JP5791222B2 - Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane electrode assembly with reinforcing membrane, and polymer electrolyte fuel cell - Google Patents

Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane electrode assembly with reinforcing membrane, and polymer electrolyte fuel cell Download PDF

Info

Publication number
JP5791222B2
JP5791222B2 JP2009070023A JP2009070023A JP5791222B2 JP 5791222 B2 JP5791222 B2 JP 5791222B2 JP 2009070023 A JP2009070023 A JP 2009070023A JP 2009070023 A JP2009070023 A JP 2009070023A JP 5791222 B2 JP5791222 B2 JP 5791222B2
Authority
JP
Japan
Prior art keywords
membrane
catalyst layer
reinforcing
electrolyte membrane
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009070023A
Other languages
Japanese (ja)
Other versions
JP2010225364A (en
Inventor
香澄 大井
香澄 大井
安希 吉田
安希 吉田
弘光 礼
礼 弘光
美和 長田
美和 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2009070023A priority Critical patent/JP5791222B2/en
Publication of JP2010225364A publication Critical patent/JP2010225364A/en
Application granted granted Critical
Publication of JP5791222B2 publication Critical patent/JP5791222B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、補強膜付き触媒層−電解質膜積層体、補強膜付き膜電極接合体、及び固体高分子形燃料電池に関するものである。   The present invention relates to a catalyst layer-electrolyte membrane laminate with a reinforcing membrane, a membrane electrode assembly with a reinforcing membrane, and a polymer electrolyte fuel cell.

燃料電池は、電解質膜の両面に電極が配置され、水素と酸素の電気化学反応により発電する電池であり、発電時に発生するのは水のみである。このように従来の内燃機関と異なり、二酸化炭素等の環境負荷ガスを発生しないために次世代のクリーンエネルギーシステムとして普及が見込まれている。その中でも特に固体高分子形燃料電池は、作動温度が低く、電解質膜の抵抗が少ないことに加え、活性の高い触媒を用いるので小型でも高出力を得ることができ、家庭用コージェネレーションシステム等として早期の実用化が見込まれている。   A fuel cell is a cell in which electrodes are arranged on both sides of an electrolyte membrane and generates electricity by an electrochemical reaction between hydrogen and oxygen, and only water is generated during power generation. Thus, unlike the conventional internal combustion engine, it is expected to spread as a next-generation clean energy system because it does not generate environmental load gas such as carbon dioxide. In particular, the polymer electrolyte fuel cell has a low operating temperature and a low resistance of the electrolyte membrane. In addition, since it uses a highly active catalyst, it can obtain a high output even in a small size, as a home cogeneration system, etc. Early commercialization is expected.

この固体高分子形燃料電池は、プロトン伝導性を有する固体高分子電解質膜を用い、この電解質膜の両面に触媒層及び導電性多孔質基材を順に積層している。そして、この触媒層及び導電性多孔質基材からなる電極の周囲を囲むようにガスケットを配置し、さらにこれをセパレータで挟んだ構造を有している(特許文献1の図3又は図4参照)。しかし、ガスケットが設置される電解質膜の外周縁部は発電に寄与しない部分であり、一般的に高価な電解質膜を有効に利用できていない。このため、膜電極接合体の外周縁部から外方に延びる補強膜を別途設け、この補強膜上にガスケットを配置する固体高分子形燃料電池が提案されている(特許文献1の図1及び図2参照)。また、その他にも、特許文献2のように、各電極によって抑えられていない電解質膜部分の膨張収縮を抑制するために補強膜を設けることがある。   In this polymer electrolyte fuel cell, a solid polymer electrolyte membrane having proton conductivity is used, and a catalyst layer and a conductive porous substrate are sequentially laminated on both surfaces of the electrolyte membrane. And it has the structure which has arrange | positioned the gasket so that the circumference | surroundings of the electrode which consists of this catalyst layer and a conductive porous base material may be enclosed, and also this was pinched | interposed with the separator (refer FIG. 3 or FIG. 4 of patent document 1). ). However, the outer peripheral edge of the electrolyte membrane on which the gasket is installed is a portion that does not contribute to power generation, and generally an expensive electrolyte membrane cannot be effectively used. For this reason, a polymer electrolyte fuel cell has been proposed in which a reinforcement membrane extending outward from the outer peripheral edge of the membrane electrode assembly is separately provided and a gasket is disposed on the reinforcement membrane (see FIG. 1 and Patent Document 1). (See FIG. 2). In addition, as in Patent Document 2, a reinforcing membrane may be provided in order to suppress expansion and contraction of the electrolyte membrane portion that is not suppressed by each electrode.

特開2004−47230号公報JP 2004-47230 A 特許第3052536号公報Japanese Patent No. 3052536

以上のように、種々の理由で補強膜を有する固体高分子形燃料電池が提案されているが、このような固体高分子形燃料電池を長時間運転させると補強膜が剥離するという問題が生じることがある。   As described above, a polymer electrolyte fuel cell having a reinforcing membrane has been proposed for various reasons. However, when such a polymer electrolyte fuel cell is operated for a long time, there arises a problem that the reinforcing membrane peels off. Sometimes.

そこで、本発明は、補強膜の剥離を防止することのできる補強膜付き触媒層−電解質膜積層体、補強膜付き膜電極接合体、及び固体高分子形燃料電池を提供することを目的とする。   Therefore, an object of the present invention is to provide a catalyst layer-electrolyte membrane laminate with a reinforcing membrane, a membrane electrode assembly with a reinforcing membrane, and a polymer electrolyte fuel cell that can prevent the peeling of the reinforcing membrane. .

本件発明者らは、上記補助膜を有する固体高分子形燃料電池の補強膜が剥離するという問題がどのような原因で起こるのかを鋭意研究した結果、過酸化水素と白金などの触媒との反応が原因であることが判明した。すなわち、固体高分子形燃料電池の運転条件によってはカソード(空気極)における酸素の還元が2電子反応で止まってしまい過酸化水素(H2O2)が生成されることがある。また、アノード(燃料極)においても、電解質膜内を通過してアノードに拡散してきた酸素が触媒に吸着する水素と反応し、過酸化水素が生成されることがある。この生成された過酸化水素は、固体高分子形燃料電池の運転時にカソードにおいて水素と酸素とから生成される生成水に溶解する。この生成水は電極、特に触媒層の外周縁部に滞留する傾向にあり、また、生成水は運転時に蒸発するが過酸化水素は沸点が高いために蒸発しにくく特に残留しやすい傾向にある。このように電極の触媒層外周縁部に滞留した過酸化水素は、触媒層中の触媒の存在下でラジカル分解することで、補強膜を攻撃して補強膜を剥離させる可能性がある。 As a result of earnestly studying the cause of the problem that the reinforcing membrane of the polymer electrolyte fuel cell having the auxiliary membrane is peeled off, the present inventors have made a reaction between hydrogen peroxide and a catalyst such as platinum. Was found to be the cause. That is, depending on the operating conditions of the polymer electrolyte fuel cell, the reduction of oxygen at the cathode (air electrode) may be stopped by a two-electron reaction and hydrogen peroxide (H 2 O 2 ) may be generated. Also in the anode (fuel electrode), oxygen that has passed through the electrolyte membrane and diffused into the anode may react with hydrogen adsorbed on the catalyst to generate hydrogen peroxide. The produced hydrogen peroxide is dissolved in the produced water produced from hydrogen and oxygen at the cathode during operation of the polymer electrolyte fuel cell. This generated water tends to stay at the outer peripheral edge of the electrode, particularly the catalyst layer, and the generated water evaporates during operation, but hydrogen peroxide has a high boiling point, and therefore tends to hardly evaporate because it has a high boiling point. Thus, the hydrogen peroxide staying at the outer peripheral edge of the catalyst layer of the electrode may be radically decomposed in the presence of the catalyst in the catalyst layer, thereby attacking the reinforcing film and peeling the reinforcing film.

そこで、本発明に係る補強膜付き触媒層−電解質膜積層体は、イオン伝導性高分子電解質膜と、前記電解質膜の両面に形成され、炭素粒子、イオン伝導性高分子電解質、及び触媒を含む触媒層と、中央に開口部を有しており、内周縁部が前記触媒層の外周縁部上に接着するよう、前記電解質膜及び触媒層から構成された触媒層−電解質膜積層体の両面に接着された補強膜と、を備え、前記触媒層は、前記外周縁部に触媒を含まない。   Therefore, the reinforcing layer-attached catalyst layer-electrolyte membrane laminate according to the present invention is formed on both surfaces of an ion conductive polymer electrolyte membrane and the electrolyte membrane, and includes carbon particles, an ion conductive polymer electrolyte, and a catalyst. Both sides of the catalyst layer-electrolyte membrane laminate composed of the electrolyte membrane and the catalyst layer so that the catalyst layer has an opening in the center and the inner peripheral edge adheres to the outer peripheral edge of the catalyst layer And the catalyst layer does not include a catalyst in the outer peripheral edge portion.

このように本発明に係る補強膜付き触媒層−電解質膜積層体は、過酸化水素が溶解された生成水が滞留しやすい触媒層の外周縁部は、触媒が含まれていない。このため、触媒層の外周縁部に過酸化水素が溶解した生成水が滞留しても過酸化水素はラジカル分解せず、補強膜を攻撃することがない。この結果、補強膜が剥離するという問題を解消することができる。   As described above, in the catalyst layer-electrolyte membrane laminate with a reinforcing film according to the present invention, the outer peripheral edge portion of the catalyst layer in which the generated water in which hydrogen peroxide is dissolved easily retains no catalyst. For this reason, even if generated water in which hydrogen peroxide is dissolved stays at the outer peripheral edge of the catalyst layer, the hydrogen peroxide is not radically decomposed and does not attack the reinforcing membrane. As a result, the problem that the reinforcing film peels can be solved.

上記補強膜付き触媒層−電解質膜積層体は種々の構成をとることができるが、例えば、上記補強膜を電解質膜よりも一回り大きく形成し、この電解質膜の外側で補強膜の外周縁部同士を接着させた構成とすることもできる。この構成によれば、この補強膜の外周縁部同士を接着させた部分にガスケットを設置することができ、ひいては従来ガスケットを設置していた電解質膜の発電に寄与しない部分を省略することができる。   The catalyst layer-electrolyte membrane laminate with the reinforcing membrane can take various configurations. For example, the reinforcing membrane is formed to be slightly larger than the electrolyte membrane, and the outer peripheral edge of the reinforcing membrane outside the electrolyte membrane. It can also be set as the structure which adhered each other. According to this configuration, it is possible to install a gasket at a portion where the outer peripheral edge portions of the reinforcing membrane are bonded to each other, and thus it is possible to omit a portion of the electrolyte membrane that has been provided with a conventional gasket that does not contribute to power generation. .

また、上記触媒層の外周縁部と補強膜の内周縁部との間にわたって延びる繊維状物質をさらに備えてもよい。この繊維状物質のアンカー効果によって、より確実に補強膜の剥離を防止することができる。   Moreover, you may further provide the fibrous substance extended over between the outer periphery part of the said catalyst layer, and the inner periphery part of a reinforcement film | membrane. The anchor effect of the fibrous material can more reliably prevent the reinforcing film from peeling off.

また、上記補強膜は、触媒層と接着する接着層と、燃料ガス及び酸化剤ガスの透過を防止するガスバリア層と、を有していることが好ましい。この構成によれば、補強膜はより確実に触媒層と接着するとともに、ガスの透過も防ぐことができる。   The reinforcing membrane preferably has an adhesive layer that adheres to the catalyst layer and a gas barrier layer that prevents permeation of fuel gas and oxidant gas. According to this configuration, the reinforcing membrane can more reliably adhere to the catalyst layer and prevent gas permeation.

