JP5887692B2 - Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane-electrode assembly with reinforcing membrane, polymer electrolyte fuel cell, and production method thereof - Google Patents

Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane-electrode assembly with reinforcing membrane, polymer electrolyte fuel cell, and production method thereof Download PDF

Info

Publication number
JP5887692B2
JP5887692B2 JP2010287170A JP2010287170A JP5887692B2 JP 5887692 B2 JP5887692 B2 JP 5887692B2 JP 2010287170 A JP2010287170 A JP 2010287170A JP 2010287170 A JP2010287170 A JP 2010287170A JP 5887692 B2 JP5887692 B2 JP 5887692B2
Authority
JP
Japan
Prior art keywords
membrane
reinforcing
catalyst layer
electrolyte membrane
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010287170A
Other languages
Japanese (ja)
Other versions
JP2012134094A (en
Inventor
哲也 小尻
哲也 小尻
秀紀 浅井
秀紀 浅井
宏年 坂元
宏年 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2010287170A priority Critical patent/JP5887692B2/en
Publication of JP2012134094A publication Critical patent/JP2012134094A/en
Application granted granted Critical
Publication of JP5887692B2 publication Critical patent/JP5887692B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、補強膜付き触媒層−電解質膜積層体、補強膜付き膜−電極接合体、及び固体高分子形燃料電池、並びにこれらの製造方法に関するものである。   The present invention relates to a catalyst layer-electrolyte membrane laminate with a reinforcing membrane, a membrane-electrode assembly with a reinforcing membrane, a polymer electrolyte fuel cell, and methods for producing them.

燃料電池は、電解質の両面に電極が配置され、水素と酸素の電気化学反応により発電する電池であり、発電時に発生するのは水のみである。このように従来の内燃機関と異なり、二酸化炭素等の環境負荷ガスを発生しないために次世代のクリーンエネルギーシステムとして普及が見込まれている。その中でも特に固体高分子形燃料電池は、作動温度が低く、電解質の抵抗が少ないことに加え、活性の高い触媒を用いるので小型でも高出力を得ることができ、家庭用コージェネレーションシステム等として早期の実用化が見込まれている。   A fuel cell is a cell in which electrodes are arranged on both sides of an electrolyte and generates electricity by an electrochemical reaction between hydrogen and oxygen, and only water is generated during power generation. Thus, unlike the conventional internal combustion engine, it is expected to spread as a next-generation clean energy system because it does not generate environmental load gas such as carbon dioxide. In particular, the polymer electrolyte fuel cell has a low operating temperature and low electrolyte resistance. In addition, it uses a highly active catalyst, so it can obtain high output even in a small size. Is expected to be put to practical use.

固体高分子形燃料電池は、プロトン伝導性を有する固体高分子電解質膜を用い、この電解質膜の両面に触媒層及び導電性多孔質基材を順に積層している。そして、この触媒層及び導電性多孔質基材からなる電極の周囲を囲むようにガスケットを配置し、さらにこれをセパレータで挟んだ構造を有している。この固体高分子形燃料電池を発電させるために、一方の電極に水素などの燃料ガスが供給され、他方の電極に酸素などの酸化剤ガスが供給される。   A solid polymer fuel cell uses a solid polymer electrolyte membrane having proton conductivity, and a catalyst layer and a conductive porous substrate are sequentially laminated on both surfaces of the electrolyte membrane. And it has the structure which has arrange | positioned the gasket so that the circumference | surroundings of the electrode which consists of this catalyst layer and a conductive porous base material may be enclosed, and also this was pinched | interposed with the separator. In order to generate power in this polymer electrolyte fuel cell, a fuel gas such as hydrogen is supplied to one electrode, and an oxidant gas such as oxygen is supplied to the other electrode.

このような固体高分子形燃料電池においては、電解質膜の破損防止や有効利用等の観点から、電解質膜に補強膜が接着されることがある(例えば、特許文献1及び2参照)。この補強膜は、通常、打ち抜き等により中央部に開口が形成されるが、このとき、開口周縁部には凸部が発生する。この凸部が電解質膜に接触した状態で熱プレス等により補強膜と電解質膜とを接着させると、凸部分に圧力が集中し、電解質膜の厚さにムラが生じてしまう。この電解質膜における厚さムラの発生を防止するために、特許文献3には、補強膜の開口周縁部をレーザ処理や熱処理によりトリム加工して凸部を除去するものが提案されている。   In such a polymer electrolyte fuel cell, a reinforcing membrane may be adhered to the electrolyte membrane from the viewpoint of preventing damage or effective use of the electrolyte membrane (see, for example, Patent Documents 1 and 2). This reinforcing film is usually formed with an opening at the center by punching or the like, but at this time, a convex portion is generated at the periphery of the opening. If the reinforcing film and the electrolyte membrane are bonded together by hot pressing or the like in a state where the convex portion is in contact with the electrolyte membrane, pressure concentrates on the convex portion, resulting in unevenness in the thickness of the electrolyte membrane. In order to prevent the occurrence of thickness unevenness in the electrolyte membrane, Patent Document 3 proposes a method in which the peripheral edge of the opening of the reinforcing membrane is trimmed by laser treatment or heat treatment to remove the convex portion.

特許第3052536号公報Japanese Patent No. 3052536 特開2004−47230号公報JP 2004-47230 A 特開2010−129247号公報JP 2010-129247 A

ところで、上述したような固体高分子形燃料電池は、通常、数百セル単位でスタックされて利用されるため、全ての補強膜にレーザ処理や熱処理を施すと、その分時間や労力が余計に費やされることとなり、生産性が低いという問題があった。   By the way, since the polymer electrolyte fuel cell as described above is normally stacked and used in units of several hundred cells, if all the reinforcing films are subjected to laser treatment or heat treatment, the time and labor are excessive. There was a problem that productivity was low.

そこで、本発明は、イオン伝導性高分子電解質膜における厚さムラの発生を防止することができ、且つ生産性の高い補強膜付き触媒層−電解質膜積層体、補強膜付き膜−電極接合体、及び固体高分子形燃料電池、並びにこれらの製造方法を提供することを課題とする。   Therefore, the present invention can prevent the occurrence of thickness unevenness in the ion conductive polymer electrolyte membrane, and has a highly productive catalyst layer-electrolyte membrane laminate, membrane-electrode assembly with reinforcement membrane, and high productivity. And a polymer electrolyte fuel cell, and a method for producing the same.

本発明に係る補強膜付き触媒層−電解質膜積層体の製造方法は、上記課題を解決するためになされたものであり、イオン伝導性高分子電解質膜及び補強膜を準備する工程と、前記イオン伝導性高分子電解質膜の両面に触媒層を形成する工程と、前記補強膜において、一方面側から切断刃により切断することで、前記触媒層を露出させるための開口を中央部に形成する工程と、前記補強膜の一方面が前記イオン伝導性高分子電解質膜の少なくとも一方面に対向するよう前記補強膜を配置し、前記補強膜の他方面側から加圧することにより、前記イオン伝導性高分子電解質膜に前記補強膜を接着する工程と、を備えている。   The manufacturing method of a catalyst layer-electrolyte membrane laminate with a reinforcing membrane according to the present invention is made to solve the above-mentioned problems, and includes a step of preparing an ion conductive polymer electrolyte membrane and a reinforcing membrane, and the ion Forming a catalyst layer on both surfaces of the conductive polymer electrolyte membrane, and forming an opening for exposing the catalyst layer in a central portion of the reinforcing membrane by cutting with a cutting blade from one surface side And arranging the reinforcing membrane so that one surface of the reinforcing membrane faces at least one surface of the ion conductive polymer electrolyte membrane, and applying pressure from the other surface side of the reinforcing membrane, Adhering the reinforcing membrane to a molecular electrolyte membrane.

上記製造方法は、補強膜の一方面側から切断刃で切断することにより、補強膜に開口を形成する。このとき、補強膜において、他方面側では開口周縁部に凸部が形成されるが、一方面側では凸部は生じない。この補強膜は、凸部が生じていない一方面側がイオン伝導性高分子電解質膜に対向するようイオン伝導性高分子電解質膜上に配置され、他方面側から加圧されるため、凸部によってイオン伝導性高分子電解質膜にかかる圧力が不均一になることがなく、イオン伝導性高分子電解質膜に厚さムラが生じるのを防止することができる。また、補強膜の凸部の除去を行う必要がないため、生産性を向上させることもできる。なお、本発明において、電解質膜に触媒層を形成する工程と、電解質膜に補強膜を接着する工程との実施順は特に限定されるものではなく、どちらの工程を先に実施してもよい。   In the manufacturing method, an opening is formed in the reinforcing film by cutting with a cutting blade from one side of the reinforcing film. At this time, in the reinforcing film, a convex portion is formed on the peripheral edge of the opening on the other surface side, but no convex portion is generated on the one surface side. This reinforcing membrane is disposed on the ion conductive polymer electrolyte membrane so that one surface side where no convex portion is formed faces the ion conductive polymer electrolyte membrane, and is pressed from the other surface side. The pressure applied to the ion conductive polymer electrolyte membrane does not become uneven, and it is possible to prevent the thickness of the ion conductive polymer electrolyte membrane from being uneven. Moreover, since it is not necessary to remove the convex part of a reinforcement film, productivity can also be improved. In the present invention, the order of performing the step of forming the catalyst layer on the electrolyte membrane and the step of bonding the reinforcing membrane to the electrolyte membrane is not particularly limited, and either step may be performed first. .

上記製造方法において、補強膜の方がイオン伝導性高分子電解質膜よりもISO14577に基づくマルテンス硬度が小さいことが好ましい。この方法によれば、補強膜を加圧した際に、補強膜の変形がイオン伝導性高分子電解質膜より優先して起こり、イオン伝導性高分子電解質膜に圧さムラが生じるのを防止できる。なお、本発明における「ISO14577に基づくマルテンス硬度」とは、圧子に荷重をかけながら測定対象物に押し込むことにより求められる物性値であり、(試験荷重)/(試験荷重下での圧子の表面積)[N/mm2] として求められる。   In the above production method, the reinforcing membrane preferably has a lower Martens hardness based on ISO14577 than the ion conductive polymer electrolyte membrane. According to this method, when the reinforcing membrane is pressurized, deformation of the reinforcing membrane takes precedence over the ion conductive polymer electrolyte membrane, and pressure unevenness can be prevented from occurring in the ion conductive polymer electrolyte membrane. . The “Martens hardness based on ISO14577” in the present invention is a physical property value obtained by pushing into an object to be measured while applying a load to the indenter, and (test load) / (surface area of the indenter under the test load) It is calculated | required as [N / mm2].

マルテンス硬度の測定は、例えば、超微小硬さ試験システム ピコデンターHM500(商品名、株式会社フィッシャー・インストルメンツ製)を用いて行うことが可能である。この測定装置は、四角錘の圧子、又は三角錘の圧子を、所定の比較的小さい試験荷重をかけながら測定対象物に押し込み、所定の押し込み深さに達した時点でその押し込み深さから圧子が接触している表面積を求め、上記式よりマルテンス硬度を求めるものである。つまり、定荷重測定条件で圧子を測定対象物に押し込んだ際に、押し込まれた深さに対するそのときの応力をマルテンス硬度として定義するものである。測定条件は測定対象物の表面から厚さ方向へ、一定荷重印加速度(10mN/mm2/sec)で四角錘形状圧子を深さ膜厚の1/10の深さまで押し込み、測定する。   The Martens hardness can be measured using, for example, an ultra-micro hardness test system Picodenter HM500 (trade name, manufactured by Fisher Instruments Co., Ltd.). This measuring device pushes the indenter of the square pyramid or the triangular pyramid into the measurement object while applying a predetermined relatively small test load, and when the predetermined indentation depth is reached, the indenter depresses from the indentation depth. The surface area in contact is obtained, and the Martens hardness is obtained from the above formula. That is, when the indenter is pushed into the measurement object under the constant load measurement condition, the stress at that time with respect to the pushed-in depth is defined as Martens hardness. Measurement conditions are measured by pushing a square pyramid-shaped indenter to a depth of 1/10 of the depth film thickness from the surface of the measurement object in the thickness direction at a constant load application speed (10 mN / mm2 / sec).

また、上記製造方法において、補強膜の開口内に触媒層全体を配置することもできるし、補強膜の開口周縁部を触媒層の外周縁部上に配置することもできる。補強膜の開口周縁部を触媒層の外周縁部上に配置する場合は、触媒層が補強膜とイオン伝導性高分子電解質膜との間で緩衝材の役割を果たすため、より確実にイオン伝導性高分子電解質膜の厚さムラを防止することができる。   Further, in the above manufacturing method, the entire catalyst layer can be disposed in the opening of the reinforcing membrane, or the opening peripheral edge of the reinforcing membrane can be disposed on the outer peripheral edge of the catalyst layer. When the peripheral edge of the opening of the reinforcing membrane is placed on the outer peripheral edge of the catalyst layer, the catalyst layer plays a role of a buffer material between the reinforcing membrane and the ion conductive polymer electrolyte membrane. Thickness unevenness of the conductive polymer electrolyte membrane can be prevented.

また、上記製造方法において、補強膜は、イオン伝導性高分子電解質膜に接着する接着層と、この接着層上に設けられる基材層とを有していてもよい。この基材層は、ガスリーク防止の観点から、燃料ガス及び酸化剤ガスの透過を防ぐガスバリア性を有することが好ましい。   Moreover, in the said manufacturing method, the reinforcement film | membrane may have the contact bonding layer adhere | attached on an ion conductive polymer electrolyte membrane, and the base material layer provided on this contact bonding layer. This base material layer preferably has a gas barrier property that prevents permeation of fuel gas and oxidant gas from the viewpoint of preventing gas leakage.

本発明に係る補強膜付き膜−電極接合体の製造方法は、上述したような補強膜付き触媒層−電解質膜積層体の製造方法と、前記触媒層上に導電性多孔質基材を形成する工程と、を備えている。なお、本発明において、触媒層上に導電性多孔質基材を形成する工程、及び電解質膜に補強膜を接着する工程の実施順は特に限定されるものではなく、どちらの工程を先に実施してもよい。   The method for producing a membrane-electrode assembly with a reinforcing membrane according to the present invention includes a method for producing a catalyst layer-electrolyte membrane laminate with a reinforcing membrane as described above, and forming a conductive porous substrate on the catalyst layer. And a process. In the present invention, the order of carrying out the step of forming the conductive porous substrate on the catalyst layer and the step of bonding the reinforcing membrane to the electrolyte membrane is not particularly limited, and either step is carried out first. May be.

上記製造方法において、補強膜の開口内に導電性多孔質基材全体を配置することもできるし、補強膜の開口周縁部を導電性多孔質基材の外周縁部上に配置することもできる。補強膜の開口周縁部を導電性多孔質基材の外周縁部上に配置する場合は、導電性多孔質基材が補強膜とイオン伝導性高分子電解質膜との間で緩衝材の役割を果たすため、より確実にイオン伝導性高分子電解質膜の厚さムラを防止することができる。   In the above manufacturing method, the entire conductive porous substrate can be disposed in the opening of the reinforcing membrane, or the opening peripheral edge of the reinforcing membrane can be disposed on the outer peripheral edge of the conductive porous substrate. . When the peripheral edge of the opening of the reinforcing membrane is disposed on the outer peripheral edge of the conductive porous substrate, the conductive porous substrate plays a role of a buffer material between the reinforcing membrane and the ion conductive polymer electrolyte membrane. Therefore, uneven thickness of the ion conductive polymer electrolyte membrane can be prevented more reliably.

本発明に係る固体高分子形燃料電池の製造方法は、上述したような補強膜付き膜−電極接合体の製造方法と、前記触媒層及び前記導電性多孔質基材を含む電極の周囲を囲うよう、前記補強膜上にガスケットを設ける工程と、前記電極及び前記ガスケット上にセパレータを設ける工程と、を備えている。   A method for producing a polymer electrolyte fuel cell according to the present invention encloses a method for producing a membrane-electrode assembly with a reinforcing membrane as described above, and an electrode including the catalyst layer and the conductive porous substrate. The step of providing a gasket on the reinforcing film and the step of providing a separator on the electrode and the gasket are provided.

本発明に係る補強膜付き触媒層−電解質膜積層体は、イオン伝導性高分子電解質膜と、前記イオン伝導性高分子電解質膜の両面に形成された触媒層と、一方面側から切断刃により切断することで形成された開口を中央部に有し、前記開口から前記触媒層を露出させるよう、前記一方面が前記イオン伝導性高分子電解質膜の少なくとも一方面に接着した補強膜と、を備え、前記補強膜は、前記切断刃により形成され他方面側に突出する凸部を前記開口の周縁部に有している。   The catalyst layer-electrolyte membrane laminate with a reinforcing membrane according to the present invention includes an ion conductive polymer electrolyte membrane, a catalyst layer formed on both surfaces of the ion conductive polymer electrolyte membrane, and a cutting blade from one side. A reinforcing membrane having an opening formed by cutting at a central portion, the one surface being bonded to at least one surface of the ion conductive polymer electrolyte membrane so as to expose the catalyst layer from the opening; The reinforcing film has a convex portion formed by the cutting blade and projecting to the other surface side at a peripheral edge portion of the opening.

上記補強膜付き触媒層−電解質膜積層体の補強膜は、補強膜において、切断刃により開口を形成した際に生じた凸部がイオン伝導性高分子電解質膜と反対側の他方面にあるため、補強膜をイオン伝導性高分子電解質膜に加圧接着させた際、この凸部によってイオン伝導性高分子電解質膜にかかる圧力が不均一になることがない。このため、この補強膜付き触媒層−電解質膜積層体は、イオン伝導性高分子電解質膜に厚さムラが生じるのを防止することができ、また、凸部を除去する必要がないため、生産性を向上させることができる。   In the reinforcing membrane of the catalyst layer-electrolyte membrane laminate with the reinforcing membrane, the convex portion formed when the opening is formed by the cutting blade in the reinforcing membrane is on the other side opposite to the ion conductive polymer electrolyte membrane. When the reinforcing membrane is pressure-bonded to the ion conductive polymer electrolyte membrane, the pressure applied to the ion conductive polymer electrolyte membrane does not become uneven due to the convex portions. For this reason, the catalyst layer-electrolyte membrane laminate with a reinforcing membrane can prevent the occurrence of uneven thickness in the ion conductive polymer electrolyte membrane, and it is not necessary to remove the convex portion. Can be improved.

上記補強膜付き触媒層−電解質膜積層体は、補強膜の開口内に触媒層全体が配置されていてもよいし、補強膜の開口周縁部が触媒層の外周縁部上に配置されていてもよい。補強膜の開口周縁部が触媒層の外周縁部上に配置されている場合は、触媒層が補強膜とイオン伝導性高分子電解質膜との間で緩衝材の役割を果たすため、より確実にイオン伝導性高分子電解質膜の厚さムラを防止することができる。   In the catalyst layer-electrolyte membrane laminate with the reinforcing membrane, the entire catalyst layer may be disposed in the opening of the reinforcing membrane, or the opening peripheral portion of the reinforcing membrane is disposed on the outer peripheral portion of the catalyst layer. Also good. When the opening peripheral edge of the reinforcing membrane is arranged on the outer peripheral edge of the catalyst layer, the catalyst layer plays a role of a buffer material between the reinforcing membrane and the ion conductive polymer electrolyte membrane. The thickness unevenness of the ion conductive polymer electrolyte membrane can be prevented.

また、上記補強膜付き触媒層−電解質膜積層体は、補強膜の方がイオン伝導性高分子電解質膜よりもISO14577に基づくマルテンス硬度が小さくなるよう構成することが好ましい。この構成によれば、イオン伝導性高分子電解質膜と補強膜とを加圧接着する際にイオン伝導性高分子電解質膜に掛かる圧力ムラがより緩和される。   In addition, the catalyst layer-electrolyte membrane laminate with the reinforcing membrane is preferably configured such that the reinforcing membrane has a lower Martens hardness based on ISO14577 than the ion conductive polymer electrolyte membrane. According to this configuration, the pressure unevenness applied to the ion conductive polymer electrolyte membrane when the ion conductive polymer electrolyte membrane and the reinforcing membrane are pressure-bonded is further reduced.

また、上記補強膜付き触媒層−電解質膜積層体において、補強膜は、イオン伝導性高分子電解質膜に接着する接着層と、この接着層上に設けられる基材層とを有していてもよい。この基材層は、ガスリーク防止の観点から、燃料ガス及び酸化剤ガスの透過を防ぐガスバリア性を有することが好ましい。   In the catalyst layer-electrolyte membrane laminate with the reinforcing membrane, the reinforcing membrane may include an adhesive layer that adheres to the ion conductive polymer electrolyte membrane and a base material layer that is provided on the adhesive layer. Good. This base material layer preferably has a gas barrier property that prevents permeation of fuel gas and oxidant gas from the viewpoint of preventing gas leakage.

本発明に係る補強膜付き膜−電極接合体は、上述したような補強膜付き触媒層−電解質膜積層体と、前記触媒層上に形成された導電性多孔質基材と、を備えている。   A membrane-electrode assembly with a reinforcing membrane according to the present invention includes the above-described catalyst layer-electrolyte membrane laminate with a reinforcing membrane, and a conductive porous substrate formed on the catalyst layer. .

上記補強膜付き膜−電極接合体は、補強膜の開口内に導電性多孔質基材全体が配置されていてもよいし、補強膜の開口周縁部が導電性多孔質基材の外周縁部上に配置されていてもよい。補強膜の開口周縁部が導電性多孔質基材の外周縁部上に配置されている場合は、導電性多孔質基材が補強膜とイオン伝導性高分子電解質膜との間で緩衝材の役割を果たすため、より確実にイオン伝導性高分子電解質膜の厚さムラを防止することができる。   In the membrane-electrode assembly with the reinforcing membrane, the entire conductive porous substrate may be disposed in the opening of the reinforcing membrane, or the peripheral edge of the opening of the reinforcing membrane is the outer peripheral edge of the conductive porous substrate. It may be arranged above. When the opening peripheral edge of the reinforcing membrane is disposed on the outer peripheral edge of the conductive porous base material, the conductive porous base material is interposed between the reinforcing membrane and the ion conductive polymer electrolyte membrane. Since it plays a role, uneven thickness of the ion conductive polymer electrolyte membrane can be prevented more reliably.

また、本発明に係る固体高分子形燃料電池は、上述したような補強膜付き膜−電極接合体と、前記触媒層及び前記導電性多孔質基材を含む電極の周囲を囲うよう、前記補強膜上に設けられたガスケットと、前記電極及び前記ガスケット上に設けられたセパレータと、を備えている。   Further, the polymer electrolyte fuel cell according to the present invention includes the membrane-electrode assembly with a reinforcing membrane as described above, and the reinforcement so as to surround the electrode including the catalyst layer and the conductive porous substrate. A gasket provided on the membrane; and a separator provided on the electrode and the gasket.

本発明によれば、イオン伝導性高分子電解質膜における厚さムラの発生を防止し、且つ生産性を向上させることができる。   According to the present invention, it is possible to prevent occurrence of thickness unevenness in the ion conductive polymer electrolyte membrane and improve productivity.

本発明の一実施形態に係る固体高分子形燃料電池の正面断面図である。1 is a front sectional view of a polymer electrolyte fuel cell according to an embodiment of the present invention. 本発明の一実施形態に係る補強膜付き膜−電極接合体の正面断面図である。It is a front sectional view of a membrane-electrode assembly with a reinforcement membrane concerning one embodiment of the present invention. 本発明の一実施形態に係る補強膜付き膜−電極接合体の部分拡大正面断面図である。It is a partial expanded front sectional view of a membrane-electrode assembly with a reinforcing membrane concerning one embodiment of the present invention. 本発明の一実施形態に係る補強膜付き膜−電極接合体の平面図である。It is a top view of the membrane-electrode assembly with a reinforcement film which concerns on one Embodiment of this invention. 本発明の一実施形態に係る固体高分子形燃料電池の製造方法を示す正面断面図である。It is front sectional drawing which shows the manufacturing method of the polymer electrolyte fuel cell which concerns on one Embodiment of this invention. 本発明の一実施形態に係る補強膜の製造方法を示す正面断面図である。It is front sectional drawing which shows the manufacturing method of the reinforcement film which concerns on one Embodiment of this invention. 上記実施形態の変形例に係る補強膜付き触媒層−電解質膜積層体の正面断面図である。It is front sectional drawing of the catalyst layer-electrolyte membrane laminated body with a reinforcement film which concerns on the modification of the said embodiment. 上記実施形態の変形例に係る補強膜付き膜−電極接合体の正面断面図である。It is front sectional drawing of the membrane-electrode assembly with a reinforcement film which concerns on the modification of the said embodiment.

以下、本発明に係る補強膜付き触媒層−電解質膜積層体、補強膜付き膜−電極接合体、及び固体高分子形燃料電池、並びにこれらの製造方法の実施形態について図面を参照しつつ説明する。   Hereinafter, embodiments of a catalyst layer-electrolyte membrane laminate, a membrane-electrode assembly with a reinforcing membrane, and a polymer electrolyte fuel cell according to the present invention, and a production method thereof will be described with reference to the drawings. .

本実施形態に係る固体高分子形燃料電池10は、図1に示すように、補強膜付き膜−電極接合体20と、ガスケット1と、セパレータ2とを備えている。補強膜付き膜−電極接合体20は、図2に示すように、イオン伝導性高分子電解質膜3、触媒層4、導電性多孔質基材5、及び補強膜7を備えている。なお、この補強膜付き膜−電極接合体20から導電性多孔質基材5を除いたものが、本発明の補強膜付き触媒層−電解質膜積層体30に相当する。   As shown in FIG. 1, the polymer electrolyte fuel cell 10 according to the present embodiment includes a membrane-electrode assembly 20 with a reinforcing membrane, a gasket 1, and a separator 2. As shown in FIG. 2, the membrane-electrode assembly 20 with a reinforcing membrane includes an ion conductive polymer electrolyte membrane 3, a catalyst layer 4, a conductive porous substrate 5, and a reinforcing membrane 7. In addition, what remove | excluded the conductive porous base material 5 from this membrane-electrode assembly 20 with a reinforcement film is equivalent to the catalyst layer-electrolyte membrane laminated body 30 with a reinforcement film of this invention.

補強膜付き膜−電極接合体20は、図2に示すように、イオン伝導性高分子電解質膜3の両面において、イオン伝導性高分子電解質膜3よりも一回り小さい触媒層4及び導電性多孔質基材5が順に積層されている。なお、触媒層4及び導電性多孔質基材5は各々イオン伝導性高分子電解質膜3と同じ大きさに形成してもよく、また、触媒層4と導電性多孔質基材5とを異なる大きさに形成することもできる。図3に示すように、触媒層4及び導電性多孔質基材5からなる電極6の外周縁からイオン伝導性高分子電解質膜3の外周縁までの距離Aは、0〜10mmであることが好ましい。イオン伝導性高分子電解質膜2の厚さは、通常20〜250μm程度、好ましくは20〜80μm程度である。触媒層3の厚さは、通常1〜200μm程度、好ましくは5〜100μm程度であり、導電性多孔質基材5の厚さは、通常50〜500μm程度、好ましくは100〜400μm程度である。   As shown in FIG. 2, the membrane-electrode assembly 20 with a reinforcing membrane has a catalyst layer 4 and a conductive porous material that are slightly smaller than the ion conductive polymer electrolyte membrane 3 on both sides of the ion conductive polymer electrolyte membrane 3. The base material 5 is laminated | stacked in order. The catalyst layer 4 and the conductive porous substrate 5 may each be formed in the same size as the ion conductive polymer electrolyte membrane 3, and the catalyst layer 4 and the conductive porous substrate 5 are different. It can also be formed in size. As shown in FIG. 3, the distance A from the outer peripheral edge of the electrode 6 composed of the catalyst layer 4 and the conductive porous substrate 5 to the outer peripheral edge of the ion conductive polymer electrolyte membrane 3 is 0 to 10 mm. preferable. The thickness of the ion conductive polymer electrolyte membrane 2 is usually about 20 to 250 μm, preferably about 20 to 80 μm. The thickness of the catalyst layer 3 is usually about 1 to 200 μm, preferably about 5 to 100 μm, and the thickness of the conductive porous substrate 5 is usually about 50 to 500 μm, preferably about 100 to 400 μm.

図2及び図4に示すように、補強膜付き膜−電極接合体20は、中央部に開口71が形成された補強膜7を有している。補強膜7は、イオン伝導性高分子電解質膜3よりも一回り大きく形成されており、開口71から電極6が露出するようイオン伝導性高分子電解質膜3の両面に接着するとともに、イオン伝導性高分子電解質膜3の外側で外周縁部同士が互いに接着している。なお、図3に示すように、補強膜7の外周縁からイオン伝導性高分子電解質膜3の外周縁までの距離Bは、0〜150mmであることが好ましい。補強膜7の内周縁から電極6の外周縁までの距離Cは、5mm以下であることが好ましく、イオン伝導性高分子電解質膜3に対する負荷防止の観点から、補強膜7の内周縁と電極6の外周縁とが接触していることがより好ましい。また、図2に示すように、補強膜7は、外側面である第1面72において、外側に突出する凸部73が開口71の周縁部に形成されているが、この凸部73は後述するトムソン刃91により開口71を形成した際に生じたものである。   As shown in FIGS. 2 and 4, the membrane-electrode assembly 20 with a reinforcing membrane has a reinforcing membrane 7 in which an opening 71 is formed at the center. The reinforcing membrane 7 is formed to be slightly larger than the ion conductive polymer electrolyte membrane 3, and is adhered to both surfaces of the ion conductive polymer electrolyte membrane 3 so that the electrode 6 is exposed from the opening 71. The outer peripheral edges are bonded to each other outside the polymer electrolyte membrane 3. In addition, as shown in FIG. 3, it is preferable that the distance B from the outer periphery of the reinforcement membrane 7 to the outer periphery of the ion conductive polymer electrolyte membrane 3 is 0-150 mm. The distance C from the inner peripheral edge of the reinforcing membrane 7 to the outer peripheral edge of the electrode 6 is preferably 5 mm or less. From the viewpoint of preventing load on the ion conductive polymer electrolyte membrane 3, the inner peripheral edge of the reinforcing membrane 7 and the electrode 6 are provided. It is more preferable that the outer peripheral edge is contacting. As shown in FIG. 2, the reinforcing film 7 has a first surface 72, which is an outer surface, and a convex portion 73 protruding outward is formed at the peripheral portion of the opening 71. This convex portion 73 will be described later. This occurs when the opening 71 is formed by the Thomson blade 91.

図3に示すように、補強膜7は、燃料ガス及び酸化剤ガスの透過を防止する基材層74と、イオン伝導性高分子電解質膜3に接着する接着層75とを有している。この基材層74の膜厚は5〜500μmであることが好ましく、接着層75の膜厚は1〜500μmであることが好ましい。なお、接着層75のマルテンス硬度は、基材層74のマルテンス硬度、及びイオン伝導性高分子電解質膜3のマルテンス硬度よりも小さいことが好ましい。接着層75のマルテンス硬度が基材層74のマルテンス硬度よりも小さい場合、後述のトムソン刃91により開口71を作製する際、基材層74が接着層75の支えとなり、トムソン刃91の押し込み量を軽減し、結果的に凸部73の大きさを小さくすることができる。接着層75、基材層74、及びイオン伝導性高分子電解質膜3のマルテンス硬度は、例えば、超微小硬さ試験システム ピコデンターHM500(商品名、株式会社フィッシャー・インストルメンツ製)を用いて測定され、特に限定されるものではないが、例えば、接着層75のマルテンス硬度が0.1N/mm2〜50N/mm2であるのに対し、基材層のマルテンス硬度が20N/mm2〜200N/mm2、イオン伝導性高分子電解質膜3のマルテンス硬度は5N/mm2〜120N/mm2であることが好ましい。   As shown in FIG. 3, the reinforcing membrane 7 has a base material layer 74 that prevents permeation of fuel gas and oxidant gas, and an adhesive layer 75 that adheres to the ion conductive polymer electrolyte membrane 3. The thickness of the base material layer 74 is preferably 5 to 500 μm, and the thickness of the adhesive layer 75 is preferably 1 to 500 μm. The Martens hardness of the adhesive layer 75 is preferably smaller than the Martens hardness of the base material layer 74 and the Martens hardness of the ion conductive polymer electrolyte membrane 3. When the Martens hardness of the adhesive layer 75 is smaller than the Martens hardness of the base material layer 74, the base material layer 74 serves as a support for the adhesive layer 75 when the opening 71 is formed by the Thomson blade 91 described later, and the amount of pushing of the Thomson blade 91 is increased. As a result, the size of the convex portion 73 can be reduced. The Martens hardness of the adhesive layer 75, the base material layer 74, and the ion conductive polymer electrolyte membrane 3 is measured using, for example, an ultra-micro hardness test system Picodenter HM500 (trade name, manufactured by Fisher Instruments Co., Ltd.). Although not particularly limited, for example, the Martens hardness of the adhesive layer 75 is 0.1 N / mm2 to 50 N / mm2, whereas the Martens hardness of the base material layer is 20 N / mm2 to 200 N / mm2, The Martens hardness of the ion conductive polymer electrolyte membrane 3 is preferably 5 N / mm 2 to 120 N / mm 2.

このような補強膜付き膜−電極接合体20の電極6を囲むように枠状のガスケット1が設けられ、ガスケット1及び電極6上にセパレータ2が設けられている(図1)。セパレータ2は、導電性多孔質基材5と対向する領域にガス流路21が形成されており、導電性多孔質基材5と電気的に接続されている。   A frame-like gasket 1 is provided so as to surround the electrode 6 of the membrane-electrode assembly 20 with such a reinforcing membrane, and a separator 2 is provided on the gasket 1 and the electrode 6 (FIG. 1). The separator 2 has a gas flow path 21 formed in a region facing the conductive porous substrate 5 and is electrically connected to the conductive porous substrate 5.

次に、上述したように構成された固体高分子形燃料電池10の各構成要素の材料について説明する。   Next, the material of each component of the polymer electrolyte fuel cell 10 configured as described above will be described.

イオン伝導性高分子電解質膜3は、例えば、基材上に水素イオン伝導性高分子電解質を含有する溶液を塗工し、乾燥することにより形成される。水素イオン伝導性高分子電解質としては、例えば、パーフルオロスルホン酸系のフッ素イオン交換樹脂、より具体的には、炭化水素系イオン交換膜のC−H結合をフッ素で置換したパーフルオロカーボンスルホン酸系ポリマー(PFS系ポリマー)等が挙げられる。電気陰性度の高いフッ素原子を導入することで、化学的に非常に安定し、スルホン酸基の解離度が高く、高いイオン伝導性が実現できる。このような水素イオン伝導性高分子電解質の具体例としては、デュポン社製の「Nafion」(登録商標)、旭硝子(株)製の「Flemion」(登録商標)、旭化成(株)製の「Aciplex」(登録商標)、ゴア(Gore)社製の「Gore Select」(登録商標)等が挙げられる。水素イオン伝導性高分子電解質含有溶液中に含まれる水素イオン伝導性高分子電解質の濃度は、通常5〜60重量%程度、好ましくは20〜40重量%程度である。なお、上記の水素イオン伝導性高分子電解質膜以外には、アニオン導電性高分子イオン伝導性高分子電解質膜や液状物質含浸膜も挙げられる。アニオン伝導性イオン伝導性高分子電解質膜としては炭化水素系樹脂又はフッ素系樹脂等が挙げられ、具体的には、炭化水素系樹脂として、旭化成(株)製のAciplex(登録商標)A201,211,221や、トクヤマ(株)製のネオセプタ(登録商標)AM−1,AHA等が挙げられ、フッ素系樹脂として、東ソー(株)製のトスフレックス(登録商標)IE−SF34等が挙げられる。また液状物質含浸膜としては、例えば、ポリベンゾイミダゾール(PBI)等が挙げられる。   The ion conductive polymer electrolyte membrane 3 is formed, for example, by applying a solution containing a hydrogen ion conductive polymer electrolyte on a substrate and drying it. Examples of the hydrogen ion conductive polymer electrolyte include a perfluorosulfonic acid-based fluorine ion exchange resin, more specifically, a perfluorocarbonsulfonic acid-based resin in which the C—H bond of a hydrocarbon ion-exchange membrane is substituted with fluorine. Examples include polymers (PFS polymers). By introducing a fluorine atom having high electronegativity, it is chemically very stable, the dissociation degree of the sulfonic acid group is high, and high ion conductivity can be realized. Specific examples of such a hydrogen ion conductive polymer electrolyte include “Nafion” (registered trademark) manufactured by DuPont, “Flemion” (registered trademark) manufactured by Asahi Glass Co., Ltd., and “Aciplex” manufactured by Asahi Kasei Corporation. ”(Registered trademark),“ Gore Select ”(registered trademark) manufactured by Gore, and the like. The concentration of the hydrogen ion conductive polymer electrolyte contained in the hydrogen ion conductive polymer electrolyte-containing solution is usually about 5 to 60% by weight, preferably about 20 to 40% by weight. In addition to the hydrogen ion conductive polymer electrolyte membrane, an anion conductive polymer ion conductive polymer electrolyte membrane and a liquid substance-impregnated membrane are also included. Examples of the anion-conducting ion-conducting polymer electrolyte membrane include hydrocarbon-based resins or fluorine-based resins. Specifically, as the hydrocarbon-based resins, Aciplex (registered trademark) A201, 211 manufactured by Asahi Kasei Corporation. , 221 and Neocepta (registered trademark) AM-1, AHA manufactured by Tokuyama Corp., and Tosflex (registered trademark) IE-SF34 manufactured by Tosoh Corp. as a fluororesin. Moreover, as a liquid substance impregnation film | membrane, polybenzimidazole (PBI) etc. are mentioned, for example.

触媒層4は、公知の白金含有の触媒層(カソード触媒及びアノード触媒)とすることができる。具体的には、触媒粒子を担持させた炭素粒子と、水素イオン伝導性高分子電解質とを含有する。水素イオン伝導性高分子電解質としては、上述したイオン伝導性高分子電解質膜3に使用されるものと同じ材料を使用することができる。   The catalyst layer 4 can be a known platinum-containing catalyst layer (cathode catalyst and anode catalyst). Specifically, it contains carbon particles carrying catalyst particles and a hydrogen ion conductive polymer electrolyte. As the hydrogen ion conductive polymer electrolyte, the same material as that used for the ion conductive polymer electrolyte membrane 3 described above can be used.

触媒粒子としては、例えば、白金や白金化合物等が挙げられる。白金化合物としては、例えば、ルテニウム、パラジウム、ニッケル、モリブデン、イリジウム、鉄等からなる群から選ばれる少なくとも1種の金属と、白金との合金等が挙げられる。なお、通常は、カソード側の触媒層に含まれる触媒粒子は白金であり、アノード側の触媒層に含まれる触媒粒子は前記金属と白金との合金である。   Examples of the catalyst particles include platinum and platinum compounds. Examples of the platinum compound include an alloy of platinum and at least one metal selected from the group consisting of ruthenium, palladium, nickel, molybdenum, iridium, iron and the like. Usually, the catalyst particles contained in the catalyst layer on the cathode side are platinum, and the catalyst particles contained in the catalyst layer on the anode side are an alloy of the metal and platinum.

炭素粒子は、導電性を有しているものであれば限定的ではなく、公知又は市販のものを広く使用できる。例えば、カーボンブラックや、黒鉛、活性炭等を1種又は2種以上で用いることができる。カーボンブラックの例としては、チャンネルブラック、ファーネスブラック、ケッチェンブラック、アセチレンブラック、ランプブラック等を挙げることができる。炭素粒子の算術平均粒子径は通常5nm〜200nm程度、好ましくは20〜80nm程度である。この炭素粒子の平均粒子径は、例えば、粒子径分布測定装置LA−920:(株)堀場製作所製等により測定できる。   The carbon particles are not limited as long as they have electrical conductivity, and known or commercially available carbon particles can be widely used. For example, carbon black, graphite, activated carbon, or the like can be used alone or in combination. Examples of carbon black include channel black, furnace black, ketjen black, acetylene black, and lamp black. The arithmetic average particle diameter of the carbon particles is usually about 5 nm to 200 nm, preferably about 20 to 80 nm. The average particle size of the carbon particles can be measured by, for example, a particle size distribution measuring device LA-920: manufactured by Horiba, Ltd.

導電性多孔質基材5としては、公知であり、燃料極、空気極を構成する各種の導電性多孔質基材を使用することができる。導電性多孔質基材5は、燃料である燃料ガス及び酸化剤ガスを効率よく触媒層4に供給するため、多孔質の導電性基材からなり、多孔質の導電性基材としては、例えば、カーボンペーパーやカーボンクロス等が挙げられる。   The conductive porous substrate 5 is well known, and various conductive porous substrates that constitute a fuel electrode and an air electrode can be used. The conductive porous substrate 5 is composed of a porous conductive substrate in order to efficiently supply fuel gas and oxidant gas as fuel to the catalyst layer 4, and examples of the porous conductive substrate include: And carbon paper and carbon cloth.

補強膜7は、基材層74及び接着層75から構成されているが、基材層74の材料としては、水蒸気、水、燃料ガス及び酸化剤ガスに対するバリア性を有するポリエステル、ポリアミド、ポリイミド、ポリメチルテンペン、ポリフェニレンオキサイド、ポリサルホン、ポリエーテルエーテルケトン、ポリフェニレンサルファイドなどを好ましく使用することができる。なお、ポリエステルとして、具体的には、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート等を挙げることができる。   The reinforcing film 7 is composed of a base material layer 74 and an adhesive layer 75. As a material of the base material layer 74, polyester, polyamide, polyimide having a barrier property against water vapor, water, fuel gas and oxidant gas, Polymethyl tempene, polyphenylene oxide, polysulfone, polyether ether ketone, polyphenylene sulfide and the like can be preferably used. Specific examples of the polyester include polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and polybutylene naphthalate.

接着層75の材料としては、ポリオレフィン系樹脂が好ましく、例えば、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、エチレン−α・オレフィン共重合体、ポリプロピレン、ポリブテン、ポリイソブテン、ポエイソブチレン、ポリブタジエン、ポリイソプレン、エチレン−メタクリル酸共重合体、あるいはエチレン−アクリル酸共重合体等のエチレンと不飽和カルボン酸との共重合体、エチレン−アクリル酸エチル共重合体、アイオノマー樹脂、エチレン−酢酸ビニル共重合体等を使用することができる。また、それらを変性した酸変性ポリオレフィン系樹脂、シラン変性ポリオレフィン系樹脂を使用することができ、その中でもポリプロピレンや高密度ポリエチレンを使用することが硬度の点で好ましい。   The material of the adhesive layer 75 is preferably a polyolefin resin, for example, medium density polyethylene, high density polyethylene, linear low density polyethylene, ethylene-α-olefin copolymer, polypropylene, polybutene, polyisobutene, poisoisobutylene, polybutadiene, Polyisoprene, ethylene-methacrylic acid copolymer, ethylene-unsaturated carboxylic acid copolymer such as ethylene-acrylic acid copolymer, ethylene-ethyl acrylate copolymer, ionomer resin, ethylene-vinyl acetate copolymer A polymer etc. can be used. In addition, acid-modified polyolefin resins and silane-modified polyolefin resins obtained by modifying them can be used, and among them, polypropylene and high-density polyethylene are preferable in terms of hardness.

ガスケット1としては、熱プレスに耐えうる強度を保ち、かつ、外部に燃料及び酸化剤を漏出しない程度のガスバリア性を有しているものを使用することができ、例えば、ポリエチレンテレフタレートシートやテフロン(登録商標)シート、シリコンゴムシート等が挙げられる。   As the gasket 1, it is possible to use a gasket that has a strength sufficient to withstand hot pressing and has a gas barrier property that does not leak fuel and oxidant to the outside. For example, a polyethylene terephthalate sheet or Teflon ( (Registered trademark) sheet, silicon rubber sheet and the like.

セパレータ2としては、公知であり、燃料電池内の環境においても安定な導電性板であればよく、一般的には、カーボン板にガス流路21を形成したものが用いられる。また、セパレータ2をステンレス等の金属により構成し、金属の表面にクロム、白金族金属又はその酸化物、導電性ポリマーなどの導電性材料からなる被膜を形成したものや、同様にセパレータを金属によって構成し、この金属の表面に銀、白金族の複合酸化物、窒化クロム等の材料によるメッキ処理を施したもの等も使用可能である。   The separator 2 is a known conductive plate that is known and stable even in the environment inside the fuel cell. In general, a carbon plate in which the gas flow path 21 is formed is used. In addition, the separator 2 is made of a metal such as stainless steel, and a coating made of a conductive material such as chromium, a platinum group metal or oxide thereof, or a conductive polymer is formed on the surface of the metal. It is also possible to use a metal having a metal surface plated with a material such as silver, a platinum group composite oxide or chromium nitride.

次に、上述したように構成された固体高分子形燃料電池10の製造方法について説明する。   Next, a manufacturing method of the polymer electrolyte fuel cell 10 configured as described above will be described.

まず、図5(a)及び(b)に示すように、上述した材料からなるイオン伝導性高分子電解質膜3を準備し、このイオン伝導性高分子電解質膜3の両面に触媒層4を形成する。この触媒層4は、例えば、塗布や転写等、種々の方法により形成することができるが、本実施形態では、後述する触媒層形成用転写シート8による転写で形成する。   First, as shown in FIGS. 5A and 5B, an ion conductive polymer electrolyte membrane 3 made of the above-described material is prepared, and catalyst layers 4 are formed on both surfaces of the ion conductive polymer electrolyte membrane 3. To do. The catalyst layer 4 can be formed by various methods such as coating and transfer. In the present embodiment, the catalyst layer 4 is formed by transfer using a transfer sheet 8 for forming a catalyst layer described later.

ここで、触媒層形成用転写シート8の製造方法について説明する。まず、上述した触媒粒子を担持させた炭素粒子及び水素イオン伝導性高分子電解質を適当な分散媒に混合、分散して触媒層形成用組成物を作製する。そして、所望の膜厚の触媒層4が形成されるよう、必要に応じて離型層を介し、この触媒層形成用組成物を転写用基材81上に塗工する。なお、触媒層形成用組成物の塗工方法としては、スクリーン印刷や、スプレーコーティング、ダイコーティング、ナイフコーティング等の公知の塗工方法を挙げることができる。触媒層形成用組成物を塗工した後、所定の温度及び時間で乾燥することにより転写用基材81上に触媒層4が形成される。乾燥温度は、通常40〜100℃程度、好ましくは60〜80℃程度であり、乾燥時間は、乾燥温度にもよるが、通常5分〜2時間程度、好ましくは10分〜1時間程度である。   Here, the manufacturing method of the transfer sheet 8 for forming a catalyst layer will be described. First, the carbon particles carrying the catalyst particles and the hydrogen ion conductive polymer electrolyte are mixed and dispersed in an appropriate dispersion medium to produce a catalyst layer forming composition. Then, the catalyst layer forming composition is applied onto the transfer substrate 81 through a release layer as necessary so that the catalyst layer 4 having a desired film thickness is formed. In addition, as a coating method of the composition for catalyst layer formation, well-known coating methods, such as screen printing, spray coating, die coating, knife coating, can be mentioned. After coating the catalyst layer forming composition, the catalyst layer 4 is formed on the transfer substrate 81 by drying at a predetermined temperature and time. The drying temperature is usually about 40 to 100 ° C., preferably about 60 to 80 ° C., and the drying time is usually about 5 minutes to 2 hours, preferably about 10 minutes to 1 hour, depending on the drying temperature. .

触媒層形成用組成物に使用される分散媒としては、各種アルコール類、各種エーテル類、各種ジアルキルスルホキシド類、水又はこれらの混合物等が挙げられ、これらの中でもアルコール類が好ましい。アルコール類としては、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、tert−ブタノール等の炭素数1〜4の一価アルコールや、各種の多価アルコール等が挙げられる。   Examples of the dispersion medium used in the composition for forming a catalyst layer include various alcohols, various ethers, various dialkyl sulfoxides, water, or a mixture thereof. Among these, alcohols are preferable. Examples of alcohols include monohydric alcohols having 1 to 4 carbon atoms such as methanol, ethanol, n-propanol, isopropanol, n-butanol, and tert-butanol, and various polyhydric alcohols.

転写用基材81としては、例えば、ポリイミド、ポリエチレンテレフタレート、ポリパルバン酸アラミド、ポリアミド(ナイロン)、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレート等の高分子フィルム等を挙げることができる。また、エチレンテトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロパーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)等の耐熱性フッ素樹脂を用いることもできる。さらに、転写用基材81は、高分子フィルム以外にアート紙、コート紙、軽量コート紙等の塗工紙、ノート用紙、コピー用紙などの非塗工紙であっても良い。転写用基材81の厚さは、取り扱い性及び経済性の観点から、通常6〜100μm程度、好ましくは10〜30μm程度とするのがよい。従って、転写用基材81としては、安価で入手が容易な高分子フィルムが好ましく、ポリエチレンテレフタレート等がより好ましい。   As the transfer substrate 81, for example, polyimide, polyethylene terephthalate, polyparvanic acid aramid, polyamide (nylon), polysulfone, polyethersulfone, polyphenylene sulfide, polyether ether ketone, polyetherimide, polyarylate, polyethylene naphthalate. And the like. Further, heat resistance of ethylene tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroperfluoroalkyl vinyl ether copolymer (PFA), polytetrafluoroethylene (PTFE), etc. Fluorine resin can also be used. Furthermore, the transfer substrate 81 may be coated paper such as art paper, coated paper, and lightweight coated paper, non-coated paper such as notebook paper and copy paper, in addition to the polymer film. The thickness of the transfer substrate 81 is usually about 6 to 100 μm, preferably about 10 to 30 μm, from the viewpoints of handleability and economy. Therefore, the transfer substrate 81 is preferably a polymer film that is inexpensive and easily available, and more preferably polyethylene terephthalate.

図5に戻って固体高分子形燃料電池10の製造方法の説明を続ける。図5(a)に示すように、触媒層4がイオン伝導性高分子電解質膜3に対向するよう、触媒層形成用転写シート8をイオン伝導性高分子電解質膜3の両面に配置する。次に、触媒層形成用転写シート8の背面側から熱プレスを施すことで触媒層4をイオン伝導性高分子電解質膜3に転写する。そして、図5(b)に示すように、イオン伝導性高分子電解質膜3及び触媒層4から転写用基材81を剥離することにより、イオン伝導性高分子電解質膜3に触媒層4が形成される。なお、イオン伝導性高分子電解質膜3において、作業性の観点からは両面同時に触媒層4を形成することが好ましいが、片面ずつ触媒層4を形成することもできる。また、転写不良を避けるために、熱プレスの加圧レベルは、通常0.5〜20MPa程度、好ましくは1〜10MPa程度であり、加圧に際して加圧面が加熱されることが好ましい。加熱温度は、イオン伝導性高分子電解質膜3の破損や変形等を避けるために、通常200℃以下、好ましくは150℃以下とするのがよい。   Returning to FIG. 5, the description of the method for producing the polymer electrolyte fuel cell 10 will be continued. As shown in FIG. 5A, the transfer sheet 8 for forming a catalyst layer is disposed on both surfaces of the ion conductive polymer electrolyte membrane 3 so that the catalyst layer 4 faces the ion conductive polymer electrolyte membrane 3. Next, the catalyst layer 4 is transferred to the ion conductive polymer electrolyte membrane 3 by hot pressing from the back side of the catalyst layer forming transfer sheet 8. Then, as shown in FIG. 5 (b), the transfer base material 81 is peeled from the ion conductive polymer electrolyte membrane 3 and the catalyst layer 4, thereby forming the catalyst layer 4 on the ion conductive polymer electrolyte membrane 3. Is done. In the ion conductive polymer electrolyte membrane 3, it is preferable to form the catalyst layer 4 on both sides simultaneously from the viewpoint of workability, but the catalyst layer 4 can also be formed on each side. In order to avoid transfer defects, the pressure level of the hot press is usually about 0.5 to 20 MPa, preferably about 1 to 10 MPa, and it is preferable that the pressing surface is heated during pressing. The heating temperature is usually 200 ° C. or lower, preferably 150 ° C. or lower, in order to avoid damage or deformation of the ion conductive polymer electrolyte membrane 3.

次に、図5(c)に示すように、イオン伝導性高分子電解質膜3に補強膜7を接着する。ここで、補強膜7の製造方法について説明すると、まず、上述した材料からなるシート状の基材層74を準備する。次に、上述した接着層75の材料を溶融させ、これを溶融押し出し法により基材層74上に押し出すことで、基材層74及び接着層75を有する補強膜前駆体を形成する。その後、図6(a)に示すような切断器具9によりこの補強膜前駆体の中央部に開口71を形成することで、補強膜7が完成する。   Next, as shown in FIG. 5 (c), a reinforcing membrane 7 is bonded to the ion conductive polymer electrolyte membrane 3. Here, the manufacturing method of the reinforcing film 7 will be described. First, a sheet-like base material layer 74 made of the above-described material is prepared. Next, the material of the adhesive layer 75 described above is melted and extruded onto the base material layer 74 by a melt extrusion method, thereby forming a reinforcing film precursor having the base material layer 74 and the adhesive layer 75. Thereafter, the reinforcing film 7 is completed by forming an opening 71 in the central portion of the reinforcing film precursor with a cutting tool 9 as shown in FIG.

切断器具9は、図6(a)に示すように、補強膜前駆体を打ち抜くためのトムソン刃(切断刃)91、及び補強膜前駆体を支持するための支持板92を備えている。トムソン刃91は、金属製であり、平面視が四角形の枠状に形成され、内側垂直面911及び外側傾斜面912を有している。また、トムソン刃91の内側には、例えば、スポンジやゴムといった弾性収縮可能な多孔質体93が充填されている。支持板92の材料としては、例えば、樹脂、金属、又はセラミックス等が挙げられるが、打ち抜き性の観点からは樹脂が好ましい。   As shown in FIG. 6A, the cutting instrument 9 includes a Thomson blade (cutting blade) 91 for punching out the reinforcing film precursor and a support plate 92 for supporting the reinforcing film precursor. The Thomson blade 91 is made of metal, has a rectangular frame shape in plan view, and has an inner vertical surface 911 and an outer inclined surface 912. Further, the inside of the Thomson blade 91 is filled with an elastically shrinkable porous body 93 such as sponge or rubber, for example. Examples of the material of the support plate 92 include resin, metal, ceramics, and the like, but resin is preferable from the viewpoint of punchability.

このような切断器具9において、接着層75が下になるよう補強膜前駆体をトムソン刃91及び多孔質体93上に載置し、これらの上方に支持板92を固定する(図6(a))。この状態でトムソン刃91及び多孔質体93を上方に移動させると、補強膜前駆体の中央部が接着層75側から打ち抜かれて開口71が形成され、補強膜7が完成する(図6(b))。このとき、補強膜7の第1面72における開口71の周縁部には、一般的にバリと呼ばれる凸部73が形成される。なお、補強膜前駆体は、打ち抜きに際し、上面が支持板92に支持されるとともに下面が多孔質体93に接触することで過剰変形が抑制される。   In such a cutting tool 9, the reinforcing film precursor is placed on the Thomson blade 91 and the porous body 93 so that the adhesive layer 75 is located below, and the support plate 92 is fixed above them (FIG. 6 (a). )). When the Thomson blade 91 and the porous body 93 are moved upward in this state, the central portion of the reinforcing film precursor is punched from the adhesive layer 75 side to form an opening 71, thereby completing the reinforcing film 7 (FIG. 6 ( b)). At this time, a convex portion 73 generally called a burr is formed on the peripheral portion of the opening 71 in the first surface 72 of the reinforcing film 7. When the reinforcing film precursor is punched, the upper surface is supported by the support plate 92 and the lower surface is in contact with the porous body 93 so that excessive deformation is suppressed.

図5に戻って固体高分子形燃料電池10の製造方法の説明を続ける。上述したようにして作製された補強膜7を、凸部73が形成された第1面72が外側に向くとともに開口71から触媒層4が露出するよう、イオン伝導性高分子電解質膜3の両面上に配置する(図5(c))。そして、この補強膜7の第1面72側から熱プレスを施すことで補強膜7をイオン伝導性高分子電解質膜3に接着させると、補強膜付き触媒層−電解質膜積層体30が完成する。なお、イオン伝導性高分子電解質膜3において、作業性の観点からは両面同時に補強膜7を接着させることが好ましいが、片面ずつ補強膜7を接着させてもよい。また、熱プレスの加圧レベルは、通常0.5〜20MPa程度、好ましくは1〜10MPa程度であり、接着性向上の観点から、加圧に際して加圧面が加熱されることが好ましい。加熱温度は、イオン伝導性高分子電解質膜3の破損や変形等を避けるために、通常200℃以下、好ましくは150℃以下とするのがよい。   Returning to FIG. 5, the description of the method for producing the polymer electrolyte fuel cell 10 will be continued. The reinforcing membrane 7 produced as described above is formed on both surfaces of the ion conductive polymer electrolyte membrane 3 so that the first surface 72 on which the convex portions 73 are formed faces outward and the catalyst layer 4 is exposed from the opening 71. It arrange | positions above (FIG.5 (c)). Then, when the reinforcing membrane 7 is bonded to the ion conductive polymer electrolyte membrane 3 by performing hot pressing from the first surface 72 side of the reinforcing membrane 7, the catalyst layer-electrolyte membrane laminate 30 with the reinforcing membrane is completed. . In the ion conductive polymer electrolyte membrane 3, it is preferable to attach the reinforcing film 7 simultaneously on both sides from the viewpoint of workability, but the reinforcing membrane 7 may be adhered to each side. Moreover, the pressurization level of a hot press is about 0.5-20 MPa normally, Preferably it is about 1-10 MPa, and it is preferable that a pressurization surface is heated at the time of pressurization from a viewpoint of an adhesive improvement. The heating temperature is usually 200 ° C. or lower, preferably 150 ° C. or lower, in order to avoid damage or deformation of the ion conductive polymer electrolyte membrane 3.

そして、図5(d)に示すように、補強膜7の開口71内の触媒層4上に導電性多孔質基材5を配置し、この導電性多孔質基材5を触媒層4に熱圧着すると補強膜付き膜−電極接合体20が完成する。   Then, as shown in FIG. 5 (d), the conductive porous substrate 5 is disposed on the catalyst layer 4 in the opening 71 of the reinforcing film 7, and the conductive porous substrate 5 is heated to the catalyst layer 4. When the pressure bonding is performed, the membrane-electrode assembly 20 with the reinforcing film is completed.

その後、図5(e)に示すように、触媒層4及び導電性多孔質基材5からなる電極6の周囲を囲うよう、ガスケット1を補強膜7上に配置する。そして、ガス流路21が導電性多孔質基材5と対向するよう、セパレータ2を導電性多孔質基材5及びガスケット1上に配置し、セパレータ2と導電性多孔質基材5とを電気的に接続させることにより、固体高分子形燃料電池10が完成する。   Thereafter, as shown in FIG. 5 (e), the gasket 1 is disposed on the reinforcing film 7 so as to surround the periphery of the electrode 6 composed of the catalyst layer 4 and the conductive porous substrate 5. And the separator 2 is arrange | positioned on the conductive porous base material 5 and the gasket 1 so that the gas flow path 21 may oppose the conductive porous base material 5, and the separator 2 and the conductive porous base material 5 are electrically connected. Thus, the solid polymer fuel cell 10 is completed.

以上のように、上記実施形態においては、補強膜7は、トムソン刃91により第1面72に凸部73が形成されるが、この第1面72が外側を向くようにイオン伝導性高分子電解質膜3上に配置される。このため、補強膜7をイオン伝導性高分子電解質膜3に加圧接着する際、凸部73によってイオン伝導性高分子電解質膜3にかかる圧力が不均一になることがなく、イオン伝導性高分子電解質膜3に厚さムラが生じるのを防止することができる。また、補強膜7から凸部73を除去する必要がないため、生産性を向上させることができ、さらに、製造コストを削減することもできる。   As described above, in the above-described embodiment, the reinforcing film 7 has the convex portion 73 formed on the first surface 72 by the Thomson blade 91, and the ion conductive polymer so that the first surface 72 faces outward. It is disposed on the electrolyte membrane 3. For this reason, when the reinforcing membrane 7 is pressure-bonded to the ion conductive polymer electrolyte membrane 3, the pressure applied to the ion conductive polymer electrolyte membrane 3 by the convex portion 73 does not become uneven, and the ion conductivity high It is possible to prevent the thickness unevenness from occurring in the molecular electrolyte membrane 3. Moreover, since it is not necessary to remove the convex part 73 from the reinforcing film 7, productivity can be improved and manufacturing cost can also be reduced.

以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。例えば、上記実施形態では、補強膜付き触媒層−電解質膜積層体30における補強膜7の開口71内に触媒層4が形成されていたが、図7における補強膜付き触媒層−電解質膜積層体300のように、開口71の周縁部を触媒層4の外周縁部上に配置することもできる。また、上記実施形態では、補強膜付き膜−電極接合体20における補強膜7の開口71内に導電性多孔質基材5が形成されていたが、図8における補強膜付き膜−電極接合体200のように、開口71の周縁部が導電性多孔質基材5の外周縁部上に配置することもできる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to these, A various change is possible unless it deviates from the meaning of this invention. For example, in the above embodiment, the catalyst layer 4 is formed in the opening 71 of the reinforcing membrane 7 in the catalyst layer-electrolyte membrane laminate 30 with the reinforcing membrane, but the catalyst layer-electrolyte membrane laminate with the reinforcing membrane in FIG. As in 300, the peripheral edge of the opening 71 can be arranged on the outer peripheral edge of the catalyst layer 4. Moreover, in the said embodiment, although the electroconductive porous base material 5 was formed in the opening 71 of the reinforcement membrane 7 in the membrane-electrode assembly 20 with a reinforcement film, the membrane-electrode assembly with a reinforcement film in FIG. As in the case of 200, the peripheral edge of the opening 71 can be arranged on the outer peripheral edge of the conductive porous substrate 5.

また、上記実施形態においては、イオン伝導性高分子電解質膜3上に触媒層4を形成した後、イオン伝導性高分子電解質膜3に補強膜7を接着していたが、各工程の実施順は特に限定されるものではなく、例えば、イオン伝導性高分子電解質膜3に補強膜7を接着した後に触媒層4を形成してもよい。また、上記実施形態では、イオン伝導性高分子電解質膜3に補強膜7を接着した後に導電性多孔質基材5を形成していたが、導電性多孔質基材5の形成後に補強膜7をイオン伝導性高分子電解質膜3に接着することもできる。   In the above embodiment, after the catalyst layer 4 is formed on the ion conductive polymer electrolyte membrane 3, the reinforcing film 7 is adhered to the ion conductive polymer electrolyte membrane 3. Is not particularly limited. For example, the catalyst layer 4 may be formed after the reinforcing film 7 is bonded to the ion conductive polymer electrolyte membrane 3. Moreover, in the said embodiment, although the electroconductive porous base material 5 was formed after adhere | attaching the reinforcement film | membrane 7 to the ion conductive polymer electrolyte membrane 3, the reinforcement film | membrane 7 is formed after formation of the electroconductive porous base material 5. FIG. Can be adhered to the ion conductive polymer electrolyte membrane 3.

また、上記実施形態においては、補強膜7は、イオン伝導性高分子電解質膜3の両面に接着していたが、イオン伝導性高分子電解質膜3の片面にのみ接着していてもよい。   Moreover, in the said embodiment, although the reinforcement film | membrane 7 was adhere | attached on both surfaces of the ion conductive polymer electrolyte membrane 3, you may adhere | attach only on the single side | surface of the ion conductive polymer electrolyte membrane 3. FIG.

また、上記実施形態においては、熱プレスによって補強膜7をイオン伝導性高分子電解質膜3に接着させていたが、補強膜7をイオン伝導性高分子電解質膜3に接着させる際、少なくとも補強膜7が加圧されればよく、必ずしも加圧面を加熱する必要はない。   In the above embodiment, the reinforcing membrane 7 is bonded to the ion conductive polymer electrolyte membrane 3 by hot pressing. However, when the reinforcing membrane 7 is bonded to the ion conductive polymer electrolyte membrane 3, at least the reinforcing membrane is used. 7 may be pressurized, and it is not always necessary to heat the pressure surface.

また、上記実施形態においては、トムソン刃91による打ち抜きで補強膜7の開口71を形成していたが、切断刃による切断であれば特に限定されず、例えば、エッチング刃を用いた打ち抜き、レザー刃、シェア刃、又はスコア刃等を用いたスリット等により補強膜に開口を形成することもできる。   In the above embodiment, the opening 71 of the reinforcing film 7 is formed by punching with the Thomson blade 91, but is not particularly limited as long as it is cut with a cutting blade. For example, punching using an etching blade, leather blade In addition, the opening can be formed in the reinforcing film by a slit using a shear blade or a score blade.

また、上記実施形態においては、補強膜7は、接着層75及び基材層74の二層から構成されていたが、三層以上で構成されていてもよく、例えば、上記実施形態の接着層75及び基材層74上に、ガスケット1に接着するための接着層をさらに積層してもよい。また、補強膜7は単層構成としてもよく、この場合は、上述した基材層74と同様の材料、又は接着層75と同様の材料を用いることができる。なお、補強膜7が単層の場合、補強膜7とイオン伝導性高分子電解質膜3とを接着させるために、例えば、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、シリコーン樹脂等を含む公知又は市販の接着剤を使用してもよい。   Moreover, in the said embodiment, although the reinforcement film | membrane 7 was comprised from the two layers of the contact bonding layer 75 and the base material layer 74, it may be comprised by three or more layers, for example, the contact bonding layer of the said embodiment. An adhesive layer for adhering to the gasket 1 may be further laminated on 75 and the base material layer 74. In addition, the reinforcing film 7 may have a single-layer structure. In this case, the same material as the base material layer 74 or the same material as the adhesive layer 75 can be used. When the reinforcing membrane 7 is a single layer, a known or commercially available material including, for example, an epoxy resin, an acrylic resin, a urethane resin, a silicone resin, or the like is used to bond the reinforcing membrane 7 and the ion conductive polymer electrolyte membrane 3. An adhesive may be used.

また、上記実施形態においては、イオン伝導性高分子電解質膜3、触媒層4、導電性多孔質基材5、補強膜7、及び開口71等の各構成要素は全て平面視矩形状となっていたが、例えば、平面視円形状等、種々の形状に形成することができる。   In the above embodiment, the constituent elements such as the ion conductive polymer electrolyte membrane 3, the catalyst layer 4, the conductive porous substrate 5, the reinforcing membrane 7, and the opening 71 are all rectangular in a plan view. However, it can be formed in various shapes such as a circular shape in a plan view.

以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

(実施例1)
まず、触媒層形成用転写シート8を次の要領で作製した。白金触媒担持カーボン(白金担持量:45.7wt%、田中貴金属社製、TEC10E50E)2gに、1−ブタノール10g、3−ブタノール10g、フッ素樹脂(5wt%ナフィオンバインダー、デュポン社製)20g及び水6gを加え、これらを分散機にて攪拌混合することにより、触媒層形成用組成物を調製した。そして、転写用基材81としてポリエステルフィルム(東レ製、X44、膜厚25μm)を準備し、この転写用基材81上に触媒層形成用組成物を塗布して乾燥させ、これを50×50mmの大きさに切断した。
Example 1
First, a transfer sheet 8 for forming a catalyst layer was produced in the following manner. 1 g of 1-butanol, 10 g of 3-butanol, 20 g of fluororesin (5 wt% Nafion binder, DuPont) and 6 g of water are added to 2 g of platinum catalyst-supported carbon (platinum supported amount: 45.7 wt%, manufactured by Tanaka Kikinzoku Co., Ltd., TEC10E50E). Were added, and these were stirred and mixed with a disperser to prepare a composition for forming a catalyst layer. Then, a polyester film (manufactured by Toray, X44, film thickness 25 μm) is prepared as the transfer substrate 81, and the catalyst layer forming composition is applied onto the transfer substrate 81 and dried, and this is 50 × 50 mm. Cut to size.

次に、イオン伝導性高分子電解質膜3として、63×63mmの大きさに切断された膜厚53μmのNRE212CS(Dupont社製)を準備し、このイオン伝導性高分子電解質膜3に触媒層4が対向するよう、上述した触媒層形成用転写シート8をイオン伝導性高分子電解質膜3の両面に中心を合わせて配置した。そして、135℃、5.0MPa、150秒の条件で熱プレスすることで、イオン伝導性高分子電解質膜3の両面に触媒層4を形成し、触媒層−電解質膜積層体を作製した。なお、触媒層4の厚さは20μmである。   Next, NRE212CS (manufactured by Dupont) having a film thickness of 53 μm cut to a size of 63 × 63 mm is prepared as the ion conductive polymer electrolyte membrane 3, and the catalyst layer 4 is formed on the ion conductive polymer electrolyte membrane 3. The catalyst layer forming transfer sheet 8 described above was placed centering on both surfaces of the ion conductive polymer electrolyte membrane 3 so as to face each other. And the catalyst layer 4 was formed in both surfaces of the ion conductive polymer electrolyte membrane 3 by heat-pressing on conditions of 135 degreeC, 5.0 Mpa, and 150 second, and the catalyst layer-electrolyte membrane laminated body was produced. The catalyst layer 4 has a thickness of 20 μm.

続いて、補強膜7を次の要領で作製した。まず、基材層74として二軸延伸ポリエチレンナフタレート(帝人社製、テオネックス、膜厚12μm)を準備し、この基材層74上に、溶融させた状態の不飽和カルボン酸グラフト変性ポリプロピレン(住友化学製 アドマー 『SF−741』)を30μmの厚さで押し出して接着層75を形成し、補強膜前駆体とした。そして、全体の大きさが80×80mmとなるとともに中央部に52×52mmの大きさの開口71が形成されるよう、この補強膜前駆体を接着層75側から基材層74側に向かってトムソン刃で打ち抜いて補強膜7を作製した。   Subsequently, the reinforcing film 7 was produced in the following manner. First, biaxially stretched polyethylene naphthalate (manufactured by Teijin Ltd., Teonex, film thickness: 12 μm) is prepared as the base material layer 74, and the unsaturated carboxylic acid graft-modified polypropylene (Sumitomo) in a molten state is prepared on the base material layer 74. A chemical admer “SF-741”) was extruded to a thickness of 30 μm to form an adhesive layer 75, which was used as a reinforcing membrane precursor. Then, the reinforcing film precursor is moved from the adhesive layer 75 side to the base material layer 74 side so that the entire size becomes 80 × 80 mm and an opening 71 having a size of 52 × 52 mm is formed in the central portion. The reinforcing film 7 was produced by punching with a Thomson blade.

この補強膜7を、接着層75がイオン伝導性高分子電解質膜3に対向するよう、上述した触媒層−電解質膜積層体の両面に中心を合わせて配置した。そして、130℃、1.0MPa、30秒の条件で熱プレスすることで補強膜7を触媒層−電解質膜積層体に接着させ、補強膜付き触媒層−電解質膜積層体30を作製した。   This reinforcing membrane 7 was placed centering on both surfaces of the above-described catalyst layer-electrolyte membrane laminate so that the adhesive layer 75 was opposed to the ion conductive polymer electrolyte membrane 3. Then, the reinforcing membrane 7 was adhered to the catalyst layer-electrolyte membrane laminate by hot pressing under conditions of 130 ° C., 1.0 MPa, 30 seconds, and a catalyst layer-electrolyte membrane laminate 30 with a reinforcing membrane was produced.

次に、補強膜7の開口71から露出している触媒層4上に、49×49mmの大きさに切断されたカーボンペーパー(東レ社製、TGP−H−090、厚さ280μm)を導電性多孔質基材5として積層し、補強膜付き膜−電極接合体20を形成した。さらに、この補強膜付き膜−電極接合体20にガスケット1及びセパレータ2を設置して固体高分子形燃料電池10を作製した。   Next, on the catalyst layer 4 exposed from the opening 71 of the reinforcing membrane 7, carbon paper (TGP-H-090, thickness 280 μm) cut to a size of 49 × 49 mm is made conductive. It laminated | stacked as the porous base material 5, and formed the membrane-electrode assembly 20 with a reinforcement film. Furthermore, the polymer electrolyte fuel cell 10 was produced by installing the gasket 1 and the separator 2 on the membrane-electrode assembly 20 with a reinforcing membrane.

(実施例2)
イオン伝導性高分子電解質膜3にFumapemA((フマテック製)を使用した以外は実施例1と同様の方法で固体高分子形燃料電池10を作製した。
(Example 2)
A polymer electrolyte fuel cell 10 was produced in the same manner as in Example 1 except that FumapemA (manufactured by Fumatech) was used for the ion conductive polymer electrolyte membrane 3.

(比較例1)
補強膜の作製方法以外は上記実施例と同様の方法で固体高分子形燃料電池を作製した。比較例の補強膜は、上記実施例と同様の方法で補強膜前駆体を作製し、この補強膜前駆体を基材層74側から接着層75側に向かって打ち抜くことにより作製された。
(Comparative Example 1)
A polymer electrolyte fuel cell was produced in the same manner as in Example 1 except for the production method of the reinforcing membrane. Reinforcing film of the comparative example, to prepare a reinforcing film precursor in the same manner as in the above Example, it was prepared by punching the reinforcing film precursor from the substrate layer 74 side to the adhesive layer 75 side.

(硬度測定)
上記実施例1、2、及び比較例で使用したイオン伝導性高分子電解質膜3と接着層75の硬度を、超微小硬さ試験システム ピコデンターHM500(商品名、株式会社フィッシャー・インストルメンツ製)を用いて測定した。測定条件は25℃の室内環境で表面から垂直方向へ、一定荷重印加速度(10mN/mm2/sec)で四角錘形状圧子を深さ膜厚の1/10の深さまで押し込み、測定した。
(Hardness measurement)
The hardness of the ion conductive polymer electrolyte membrane 3 and the adhesive layer 75 used in Examples 1 and 2 and the comparative example was determined using an ultra-micro hardness test system Picodenter HM500 (trade name, manufactured by Fisher Instruments Co., Ltd.). It measured using. Measurement conditions were measured by pushing a square pyramid-shaped indenter to a depth of 1/10 of the depth film thickness in a room environment at 25 ° C. from the surface in a vertical direction at a constant load application rate (10 mN / mm 2 / sec).

Figure 0005887692
Figure 0005887692

(評価方法)
上記実施例1、2及び比較例1で作製した各固体高分子形燃料電池に対し、負荷変動サイクル試験を実施した。測定条件は、セル温度80℃、燃料利用率70%、酸化剤利用率40%、加湿温度50℃とし、200時間後及び1000時間後のイオン伝導性高分子電解質膜の破損を目視で確認した。その結果、比較例1ではイオン伝導性高分子電解質膜の破損が確認されたのに対し、実施例1及び2では、イオン伝導性高分子電解質膜の破損は無く、耐久性が向上していることが確認された(表2)。
(Evaluation method)
A load fluctuation cycle test was performed on each polymer electrolyte fuel cell produced in Examples 1 and 2 and Comparative Example 1. The measurement conditions were a cell temperature of 80 ° C., a fuel utilization rate of 70%, an oxidant utilization rate of 40%, a humidification temperature of 50 ° C., and the breakage of the ion conductive polymer electrolyte membrane after 200 hours and 1000 hours was visually confirmed. . As a result, breakage of the ion conductive polymer electrolyte membrane was confirmed in Comparative Example 1, whereas in Examples 1 and 2, there was no breakage of the ion conductive polymer electrolyte membrane and the durability was improved. (Table 2).

また、上記実施例1、2及び比較例1における各イオン伝導性高分子電解質膜の膜厚を測定した。その結果、比較例1は、イオン伝導性高分子電解質膜において、補強膜の開口周縁部に接触する部分の膜厚が、それ以外の部分の膜厚に対し大きく変化していた。一方、実施例1及び2は、イオン伝導性高分子電解質膜において、補強膜の開口周縁部に接触する部分の膜厚と、それ以外の部分の膜厚との差が、比較例と比べて小さく、厚さムラが生じていないことを確認することができた(表2)。   Moreover, the film thickness of each ion conductive polymer electrolyte membrane in Examples 1 and 2 and Comparative Example 1 was measured. As a result, in Comparative Example 1, in the ion conductive polymer electrolyte membrane, the thickness of the portion in contact with the peripheral edge of the opening of the reinforcing membrane greatly changed with respect to the thickness of the other portions. On the other hand, in Examples 1 and 2, in the ion conductive polymer electrolyte membrane, the difference between the thickness of the portion in contact with the peripheral edge of the opening of the reinforcing membrane and the thickness of the other portion is different from the comparative example. It was small and it was confirmed that no thickness unevenness occurred (Table 2).

Figure 0005887692
Figure 0005887692

10 固体高分子形燃料電池
20、200 補強膜付き膜−電極接合体
30、300 補強膜付き触媒層−電解質膜積層体
1 ガスケット
2 セパレータ
3 イオン伝導性高分子電解質膜
4 触媒層
5 導電性多孔質基材
6 電極
7 補強膜
71 開口
74 基材層
75 接着層
73 凸部
91 トムソン刃(切断刃)
DESCRIPTION OF SYMBOLS 10 Polymer electrolyte fuel cell 20, 200 Membrane with reinforcing membrane-electrode assembly 30, 300 Catalyst layer with reinforcing membrane-electrolyte membrane laminate 1 Gasket 2 Separator 3 Ion conductive polymer electrolyte membrane 4 Catalyst layer 5 Conductive porous Base material 6 Electrode 7 Reinforcing film 71 Opening 74 Base material layer 75 Adhesive layer 73 Convex part 91 Thomson blade (cutting blade)

Claims (13)

イオン伝導性高分子電解質膜及び補強膜を準備する工程と、
前記イオン伝導性高分子電解質膜の両面に触媒層を形成する工程と、
前記補強膜において、一方面側から切断刃により切断することで、前記触媒層を露出させるための開口を中央部に形成する工程と、
前記補強膜の前記一方面が前記イオン伝導性高分子電解質膜の少なくとも一方面に対向するよう前記補強膜を配置し、前記補強膜の他方面側から加圧することにより、前記イオン伝導性高分子電解質膜に前記補強膜を接着する工程と、
を備え、
前記触媒層の全体が前記補強膜の前記開口内に配置され、
前記補強膜の内周縁と前記触媒層の外周縁とが接触している、補強膜付き触媒層−電解質膜積層体の製造方法。
Preparing an ion conductive polymer electrolyte membrane and a reinforcing membrane;
Forming a catalyst layer on both surfaces of the ion conductive polymer electrolyte membrane;
In the reinforcing film, by cutting from one side with a cutting blade, forming an opening for exposing the catalyst layer in the central portion;
The ion conductive polymer is disposed by pressing the reinforcing membrane so that the one surface of the reinforcing membrane faces at least one surface of the ion conductive polymer electrolyte membrane, and pressurizing from the other surface side of the reinforcing membrane. Adhering the reinforcing membrane to the electrolyte membrane;
With
The entire catalyst layer is disposed in the opening of the reinforcing membrane;
The manufacturing method of the catalyst layer-electrolyte membrane laminated body with a reinforcement film | membrane which the inner periphery of the said reinforcement film | membrane and the outer periphery of the said catalyst layer are contacting.
前記切断刃は枠状であり、
前記開口を形成する工程は、
支持板によって前記補強膜の前記他方面を支持する工程と、
前記切断刃の内側に弾性収縮可能な多孔質体を充填して、当該切断刃を前記補強膜の前記一方面に接触させる工程と、
前記一方面に接触した前記切断刃を前記支持板に向かって移動させる工程と、
を備える、請求項1に記載の補強膜付き触媒層−電解質膜積層体の製造方法。
The cutting blade is frame-shaped,
The step of forming the opening includes
Supporting the other side of the reinforcing membrane by a support plate;
Filling an elastically shrinkable porous body inside the cutting blade and bringing the cutting blade into contact with the one surface of the reinforcing membrane;
Moving the cutting blade in contact with the one surface toward the support plate;
The manufacturing method of the catalyst layer-electrolyte membrane laminated body with a reinforcement film | membrane of Claim 1 provided with these.
前記補強膜は、前記イオン伝導性高分子電解質膜よりもISO14577に基づくマルテンス硬度が小さい、請求項1又は2に記載の補強膜付き触媒層−電解質膜積層体の製造方法。   The method for producing a catalyst layer-electrolyte membrane laminate with a reinforcing membrane according to claim 1 or 2, wherein the reinforcing membrane has a Martens hardness based on ISO14577 smaller than that of the ion conductive polymer electrolyte membrane. 前記補強膜は、前記イオン伝導性高分子電解質膜に接着する接着層、及び前記接着層上に設けられる基材層を有する、請求項1〜3のいずれかに記載の補強膜付き触媒層−電解質膜積層体の製造方法。   The catalyst layer with reinforcing membrane according to any one of claims 1 to 3, wherein the reinforcing membrane has an adhesive layer that adheres to the ion conductive polymer electrolyte membrane, and a base material layer that is provided on the adhesive layer. Manufacturing method of electrolyte membrane laminated body. 請求項1〜4のいずれかに記載の補強膜付き触媒層−電解質膜積層体の製造方法と、
前記触媒層上に導電性多孔質基材を形成する工程と、
を備える、補強膜付き膜−電極接合体の製造方法。
A method for producing a reinforcing layer-attached catalyst layer-electrolyte membrane laminate according to any one of claims 1 to 4,
Forming a conductive porous substrate on the catalyst layer;
A method for producing a membrane-electrode assembly with a reinforcing membrane.
イオン伝導性高分子電解質膜及び補強膜を準備する工程と、
前記イオン伝導性高分子電解質膜の両面に触媒層を形成する工程と、
前記触媒層上に導電性多孔質基材を形成する工程と、
前記補強膜において、一方面側から切断刃により切断することで、前記触媒層を露出させるための開口を中央部に形成する工程と、
前記補強膜の前記一方面が前記イオン伝導性高分子電解質膜の少なくとも一方面に対向するよう前記補強膜を配置し、前記補強膜の他方面側から加圧することにより、前記イオン伝導性高分子電解質膜に前記補強膜を接着する工程と、
を備え、
前記補強膜の開口周縁部が前記導電性多孔質基材の外周縁部の前記触媒層と反対側の面上に配置される、補強膜付き膜−電極接合体の製造方法。
Preparing an ion conductive polymer electrolyte membrane and a reinforcing membrane;
Forming a catalyst layer on both surfaces of the ion conductive polymer electrolyte membrane;
Forming a conductive porous substrate on the catalyst layer;
In the reinforcing film, by cutting from one side with a cutting blade, forming an opening for exposing the catalyst layer in the central portion;
The ion conductive polymer is disposed by pressing the reinforcing membrane so that the one surface of the reinforcing membrane faces at least one surface of the ion conductive polymer electrolyte membrane, and pressurizing from the other surface side of the reinforcing membrane. Adhering the reinforcing membrane to the electrolyte membrane;
With
The manufacturing method of the membrane-electrode assembly with a reinforcement film | membrane with which the opening peripheral part of the said reinforcement film | membrane is arrange | positioned on the surface on the opposite side to the said catalyst layer of the outer periphery part of the said electroconductive porous base material.
請求項5又は6に記載の補強膜付き膜−電極接合体の製造方法と、
前記触媒層及び前記導電性多孔質基材を含む電極の周囲を囲うよう、前記補強膜上にガスケットを設ける工程と、
前記電極及び前記ガスケット上にセパレータを設ける工程と、
を備える、固体高分子形燃料電池の製造方法。
A method for producing a membrane-electrode assembly with a reinforcing membrane according to claim 5 or 6,
Providing a gasket on the reinforcing membrane so as to surround the electrode including the catalyst layer and the conductive porous substrate;
Providing a separator on the electrode and the gasket;
A method for producing a polymer electrolyte fuel cell.
イオン伝導性高分子電解質膜と、
前記イオン伝導性高分子電解質膜の両面に形成された触媒層と、
開口を中央部に有し、前記開口から前記触媒層を露出させるよう、一方面が前記イオン伝導性高分子電解質膜の少なくとも一方面に接着した補強膜と、
を備え、
前記補強膜は、前記開口の周縁部に、他方面側に突出する凸部を有し、
前記触媒層の全体が前記補強膜の前記開口内に配置され、
前記補強膜の内周縁と前記触媒層の外周縁とが接触している、補強膜付き触媒層−電解質膜積層体。
An ion conductive polymer electrolyte membrane;
A catalyst layer formed on both surfaces of the ion conductive polymer electrolyte membrane;
It has an opening in the center, so as to expose the catalyst layer from the opening, and a reinforcing film one surface is adhered to at least one surface of the ion-conductive polymer electrolyte membrane,
With
The reinforcing film has a convex portion protruding to the other surface side at a peripheral edge portion of the opening,
The entire catalyst layer is disposed in the opening of the reinforcing membrane;
A catalyst layer-electrolyte membrane laminate with a reinforcing film, wherein an inner peripheral edge of the reinforcing film and an outer peripheral edge of the catalyst layer are in contact with each other.
前記補強膜は、前記イオン伝導性高分子電解質膜よりもISO14577に基づくマルテンス硬度が小さい、請求項8に記載の補強膜付き触媒層−電解質膜積層体。   The catalyst layer-electrolyte membrane laminate according to claim 8, wherein the reinforcing membrane has a Martens hardness based on ISO14577 lower than that of the ion conductive polymer electrolyte membrane. 前記補強膜は、前記イオン伝導性高分子電解質膜に接着する接着層、及び前記接着層上に設けられる基材層を有する、請求項8又は9のいずれかに記載の補強膜付き触媒層−電解質膜積層体。   The catalyst layer with a reinforcing membrane according to claim 8 or 9, wherein the reinforcing membrane has an adhesive layer that adheres to the ion conductive polymer electrolyte membrane, and a base material layer that is provided on the adhesive layer. Electrolyte membrane laminate. 請求項8〜10のいずれかに記載の補強膜付き触媒層−電解質膜積層体と、
前記触媒層上に形成された導電性多孔質基材と、
を備える、補強膜付き膜−電極接合体。
A catalyst layer-electrolyte membrane laminate with a reinforcing membrane according to any one of claims 8 to 10,
A conductive porous substrate formed on the catalyst layer;
A membrane-electrode assembly with a reinforcing membrane, comprising:
イオン伝導性高分子電解質膜と、
前記イオン伝導性高分子電解質膜の両面に形成された触媒層と、
前記触媒層上に形成された導電性多孔質基材と、
開口を中央部に有し、前記開口から前記触媒層を露出させるよう、一方面が前記イオン伝導性高分子電解質膜の少なくとも一方面に接着した補強膜と、
を備え、
前記補強膜は、前記開口の周縁部に、他方面側に突出する凸部を有し、前記開口の周縁部が前記導電性多孔質基材の外周縁部の前記触媒層と反対側の面上に配置されている、補強膜付き膜−電極接合体。
An ion conductive polymer electrolyte membrane;
A catalyst layer formed on both surfaces of the ion conductive polymer electrolyte membrane;
A conductive porous substrate formed on the catalyst layer;
It has an opening in the center, so as to expose the catalyst layer from the opening, and a reinforcing film one surface is adhered to at least one surface of the ion-conductive polymer electrolyte membrane,
With
The reinforcing membrane has a convex portion projecting to the other surface side at the peripheral edge portion of the opening, and the peripheral edge portion of the opening is a surface opposite to the catalyst layer at the outer peripheral edge portion of the conductive porous substrate. A membrane-electrode assembly with a reinforcing membrane disposed above.
請求項11又は12に記載の補強膜付き膜−電極接合体と、
前記触媒層及び前記導電性多孔質基材を含む電極の周囲を囲うよう、前記補強膜上に設けられたガスケットと、
前記電極及び前記ガスケット上に設けられたセパレータと、
を備える、固体高分子形燃料電池。
A membrane-electrode assembly with a reinforcing membrane according to claim 11 or 12,
A gasket provided on the reinforcing membrane so as to surround a periphery of an electrode including the catalyst layer and the conductive porous substrate;
A separator provided on the electrode and the gasket;
A solid polymer fuel cell comprising:
JP2010287170A 2010-12-24 2010-12-24 Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane-electrode assembly with reinforcing membrane, polymer electrolyte fuel cell, and production method thereof Expired - Fee Related JP5887692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010287170A JP5887692B2 (en) 2010-12-24 2010-12-24 Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane-electrode assembly with reinforcing membrane, polymer electrolyte fuel cell, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010287170A JP5887692B2 (en) 2010-12-24 2010-12-24 Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane-electrode assembly with reinforcing membrane, polymer electrolyte fuel cell, and production method thereof

Publications (2)

Publication Number Publication Date
JP2012134094A JP2012134094A (en) 2012-07-12
JP5887692B2 true JP5887692B2 (en) 2016-03-16

Family

ID=46649442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010287170A Expired - Fee Related JP5887692B2 (en) 2010-12-24 2010-12-24 Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane-electrode assembly with reinforcing membrane, polymer electrolyte fuel cell, and production method thereof

Country Status (1)

Country Link
JP (1) JP5887692B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6650674B2 (en) * 2015-02-12 2020-02-19 本田技研工業株式会社 Power storage module
JP6245194B2 (en) * 2015-03-03 2017-12-13 トヨタ自動車株式会社 FUEL CELL SINGLE CELL AND METHOD FOR PRODUCING FUEL CELL SINGLE CELL
NL2022069B1 (en) * 2018-11-23 2020-06-05 Hyet Holding B V Solid-state compressor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3079742B2 (en) * 1992-02-21 2000-08-21 富士電機株式会社 Solid polymer electrolyte fuel cell
JPH08148169A (en) * 1994-11-17 1996-06-07 Tokyo Gas Co Ltd Sealing method for solid polymeric fuel cell
JP3951484B2 (en) * 1998-12-16 2007-08-01 トヨタ自動車株式会社 Fuel cell
JP2001351651A (en) * 2000-06-07 2001-12-21 Honda Motor Co Ltd Joined body of electrolyte and electrode and fuel cell
JP2003297389A (en) * 2002-04-08 2003-10-17 Matsushita Electric Ind Co Ltd Polyelectrolyte fuel cell
JP5326189B2 (en) * 2005-05-31 2013-10-30 日産自動車株式会社 Electrolyte membrane-electrode assembly and method for producing the same
JP4910461B2 (en) * 2006-04-13 2012-04-04 トヨタ自動車株式会社 Fluid introduction member for fuel cell stack and fuel cell stack
JP5067526B2 (en) * 2006-12-08 2012-11-07 Nok株式会社 Manufacturing method of fuel cell seal
JP2008300137A (en) * 2007-05-30 2008-12-11 Toyota Motor Corp Catalyst layer retaining diffusion layer for fuel cell, membrane electrode assembly for fuel cell, manufacturing method of catalyst layer retaining diffusion layer for fuel cell, and manufacturing method of membrane electrode assembly for fuel cell
JP2009170273A (en) * 2008-01-16 2009-07-30 Toyota Motor Corp Fuel cell
JP5337522B2 (en) * 2009-02-16 2013-11-06 内山工業株式会社 Gasket structure and manufacturing method thereof

Also Published As

Publication number Publication date
JP2012134094A (en) 2012-07-12

Similar Documents

Publication Publication Date Title
US8512907B2 (en) Membrane catalyst layer assembly with reinforcing films, membrane electrode assembly with reinforcing films, and polymer electrolyte fuel cells
JP5552766B2 (en) Edge-sealed catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane assembly, polymer electrolyte fuel cell, catalyst layer-electrolyte membrane laminate production method, and edge-sealed catalyst layer-electrolyte membrane laminate production method
JP5309518B2 (en) Electrolyte membrane reinforcing sandwich, method for producing electrolyte membrane-catalyst layer assembly with electrolyte membrane reinforcing sandwich, and method for producing solid polymer fuel cell
JP2007066769A (en) Electrolyte membrane-electrode assembly and its manufacturing method
JP5338998B2 (en) Electrolyte membrane-electrode assembly and solid polymer fuel cell using the same
JP5099091B2 (en) Electrolyte membrane-catalyst layer laminate with reinforcing sheet and polymer electrolyte fuel cell having the same
JP5326250B2 (en) Polymer electrolyte fuel cell structure and polymer electrolyte fuel cell using the same
JP5332212B2 (en) Electrolyte membrane-catalyst layer assembly with gasket, electrolyte membrane-electrode assembly with gasket and solid polymer fuel cell using the same
JP5277792B2 (en) Electrolyte membrane-electrode assembly with auxiliary membrane, and polymer electrolyte fuel cell using the same
JP2011210588A (en) Catalyst layer-electrolyte membrane laminated body, catalyst layer-electrolyte membrane laminated body with edge seal, membrane-electrode assembly, membrane-electrode assembly with edge seal, and these manufacturing methods
JP6120674B2 (en) Solid polymer fuel cell and manufacturing method thereof
JP5887692B2 (en) Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane-electrode assembly with reinforcing membrane, polymer electrolyte fuel cell, and production method thereof
JP2010225495A (en) Electrolyte membrane with reinforced film, catalyst layer with reinforced film-electrolyte membrane laminate, membrane-electrode assembly with reinforced film, liquid material impregnated electrolyte membrane type fuel cell, and their manufacturing methods
JP5533131B2 (en) Edge-sealed catalyst layer-electrolyte membrane laminate, edge-sealed membrane-electrode assembly, and polymer electrolyte fuel cell
JP2009230964A (en) Catalyst layer transcription sheet, manufacturing method of electrolyte membrane-catalyst layer assembly using the same, manufacturing method of electrolyte membrane-electrode assembly, and manufacturing method of solid polymer fuel cell
JP5239434B2 (en) Catalyst layer transfer sheet, method for producing electrolyte membrane-catalyst layer assembly using the same, method for producing electrolyte membrane-electrode assembly, method for producing electrode for polymer electrolyte fuel cell, and polymer electrolyte fuel cell Manufacturing method
JP5577797B2 (en) Catalyst layer-electrolyte membrane laminate, membrane-electrode assembly including the same, and polymer electrolyte fuel cell
JP2011159458A (en) Catalyst layer-electrolyte film laminate, membrane-electrode assembly, polymer electrolyte fuel cell, and method of manufacturing catalyst layer-electrolyte film laminate
JP5828613B2 (en) Catalyst layer with reinforcing membrane-electrolyte membrane laminate, electrode with reinforcing membrane-electrolyte membrane laminate, and polymer electrolyte fuel cell
JP2010021023A (en) Catalyst layer transfer sheet, method of manufacturing catalyst layer-electrolyte film laminate using same, method of manufacturing electrode-electrolyte film laminate, and method of manufacturing solid polymer fuel cell
JP5791222B2 (en) Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane electrode assembly with reinforcing membrane, and polymer electrolyte fuel cell
JP5544781B2 (en) Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane electrode assembly with reinforcing membrane, polymer electrolyte fuel cell, and reinforcing membrane
JP2014072107A (en) Catalyst layer-electrolyte membrane laminate with reinforcement material, solid polymer fuel cell, and method for manufacturing catalyst layer-electrolyte membrane laminate with reinforcement material
JP2010257669A (en) Membrane electrode assembly, method for manufacturing the same, and polymer electrolyte fuel cell
JP5266734B2 (en) Electrolyte membrane-catalyst layer assembly with reinforcing sheet, electrolyte membrane-electrode assembly with reinforcing sheet, solid polymer fuel cell, and method for producing electrolyte membrane-catalyst layer assembly with reinforcing sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160201

R150 Certificate of patent or registration of utility model

Ref document number: 5887692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees