008047431
(Y、Zは整数、Rはアルキル基)
Figure 2008047431
(Y and Z are integers, R is an alkyl group)

本発明では、このポリマーとヘキサメチレンジアミンを反応させてポリマー間のカルボキシル基同士を架橋している。化学式(1)のポリマーが架橋されたポリマー中では、下記化学式(2)に示すように、各主鎖の1つずつのカルボキシル基間が架橋されて架橋の両端に1つずつのアミド結合を有する形態や、化学式(3)に示すような2つずつのアミド結合を有する形態、または、これらが混合した形態が存在している。   In the present invention, this polymer and hexamethylenediamine are reacted to crosslink carboxyl groups between the polymers. In the polymer in which the polymer of the chemical formula (1) is cross-linked, as shown in the chemical formula (2) below, one carboxyl group of each main chain is cross-linked to form one amide bond at each end of the cross-link. And a form having two amide bonds as shown in chemical formula (3), or a form in which these are mixed.

Figure 2008047431
Figure 2008047431

Figure 2008047431
Figure 2008047431

本発明において、この架橋ポリマー成分に混合するカーボンは、ポリマー成分とカーボンの合計量に対して36〜53重量%であると、粘着力が適正な範囲内であり好ましい。カーボン量が36重量%未満の場合は、保持シートの粘着力が強過ぎて、膜電極構造体を形成後、剥離する際に膜電極構造体が破損してしまい、一方、カーボン量が53重量%を超える場合は、保持シートの粘着力が不足して、膜電極構造体の固定が不十分となり、皺の発生が懸念される。添加するカーボンとしては、FEF(Fast Extrusion Furnace)、SRF(Semi−Reinforcing Furnace)、FT(Fine Thermal)等が挙げられる。   In the present invention, the carbon to be mixed with the crosslinked polymer component is preferably 36 to 53% by weight with respect to the total amount of the polymer component and carbon because the adhesive strength is within an appropriate range. When the amount of carbon is less than 36% by weight, the adhesive strength of the holding sheet is too strong, and the membrane electrode structure is damaged when it is peeled off after forming the membrane electrode structure. On the other hand, the amount of carbon is 53% by weight. When it exceeds%, the adhesive strength of the holding sheet is insufficient, the membrane electrode structure is not sufficiently fixed, and wrinkles may be generated. Examples of the carbon to be added include FEF (Fast Extension Furnace), SRF (Semi-Reinforcing Furnace), and FT (Fine Thermal).

本発明の燃料電池用膜電極構造体製造用保持シートは、上記ポリマーおよびカーボンに各種の配合剤および加硫剤を配合し、ロール、ニーダーインターミックスまたはバンバリー等によって混練し、ロール、裁断機またはバウエル成形機等によって部出しし、プレス成形、コンプレッション成形、トランスファー成形またはインジェクション成形によって加硫成形し、シート状とすることができる。保持シートの具体的な実施形態は、実施例にて後述する。   The fuel cell membrane electrode structure production holding sheet of the present invention is prepared by blending various blending agents and vulcanizing agents with the polymer and carbon, and kneading them with a roll, a kneader intermix or a banbury, etc. The sheet can be formed by a Bowell molding machine or the like and vulcanized and molded by press molding, compression molding, transfer molding or injection molding to form a sheet. Specific embodiments of the holding sheet will be described later in Examples.

次に、本発明の燃料電池用膜電極構造体製造用保持シートを使用した膜電極構造体の製造工程の好適な実施形態について、適宜図面を参照しながら説明する。
図1は、本発明の実施形態を示す模式図である。図1において符号1は、一連の工程を行うための例えばアルミニウム製やSUS製の保持基材である。保持基材1上には、粘着性を有する保持シート2が固定されている。
Next, a preferred embodiment of a manufacturing process of a membrane electrode structure using the holding sheet for manufacturing a membrane electrode structure for a fuel cell of the present invention will be described with reference to the drawings as appropriate.
FIG. 1 is a schematic diagram showing an embodiment of the present invention. In FIG. 1, the code | symbol 1 is a holding base material made from aluminum or SUS for performing a series of processes. On the holding substrate 1, a holding sheet 2 having adhesiveness is fixed.

まず、固体高分子電解質膜3を保持シート2上に貼り付ける(第1固定工程)。続いて、バーコータやドクターブレード等の任意の塗布手段5によって、カソード電極触媒層ペースト4を固体高分子電解質膜3上に塗布し(第1塗布工程)、保持シート2によって固着させたままの状態で固体高分子電解質膜3およびカソード電極触媒層4を乾燥させる。乾燥後、これらを保持シート2から剥離し(第1除去工程)、裏返し、カソード電極触媒層4側を保持シート2に貼り付ける(第2固定工程)。塗布手段5によってアノード電極触媒層ペースト6を固体高分子電解質膜3上に塗布し(第2塗布工程)、保持シート2によって固着させたままの状態で固体高分子電解質膜3およびアノード電極触媒層6を乾燥させる。乾燥後、保持シート2から剥離し(第2除去工程)、固体高分子電解質膜3の両面にカソード電極触媒層4およびアノード電極触媒層6が形成された膜−電極複合体を得る。   First, the solid polymer electrolyte membrane 3 is stuck on the holding sheet 2 (first fixing step). Subsequently, the cathode electrode catalyst layer paste 4 is applied onto the solid polymer electrolyte membrane 3 by an arbitrary application means 5 such as a bar coater or a doctor blade (first application step), and is kept fixed by the holding sheet 2. Then, the solid polymer electrolyte membrane 3 and the cathode electrode catalyst layer 4 are dried. After drying, they are peeled off from the holding sheet 2 (first removal step), turned over, and the cathode electrode catalyst layer 4 side is attached to the holding sheet 2 (second fixing step). The anode electrode catalyst layer paste 6 is applied onto the solid polymer electrolyte membrane 3 by the application means 5 (second application step), and the solid polymer electrolyte membrane 3 and the anode electrode catalyst layer are kept fixed by the holding sheet 2. 6 is dried. After drying, the film is peeled from the holding sheet 2 (second removal step) to obtain a membrane-electrode composite in which the cathode electrode catalyst layer 4 and the anode electrode catalyst layer 6 are formed on both surfaces of the solid polymer electrolyte membrane 3.

高分子電解質膜にカソード電極触媒層ペーストおよびアノード電極触媒層ペーストを塗布する手段としては、スクリーン印刷や、バーコーター、ドクターブレードによる印刷等、特に限定されない。   A means for applying the cathode electrode catalyst layer paste and the anode electrode catalyst layer paste to the polymer electrolyte membrane is not particularly limited, such as screen printing, printing with a bar coater, or a doctor blade.

特に、ドクターブレード、バーコータを使用する場合、所望の形状に切り抜かれたラミネーティングフィルムを併用することで、電極触媒層を自由に成形した膜−電極複合体を得ることができる。具体的には、保持シート上に固体高分子電解質膜を固着させた後、所望の形状に切り抜かれたラミネーティングフィルムを固体高分子電解質膜上に貼り付ける。このラミネーティングフィルムの切り抜かれた範囲内にカソード電極触媒層ペーストを塗布・乾燥し、固体高分子電解質膜を保持シートから剥離して裏返し、カソード電極触媒層側を保持シート上に固着させる。続いて所望の形状に切り抜かれた他のラミネーティングフィルムを個体高分子電解質膜上に貼り付け、同様にアノード電極触媒層ペーストを塗布・乾燥する。最後に両面のラミネーティングフィルムを除去することによって、電極触媒層を自由に成形した膜−電極複合体を得ることができる。なお、カソード電極触媒層のラミネーティングフィルムは、カソード電極触媒層の乾燥直後に除去してもよく、また、この実施形態においても、カソード・アノードの塗布順は逆にすることができる。   In particular, when a doctor blade or a bar coater is used, a membrane-electrode composite in which an electrode catalyst layer is freely formed can be obtained by using a laminating film cut into a desired shape. Specifically, after the solid polymer electrolyte membrane is fixed on the holding sheet, a laminating film cut into a desired shape is stuck on the solid polymer electrolyte membrane. The cathode electrode catalyst layer paste is applied and dried within the cutout range of the laminating film, the solid polymer electrolyte membrane is peeled off from the holding sheet and turned over, and the cathode electrode catalyst layer side is fixed on the holding sheet. Subsequently, another laminating film cut into a desired shape is attached onto the solid polymer electrolyte membrane, and the anode electrode catalyst layer paste is similarly applied and dried. Finally, by removing the laminating films on both sides, a membrane-electrode assembly in which the electrode catalyst layer is freely formed can be obtained. The laminating film for the cathode electrode catalyst layer may be removed immediately after the cathode electrode catalyst layer is dried. Also in this embodiment, the order of application of the cathode and anode can be reversed.

本発明で使用する保持シートは、適切な範囲の粘着力を有することが要求される。この粘着力の測定方法は、JIS Z0237に記載されており、図2に示すように被着体7に保持シートの試片2(および保持基材1)を張り合わせ、その一端を剥離し、貼り合わせ方向に対して90度の方向に引き剥がして、引き剥がしに要した力を測定するものである。具体的には、被着体7をステンレス板として測定を行い、粘着力が200gf/30mm以上であると好ましい。粘着力が200gf/30mm未満であると、固着効果が十分ではなく、電極触媒層ペーストの塗布および乾燥の際の膨潤・収縮を抑えることができず、部分的に剥離して皺が発生してしまう。   The holding sheet used in the present invention is required to have an appropriate range of adhesive strength. The method for measuring the adhesive strength is described in JIS Z0237. As shown in FIG. 2, the specimen 2 (and the holding substrate 1) of the holding sheet is bonded to the adherend 7, and one end thereof is peeled off and attached. It peels in the direction of 90 degrees with respect to the mating direction, and measures the force required for peeling. Specifically, measurement is performed using the adherend 7 as a stainless steel plate, and the adhesive strength is preferably 200 gf / 30 mm or more. If the adhesive strength is less than 200 gf / 30 mm, the fixing effect is not sufficient, swelling / shrinkage during application and drying of the electrode catalyst layer paste cannot be suppressed, and wrinkles occur due to partial peeling. End up.

本発明においては、第1固定工程、第1塗布工程、第1乾燥工程および第1除去工程の後に複合体を裏返して第2固定工程、第2塗布工程、第2乾燥工程および第2除去工程を行うことによって膜−電極複合体を形成することを好ましい形態としているが、膜電極複合体の作製方法としてはこの形態のみに限定されず、第1固定工程〜第1乾燥工程によって片方の電極触媒層を形成した後、他の公知の方法、例えば真空引きや静電吸着等により複合体を固定して第2塗布工程を行い、他方の電極触媒層を形成することもできる。   In the present invention, after the first fixing step, the first coating step, the first drying step, and the first removing step, the composite is turned over and the second fixing step, the second coating step, the second drying step, and the second removing step are performed. However, the method for producing the membrane electrode complex is not limited to this mode, and one electrode is formed by the first fixing step to the first drying step. After the formation of the catalyst layer, the other electrode catalyst layer can be formed by fixing the composite by other known methods such as vacuuming or electrostatic adsorption and performing the second coating step.

以下、実施例および比較例によって本発明を具体的に説明する。
A.膜電極構造体製造用保持シートの作製
以下の方法によって、実施例1〜3および比較例1〜4の保持シートを作製した。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
A. Production of Holding Sheet for Manufacturing Membrane Electrode Structure The holding sheets of Examples 1 to 3 and Comparative Examples 1 to 4 were produced by the following method.

[実施例1]
ポリマー成分としてポリマーA(カルボキシル基系アクリルポリマー、商品名:AR−14、日本ゼオン社製)1000g、配合剤としてアミン系老化防止剤(4,4‘−ビス(α,α−ジメチルベンジル)ジフェニルアミン)、加工助剤(高級脂肪酸)60g、カーボン(商品名:FEF級シースト116、東海カーボン社製)600g、加硫剤(ヘキサメチレンジアミンカルバメート、商品名:Diak#1、Dupont社製)4g、加硫促進剤(1,3−ジ−オルトトリルグアニジン、商品名:ノクセラーDT、大内新興化学社製)16gを電子天秤(商品名EB2800−12、島津製作所製)にて軽量し、ロール(商品名:φ6“×15”テストロールll型EC−R−FE、入江鉄工所製)を用いて、混練を行った。
[Example 1]
1000 g of polymer A (carboxyl group-based acrylic polymer, trade name: AR-14, manufactured by Nippon Zeon Co., Ltd.) as a polymer component, and amine-based anti-aging agent (4,4′-bis (α, α-dimethylbenzyl) diphenylamine as a compounding agent ), Processing aid (higher fatty acid) 60 g, carbon (trade name: FEF grade seast 116, manufactured by Tokai Carbon Co., Ltd.) 600 g, vulcanizing agent (hexamethylene diamine carbamate, trade name: Diak # 1, manufactured by Dupont) 4 g, 16 g of vulcanization accelerator (1,3-di-orthotolylguanidine, trade name: Noxeller DT, manufactured by Ouchi Shinsei Chemical Co., Ltd.) is lightened with an electronic balance (trade name: EB2800-12, manufactured by Shimadzu Corporation) and rolled ( Kneading was performed using a product name: φ6 “× 15” test roll ll type EC-R-FE (manufactured by Irie Iron Works).

この際、混練せん断力により発生する熱で温度が上昇すると加硫剤が反応を始め、加硫成形時にやけ(ゴム表面が荒れ、あばた状模様が現れる)・ウェルド(加硫の際にゴムの流動中に架橋反応が促進し、融合部位に融合跡や亀裂ができること)等の原因になりえるため、ロールを冷却水によって100℃以下に調整しながら混練を実施した。   At this time, when the temperature rises due to the heat generated by the kneading shear force, the vulcanizing agent starts to react and burns during vulcanization molding (the rubber surface becomes rough and a fluttering pattern appears). Kneading was carried out while adjusting the roll to 100 ° C. or less with cooling water, because the crosslinking reaction was accelerated during the flow and could cause fusion marks and cracks at the fusion site.

混練した材料はロールで厚さ2.5mmシート状に部出しし(ゴム加硫成形金型に加硫前ゴム材料を投入する際、製品重量や形状に合わせた形に成形しておくこと)、100mm×100mmのシートの大きさに併せた形状に裁断した。裁断したシートを予め170℃に熱した厚さ2mm、100mm×100mm形状の金型に入れ、プレス機(100t電動式加硫プレス、安田精機製作所製)にて170℃、圧力200kgf/cmの条件にて10分間保持し、ゴムを加硫させ、目的の実施例1のシートを成形した。 Part of the kneaded material is rolled out into a sheet with a thickness of 2.5 mm (when the pre-vulcanized rubber material is put into a rubber vulcanization mold, it is molded into a shape that matches the product weight and shape) And cut into a shape that matches the size of the sheet of 100 mm × 100 mm. The cut sheet is put in a 2 mm thick, 100 mm × 100 mm mold heated to 170 ° C. in advance, and 170 ° C. and 200 kgf / cm 2 pressure at a press machine (100 t electric vulcanizing press, manufactured by Yasuda Seiki Seisakusho). The condition was maintained for 10 minutes, the rubber was vulcanized, and the target sheet of Example 1 was molded.

[実施例2]
カーボンを900g用いた以外は実施例1と同様にして、実施例2のシートを作製した。
[Example 2]
A sheet of Example 2 was produced in the same manner as Example 1 except that 900 g of carbon was used.

[実施例3]
カーボンを1200g用いた以外は実施例1と同様にして、実施例3のシートを作製した。
[Example 3]
A sheet of Example 3 was produced in the same manner as Example 1 except that 1200 g of carbon was used.

[比較例1]
カーボンを1500g用いた以外は実施例1と同様にして、比較例1のシートを作製した。
[Comparative Example 1]
A sheet of Comparative Example 1 was produced in the same manner as Example 1 except that 1500 g of carbon was used.

[比較例2]
カーボンを300g用いた以外は実施例1と同様にして、比較例2のシートを作製した。
[Comparative Example 2]
A sheet of Comparative Example 2 was produced in the same manner as Example 1 except that 300 g of carbon was used.

[比較例3]
ポリマーAに代えてポリマーB(活性塩素系アクリルゴム、商品名:PA402、日本メクトロン社製)を1000g用い、カーボン(商品名:FEF級シースト116、東海カーボン社製)を500g用いた以外は実施例1と同様にして、比較例3のシートを作製した。
[Comparative Example 3]
Implemented except that instead of polymer A, 1000 g of polymer B (active chlorine acrylic rubber, trade name: PA402, manufactured by Nippon Mektron) was used and 500 g of carbon (trade name: FEF grade seast 116, manufactured by Tokai Carbon Co., Ltd.) was used. In the same manner as in Example 1, a sheet of Comparative Example 3 was produced.

[比較例4]
また、比較例4として、シリコンゴム(商品名:SRT−43−2、サカセ化学工業社製)を用い、厚さ2mm、100mm×100mm形状の保持シートを作製した。実施例1〜3および比較例1〜4のポリマーおよびカーボン組成を表1に示す。
[Comparative Example 4]
Further, as Comparative Example 4, silicon rubber (trade name: SRT-43-2, manufactured by SAKASE CHEMICAL INDUSTRY CO., LTD.) Was used to prepare a holding sheet having a thickness of 2 mm and a shape of 100 mm × 100 mm. The polymers and carbon compositions of Examples 1 to 3 and Comparative Examples 1 to 4 are shown in Table 1.

Figure 2008047431
Figure 2008047431

B.粘着性試験
図2に示す試験方法において、被着体7としてステンレス板を用い、保持シート2および保持基材1を貼り合わせたものを被着体7に貼り付けた。保持シート2の一端にテンションゲージを取り付け、図2に示すように、テンションゲージを取り付けた一端から剥離して、貼り合わされた方向に対して90度の方向に引き剥がし、剥離に要する張力を測定した。測定結果を表1の「粘着性」項目に併記する。
B. Adhesion test In the test method shown in FIG. 2, a stainless steel plate was used as the adherend 7, and the holding sheet 2 and the holding substrate 1 were bonded to the adherend 7. A tension gauge is attached to one end of the holding sheet 2, and as shown in FIG. 2, it is peeled off from one end where the tension gauge is attached and peeled off in a direction of 90 degrees with respect to the bonded direction, and the tension required for peeling is measured. did. The measurement results are also shown in the “Adhesion” item of Table 1.

C.汚染試験
実施例および比較例の保持シートにイオン交換膜を貼り付け、130℃の雰囲気下で10分間放置した。放置後、保持シートからイオン交換膜を剥がし、保持シートを貼り付けていた部位を飛行時間型二次イオン質量分析方法(TOF−SIMS法)において、イオン交換膜表面二次イオン質量スペクトル測定を実施し、シート貼り付け乾燥による付着元素定性および定量分析を実施した。測定結果を表1の「電解質膜上Si量」の項目に併記する。また、TOF−SIMS法による2次イオン質量スペクトル測定条件を表2に示す。
C. Ion exchange membranes were affixed to the holding sheets of the contamination test examples and comparative examples, and left for 10 minutes in an atmosphere at 130 ° C. After leaving, the ion exchange membrane is peeled off from the holding sheet, and the ion exchange membrane surface secondary ion mass spectrum measurement is performed in the time-of-flight secondary ion mass spectrometry method (TOF-SIMS method) on the part where the holding sheet is attached. Then, qualitative and quantitative analysis of adhering elements by sheet pasting and drying was performed. The measurement results are also shown in the item “Si amount on electrolyte membrane” in Table 1. Table 2 shows the secondary ion mass spectrum measurement conditions by the TOF-SIMS method.

Figure 2008047431
Figure 2008047431

D.架橋促進試験
実施例および比較例の保持シートにイオン交換膜を貼り付け、130℃の雰囲気下で10分間放置した。放置後、保持シートからイオン交換膜を剥がし、保持シートを貼り付けていた部位を更に120℃の雰囲気下で200時間放置した。その後、ゲル浸透クロマトグラフ(GPC)にてゴム貼り付け乾燥によるイオン交換膜の重量平均分子量Mw/数平均分子量Mnを測定し、保持シート貼り付けなしのイオン交換膜との比較において、架橋度促進度合を算出した。測定結果を表1の「架橋促進」の項目に併記する。また、GPC測定条件を表3に示す。
D. Crosslinking Acceleration Test An ion exchange membrane was attached to the holding sheets of Examples and Comparative Examples, and left in an atmosphere at 130 ° C. for 10 minutes. After leaving, the ion exchange membrane was peeled off from the holding sheet, and the portion where the holding sheet was attached was further left under an atmosphere of 120 ° C. for 200 hours. After that, the weight average molecular weight Mw / number average molecular weight Mn of the ion exchange membrane by means of gel permeation chromatography (GPC) by rubber attachment and drying is measured, and the degree of crosslinking is promoted in comparison with the ion exchange membrane without attachment of the holding sheet. The degree was calculated. The measurement results are also shown in the item “Crosslinking acceleration” in Table 1. Table 3 shows the GPC measurement conditions.

Figure 2008047431
Figure 2008047431

さらに、図1に示すように、実施例および比較例の各保持シートをアルミニウム製の保持基材1上に製膜した。その上に固体高分子電解質膜3を設置し、カソード電極触媒層ペースト4を塗布・乾燥し、固体高分子電解質膜3を保持シート2から剥離して裏返しにしてカソード電極触媒層側を保持シート2に設置した。続いてアノード電極触媒層ペースト5を塗布・乾燥し、保持シート2から剥離し、膜電極複合体を得た。   Further, as shown in FIG. 1, each of the holding sheets of Examples and Comparative Examples was formed on an aluminum holding substrate 1. The solid polymer electrolyte membrane 3 is placed thereon, the cathode electrode catalyst layer paste 4 is applied and dried, the solid polymer electrolyte membrane 3 is peeled off from the holding sheet 2 and turned over, and the cathode electrode catalyst layer side is held on the holding sheet 2 was installed. Subsequently, the anode electrode catalyst layer paste 5 was applied and dried, and peeled off from the holding sheet 2 to obtain a membrane electrode composite.

実施例1〜3の保持シートを使用した膜電極複合体では、保持シートが適正な範囲の粘着力(表1の「粘着力」の項目参照)を有していたため、固体高分子電解質膜および各電極触媒層に皺や破損は観察されなかった。また、Si汚染がなく、熱耐久性が確保された。一方、比較例1の保持シートを使用した膜電極複合体では、カーボンが多過ぎて粘着力が不足していたため、乾燥工程において固体高分子電解質膜および電極触媒層の固着力が不足して、皺が発生していた。比較例2、3の保持シートを使用した膜電極複合体では、カーボンが少な過ぎて粘着力が過剰であり、剥離時に高分子電解質膜が破損するなど問題を有していた。さらに、Siゴムを使用した比較例4およびポリマーBを使用した比較例3の保持シートを使用した膜電極複合体では、Si汚染が見られ、さらに、架橋促進が観察された。   In the membrane electrode assembly using the holding sheets of Examples 1 to 3, since the holding sheet had an adhesive strength in an appropriate range (see the item “Adhesive strength” in Table 1), the solid polymer electrolyte membrane and No wrinkles or damage was observed in each electrode catalyst layer. Moreover, there was no Si contamination and heat durability was ensured. On the other hand, in the membrane electrode assembly using the holding sheet of Comparative Example 1, because there was too much carbon and the adhesive strength was insufficient, the adhesion of the solid polymer electrolyte membrane and the electrode catalyst layer was insufficient in the drying step, Habit has occurred. The membrane electrode composites using the holding sheets of Comparative Examples 2 and 3 have problems such that the carbon is too little and the adhesive strength is excessive, and the polymer electrolyte membrane is damaged at the time of peeling. Furthermore, in the membrane electrode assembly using the holding sheet of Comparative Example 4 using Si rubber and Comparative Example 3 using Polymer B, Si contamination was observed, and further, crosslinking promotion was observed.

以上、実施例によって本発明の効果を説明したが、本発明は、上記実施例の範囲のみに限定されず、上述したように、第1固定工程〜第1乾燥工程によって片方の電極触媒層を形成した後に他の公知の方法によって他方の電極触媒層を形成する形態をも含む。   As mentioned above, although the effect of this invention was demonstrated by the Example, this invention is not limited only to the range of the said Example, As mentioned above, one electrode catalyst layer is formed by the 1st fixing process-the 1st drying process. It includes a form in which the other electrode catalyst layer is formed by another known method after the formation.

電極触媒層と高分子電解質膜の接触抵抗が改善され、膜電極複合体の皺・変形が防止され、さらに、高分子電解質膜に保持シート成分による汚染がなく、しかも任意の形状の電極触媒層を有する固体高分子型燃料電池を提供することができる。   The contact resistance between the electrode catalyst layer and the polymer electrolyte membrane is improved, the membrane electrode assembly is prevented from wrinkling and deformation, and the polymer electrolyte membrane is not contaminated by the holding sheet component, and the electrode catalyst layer has any shape It is possible to provide a polymer electrolyte fuel cell having

本発明の膜−電極構造体の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the membrane-electrode structure of this invention. 本発明における保持シートの粘着力測定方法の模式図である。It is a schematic diagram of the measuring method of the adhesive force of the holding sheet in the present invention.

符号の説明Explanation of symbols

1 保持基材
2 保持シート
3 固体高分子電解質膜
4 電極触媒層(ペースト)
5 塗布手段
6 電極触媒層(ペースト)
7 被着体

DESCRIPTION OF SYMBOLS 1 Holding base material 2 Holding sheet 3 Solid polymer electrolyte membrane
4 Electrode catalyst layer (paste)
5 Coating means 6 Electrode catalyst layer (paste)
7 adherend

Claims (7)

固体高分子電解質膜の両面に電極触媒層を備えた燃料電池用膜電極構造体を製造する際に用いられる燃料電池用膜電極構造体製造用保持シートであって、
上記燃料電池用膜電極構造体製造用保持シートは、上記固体高分子電解質膜または上記電極触媒層に接することで保持を行い、
上記燃料電池用膜電極構造体製造用保持シートは、主鎖間に−N−(CH−N−の架橋がなされているポリマー成分とカーボンとを含有し、
上記カーボンの含有量が、上記ポリマー成分とカーボンの合計量に対して36〜53重量%であることを特徴とする燃料電池用膜電極構造体製造用保持シート。
A fuel cell membrane electrode structure production holding sheet used when producing a fuel cell membrane electrode structure comprising electrode catalyst layers on both sides of a solid polymer electrolyte membrane,
The fuel cell membrane electrode structure production holding sheet is held by contacting the solid polymer electrolyte membrane or the electrode catalyst layer,
The fuel cell membrane electrode structure production holding sheet contains a polymer component in which —N— (CH 2 ) 6 —N— is crosslinked between the main chains and carbon,
The holding sheet for producing a membrane electrode structure for a fuel cell, wherein the carbon content is 36 to 53% by weight based on the total amount of the polymer component and carbon.
前記ポリマー成分の主鎖は、下記化学式(1)で示されるカルボキシル基系アクリルゴムであり、上記主鎖のカルボキシル基に−N−(CH−N−の架橋がなされていることを特徴とする請求項1に記載の燃料電池用膜電極構造体製造用保持シート。
Figure 2008047431
(Y、Zは整数、Rはアルキル基)
The main chain of the polymer component is a carboxyl group-based acrylic rubber represented by the following chemical formula (1), and the —N— (CH 2 ) 6 —N— bridge is formed on the carboxyl group of the main chain. The holding sheet for producing a fuel cell membrane electrode structure according to claim 1.
Figure 2008047431
(Y and Z are integers, R is an alkyl group)
前記主鎖のカルボキシル基における−N−(CH−N−の架橋は、ヘキサメチレンジアミンによってなされていることを特徴とする請求項1または2に記載の燃料電池用膜電極構造体製造用保持シート。 3. The fuel cell membrane electrode structure production according to claim 1, wherein the —N— (CH 2 ) 6 —N— bridge in the carboxyl group of the main chain is formed by hexamethylenediamine. 4. Holding sheet. 固体高分子電解質膜にカソード電極触媒層およびアノード電極触媒層をそれぞれ形成した燃料電池用膜電極構造体の製造方法であって、
上記固体高分子電解質膜を請求項1〜3のいずれかに記載の燃料電池用膜電極構造体製造用保持シート上に設置する第1固定工程と、
固定された上記固体高分子電解質膜上にカソード電極触媒層ペーストまたはアノード電極触媒層ペーストの一方を塗布する第1塗布工程と、
上記燃料電池用膜電極構造体製造用保持シートを上記固体高分子電解質膜から除去する第1除去工程とを有することを特徴とする燃料電池用膜電極構造体の製造方法。
A method for producing a membrane electrode structure for a fuel cell in which a cathode electrode catalyst layer and an anode electrode catalyst layer are respectively formed on a solid polymer electrolyte membrane,
A first fixing step of installing the solid polymer electrolyte membrane on the fuel cell membrane electrode structure production holding sheet according to any one of claims 1 to 3;
A first coating step of coating one of a cathode electrode catalyst layer paste or an anode electrode catalyst layer paste on the solid polymer electrolyte membrane fixed;
A fuel cell membrane electrode structure manufacturing method comprising: a first removal step of removing the fuel cell membrane electrode structure manufacturing holding sheet from the solid polymer electrolyte membrane.
前記第1塗布工程と前記第1除去工程との間に、前記固体高分子電解質膜上に前記電極触媒層が設けられてなる複合体の第1乾燥工程を有することを特徴とする請求項4に記載の燃料電池用膜電極構造体の製造方法。   5. A first drying step of a composite comprising the electrode catalyst layer provided on the solid polymer electrolyte membrane between the first coating step and the first removal step. The manufacturing method of the membrane electrode structure for fuel cells as described in any one of. 前記第1除去工程の後に、前記複合体を裏返して前記燃料電池膜電極構造体製造用保持シート上に上記複合体の電極触媒層側を設置する第2固定工程と、
固定された上記複合体の固体高分子電解質膜側にアノード電極触媒層ペーストまたはカソード電極触媒層ペーストの他方を塗布する第2塗布工程と、
上記燃料電池用膜電極構造体製造用シートを上記複合体から除去する第2除去工程とを有することを特徴とする請求項4または5に記載の燃料電池用膜電極構造体の製造方法。
After the first removal step, a second fixing step of turning the composite upside down and placing the electrode catalyst layer side of the composite on the fuel cell membrane electrode structure production holding sheet;
A second application step of applying the other of the anode electrode catalyst layer paste or the cathode electrode catalyst layer paste to the solid polymer electrolyte membrane side of the fixed composite;
6. The method for producing a membrane electrode structure for a fuel cell according to claim 4 or 5, further comprising a second removing step of removing the sheet for producing the membrane electrode structure for a fuel cell from the composite.
前記第2塗布工程と前記第2除去工程との間に、前記複合体の第2乾燥工程を有することを特徴とする請求項6に記載の燃料電池用膜電極構造体の製造方法。   The method for producing a membrane electrode structure for a fuel cell according to claim 6, further comprising a second drying step of the composite body between the second application step and the second removal step.
JP2006222357A 2006-08-17 2006-08-17 MANUFACTURING SHEET FOR FUEL CELL MEMBRANE ELECTRODE STRUCTURE AND METHOD FOR PRODUCING FUEL CELL MEMBRANE ELECTRODE STRUCTURE Active JP4959253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006222357A JP4959253B2 (en) 2006-08-17 2006-08-17 MANUFACTURING SHEET FOR FUEL CELL MEMBRANE ELECTRODE STRUCTURE AND METHOD FOR PRODUCING FUEL CELL MEMBRANE ELECTRODE STRUCTURE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006222357A JP4959253B2 (en) 2006-08-17 2006-08-17 MANUFACTURING SHEET FOR FUEL CELL MEMBRANE ELECTRODE STRUCTURE AND METHOD FOR PRODUCING FUEL CELL MEMBRANE ELECTRODE STRUCTURE

Publications (2)

Publication Number Publication Date
JP2008047431A true JP2008047431A (en) 2008-02-28
JP4959253B2 JP4959253B2 (en) 2012-06-20

Family

ID=39180956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006222357A Active JP4959253B2 (en) 2006-08-17 2006-08-17 MANUFACTURING SHEET FOR FUEL CELL MEMBRANE ELECTRODE STRUCTURE AND METHOD FOR PRODUCING FUEL CELL MEMBRANE ELECTRODE STRUCTURE

Country Status (1)

Country Link
JP (1) JP4959253B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245795A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Method for manufacturing membrane-electrode assembly for solid polymer electrolyte fuel cell
JP2012164422A (en) * 2011-02-03 2012-08-30 Honda Motor Co Ltd Method and apparatus of manufacturing membrane electrode assembly for fuel cell
CN110088961A (en) * 2016-12-12 2019-08-02 米其林集团总公司 Method for manufacturing the membrane-electrode assembly of fuel cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160405A (en) * 1999-12-02 2001-06-12 Asahi Glass Co Ltd Manufacturing method of solid polymer fuel cell
JP2001240716A (en) * 2000-02-25 2001-09-04 Nippon Zeon Co Ltd Crosslinkable acrylic rubber composition and crosslinked article

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160405A (en) * 1999-12-02 2001-06-12 Asahi Glass Co Ltd Manufacturing method of solid polymer fuel cell
JP2001240716A (en) * 2000-02-25 2001-09-04 Nippon Zeon Co Ltd Crosslinkable acrylic rubber composition and crosslinked article

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245795A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Method for manufacturing membrane-electrode assembly for solid polymer electrolyte fuel cell
JP2012164422A (en) * 2011-02-03 2012-08-30 Honda Motor Co Ltd Method and apparatus of manufacturing membrane electrode assembly for fuel cell
CN110088961A (en) * 2016-12-12 2019-08-02 米其林集团总公司 Method for manufacturing the membrane-electrode assembly of fuel cell

Also Published As

Publication number Publication date
JP4959253B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
WO2012161181A1 (en) Conductive film, current collector using same, battery and bipolar battery
TWI443170B (en) Double-sided adhesive sheet and production method thereof
CN101766053B (en) Double-faced adhesive sheet
US7785435B2 (en) Method of laminating a decal to a carrier film
WO2000064995A1 (en) Gasket
CN105034473A (en) Bonded object of three-dimensional silicone rubber
WO2004040681A1 (en) Membrane-electrode structure and method for producing same
WO2011099285A1 (en) Catalyst-coated membrane assembly manufacturing method and device
US20030078157A1 (en) Method of manufacturing electrolytic film electrode connection body for fuel cell
JP4959253B2 (en) MANUFACTURING SHEET FOR FUEL CELL MEMBRANE ELECTRODE STRUCTURE AND METHOD FOR PRODUCING FUEL CELL MEMBRANE ELECTRODE STRUCTURE
JP2011165460A (en) Method of manufacturing membrane-catalyst layer assembly
JP2007141674A (en) Manufacturing method of membrane-electrode assembly and method of assembling fuel cell
JP2003285396A (en) Base material film for producing electrode film and/or electrolyte film and method for producing joined body of electrode film and electrolyte film
JP2017183198A (en) Manufacturing method of fuel cell seal body, and rubber gasket for fuel cell used therein
CN102473936B (en) Fuel cell and method for manufacturing same
WO2016159238A1 (en) Heat diffusion sheet
JP4392222B2 (en) Method for manufacturing membrane-electrode structure
JP4421261B2 (en) Method for manufacturing membrane-electrode structure
JP2012195052A (en) Correction method of catalyst layer sheet
JP5853194B2 (en) Membrane-catalyst layer assembly manufacturing method and manufacturing apparatus thereof
JP2009043712A (en) Method of manufacturing membrane electrode assembly
JP2010205484A (en) Adhesive for fuel cell and membrane electrode assembly produced using this
CN213278137U (en) Fuel cell membrane electrode assembly
JP2006236671A (en) Seal material for solid polymer fuel cell
JP2004172095A (en) Film/electrode structure and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120301

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250