また、本発明に係る第1の補強膜付き膜電極接合体は、上述したいずれかの補強膜付き触媒層−電解質膜積層体と、前記各触媒層上に形成された導電性多孔質基材と、を備えている。   The first membrane electrode assembly with a reinforcing membrane according to the present invention includes any one of the above-described catalyst layer-electrolyte membrane laminate with a reinforcing membrane, and a conductive porous substrate formed on each of the catalyst layers. And.

この構成によれば、上述した補強膜付き触媒層−電解質膜積層体を備えているため、補強膜の剥離を防止することができる。なお、上記導電性多孔質基材は、各補強膜の開口部内から露出する触媒層上に形成することもできる。   According to this structure, since the catalyst layer-electrolyte membrane laminated body with a reinforcement film | membrane mentioned above is provided, peeling of a reinforcement film | membrane can be prevented. In addition, the said conductive porous base material can also be formed on the catalyst layer exposed from the inside of the opening part of each reinforcement film | membrane.

また、本発明に係る第2の補強膜付き膜電極接合体は、イオン伝導性高分子電解質膜と、前記電解質膜の両面に形成され、炭素粒子、イオン伝導性高分子電解質、及び触媒を含む触媒層と、前記各触媒層上に形成された導電性多孔質基材と、中央に開口部を有しており、内周縁部が前記導電性多孔質基材の外周縁部上に接着するよう、前記電解質膜、触媒層、及び導電性多孔質基材から構成された膜電極接合体の両面に接着された補強膜と、を備え、前記触媒層は、前記導電性多孔質基材の外周縁部と対向する外周縁部に触媒を含まない。   A second membrane electrode assembly with a reinforcing membrane according to the present invention is formed on both surfaces of an ion conductive polymer electrolyte membrane and the electrolyte membrane, and includes carbon particles, an ion conductive polymer electrolyte, and a catalyst. The catalyst layer, the conductive porous substrate formed on each of the catalyst layers, and an opening at the center, and the inner peripheral edge adheres to the outer peripheral edge of the conductive porous substrate. A reinforcing membrane adhered to both surfaces of a membrane electrode assembly composed of the electrolyte membrane, the catalyst layer, and a conductive porous substrate, and the catalyst layer is made of the conductive porous substrate. No catalyst is included in the outer peripheral edge facing the outer peripheral edge.

このように本発明に係る第2の補強膜付き膜電極接合体は、過酸化水素が溶解された生成水が滞留しやすい触媒層の外周縁部は、触媒が含まれていない。このため、触媒層の外周縁部に過酸化水素が溶解した生成水が滞留しても過酸化水素はラジカル分解せず、補強膜を攻撃することがない。この結果、補強膜が剥離するという問題を解消することができる。   As described above, in the second membrane electrode assembly with a reinforcing membrane according to the present invention, the outer peripheral edge portion of the catalyst layer in which the generated water in which hydrogen peroxide is dissolved easily retains no catalyst. For this reason, even if generated water in which hydrogen peroxide is dissolved stays at the outer peripheral edge of the catalyst layer, the hydrogen peroxide is not radically decomposed and does not attack the reinforcing membrane. As a result, the problem that the reinforcing film peels can be solved.

上記第2の補強膜付き膜電極接合体は種々の構成をとることができるが、例えば、上記導電性多孔質基材の外周縁部と補強膜の内周縁部との間にわたって延びる繊維状物質をさらに備えていてもよい。この繊維状物質のアンカー効果によって、より確実に補強膜の剥離を防止することができる。   The membrane electrode assembly with the second reinforcing membrane can have various configurations. For example, a fibrous substance extending between the outer peripheral edge of the conductive porous substrate and the inner peripheral edge of the reinforcing membrane. May be further provided. The anchor effect of the fibrous material can more reliably prevent the reinforcing film from peeling off.

本発明に係る固体高分子形燃料電池は、上述したいずれかの補強膜付き膜電極接合体と、前記各補強膜上に設置されたガスケットと、前記ガスケットが設置された補強膜付き膜電極接合体を両側から挟持するよう設置されたセパレータと、を備えている。   A polymer electrolyte fuel cell according to the present invention includes a membrane electrode assembly with any of the above-described reinforcing membranes, a gasket installed on each of the reinforcing membranes, and a membrane electrode junction with a reinforcing membrane on which the gaskets are installed. And a separator installed to sandwich the body from both sides.

この固体高分子形燃料電池は、上述した補強膜付き膜電極接合体を有しているため、補強膜の剥離を防止することができる。   Since this polymer electrolyte fuel cell has the above-mentioned membrane electrode assembly with a reinforcing membrane, it is possible to prevent peeling of the reinforcing membrane.

本発明によれば、補強膜の剥離を防止することのできる補強膜付き触媒層−電解質膜積層体、補強膜付き膜電極接合体、固体高分子形燃料電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the catalyst layer-electrolyte membrane laminated body with a reinforcement film which can prevent peeling of a reinforcement film, a membrane electrode assembly with a reinforcement film, and a polymer electrolyte fuel cell can be provided.

図1は本発明に係る固体高分子形燃料電池の実施形態を示す正面断面図である。FIG. 1 is a front sectional view showing an embodiment of a polymer electrolyte fuel cell according to the present invention. 図2は本発明に係る固体高分子形燃料電池のセパレータ及びガスケットを省略した実施形態を示す平面図である。FIG. 2 is a plan view showing an embodiment in which the separator and gasket of the polymer electrolyte fuel cell according to the present invention are omitted. 図3は本実施形態に係る補強膜付き膜電極接合体の外周縁部の詳細を示す拡大正面断面図である。FIG. 3 is an enlarged front sectional view showing details of the outer peripheral edge of the membrane electrode assembly with a reinforcing membrane according to the present embodiment. 図4は本実施形態に係る固体高分子形燃料電池の製造方法を示す説明図である。FIG. 4 is an explanatory view showing a method for producing a polymer electrolyte fuel cell according to this embodiment. 図5は本実施形態に係る触媒層形成用転写シートの製造方法を示す説明図である。FIG. 5 is an explanatory view showing a method for producing a transfer sheet for forming a catalyst layer according to this embodiment. 図6は本実施形態に係る補強膜付き触媒層−電解質膜積層体の製造方法を示す説明図である。FIG. 6 is an explanatory view showing a method for producing a reinforcing layer-attached catalyst layer-electrolyte membrane laminate according to this embodiment. 図7は本発明に係る固体高分子形燃料電池の他の実施形態を示す正面断面図である。FIG. 7 is a front cross-sectional view showing another embodiment of the polymer electrolyte fuel cell according to the present invention. 図8は本発明に係る固体高分子形燃料電池のさらに他の実施形態を示す正面断面図である。FIG. 8 is a front sectional view showing still another embodiment of the polymer electrolyte fuel cell according to the present invention.

以下、本発明に係る補強膜付き触媒層−電解質膜積層体、補強膜付き膜電極接合体、及び固体高分子形燃料電池の実施形態について図面を参照しつつ説明する。   Hereinafter, embodiments of a catalyst layer-electrolyte membrane laminate, a membrane electrode assembly with a reinforcement membrane, and a polymer electrolyte fuel cell according to the present invention will be described with reference to the drawings.

図1及び図2に示すように、固体高分子形燃料電池1は、電解質膜2及び触媒層3からなる触媒層−電解質膜積層体10と、この触媒層−電解質膜積層体10から外方に延びる補強膜4と、触媒層3上に形成された導電性多孔質基材5とを備えている。また、固体高分子形燃料電池1は、補強膜4上に設置されたガスケット6や、これらを挟持するセパレータ7も備えている。以下、各部材について詳細に説明する。   As shown in FIGS. 1 and 2, the polymer electrolyte fuel cell 1 includes a catalyst layer-electrolyte membrane laminate 10 composed of an electrolyte membrane 2 and a catalyst layer 3, and an outer side from the catalyst layer-electrolyte membrane laminate 10. And a conductive porous substrate 5 formed on the catalyst layer 3. The polymer electrolyte fuel cell 1 also includes a gasket 6 installed on the reinforcing membrane 4 and a separator 7 for sandwiching them. Hereinafter, each member will be described in detail.

電解質膜2は、平面視矩形状であり、この電解質膜2の両面に電解質膜2よりも一回り小さい触媒層3が形成されている。この電解質膜2の両面に触媒層3が形成されたものを触媒層−電解質膜積層体10という。触媒層3は、後述する補強膜4の内周縁部が接着される外周縁部31と、補強膜4の開口部41から露出する中央部32とから構成されている。また、触媒層3は、電解質膜2よりも一回り小さく形成されているために電解質膜2の外周縁部21上には触媒層3が形成されていないが、図7に示すように電解質膜2と同じ大きさに形成することもできる。なお、電解質膜2の外周縁から触媒層3の外周縁までの距離C(図3参照)は、0〜5mmであることが好ましい。また、電解質膜2の厚さは、通常20〜250μm程度、好ましくは20〜80μm程度であり、触媒層3の厚さは、限定的ではないが、通常1〜100μm程度、好ましくは2〜50μm程度である。   The electrolyte membrane 2 has a rectangular shape in plan view, and a catalyst layer 3 that is slightly smaller than the electrolyte membrane 2 is formed on both surfaces of the electrolyte membrane 2. The catalyst layer 3 formed on both surfaces of the electrolyte membrane 2 is referred to as a catalyst layer-electrolyte membrane laminate 10. The catalyst layer 3 includes an outer peripheral edge portion 31 to which an inner peripheral edge portion of a reinforcing film 4 described later is bonded, and a central portion 32 exposed from the opening 41 of the reinforcing film 4. Further, since the catalyst layer 3 is formed slightly smaller than the electrolyte membrane 2, the catalyst layer 3 is not formed on the outer peripheral edge portion 21 of the electrolyte membrane 2, but as shown in FIG. It can also be formed in the same size as 2. In addition, it is preferable that the distance C (refer FIG. 3) from the outer periphery of the electrolyte membrane 2 to the outer periphery of the catalyst layer 3 is 0-5 mm. The thickness of the electrolyte membrane 2 is usually about 20 to 250 μm, preferably about 20 to 80 μm, and the thickness of the catalyst layer 3 is not limited, but is usually about 1 to 100 μm, preferably 2 to 50 μm. Degree.

そして、この触媒層−電解質膜積層体10の上面及び下面に、中央に開口部41を有する枠状の補強膜4がそれぞれ接着されている。補強膜4は、燃料電池の発電に用いられる燃料ガスや酸化剤ガスの透過を防止するガスバリア層42と、触媒層−電解質膜積層体10と接着する接着層43とから構成されており、接着層43が触媒層−電解質膜積層体10側に向けられている。このガスバリア層42の膜厚は、5〜50μmとすることが好ましく、接着層43の膜厚は、1〜50μmとすることが好ましい。補強膜4が触媒層−電解質膜積層体10に接着された状態では、補強膜4の内周縁部が触媒層3の外周縁部31に接着しており、開口部41からは触媒層3の外周縁部31を除いた部分である中央部32が露出している。なお、触媒層3の外周縁から補強膜4の内周縁までの距離B(図3参照)は、1〜10mmとすることが好ましい。   And the frame-shaped reinforcement film | membrane 4 which has the opening part 41 in the center is adhere | attached on the upper surface and lower surface of this catalyst layer-electrolyte membrane laminated body 10, respectively. The reinforcing film 4 includes a gas barrier layer 42 that prevents permeation of fuel gas and oxidant gas used for power generation of the fuel cell, and an adhesive layer 43 that adheres to the catalyst layer-electrolyte film laminate 10. The layer 43 is directed to the catalyst layer-electrolyte membrane laminate 10 side. The thickness of the gas barrier layer 42 is preferably 5 to 50 μm, and the thickness of the adhesive layer 43 is preferably 1 to 50 μm. In a state where the reinforcing film 4 is bonded to the catalyst layer-electrolyte membrane laminate 10, the inner peripheral edge portion of the reinforcing film 4 is bonded to the outer peripheral edge portion 31 of the catalyst layer 3, and the catalyst layer 3 is formed from the opening 41. A central portion 32 that is a portion excluding the outer peripheral edge portion 31 is exposed. In addition, it is preferable that the distance B (refer FIG. 3) from the outer periphery of the catalyst layer 3 to the inner periphery of the reinforcement film | membrane 4 shall be 1-10 mm.

また、補強膜4は、電解質膜2よりも一回り大きく形成されており、電解質2の外周縁部21上に接着するとともに、電解質膜2の外側で電解質膜2からはみ出た各補強膜4の外周縁部45同士が接着している。なお、補強膜4は電解質膜2と同じ大きさに形成することもできる。この補強膜4の外周縁から電解質膜2の外周縁までの距離D(図3参照)は0〜100mmであることが好ましい。このように、触媒層−電解質膜積層体10に補強膜4が接着されたものが、本発明の補強膜付き触媒層−電解質膜積層体に相当する。 The reinforcing membrane 4 is formed to be slightly larger than the electrolyte membrane 2, adheres onto the outer peripheral edge 21 of the electrolyte membrane 2, and each reinforcing membrane 4 protrudes from the electrolyte membrane 2 outside the electrolyte membrane 2. The outer peripheral edge portions 45 are bonded to each other. The reinforcing film 4 can also be formed in the same size as the electrolyte film 2. The distance D (see FIG. 3) from the outer peripheral edge of the reinforcing membrane 4 to the outer peripheral edge of the electrolyte membrane 2 is preferably 0 to 100 mm. Thus, what the reinforcement film | membrane 4 adhere | attached on the catalyst layer-electrolyte membrane laminated body 10 is equivalent to the catalyst layer-electrolyte membrane laminated body with a reinforcement film of this invention.

補強膜4の開口部41から露出している触媒層3の中央部32上に平面視矩形状の導電性多孔質基材5が形成されている。この導電性多孔質基材5の外周縁から補強膜4の内周縁までの距離A(図3参照)は、0〜5mmであることが好ましい。このように、触媒層3上に導電性多孔質基材5が形成されて電極Eを構成しており、電解質膜2の両面に電極Eが形成されたものを膜電極接合体20という。なお、本実施形態のように、膜電極接合体20に補強膜4が接着されているものが、本発明の補強膜付き膜電極接合体に相当する。   A conductive porous substrate 5 having a rectangular shape in plan view is formed on the central portion 32 of the catalyst layer 3 exposed from the opening 41 of the reinforcing membrane 4. The distance A (see FIG. 3) from the outer peripheral edge of the conductive porous substrate 5 to the inner peripheral edge of the reinforcing film 4 is preferably 0 to 5 mm. In this way, the conductive porous substrate 5 is formed on the catalyst layer 3 to constitute the electrode E, and the electrode E formed on both surfaces of the electrolyte membrane 2 is referred to as a membrane electrode assembly 20. In addition, what the reinforcement film | membrane 4 adhere | attached on the membrane electrode assembly 20 like this embodiment is equivalent to the membrane electrode assembly with a reinforcement film | membrane of this invention.

そして、電極Eの周囲を囲むように枠状のガスケット6が設置されているとともに、電極E及びガスケット6上にセパレータ7が設置されている。セパレータ7は、導電性多孔質基材5と対向する領域にガス流路71が形成されている。   A frame-shaped gasket 6 is installed so as to surround the periphery of the electrode E, and a separator 7 is installed on the electrode E and the gasket 6. In the separator 7, a gas flow path 71 is formed in a region facing the conductive porous substrate 5.

次に上述したように構成された固体高分子形燃料電池1の各構成要素の材質について説明する。   Next, the material of each component of the polymer electrolyte fuel cell 1 configured as described above will be described.

電解質膜2は、例えば、基材上に水素イオン伝導性高分子電解質を含有する溶液を塗工し、乾燥することにより形成される。水素イオン伝導性高分子電解質膜としては、例えば、パーフルオロスルホン酸系のフッ素イオン交換樹脂、より具体的には、炭化水素系イオン交換膜のC−H結合をフッ素で置換したパーフルオロカーボンスルホン酸系ポリマー(PFS系ポリマー)等が挙げられる。電気陰性度の高いフッ素原子を導入することで、化学的に非常に安定し、スルホン酸基の解離度が高く、高いイオン伝導性が実現できる。このような水素イオン伝導性高分子電解質の具体例としては、デュポン社製の「Nafion」(登録商標)、旭硝子(株)製の「Flemion」(登録商標)、旭化成(株)製の「Aciplex」(登録商標)、ゴア(Gore)社製の「Gore Select」(登録商標)等が挙げられる。水素イオン伝導性高分子電解質含有溶液中に含まれる水素イオン伝導性高分子電解質の濃度は、通常5〜60重量%程度、好ましくは20〜40重量%程度である。なお、上記の水素イオン伝導性高分子電解質膜以外には、アニオン導電性固高分子電解質膜や液状物質含浸膜も挙げられる。アニオン伝導性電解質膜としては炭化水素系樹脂又はフッ素系樹脂等が挙げられ、具体例としては炭化水素系樹脂としては、旭化成(株)製のAciplex(登録商標)A201,211,221や、トクヤマ(株)製のネオセプタ(登録商標)AM−1,AHA等が挙げられ、フッ素系樹脂としては、東ソー(株)製のトスフレックス(登録商標)IE−SF34等が挙げられる。また液状物質含浸膜としては、例えばポリベンゾイミダゾール(PBI)が挙げられる。   The electrolyte membrane 2 is formed, for example, by applying a solution containing a hydrogen ion conductive polymer electrolyte on a substrate and drying it. Examples of the hydrogen ion conductive polymer electrolyte membrane include perfluorosulfonic acid-based fluorine ion exchange resins, more specifically, perfluorocarbon sulfonic acid in which the C—H bond of the hydrocarbon-based ion exchange membrane is substituted with fluorine. -Based polymer (PFS-based polymer) and the like. By introducing a fluorine atom having high electronegativity, it is chemically very stable, the dissociation degree of the sulfonic acid group is high, and high ion conductivity can be realized. Specific examples of such a hydrogen ion conductive polymer electrolyte include “Nafion” (registered trademark) manufactured by DuPont, “Flemion” (registered trademark) manufactured by Asahi Glass Co., Ltd., and “Aciplex” manufactured by Asahi Kasei Corporation. ”(Registered trademark),“ Gore Select ”(registered trademark) manufactured by Gore, and the like. The concentration of the hydrogen ion conductive polymer electrolyte contained in the hydrogen ion conductive polymer electrolyte-containing solution is usually about 5 to 60% by weight, preferably about 20 to 40% by weight. In addition to the hydrogen ion conductive polymer electrolyte membrane, an anion conductive solid polymer electrolyte membrane and a liquid substance-impregnated membrane are also included. Examples of the anion conductive electrolyte membrane include a hydrocarbon resin or a fluorine resin, and specific examples of the hydrocarbon resin include Aciplex (registered trademark) A201, 2111, 221 manufactured by Asahi Kasei Corporation, and Tokuyama. Neocepta (registered trademark) AM-1, AHA, etc. manufactured by Co., Ltd. may be mentioned, and examples of the fluorine-based resin may include Tosflex (registered trademark) IE-SF34 manufactured by Tosoh Corporation. Examples of the liquid substance-impregnated film include polybenzimidazole (PBI).

触媒層3は、中央部32において、触媒粒子を担持させた炭素粒子と、水素イオン伝導性高分子電解質とを含有する。水素イオン伝導性高分子電解質としては、上述した電解質膜2に使用されるものと同じ材料を使用することができる。   The catalyst layer 3 contains carbon particles supporting catalyst particles and a hydrogen ion conductive polymer electrolyte in the central portion 32. As the hydrogen ion conductive polymer electrolyte, the same material as that used for the electrolyte membrane 2 described above can be used.

触媒粒子としては、例えば、白金や白金化合物等が挙げられる。白金化合物としては、例えば、ルテニウム、パラジウム、ニッケル、モリブデン、イリジウム、鉄等からなる群から選ばれる少なくとも1種の金属と、白金との合金等が挙げられる。なお、通常は、カソード触媒層に含まれる触媒粒子は白金であり、アノード触媒層に含まれる触媒粒子は前記金属と白金との合金である。   Examples of the catalyst particles include platinum and platinum compounds. Examples of the platinum compound include an alloy of platinum and at least one metal selected from the group consisting of ruthenium, palladium, nickel, molybdenum, iridium, iron and the like. In general, the catalyst particles contained in the cathode catalyst layer are platinum, and the catalyst particles contained in the anode catalyst layer are an alloy of the metal and platinum.

炭素粒子は、導電性を有しているものであれば限定的ではなく、公知又は市販のものを広く使用できる。例えば、カーボンブラックや、黒鉛、活性炭等を1種又は2種以上で用いることができる。カーボンブラックの例としては、チャンネルブラック、ファーネスブラック、ケッチェンブラック、アセチレンブラック、ランプブラック等を挙げることができる。炭素粒子の算術平均粒子径は通常5nm〜200nm程度、好ましくは20〜80nm程度である。この炭素粒子の平均粒子径は、例えば、粒子径分布測定装置LA−920:(株)堀場製作所製等により測定できる。   The carbon particles are not limited as long as they have electrical conductivity, and known or commercially available carbon particles can be widely used. For example, carbon black, graphite, activated carbon, or the like can be used alone or in combination. Examples of carbon black include channel black, furnace black, ketjen black, acetylene black, and lamp black. The arithmetic average particle diameter of the carbon particles is usually about 5 nm to 200 nm, preferably about 20 to 80 nm. The average particle size of the carbon particles can be measured by, for example, a particle size distribution measuring device LA-920: manufactured by Horiba, Ltd.

また、触媒層3は、外周縁部31において、上述した炭素粒子や水素イオン伝導性高分子電解質を含有している。この外周縁部31における炭素粒子は触媒粒子を担持しておらず、すなわち外周縁部31において触媒層3は白金や白金化合物などの触媒粒子が含まれていない。   Further, the catalyst layer 3 contains the above-described carbon particles and hydrogen ion conductive polymer electrolyte in the outer peripheral edge portion 31. The carbon particles in the outer peripheral edge 31 do not carry catalyst particles, that is, the catalyst layer 3 in the outer peripheral edge 31 does not contain catalyst particles such as platinum or a platinum compound.

補強膜4は、ガスバリア層42と接着層43とから構成されているが、ガスバリア層42は、水蒸気、水、燃料ガス及び酸化剤ガスに対するバリア性を有するポリエステル、ポリアミド、ポリイミド、ポリメチルテンペン、ポリフェニレンオキサイド、ポリサルホン、ポリエーテルエーテルケトン、ポリフェニレンサルファイドなどを好ましく使用することができる。なお、ポリエステルは、具体的には、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート等を挙げることができる。   The reinforcing film 4 is composed of a gas barrier layer 42 and an adhesive layer 43. The gas barrier layer 42 is made of polyester, polyamide, polyimide, polymethyl tempen having barrier properties against water vapor, water, fuel gas and oxidant gas, Polyphenylene oxide, polysulfone, polyether ether ketone, polyphenylene sulfide and the like can be preferably used. Specific examples of the polyester include polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and polybutylene naphthalate.

また、接着層43の材料としては、ポリオレフィン系樹脂が好ましく、例えば、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、エチレン−α・オレフィン共重合体、ポリプロピレン、ポリブテン、ポリイソブテン、ポエイソブチレン、ポリブタジエン、ポリイソプレン、エチレン−メタクリル酸共重合体、あるいはエチレン−アクリル酸共重合体等のエチレンと不飽和カルボン酸との共重合体、エチレン−アクリル酸エチル共重合体、アイオノマー樹脂、エチレン−酢酸ビニル共重合体等を使用することができる。またそれらを変性した酸変性ポリオレフィン系樹脂、シラン変性ポリオレフィン系樹脂を使用することができ、その中でも不飽和カルボン酸でグラフト変性したポリプロピレンもしくは不飽和カルボン酸で変性したポリエチレンを使用することが絶縁性もしくは耐熱性の点で好ましい。また、その他にもパーフルオロカーボンスルホン酸系のフッ素イオン交換樹脂といったような上記電解質膜2と同様の材料を挙げることができ、具体的には、デュポン社製の「Nafion」(登録商標)、旭硝子(株)製の「Flemion」(登録商標)、旭化成(株)製の「Aciplex」(登録商標)、ゴア(Gore)社製の「Gore Select」(登録商標)等を挙げることができる。   The material of the adhesive layer 43 is preferably a polyolefin resin, such as medium density polyethylene, high density polyethylene, linear low density polyethylene, ethylene-α-olefin copolymer, polypropylene, polybutene, polyisobutene, poisobutylene, Copolymer of ethylene and unsaturated carboxylic acid such as polybutadiene, polyisoprene, ethylene-methacrylic acid copolymer, or ethylene-acrylic acid copolymer, ethylene-ethyl acrylate copolymer, ionomer resin, ethylene-acetic acid Vinyl copolymers and the like can be used. In addition, acid-modified polyolefin resins and silane-modified polyolefin resins modified with them can be used. Among them, it is insulating to use polypropylene modified with unsaturated carboxylic acid or polyethylene modified with unsaturated carboxylic acid. Or it is preferable in terms of heat resistance. In addition, other materials similar to the electrolyte membrane 2 such as a perfluorocarbon sulfonic acid-based fluorine ion exchange resin can be mentioned. Specifically, “Nafion” (registered trademark) manufactured by DuPont, Asahi Glass Co., Ltd. “Flemion” (registered trademark) manufactured by Asahi Kasei Co., Ltd., “Aciplex” (registered trademark) manufactured by Asahi Kasei Co., Ltd., “Gore Select” (registered trademark) manufactured by Gore, Inc., and the like.

導電性多孔質基材5としては、公知であり、アノード(燃料極)、カソードを構成する各種の導電性多孔質基材を使用でき、燃料である燃料ガス及び酸化剤ガスを効率よく触媒層3に供給するため、多孔質の導電性基材からなっている。多孔質の導電性基材としては、例えば、カーボンペーパーやカーボンクロス等が挙げられる。   The conductive porous substrate 5 is well-known, and various conductive porous substrates constituting an anode (fuel electrode) and a cathode can be used, and a fuel layer and an oxidant gas which are fuels can be efficiently used as a catalyst layer. 3 is made of a porous conductive substrate. Examples of the porous conductive substrate include carbon paper and carbon cloth.

ガスケット6としては、熱プレスに耐えうる強度を保ち、かつ、外部に燃料及び酸化剤を漏出しない程度のガスバリア性を有しているものを使用することができ、例えば、ポリエチレンテレフタレートシートやテフロン(登録商標)シート、シリコンゴムシート等を例示することができる。   As the gasket 6, it is possible to use a gasket that has a strength sufficient to withstand heat pressing and has a gas barrier property that does not leak fuel and oxidant to the outside. For example, a polyethylene terephthalate sheet or Teflon ( (Registered trademark) sheet, silicon rubber sheet, and the like.

セパレータ7としては、公知であり、燃料電池内の環境においても安定な導電性板であればよく、一般的には、カーボン板にガス流路71を形成したものが用いられる。また、セパレータ7をステンレス等の金属により構成し、金属の表面にクロム、白金族金属又はその酸化物、導電性ポリマーなどの導電性材料からなる被膜を形成したものや、同様にセパレータを金属によって構成し、該金属の表面に銀、白金族の複合酸化物、窒化クロム等の材料によるメッキ処理を施したもの等も使用可能である。   The separator 7 may be any known conductive plate that is known and stable even in the environment within the fuel cell. In general, a carbon plate in which a gas flow path 71 is formed is used. In addition, the separator 7 is made of a metal such as stainless steel, and the surface of the metal is formed with a coating made of a conductive material such as chromium, a platinum group metal or oxide thereof, or a conductive polymer. It is also possible to use a metal having a metal surface plated with a material such as silver, a platinum group composite oxide, or chromium nitride.

次に上述した固体高分子形燃料電池1の製造方法について図面を参照しつつ説明する。図4は、本実施形態に係る固体高分子形燃料電池1の製造方法を示す説明図である。   Next, a method for producing the above-described polymer electrolyte fuel cell 1 will be described with reference to the drawings. FIG. 4 is an explanatory view showing a method for producing the polymer electrolyte fuel cell 1 according to this embodiment.

図4に示すように、上述した材料からなる電解質膜2を準備し、この電解質膜2の両面に触媒層形成用転写シート8を重ねて配置する。この触媒層形成用転写シート8とは、転写される触媒層3が転写用基材81に形成されたものである。   As shown in FIG. 4, an electrolyte membrane 2 made of the above-described material is prepared, and a catalyst layer forming transfer sheet 8 is placed on both surfaces of the electrolyte membrane 2 in an overlapping manner. The catalyst layer forming transfer sheet 8 is one in which the transferred catalyst layer 3 is formed on a transfer substrate 81.

ここで触媒層形成用転写シート8の製造方法について説明する。まず、上述した触媒粒子を担持させた炭素粒子及び水素イオン伝導性高分子電解質を適当な溶剤に混合、分散して第1の触媒ペーストを作製する。この第1の触媒ペーストは、触媒層3の中央部32に使用される。また、触媒層3の外周縁部31用として、炭素粒子及び水素イオン伝導性高分子電解質を適当な溶剤に混合、分散して第2の触媒ペーストを作成する。この第2の触媒ペーストは、第1の触媒ペーストと異なり、触媒粒子が含まれていない。   Here, a method for producing the transfer sheet 8 for forming a catalyst layer will be described. First, the first catalyst paste is prepared by mixing and dispersing the carbon particles supporting the catalyst particles and the hydrogen ion conductive polymer electrolyte in an appropriate solvent. This first catalyst paste is used in the central portion 32 of the catalyst layer 3. For the outer peripheral edge 31 of the catalyst layer 3, carbon particles and hydrogen ion conductive polymer electrolyte are mixed and dispersed in an appropriate solvent to form a second catalyst paste. Unlike the first catalyst paste, the second catalyst paste does not contain catalyst particles.

そして、形成される触媒層3が所望の膜厚になるよう、第1の触媒ペーストを転写用基材81上に塗工・乾燥して触媒層3の中央部32を形成するとともに、第2の触媒ペーストを中央部32の周りに塗工・乾燥して外周縁部31を形成する。必要に応じて離型層を介して各触媒ペーストを転写用基材81上に塗工する。これにより転写用基材81の触媒層3からの離型性を一層向上させることができる。離型層としては、例えば、転写用基材81の表面に、公知のワックスから構成されたものやフッ素樹脂をコーティングで設けることもできるが、ケイ素酸化物等からなる蒸着層を離型層として設けることが望ましい。なお、この触媒層3の外周縁部31と中央部32の形成順序は特に限定されるものではない。また、各触媒ペーストの塗工方法としては、スクリーン印刷や、スプレーコーティング、ダイコーティング、ナイフコーティングなどの公知の塗工方法を挙げることができる。触媒ペーストを塗工した後、所定の温度及び時間で乾燥することにより転写用基材81上に触媒層3が形成される。乾燥温度は、通常40〜100℃程度、好ましくは60〜80℃程度である。乾燥時間は、乾燥温度にもよるが、通常5分〜2時間程度、好ましくは10分〜1時間程度である。   Then, the first catalyst paste is applied and dried on the transfer substrate 81 so that the formed catalyst layer 3 has a desired film thickness, thereby forming the central portion 32 of the catalyst layer 3, and the second The outer peripheral edge portion 31 is formed by coating and drying the catalyst paste around the central portion 32. If necessary, each catalyst paste is applied onto the transfer substrate 81 via a release layer. Thereby, the releasability of the transfer substrate 81 from the catalyst layer 3 can be further improved. As the release layer, for example, a surface made of a known wax or a fluororesin can be provided on the surface of the transfer substrate 81 by coating, but a vapor deposition layer made of silicon oxide or the like is used as the release layer. It is desirable to provide it. In addition, the formation order of the outer peripheral edge part 31 and the center part 32 of this catalyst layer 3 is not specifically limited. Moreover, as a coating method of each catalyst paste, well-known coating methods, such as screen printing, spray coating, die coating, knife coating, can be mentioned. After applying the catalyst paste, the catalyst layer 3 is formed on the transfer substrate 81 by drying at a predetermined temperature and time. A drying temperature is about 40-100 degreeC normally, Preferably it is about 60-80 degreeC. Although depending on the drying temperature, the drying time is usually about 5 minutes to 2 hours, preferably about 10 minutes to 1 hour.

この第1及び第2の触媒ペーストの塗工方法の一例を図5に基づいて説明すると、まず、転写用基材81上に、触媒層3の中央部32と同じ大きさの開口部91aを有する第1のマスク9aを載置する(図5(a))。そして、第1のマスク9aの開口部91aを介して第1の触媒ペーストを転写用基材81上に塗工・乾燥し触媒層3の中央部32を形成する(図5(b))。次に第1のマスク9aを外して、第1のマスク9aの開口部91aと同じ大きさ、すなわち触媒層3の中央部32と同じ大きさの第2のマスク9bを中央部32上に載置して中央部32をマスクする(図5(c))。そして、第2の触媒ペーストを転写用基材81上に塗工・乾燥して触媒層3の外周縁部31を形成する(図5(d))。そして、第2のマスク9bを外し、外周縁部31の幅が所望の値となるよう触媒層形成用転写シート8を切断して触媒層形成用転写シート8が完成する(図5(e))。   An example of the coating method of the first and second catalyst pastes will be described with reference to FIG. 5. First, an opening 91 a having the same size as the central portion 32 of the catalyst layer 3 is formed on the transfer substrate 81. The first mask 9a is placed (FIG. 5A). Then, the first catalyst paste is applied and dried on the transfer substrate 81 through the opening 91a of the first mask 9a to form the central portion 32 of the catalyst layer 3 (FIG. 5B). Next, the first mask 9a is removed, and a second mask 9b having the same size as the opening 91a of the first mask 9a, that is, the same size as the central portion 32 of the catalyst layer 3, is placed on the central portion 32. Then, the central portion 32 is masked (FIG. 5C). Then, the second catalyst paste is applied and dried on the transfer substrate 81 to form the outer peripheral edge 31 of the catalyst layer 3 (FIG. 5D). Then, the second mask 9b is removed, and the catalyst layer forming transfer sheet 8 is cut so that the width of the outer peripheral edge 31 becomes a desired value, thereby completing the catalyst layer forming transfer sheet 8 (FIG. 5E). ).

上記各触媒ペーストに使用される溶剤としては、各種アルコール類、各種エーテル類、各種ジアルキルスルホキシド類、水またはこれらの混合物等が挙げられ、これらの中でもアルコール類が好ましい。アルコール類としては、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、tert−ブタノール、等の炭素数1〜4の一価アルコール、各種の多価アルコール等が挙げられる。   Examples of the solvent used in each catalyst paste include various alcohols, various ethers, various dialkyl sulfoxides, water, or a mixture thereof. Of these, alcohols are preferable. Examples of alcohols include monohydric alcohols having 1 to 4 carbon atoms such as methanol, ethanol, n-propanol, isopropanol, n-butanol, and tert-butanol, and various polyhydric alcohols.

転写用基材81としては、例えば、ポリイミド、ポリエチレンテレフタレート、ポリパルバン酸アラミド、ポリアミド(ナイロン)、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレート等の高分子フィルムを挙げることができる。また、エチレンテトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロパーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)等の耐熱性フッ素樹脂を用いることもできる。さらに転写用基材81は、高分子フィルム以外にアート紙、コート紙、軽量コート紙等の塗工紙、ノート用紙、コピー用紙などの非塗工紙であっても良い。転写用基材81の厚さは、取り扱い性及び経済性の観点から通常6〜100μm程度、好ましくは10〜30μm程度とするのがよい。従って、転写用基材81としては、安価で入手が容易な高分子フィルムが好ましく、ポリエチレンテレフタレート等がより好ましい。   Examples of the transfer base material 81 include polyimide, polyethylene terephthalate, polyparvanic acid aramid, polyamide (nylon), polysulfone, polyethersulfone, polyphenylene sulfide, polyether ether ketone, polyetherimide, polyarylate, and polyethylene naphthalate. And the like. Further, heat resistance of ethylene tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroperfluoroalkyl vinyl ether copolymer (PFA), polytetrafluoroethylene (PTFE), etc. Fluorine resin can also be used. Further, the transfer substrate 81 may be coated paper such as art paper, coated paper, lightweight coated paper, non-coated paper such as notebook paper, copy paper, etc. in addition to the polymer film. The thickness of the transfer substrate 81 is usually about 6 to 100 μm, preferably about 10 to 30 μm, from the viewpoints of handleability and economy. Therefore, the transfer substrate 81 is preferably a polymer film that is inexpensive and easily available, and more preferably polyethylene terephthalate.

図4に戻って、固体高分子形燃料電池の製造方法について説明を続ける。上述したように作製した触媒層形成用転写シート8を触媒層3が電解質膜に対面するように配置し(図4(a))、転写シート8の背面側から加熱プレスを施して触媒層3を電解質膜2に転写させて、転写シート8の転写用基材81を剥離する(図4(b))。作業性を考慮すると、触媒層3を電解質膜2の両面に同時に積層することが好ましいが片面ずつ触媒層3を形成することもできる。加熱プレスの加圧レベルは、転写不良を避けるために、通常0.5〜20MPa程度、好ましくは1〜10MPa程度がよい。また、この加圧操作の際に、転写不良を避けるために加圧面を加熱するのが好ましい。加熱温度は、電解質膜2の破損、変形等を避けるために、通常200℃以下、好ましくは150℃以下がよい。このように電解質膜2の両面に触媒層3を形成することで触媒層−電解質膜積層体10が形成される。 Returning to FIG. 4, the description of the method for producing the polymer electrolyte fuel cell will be continued. The transfer sheet 8 for forming a catalyst layer prepared as described above is arranged so that the catalyst layer 3 faces the electrolyte membrane 2 (FIG. 4A), and a heat press is applied from the back side of the transfer sheet 8 to apply the catalyst layer. 3 is transferred to the electrolyte membrane 2, and the transfer substrate 81 of the transfer sheet 8 is peeled off (FIG. 4B). In consideration of workability, it is preferable to simultaneously laminate the catalyst layer 3 on both surfaces of the electrolyte membrane 2, but the catalyst layer 3 can also be formed on each side. The pressure level of the heating press is usually about 0.5 to 20 MPa, preferably about 1 to 10 MPa in order to avoid transfer failure. Further, it is preferable to heat the pressing surface during this pressing operation in order to avoid transfer failure. The heating temperature is usually 200 ° C. or lower, preferably 150 ° C. or lower, in order to avoid damage or deformation of the electrolyte membrane 2. Thus, the catalyst layer-electrolyte membrane laminated body 10 is formed by forming the catalyst layer 3 on both surfaces of the electrolyte membrane 2.

次に、このようにして形成された触媒層−電解質膜積層体10に、補強膜4を取り付ける(図4(c))。この補強膜4の製造方法の一例について説明すると、まず、上述した材料からなるシート状のガスバリア層42を準備する。そして、上述した接着層43の材料を溶融した状態にし、これを溶融押し出し法によってガスバリア層42上に押し出し、接着層43をガスバリア層42上に形成することで補強膜4を作製する。   Next, the reinforcing membrane 4 is attached to the catalyst layer-electrolyte membrane laminate 10 thus formed (FIG. 4C). An example of a method for manufacturing the reinforcing film 4 will be described. First, a sheet-like gas barrier layer 42 made of the above-described material is prepared. Then, the material of the adhesive layer 43 described above is melted, extruded onto the gas barrier layer 42 by a melt extrusion method, and the adhesive layer 43 is formed on the gas barrier layer 42 to produce the reinforcing film 4.

以上のように作製した補強膜4を触媒層−電解質膜積層体10に接合させる(図4(c))。この工程について図6を参照しつつ詳細に説明する。図6は、触媒層−電解質膜積層体10に補強膜4を取り付ける工程を示した平面図である。図6に示すように、上述した材料からなる2枚の補強膜4を重ねて、1辺を残した残り3辺を互いに接着させる。これによって、2枚の補強膜4は、コ字状に接着部が形成されるとともに、左側の一辺が開口している袋体となる(図6(a))。なお、この接着方法は種々の公知の方法を採用することができ、例えば、高周波溶着や、熱風式溶着、熱板式溶着、インパルス式溶着、コテ式溶着、超音波溶着などによって接着させることができる。   The reinforcing membrane 4 produced as described above is joined to the catalyst layer-electrolyte membrane laminate 10 (FIG. 4C). This process will be described in detail with reference to FIG. FIG. 6 is a plan view showing a process of attaching the reinforcing membrane 4 to the catalyst layer-electrolyte membrane laminate 10. As shown in FIG. 6, the two reinforcing films 4 made of the above-described materials are overlapped, and the remaining three sides are left bonded to each other. As a result, the two reinforcing films 4 form a bag body in which an adhesive portion is formed in a U-shape and the left side is open (FIG. 6A). In addition, various well-known methods can be adopted as this bonding method, and for example, bonding can be performed by high-frequency welding, hot air welding, hot plate welding, impulse welding, iron welding, ultrasonic welding, or the like. .

補強膜4によって袋体を形成すると、次に、この袋体を構成する各補強膜4の中央部に易除去領域44を形成する(図6(b))。この易除去領域44は、触媒層3の中央部32とほぼ同じ大きさとする。なお、この易除去領域44とは、容易に取り除ける領域のことをいい、例えば、その外周縁にミシン目を入れることや、一部だけ残して切込みを入れること等によって形成することができる。このように易除去領域44が形成された袋体に、その接着されていない左側から、触媒層−電解質膜積層体10を挿入して所定位置まで移動させる(図6(c))。この所定位置とは、触媒層−電解質膜積層体10の触媒層3の外周縁部31を除いた部分が易除去領域44に対向している位置のことをいう。   When the bag body is formed by the reinforcing film 4, an easy-removal region 44 is then formed at the center of each reinforcing film 4 constituting the bag body (FIG. 6B). The easy removal region 44 has substantially the same size as the central portion 32 of the catalyst layer 3. The easy removal region 44 refers to a region that can be easily removed. For example, the easy removal region 44 can be formed by making a perforation in the outer peripheral edge or making a cut while leaving only a part. Thus, the catalyst layer-electrolyte membrane laminated body 10 is inserted into the bag body in which the easy-removal region 44 is formed from the left side where it is not bonded, and moved to a predetermined position (FIG. 6C). This predetermined position refers to a position where a portion of the catalyst layer-electrolyte membrane laminate 10 excluding the outer peripheral edge 31 of the catalyst layer 3 faces the easy removal region 44.

触媒層−電解質膜積層体10を所定位置まで移動させた後、易除去領域44の外周縁のミシン目を切断して易除去領域44を各補強膜4から取り外すことで、各補強膜4の中央部に開口部41が形成される(図6(d))。このように易除去領域44が各補強膜4から取り外されて開口部41が形成されると、触媒層−電解質膜積層体10の触媒層3が外周縁部31を除いて各開口部41から露出した状態となる。そして、この状態で補強膜4の接着されていなかった残りの部分を公知の方法で接着させることで、補強膜4は、触媒層−電解質膜積層体10の触媒層3の外周縁部31や、電解質膜2の外周縁部21に接着するとともに、補強膜4同士でも接着する。以上の工程によって、補強膜付き触媒層−電解質膜積層体が完成する(図6(e)、図4(c))。   After moving the catalyst layer-electrolyte membrane laminate 10 to a predetermined position, the perforation at the outer periphery of the easy-removal region 44 is cut and the easy-removal regions 44 are removed from the respective reinforcing membranes 4. An opening 41 is formed at the center (FIG. 6D). As described above, when the easy removal regions 44 are removed from the respective reinforcing membranes 4 and the openings 41 are formed, the catalyst layers 3 of the catalyst layer-electrolyte membrane laminate 10 are removed from the respective openings 41 except for the outer peripheral edge 31. It will be exposed. In this state, the remaining portion of the reinforcing film 4 that has not been bonded is bonded by a known method, so that the reinforcing film 4 has the outer peripheral edge 31 of the catalyst layer 3 of the catalyst layer-electrolyte membrane laminate 10 or While adhering to the outer peripheral edge 21 of the electrolyte membrane 2, the reinforcing membranes 4 are also adhered to each other. The catalyst layer-electrolyte membrane laminate with a reinforcing membrane is completed through the above steps (FIGS. 6E and 4C).

図4に戻って、固体高分子形燃料電池1の製造方法の説明を続ける。上述した補強膜付き触媒層−電解質膜積層体の開口部41から露出している触媒層3の中央部32上に、導電性多孔質基材5を熱圧着により積層形成して、補強膜付き膜電極接合体が完成する(図4(d))。そして、触媒層3及び導電性多孔質基材5からなる電極Eの周囲を囲むように補強膜4上にガスケット6を配置する。続いて、ガス流路71が導電性多孔質基材5と対向するよう、セパレータ7を導電性多孔質基材5及びガスケット6上に配置する。最後に導電性多孔質基材5とセパレータ7とが電気的に接続するようにセパレータ7で膜電極接合体を挟持することによって、固体高分子形燃料電池1が完成する(図4(e))。   Returning to FIG. 4, the description of the method for producing the polymer electrolyte fuel cell 1 will be continued. A conductive porous substrate 5 is laminated by thermocompression bonding on the central portion 32 of the catalyst layer 3 exposed from the opening 41 of the catalyst layer-electrolyte membrane laminate described above, and the reinforcement membrane is attached. A membrane electrode assembly is completed (FIG. 4D). And the gasket 6 is arrange | positioned on the reinforcement film | membrane 4 so that the circumference | surroundings of the electrode E which consists of the catalyst layer 3 and the electroconductive porous base material 5 may be enclosed. Subsequently, the separator 7 is disposed on the conductive porous substrate 5 and the gasket 6 so that the gas flow path 71 faces the conductive porous substrate 5. Finally, the polymer electrode fuel cell 1 is completed by sandwiching the membrane electrode assembly with the separator 7 so that the conductive porous substrate 5 and the separator 7 are electrically connected (FIG. 4E). ).

以上のように、本実施形態では、補強膜4の内周縁部によって覆われる触媒層3の外周縁部31には触媒が含まれていない。このため、触媒層3の外周縁部に過酸化水素が溶解された生成水が滞留しても、過酸化水素はラジカル分解せず、ひいては補強膜を攻撃して補強膜を剥離させることを防止することができる。   As described above, in the present embodiment, the catalyst is not included in the outer peripheral edge 31 of the catalyst layer 3 covered by the inner peripheral edge of the reinforcing film 4. For this reason, even if the generated water in which hydrogen peroxide is dissolved stays at the outer peripheral edge of the catalyst layer 3, the hydrogen peroxide is not radically decomposed, thereby preventing the reinforcing film from being peeled off by attacking the reinforcing film. can do.

以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。例えば、上記触媒層3の外周縁部31と補強膜4の内周縁部との間にわたって延びる繊維状物質をさらに備えてもよい。この繊維状物質のアンカー効果によって、触媒層3の外周縁部31と補強膜4との密着性を向上させることができる。固体高分子形燃料電池1を製造する際は、繊維状物質は、触媒層3の外周縁部31に用いられる第2の触媒ペーストに添加させたり、もしくは接着層43内に添加することもできる。繊維状物質の材質としては金属、無機、有機高分子などの使用が可能である。具体例としてマグネシウム合金やステンレスやチタンなどの金属繊維、気相成長法炭素繊維(VGCF(登録商標))、カーボンナノチューブ、ワイヤーカップ、ワイヤーウォールなどの炭素繊維やガラス繊維などの無機繊維や無機ウィスカー、その他ポリエステルやポリアミドなどの人工高分子、綿や絹などの動物・植物繊維やウォラストナイトなどの天然繊維、セルロースやデキストランなどの多糖類やコラーゲンやセリシンそしてアルブミンなどポリペプチドを用いた再生繊維およびこれらの誘導体、複合体が挙げられる。中でも、好ましい繊維状物質としてはVGCF、ガラス繊維、ステンレス金属繊維が挙げられる。これらの繊維は、1種又は2種以上を使用することができる。繊維径は限定的でなく、平均が50〜400nm、好ましくは100〜250nm程度とすればよい。繊維長も限定的でなく、平均が5〜500μm、好ましくは10〜200μm程度とすればよい。なお、繊維の繊維径、繊維長は、走査型電子顕微鏡(SEM)等により測定した画像等により測定できる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to these, A various change is possible unless it deviates from the meaning of this invention. For example, a fibrous material extending between the outer peripheral edge 31 of the catalyst layer 3 and the inner peripheral edge of the reinforcing membrane 4 may be further provided. Due to the anchor effect of the fibrous substance, the adhesion between the outer peripheral edge 31 of the catalyst layer 3 and the reinforcing film 4 can be improved. When the polymer electrolyte fuel cell 1 is manufactured, the fibrous material can be added to the second catalyst paste used for the outer peripheral edge 31 of the catalyst layer 3 or can be added to the adhesive layer 43. . As the material of the fibrous substance, metal, inorganic, organic polymer, etc. can be used. Specific examples include inorganic fibers and inorganic whiskers such as magnesium fibers, metal fibers such as stainless steel and titanium, vapor grown carbon fibers (VGCF (registered trademark)), carbon nanotubes, wire cups, wire walls, and other carbon fibers and glass fibers. , Other artificial polymers such as polyester and polyamide, animal and plant fibers such as cotton and silk, natural fibers such as wollastonite, polysaccharides such as cellulose and dextran, and regenerated fibers using polypeptides such as collagen, sericin and albumin And derivatives and complexes thereof. Among these, preferable fibrous materials include VGCF, glass fiber, and stainless metal fiber. These fibers can use 1 type (s) or 2 or more types. The fiber diameter is not limited, and the average may be 50 to 400 nm, preferably about 100 to 250 nm. The fiber length is not limited, and the average may be 5 to 500 μm, preferably about 10 to 200 μm. In addition, the fiber diameter and fiber length of the fiber can be measured by an image measured with a scanning electron microscope (SEM) or the like.

また、上記実施形態では、導電性多孔質基材5は、補強膜4の開口部41内から露出した触媒層上に形成されているが、図8に示すように、導電性多孔質基材5を補強膜4の開口部41よりも大きく形成し、外周縁部が補強膜4の内周縁部上に乗り上げるように導電性多孔質基材5を設置することもできる。   Moreover, in the said embodiment, although the electroconductive porous base material 5 is formed on the catalyst layer exposed from the inside of the opening part 41 of the reinforcement film | membrane 4, as shown in FIG. 5 can be formed larger than the opening 41 of the reinforcing membrane 4, and the conductive porous substrate 5 can be installed so that the outer peripheral edge runs on the inner peripheral edge of the reinforcing membrane 4.

また、上記実施形態では、補強膜4を一旦、袋体にして、触媒層−電解質膜積層体10を挿入するという製造方法を採用しているが、特にこれに限定されるものではない。例えば、触媒層−電解質膜積層体10の両面に、予め開口部41が形成された補強膜4を、接着層43が触媒層−電解質膜積層体10を向くようにそれぞれ配置し、公知の接着方法などによって触媒層−電解質膜積層体10の両面に補強膜4を接着させて、補強膜付き触媒層−電解質膜積層体を作製することもできる。   Moreover, in the said embodiment, although the manufacturing method of once making the reinforcement membrane 4 into a bag body and inserting the catalyst layer-electrolyte membrane laminated body 10 is employ | adopted, it is not specifically limited to this. For example, the reinforcing film 4 in which the opening 41 is formed in advance on both surfaces of the catalyst layer-electrolyte membrane laminate 10 is disposed so that the adhesive layer 43 faces the catalyst layer-electrolyte membrane laminate 10, and the known adhesion is performed. The reinforcing film 4 may be adhered to both surfaces of the catalyst layer-electrolyte membrane laminate 10 by a method or the like to produce a catalyst layer-electrolyte membrane laminate with a reinforcing membrane.

また、上記実施形態では、補強膜4は、ガスバリア層42と接着層43の2層から構成されているが、3層以上であってもよい。例えば、第2の接着層をさらに設け、接着層43,ガスバリア層42,第2の接着層という3層構造とすることができる。この第2の接着層はガスケットと接着するように構成されていることが好ましい。   Moreover, in the said embodiment, although the reinforcement film | membrane 4 is comprised from two layers, the gas barrier layer 42 and the contact bonding layer 43, three or more layers may be sufficient. For example, a second adhesive layer may be further provided to form a three-layer structure including an adhesive layer 43, a gas barrier layer 42, and a second adhesive layer. The second adhesive layer is preferably configured to adhere to the gasket.

また、上記実施形態では、アノード及びカソードの両方の触媒層3の外周縁部31が触媒を含んでいないが、アノード側の触媒層3の外周縁部31は触媒を含んでいてもよい。   In the above embodiment, the outer peripheral edge 31 of both the anode and cathode catalyst layers 3 does not contain a catalyst, but the outer peripheral edge 31 of the anode-side catalyst layer 3 may contain a catalyst.

また、上記実施形態では、固体高分子形燃料電池1を構成する電解質膜2や触媒層3、導電性多孔質基材5など全て平面視矩形状として説明したが、特に形状は限定されるものではなく、例えば平面視円形状とすることもできる。   In the above embodiment, the electrolyte membrane 2, the catalyst layer 3, and the conductive porous substrate 5 constituting the solid polymer fuel cell 1 are all described as a rectangular shape in plan view, but the shape is particularly limited. Instead, for example, a circular shape in plan view can be used.

以下に実施例を示して、本発明をさらに具体的に説明する。なお、本発明は、下記実施例に限定されるものではない。   The present invention will be described more specifically with reference to the following examples. In addition, this invention is not limited to the following Example.

(実施例1)
電解質膜2は、63×63mmの大きさに切断された膜厚53μmのNRE212CS(Dupont社製)を使用した。
Example 1
As the electrolyte membrane 2, NRE212CS (manufactured by Dupont) having a film thickness of 53 μm cut to a size of 63 × 63 mm was used.

次に、触媒層形成用転写シート8を次の要領で作製した(図5参照)。まず、白金触媒担持カーボン(白金担持量:45.7wt%、田中貴金属社製、TEC10E50E)2gに、1−ブタノール10g、3−ブタノール10g、フッ素樹脂(5wt%ナフィオンバインダー、デュポン社製)20g及び水6gを加え、これらを分散機にて攪拌混合することにより、第1の触媒ペーストを調製した。また、炭素粒子(ファーネスブラック(バルカンxc72R、キャボット社製))2gに、1−ブタノール10g、3−ブタノール10g、フッ素樹脂(5wt%ナフィオンバインダー、デュポン社製)20g及び水6gを加え、これらを分散機にて攪拌混合することにより、第2の触媒ペーストを調製した。   Next, a transfer sheet 8 for forming a catalyst layer was produced in the following manner (see FIG. 5). First, 2 g of platinum catalyst-supported carbon (platinum supported amount: 45.7 wt%, manufactured by Tanaka Kikinzoku Co., Ltd., TEC10E50E), 1 g of 1-butanol, 10 g of 3-butanol, 20 g of a fluororesin (5 wt% Nafion binder, manufactured by DuPont) and A first catalyst paste was prepared by adding 6 g of water and stirring and mixing them with a disperser. Moreover, 10 g of 1-butanol, 10 g of 3-butanol, 20 g of a fluororesin (5 wt% Nafion binder, manufactured by DuPont) and 6 g of water are added to 2 g of carbon particles (Furness Black (Vulcan xc72R, manufactured by Cabot)). A second catalyst paste was prepared by stirring and mixing in a disperser.

次に、転写用基材81としてポリエステルフィルム(東レ製、X44、膜厚25μm)を準備し、この転写用基材81上に50×50mmの開口部91aを持つ第1のマスク9aを載せた(図5(a))。そして、触媒層乾燥後の白金重量が0.4mg/cmとなるように第1の触媒ペーストを第1のマスク9aの開口部91aを介して転写用基材81上に塗工、乾燥し、触媒層3の中央部32を作製した(図5(b))。 Next, a polyester film (X44, film thickness 25 μm) was prepared as a transfer substrate 81, and a first mask 9a having an opening 91a of 50 × 50 mm was placed on the transfer substrate 81. (FIG. 5 (a)). Then, the first catalyst paste is applied onto the transfer substrate 81 through the opening 91a of the first mask 9a and dried so that the platinum weight after drying the catalyst layer is 0.4 mg / cm 2. Then, a central portion 32 of the catalyst layer 3 was produced (FIG. 5B).

続いて、第1の触媒ペーストによって形成した触媒層3の中央部32と同じ大きさの第2のマスク9bを触媒層3の中央部32上に重なるように載せ(図5(c))、乾燥後の高さが同じとなるように第2の触媒ペーストを転写用基材81上に塗工、乾燥し、触媒層3の外周縁部31を形成した(図5(d))。このように作製した触媒層形成用転写シート8を触媒層外周縁部が5mm幅となるように60×60mmの大きさに切断して触媒層形成用転写シート8を完成させた(図5(e))。   Subsequently, a second mask 9b having the same size as the central part 32 of the catalyst layer 3 formed by the first catalyst paste is placed so as to overlap the central part 32 of the catalyst layer 3 (FIG. 5C), The second catalyst paste was applied onto the transfer substrate 81 so as to have the same height after drying, and dried to form the outer peripheral edge 31 of the catalyst layer 3 (FIG. 5D). The catalyst layer forming transfer sheet 8 thus prepared was cut into a size of 60 × 60 mm so that the outer peripheral edge of the catalyst layer had a width of 5 mm, thereby completing the catalyst layer forming transfer sheet 8 (FIG. 5 ( e)).

この切断後の触媒層形成用転写シート8を電解質膜2の両面それぞれに触媒層3が電解質膜2側を向くように中心を合わせて配置した。そして、135℃、5.0MPa、150秒の条件で熱プレスすることで、電解質膜2の両面に触媒層3を形成し、触媒層−電解質膜積層体10を作製した。なお、触媒層3の厚さは外周縁部31,中央部32ともに20μmである。   The cut catalyst layer forming transfer sheet 8 after the cutting was placed on both surfaces of the electrolyte membrane 2 so that the center of the catalyst layer 3 was directed to the electrolyte membrane 2 side. And the catalyst layer 3 was formed in both surfaces of the electrolyte membrane 2 by heat-pressing on conditions of 135 degreeC, 5.0 Mpa, and 150 second, and the catalyst layer-electrolyte membrane laminated body 10 was produced. The thickness of the catalyst layer 3 is 20 μm for both the outer peripheral edge portion 31 and the central portion 32.

続いて、補強膜4を作製した。補強膜4のガスバリア層42として、二軸延伸ポリエチレンナフタレート(帝人社製、テオネックス、膜厚12μm)を使用した。このスバリア層42上に、溶融押出し法により、不飽和カルボン酸グラフト変性ポリプロピレンを30μmの厚さで押し出し、接着層43を形成した。この補強膜4を80×80mmの大きさに切断し、その中央部に50×50mmの大きさの開口部41を形成した。そして、補強膜4を開口部41が触媒層3の中央部32に重なるように触媒層−電解質膜積層体10の両面に配置し、130℃、1.0MPa、30秒の条件で熱プレスすることで補強膜4を触媒層−電解質膜積層体10に溶着し、補強膜付き触媒層−電解質膜積層体を作製した。 Subsequently, the reinforcing film 4 was produced. As the gas barrier layer 42 of the reinforcing film 4, biaxially stretched polyethylene naphthalate (manufactured by Teijin Ltd., Teonex, film thickness: 12 μm) was used. On the gas gas barrier layer 42, by a melt extrusion method, an unsaturated carboxylic acid graft-modified polypropylene extruded at a thickness of 30 [mu] m, to form an adhesive layer 43. The reinforcing film 4 was cut to a size of 80 × 80 mm, and an opening 41 having a size of 50 × 50 mm was formed at the center. Then, the reinforcing membrane 4 is disposed on both surfaces of the catalyst layer-electrolyte membrane laminate 10 so that the opening 41 overlaps the central portion 32 of the catalyst layer 3, and is hot pressed under conditions of 130 ° C., 1.0 MPa, 30 seconds. Thus, the reinforcing membrane 4 was welded to the catalyst layer-electrolyte membrane laminate 10 to prepare a catalyst layer-electrolyte membrane laminate with a reinforcing membrane.

さらに続いて、開口部41から露出している触媒層3上に、導電性多孔質基材5として、49×49mmの大きさに切断されたカーボンペーパー(東レ社製、TGP−H−090、厚さ280μm)を積層し、補強膜付き膜電極接合体を形成した。   Subsequently, carbon paper (TGP-H-090, manufactured by Toray Industries, Inc., cut into a size of 49 × 49 mm as the conductive porous substrate 5 on the catalyst layer 3 exposed from the opening 41. A membrane electrode assembly with a reinforcing membrane was formed.

(実施例2)
実施例2として、補強膜4の材料が異なる点、導電性多孔質基材5の大きさが異なる点以外は、上述した実施例1と同一の材料、寸法、製造方法で、補強膜付き電解質膜−電極接合体を作製した。
(Example 2)
As Example 2, the electrolyte with the reinforcing film is the same material, dimensions, and manufacturing method as in Example 1 except that the material of the reinforcing film 4 is different and the size of the conductive porous substrate 5 is different. A membrane-electrode assembly was produced.

なお、補強膜4の材料は、ガスバリア層42として、二軸延伸ポリエチレンテレフタレート(帝人社製、テフレックス、膜厚20μm)を使用した。このポリエチレンテレフタレート上に、溶融押出し法により、不飽和カルボン酸グラフト変性ポリエチレンを30μmの厚さで押し出し、接着層43を形成した。   In addition, the material of the reinforcing film 4 was a biaxially stretched polyethylene terephthalate (manufactured by Teijin Ltd., Teflex, film thickness 20 μm) as the gas barrier layer 42. On this polyethylene terephthalate, unsaturated carboxylic acid graft-modified polyethylene was extruded at a thickness of 30 μm by melt extrusion to form an adhesive layer 43.

また、導電性多孔質基材5として、50×50mmの大きさに切断されたカーボンペーパー(東レ社製、TGP−H−090、厚さ280μm)を積層し、補強膜付き膜電極接合体を形成した。
(実施例3)
電解質膜2の大きさが異なる点、触媒層3の外周縁部31に用いられる第2の触媒ペーストが炭素繊維を含む点、及び補強膜4に用いる材料を実施例2と同じにした点以外は、上述した実施例1と同一の材料、寸法、製造方法で補強膜付き膜電極接合体を作製した。なお、第2の触媒ペーストは、炭素粒子(ファーネスブラック(バルカンxc72R、キャボット社製))1.5gに、VGCF(標準品)(昭和電工(株)製)0.5g、1−ブタノール10g、3−ブタノール10g、フッ素樹脂(5wt%ナフィオンバインダー、デュポン社製)20g及び水6gを加え、これらを分散機にて攪拌混合することにより、調製した。なお、電解質膜2の大きさは60mm×60mmとした。
Also, as the conductive porous substrate 5, carbon paper (TGP-H-090, thickness: 280 μm) cut to a size of 50 × 50 mm is laminated, and a membrane electrode assembly with a reinforcing film is laminated. Formed.
(Example 3)
Except that the size of the electrolyte membrane 2 is different, that the second catalyst paste used for the outer peripheral edge 31 of the catalyst layer 3 contains carbon fibers, and that the material used for the reinforcing membrane 4 is the same as that of the second embodiment. Produced a membrane electrode assembly with a reinforcing membrane by the same material, dimensions and manufacturing method as in Example 1 described above. The second catalyst paste is 1.5 g of carbon particles (furnace black (Vulcan xc72R, manufactured by Cabot)), 0.5 g of VGCF (standard product) (manufactured by Showa Denko KK), 10 g of 1-butanol, It was prepared by adding 10 g of 3-butanol, 20 g of a fluororesin (5 wt% Nafion binder, manufactured by DuPont) and 6 g of water, and stirring and mixing them with a disperser. The size of the electrolyte membrane 2 was 60 mm × 60 mm.

(実施例4)
触媒層3の外周縁部31に用いられる第2の触媒ペーストが金属繊維を含む点以外は、上述した実施例1と同一の材料、寸法、製造方法で補強膜付き膜電極接合体を作製した。なお、第2の触媒ペーストは、炭素粒子(ファーネスブラック(バルカンxc72R、キャボット社製))1.5gに、X-SMF300UE-EP(JFEテクノリサーチ(株)製)0.5g、1−ブタノール10g、3−ブタノール10g、フッ素樹脂(5wt%ナフィオンバインダー、デュポン社製)20g及び水6gを加え、これらを分散機にて攪拌混合することにより、調製した。
Example 4
A membrane electrode assembly with a reinforcing membrane was produced with the same material, dimensions and production method as in Example 1 except that the second catalyst paste used for the outer peripheral edge 31 of the catalyst layer 3 contains metal fibers. . The second catalyst paste is 1.5 g of carbon particles (furness black (Vulcan xc72R, manufactured by Cabot)), 0.5 g of X-SMF300UE-EP (manufactured by JFE Techno-Research Corporation), 10 g of 1-butanol. 10 g of 3-butanol, 20 g of a fluororesin (5 wt% Nafion binder, manufactured by DuPont) and 6 g of water were added, and these were stirred and mixed in a disperser.

(実施例5)
触媒層3の外周縁部31に用いられる第2の触媒ペーストがガラス繊維を含む点、及び補強膜4の材料として実施例2と同一のものを使用した点以外は、上述した実施例1と同一の材料、寸法、製造方法で補強膜付き膜電極接合体を作製した。なお、第2の触媒ペーストは、炭素粒子(ファーネスブラック(バルカンxc72R、キャボット社製))1.5gに、石英ウール(スーパーファイン(繊維太さ0.5-3μm) 株式会社大興製作所製)0.5g、1−ブタノール10g、3−ブタノール10g、フッ素樹脂(5wt%ナフィオンバインダー、デュポン社製)20g及び水6gを加え、これらを分散機にて攪拌混合することにより、調製した。
(Example 5)
Except for the point that the second catalyst paste used for the outer peripheral edge 31 of the catalyst layer 3 contains glass fiber and the same material as that of Example 2 was used as the material of the reinforcing film 4, Example 1 described above and A membrane electrode assembly with a reinforcing membrane was produced using the same material, dimensions and manufacturing method. The second catalyst paste is composed of 1.5 g of carbon particles (furness black (Vulcan xc72R, manufactured by Cabot)) and quartz wool (super fine (fiber thickness: 0.5-3 μm), manufactured by Daiko Seisakusho Co., Ltd.). It was prepared by adding 0.5 g, 10 g of 1-butanol, 10 g of 3-butanol, 20 g of a fluororesin (5 wt% Nafion binder, manufactured by DuPont) and 6 g of water, and stirring and mixing them with a disperser.

(評価方法)
実施例1〜5の補強膜付き膜電極接合体について、ガスケット6及びセパレータ7を設置して固体高分子形燃料電池をそれぞれ作製して負荷変動サイクル試験を実施し、その結果を表1に示した。このときの測定条件は、セル温度80℃、燃料利用率70%、酸化剤利用率40%、加湿温度50℃とした。また、負荷変動サイクル試験は、電流密度0.3A/cm2にて1分間発電した後、電流密度0.01A/cm2にて1分間発電するサイクルを繰り返した。この負荷変動サイクル試験の結果、実施例1、2の燃料電池セルは1000時間、実施例3〜5の燃料電池セルは1500時間経過しても電圧が低下することはなかった。また、この負荷変動サイクル試験後に電解質膜を確認したところ、全ての実施例において電解質膜の破損は見られなった。
(Evaluation method)
About the membrane electrode assembly with a reinforcement film of Examples 1-5, the gasket 6 and the separator 7 were installed, the polymer electrolyte fuel cell was produced, respectively, and the load fluctuation cycle test was implemented, and the result is shown in Table 1. It was. The measurement conditions at this time were a cell temperature of 80 ° C., a fuel utilization rate of 70%, an oxidant utilization rate of 40%, and a humidification temperature of 50 ° C. In the load fluctuation cycle test, a cycle in which power was generated at a current density of 0.3 A / cm 2 for 1 minute and then power was generated at a current density of 0.01 A / cm 2 for 1 minute was repeated. As a result of the load fluctuation cycle test, the voltage did not decrease even after 1000 hours of the fuel cells of Examples 1 and 2 and 1500 hours of the fuel cells of Examples 3 to 5. As a result of observation of the electrolyte membrane after the load change cycle test, breakage of the electrolyte membrane in all examples were Tsu or such was observed.

Figure 0005791222
Figure 0005791222

1 固体高分子形燃料電池
2 イオン伝導性高分子電解質膜
3 触媒層
31 外周縁部
4 補強膜
41 開口部
5 導電性多孔質基材
6 ガスケット
7 セパレータ
10 触媒層−電解質膜積層体
20 膜電極接合体
DESCRIPTION OF SYMBOLS 1 Solid polymer fuel cell 2 Ion conductive polymer electrolyte membrane 3 Catalyst layer 31 Outer peripheral edge 4 Reinforcement membrane 41 Opening 5 Conductive porous substrate 6 Gasket 7 Separator 10 Catalyst layer-electrolyte membrane laminate 20 Membrane electrode Zygote

Claims (8)

イオン伝導性高分子電解質膜と、
前記電解質膜の両面に形成され、炭素粒子、イオン伝導性高分子電解質、及び触媒を含む触媒層と、
中央に開口部を有しており、内周縁部が前記触媒層の外周縁部上に接着するよう、前記電解質膜及び触媒層から構成された触媒層−電解質膜積層体の両面に接着された補強膜と、を備え、
前記触媒層は、前記外周縁部に触媒を含まない、補強膜付き触媒層−電解質膜積層体。
An ion conductive polymer electrolyte membrane;
A catalyst layer formed on both surfaces of the electrolyte membrane and containing carbon particles, an ion conductive polymer electrolyte, and a catalyst;
It has an opening in the center, and was adhered to both surfaces of the catalyst layer-electrolyte membrane laminate composed of the electrolyte membrane and the catalyst layer so that the inner peripheral edge was adhered onto the outer peripheral edge of the catalyst layer. A reinforcing membrane,
The catalyst layer is a catalyst layer-electrolyte membrane laminate with a reinforcing film that does not contain a catalyst in the outer peripheral edge portion.
前記触媒層は、前記電解質膜の外周縁部を除いて前記電解質膜上に形成されており、前記補強膜は、前記電解質膜の外周縁部上に接着している、請求項1に記載の補強膜付き触媒層−電解質膜積層体。 The said catalyst layer is formed on the said electrolyte membrane except the outer periphery part of the said electrolyte membrane, The said reinforcement film | membrane is adhere | attached also on the outer periphery part of the said electrolyte membrane. A catalyst layer-electrolyte membrane laminate with a reinforcing membrane. 前記補強膜は、前記電解質膜よりも一回り大きく形成されており、前記電解質膜の外側で前記補強膜の外周縁部同士が接着している、請求項1または2に記載の補強膜付き触媒層−電解質膜積層体。 The catalyst with a reinforcing membrane according to claim 1 or 2, wherein the reinforcing membrane is formed to be slightly larger than the electrolyte membrane, and the outer peripheral edges of the reinforcing membrane are bonded to each other outside the electrolyte membrane. Layer-electrolyte membrane laminate. 前記触媒層の外周縁部と前記補強膜の内周縁部との間にわたって延びる繊維状物質をさらに備えた、請求項1〜3のいずれかに記載の補強膜付き触媒層−電解質膜積層体。   The catalyst layer-electrolyte membrane laminate with a reinforcing film according to any one of claims 1 to 3, further comprising a fibrous substance extending between an outer peripheral edge of the catalyst layer and an inner peripheral edge of the reinforcing membrane. 前記補強膜は、前記触媒層と接着する接着層と、燃料ガス及び酸化剤ガスの透過を防止するガスバリア層と、を有する請求項1〜4のいずれかに記載の補強膜付き触媒層−電解質膜積層体。   The catalyst layer-electrolyte with a reinforcing film according to any one of claims 1 to 4, wherein the reinforcing film has an adhesive layer that adheres to the catalyst layer, and a gas barrier layer that prevents permeation of fuel gas and oxidant gas. Membrane laminate. 請求項1〜5のいずれかに記載の補強膜付き触媒層−電解質膜積層体と、
前記各触媒層上に形成された導電性多孔質基材と、
を備えた、補強膜付き膜電極接合体。
A catalyst layer-electrolyte membrane laminate with a reinforcing membrane according to any one of claims 1 to 5,
A conductive porous substrate formed on each of the catalyst layers;
A membrane electrode assembly with a reinforcing membrane, comprising:
前記導電性多孔質基材は、前記各補強膜の開口部から露出する触媒層上に形成された、請求項6に記載の補強膜付き膜電極接合体。   The membrane electrode assembly with a reinforcing membrane according to claim 6, wherein the conductive porous substrate is formed on a catalyst layer exposed from an opening of each of the reinforcing membranes. 請求項6又は7に記載の補強膜付き膜電極接合体と、
前記各補強膜上に設置されたガスケットと、
前記ガスケットが設置された補強膜付き膜電極接合体を両側から挟持するよう設置されたセパレータと、
を備えた、固体高分子形燃料電池。
A membrane electrode assembly with a reinforcing membrane according to claim 6 or 7,
A gasket installed on each reinforcing membrane;
A separator installed so as to sandwich the membrane electrode assembly with a reinforcing membrane provided with the gasket from both sides;
A solid polymer fuel cell comprising:
JP2009070023A 2009-03-23 2009-03-23 Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane electrode assembly with reinforcing membrane, and polymer electrolyte fuel cell Expired - Fee Related JP5791222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009070023A JP5791222B2 (en) 2009-03-23 2009-03-23 Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane electrode assembly with reinforcing membrane, and polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009070023A JP5791222B2 (en) 2009-03-23 2009-03-23 Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane electrode assembly with reinforcing membrane, and polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2010225364A JP2010225364A (en) 2010-10-07
JP5791222B2 true JP5791222B2 (en) 2015-10-07

Family

ID=43042350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009070023A Expired - Fee Related JP5791222B2 (en) 2009-03-23 2009-03-23 Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane electrode assembly with reinforcing membrane, and polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP5791222B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012020975A1 (en) * 2012-10-25 2014-04-30 Volkswagen Aktiengesellschaft Membrane electrode assembly, fuel cell with such and a motor vehicle with the fuel cell

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3052536B2 (en) * 1992-02-26 2000-06-12 富士電機株式会社 Solid polymer electrolyte fuel cell
JP4889168B2 (en) * 2001-08-23 2012-03-07 大阪瓦斯株式会社 Polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2004047230A (en) * 2002-07-10 2004-02-12 Asahi Glass Co Ltd Solid polymer electrolyte fuel cell
GB0319780D0 (en) * 2003-08-22 2003-09-24 Johnson Matthey Plc Membrane electrode assembly
US7816058B2 (en) * 2004-11-05 2010-10-19 Gm Global Technology Operations, Inc. Split architectures for MEA durability
JP2006338939A (en) * 2005-05-31 2006-12-14 Nissan Motor Co Ltd Electrolyte membrane-electrode assembly
JP2007005245A (en) * 2005-06-27 2007-01-11 Toyota Motor Corp Fuel cell and its manufacturing method
JP2008305674A (en) * 2007-06-07 2008-12-18 Toyota Motor Corp Fuel cell

Also Published As

Publication number Publication date
JP2010225364A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
US8512907B2 (en) Membrane catalyst layer assembly with reinforcing films, membrane electrode assembly with reinforcing films, and polymer electrolyte fuel cells
JP5552766B2 (en) Edge-sealed catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane assembly, polymer electrolyte fuel cell, catalyst layer-electrolyte membrane laminate production method, and edge-sealed catalyst layer-electrolyte membrane laminate production method
JP5309518B2 (en) Electrolyte membrane reinforcing sandwich, method for producing electrolyte membrane-catalyst layer assembly with electrolyte membrane reinforcing sandwich, and method for producing solid polymer fuel cell
JP5326250B2 (en) Polymer electrolyte fuel cell structure and polymer electrolyte fuel cell using the same
JP5338998B2 (en) Electrolyte membrane-electrode assembly and solid polymer fuel cell using the same
JP5332212B2 (en) Electrolyte membrane-catalyst layer assembly with gasket, electrolyte membrane-electrode assembly with gasket and solid polymer fuel cell using the same
JP5533134B2 (en) Catalyst layer-electrolyte membrane laminate, catalyst layer with edge seal-electrolyte membrane laminate, membrane-electrode assembly, membrane-electrode assembly with edge seal, and production method thereof
JP5277792B2 (en) Electrolyte membrane-electrode assembly with auxiliary membrane, and polymer electrolyte fuel cell using the same
JP6120674B2 (en) Solid polymer fuel cell and manufacturing method thereof
JP5533131B2 (en) Edge-sealed catalyst layer-electrolyte membrane laminate, edge-sealed membrane-electrode assembly, and polymer electrolyte fuel cell
JP5887692B2 (en) Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane-electrode assembly with reinforcing membrane, polymer electrolyte fuel cell, and production method thereof
JP5791222B2 (en) Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane electrode assembly with reinforcing membrane, and polymer electrolyte fuel cell
JP6024398B2 (en) REINFORCED CATALYST LAYER-ELECTROLYTE MEMBRANE LAMINATE, SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING REINFORCING CATALYST LAYER-ELECTROLYTE MEMBRANE
JP2011159458A (en) Catalyst layer-electrolyte film laminate, membrane-electrode assembly, polymer electrolyte fuel cell, and method of manufacturing catalyst layer-electrolyte film laminate
JP5577797B2 (en) Catalyst layer-electrolyte membrane laminate, membrane-electrode assembly including the same, and polymer electrolyte fuel cell
JP6085935B2 (en) REINFORCED CATALYST LAYER-ELECTROLYTE MEMBRANE LAMINATE, SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING REINFORCING CATALYST LAYER-ELECTROLYTE MEMBRANE
JP5544781B2 (en) Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane electrode assembly with reinforcing membrane, polymer electrolyte fuel cell, and reinforcing membrane
JP2009230964A (en) Catalyst layer transcription sheet, manufacturing method of electrolyte membrane-catalyst layer assembly using the same, manufacturing method of electrolyte membrane-electrode assembly, and manufacturing method of solid polymer fuel cell
JP5828613B2 (en) Catalyst layer with reinforcing membrane-electrolyte membrane laminate, electrode with reinforcing membrane-electrolyte membrane laminate, and polymer electrolyte fuel cell
JP2010021023A (en) Catalyst layer transfer sheet, method of manufacturing catalyst layer-electrolyte film laminate using same, method of manufacturing electrode-electrolyte film laminate, and method of manufacturing solid polymer fuel cell
JP2013101986A (en) Electrolytic film-catalyst layer assembly with reinforcement sheet
JP2010257930A (en) Catalyst layer-electrolyte film laminate with reinforcing membrane, membrane electrode assembly with reinforced membrane, and solid polymer fuel cell
JP2009231103A (en) Catalyst transfer sheet, manufacturing method of electrolyte membrane and catalyst layer assembly using sheet, manufacturing method of electrolyte membrane and electrode assembly, manufacturing method of electrode for polymer electrolyte fuel cell, and manufacturing method of polymer electrolyte fuel cell
JP5266734B2 (en) Electrolyte membrane-catalyst layer assembly with reinforcing sheet, electrolyte membrane-electrode assembly with reinforcing sheet, solid polymer fuel cell, and method for producing electrolyte membrane-catalyst layer assembly with reinforcing sheet
JP5581942B2 (en) Membrane-electrode assembly intermediate, polymer electrolyte fuel cell, and method for producing membrane-electrode assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140619

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140626

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150804

R150 Certificate of patent or registration of utility model

Ref document number: 5791222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees