JP5533134B2 - Catalyst layer-electrolyte membrane laminate, catalyst layer with edge seal-electrolyte membrane laminate, membrane-electrode assembly, membrane-electrode assembly with edge seal, and production method thereof - Google Patents

Catalyst layer-electrolyte membrane laminate, catalyst layer with edge seal-electrolyte membrane laminate, membrane-electrode assembly, membrane-electrode assembly with edge seal, and production method thereof Download PDF

Info

Publication number
JP5533134B2
JP5533134B2 JP2010077960A JP2010077960A JP5533134B2 JP 5533134 B2 JP5533134 B2 JP 5533134B2 JP 2010077960 A JP2010077960 A JP 2010077960A JP 2010077960 A JP2010077960 A JP 2010077960A JP 5533134 B2 JP5533134 B2 JP 5533134B2
Authority
JP
Japan
Prior art keywords
catalyst layer
electrolyte membrane
membrane
electrode assembly
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010077960A
Other languages
Japanese (ja)
Other versions
JP2011210588A (en
Inventor
宏年 坂元
秀紀 浅井
仁司 大谷
哲也 小尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2010077960A priority Critical patent/JP5533134B2/en
Publication of JP2011210588A publication Critical patent/JP2011210588A/en
Application granted granted Critical
Publication of JP5533134B2 publication Critical patent/JP5533134B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、触媒層−電解質膜積層体、エッジシール付き触媒層−電解質膜積層体、膜−電極接合体、エッジシール付き膜−電極接合体、およびこれらの製造方法に関するものである。   The present invention relates to a catalyst layer-electrolyte membrane laminate, a catalyst layer-electrolyte membrane laminate with an edge seal, a membrane-electrode assembly, a membrane-electrode assembly with an edge seal, and methods for producing them.

燃料電池は、電解質の両面に電極が配置され、水素と酸素の電気化学反応により発電する電池であり、発電時に発生するのは水のみである。このように従来の内燃機関と異なり、二酸化炭素等の環境負荷ガスを発生しないために次世代のクリーンエネルギーシステムとして普及が見込まれている。その中でも特に固体高分子形燃料電池は、作動温度が低く、電解質の抵抗が少ないことに加え、活性の高い触媒を用いるので小型でも高出力を得ることができ、家庭用コージェネレーションシステム等の用途として早期の実用化が見込まれている。   A fuel cell is a cell in which electrodes are arranged on both sides of an electrolyte and generates electricity by an electrochemical reaction between hydrogen and oxygen, and only water is generated during power generation. Thus, unlike the conventional internal combustion engine, it is expected to spread as a next-generation clean energy system because it does not generate environmental load gas such as carbon dioxide. In particular, polymer electrolyte fuel cells have a low operating temperature, low electrolyte resistance, and use a highly active catalyst, so they can achieve high output even in small sizes, and can be used for household cogeneration systems, etc. As soon as practical use is expected.

この固体高分子形燃料電池は、1つ1つ個別に製造することは時間が掛かり効率的ではないため、一般的に大量生産する際には以下のような製造方法によって製造されている。すなわち、まず大判の電解質膜を準備してその両面に大判の触媒層をそれぞれ配置し、大判の触媒層−電解質膜積層体を作製する。そして、この大判の触媒層−電解質膜積層体を所望の大きさに切断して複数の触媒層−電解質膜積層体を作製する(例えば特許文献1の段落「0014」参照)。   Since it is time-consuming and inefficient to manufacture each polymer electrolyte fuel cell individually, it is generally manufactured by the following manufacturing method when mass-produced. That is, first, a large electrolyte membrane is prepared, and a large catalyst layer is arranged on both sides of the large electrolyte membrane to produce a large catalyst layer-electrolyte membrane laminate. Then, the large catalyst layer-electrolyte membrane laminate is cut into a desired size to produce a plurality of catalyst layer-electrolyte membrane laminates (see, for example, paragraph “0014” of Patent Document 1).

特開2004−47230号公報JP 2004-47230 A

上述した方法では、切断された部分が触媒層−電解質膜積層体の外周面となるが、この外周面は、図16に示すように、電解質膜2と触媒層3との端面が面一となっている。このため、電解質膜2の両側に配置された触媒層3同士が接触して短絡する可能性があるといった問題がある。   In the method described above, the cut portion becomes the outer peripheral surface of the catalyst layer-electrolyte membrane laminate. As shown in FIG. 16, the outer peripheral surface is flush with the end surfaces of the electrolyte membrane 2 and the catalyst layer 3. It has become. For this reason, there exists a problem that the catalyst layers 3 arrange | positioned at the both sides of the electrolyte membrane 2 may contact and short-circuit.

そこで本発明は、短絡を防止することのできる触媒層−電解質膜積層体、エッジシール付き触媒層−電解質膜積層体、膜−電極接合体、エッジシール付き膜−電極接合体、およびこれらの製造方法を提供することを課題とする。   Therefore, the present invention provides a catalyst layer-electrolyte membrane laminate, an edge-sealed catalyst layer-electrolyte membrane laminate, a membrane-electrode assembly, an edge-sealed membrane-electrode assembly, and production thereof. It is an object to provide a method.

本発明に係る触媒層−電解質膜積層体は、電解質膜と、前記電解質膜の両面に配置された触媒層と、を備え、少なくとも1つの外周面は、前記電解質膜が平面視において前記各触媒層よりも大きくなるよう前記各触媒層から前記電解質膜に向かって傾斜している。   The catalyst layer-electrolyte membrane laminate according to the present invention includes an electrolyte membrane and catalyst layers disposed on both sides of the electrolyte membrane, and at least one outer peripheral surface of each catalyst in the plan view of the electrolyte membrane. The catalyst layers are inclined toward the electrolyte membrane so as to be larger than the layers.

この構成によれば、平面視において電解質膜が触媒層よりも大きくように触媒層−電解質膜積層体の外周面が傾斜しているため、各触媒層に挟まれた電解質膜が一番外方に飛び出した形状となっている。この電解質膜によって、触媒層同士が接触することが防止され、ひいては短絡を防止することができる。   According to this configuration, since the outer peripheral surface of the catalyst layer-electrolyte membrane laminate is inclined so that the electrolyte membrane is larger than the catalyst layer in plan view, the electrolyte membrane sandwiched between the catalyst layers is most outward. It has a protruding shape. The electrolyte membrane prevents the catalyst layers from coming into contact with each other, thereby preventing a short circuit.

本発明に係る第1の膜−電極接合体は、上述した触媒層−電解質膜積層体と、前記各触媒層上に配置された導電性多孔質基材と、を備えている。この膜−電極接合体は、上述した触媒層−電解質膜積層体を備えているため、触媒層同士が接触することを電解質膜によって防止することができ、ひいては短絡を防止することができる。   The 1st membrane-electrode assembly which concerns on this invention is equipped with the catalyst layer-electrolyte membrane laminated body mentioned above, and the electroconductive porous base material arrange | positioned on each said catalyst layer. Since this membrane-electrode assembly includes the catalyst layer-electrolyte membrane laminate described above, it is possible to prevent the catalyst layers from contacting each other by the electrolyte membrane, and thus to prevent a short circuit.

本発明に係るエッジシール付き触媒層−電解質膜積層体は、上述した触媒層−電解質膜積層体と、中央に開口部を有し、前記開口部から前記触媒層が露出するよう前記触媒層−電解質膜積層体の少なくとも一方面に接着したエッジシールと、を備えている。このエッジシール付き触媒層−電解質膜積層体も同様に上述した触媒層−電解質膜積層体を備えているため、触媒層同士が接触することを電解質膜によって防止することができ、ひいては短絡を防止することができる。   The catalyst layer with an edge seal-electrolyte membrane laminate according to the present invention has the catalyst layer-electrolyte membrane laminate described above, and the catalyst layer- having an opening in the center so that the catalyst layer is exposed from the opening. An edge seal adhered to at least one surface of the electrolyte membrane laminate. Since the catalyst layer-electrolyte membrane laminate with the edge seal similarly includes the catalyst layer-electrolyte membrane laminate described above, the catalyst membrane can prevent the catalyst layers from contacting each other, thereby preventing a short circuit. can do.

本発明に係る第1のエッジシール付き膜−電極接合体は、上記エッジシール付き触媒層−電解質膜積層体と、前記各触媒層上に配置された導電性多孔質基材と、を備えている。このエッジシール付き膜−電極接合体も同様に上述した触媒層−電解質膜積層体を備えているため、触媒層同士が接触することを電解質膜によって防止することができ、ひいては短絡を防止することができる。   A first membrane-electrode assembly with an edge seal according to the present invention comprises the above catalyst layer with an edge seal-electrolyte membrane laminate, and a conductive porous substrate disposed on each of the catalyst layers. Yes. Since this membrane-electrode assembly with edge seal is also provided with the above-described catalyst layer-electrolyte membrane laminate, it is possible to prevent the catalyst layers from contacting each other by the electrolyte membrane, thereby preventing a short circuit. Can do.

本発明に係る第2の膜−電極接合体は、電解質膜と、前記電解質膜の両面に配置された触媒層と、前記各触媒層上に配置された導電性多孔質基材と、を備え、少なくとも1つの外周面は、前記電解質膜が平面視において前記各触媒層及び前記各導電性多孔質基材よりも大きくなるよう前記各触媒層から前記電解質膜に向かって傾斜している。   A second membrane-electrode assembly according to the present invention includes an electrolyte membrane, a catalyst layer disposed on both surfaces of the electrolyte membrane, and a conductive porous substrate disposed on each catalyst layer. The at least one outer peripheral surface is inclined from each catalyst layer toward the electrolyte membrane so that the electrolyte membrane is larger than each catalyst layer and each conductive porous substrate in plan view.

この構成によれば、平面視において電解質膜が触媒層や導電性多孔質基材よりも大きくように膜−電極接合体の外周面が傾斜しているため、触媒層及び導電性多孔質基材からなる電極に挟まれた電解質膜が一番外方に飛び出した形状となっている。この電解質膜によって、各電極同士が接触することが防止され、ひいては短絡を防止することができる。   According to this configuration, since the outer peripheral surface of the membrane-electrode assembly is inclined so that the electrolyte membrane is larger than the catalyst layer and the conductive porous substrate in plan view, the catalyst layer and the conductive porous substrate. The electrolyte membrane sandwiched between the electrodes is made to protrude outward most. The electrolyte membrane prevents the electrodes from coming into contact with each other, thereby preventing a short circuit.

本発明に係る第2のエッジシール付き膜−電極接合体は、上記第2の膜−電極接合体と、中央に開口部を有し、前記開口部から前記導電性多孔質基材が露出するよう前記膜−電極接合体の少なくとも一方面に接着したエッジシールと、を備えている。この第2のエッジシール付き膜−電極接合体は、上記第2の膜−電極接合体を備えているため、電解質膜によって、各電極同士が接触することが防止され、ひいては短絡を防止することができる。   The second membrane-electrode assembly with an edge seal according to the present invention has an opening at the center of the second membrane-electrode assembly, and the conductive porous substrate is exposed from the opening. And an edge seal adhered to at least one surface of the membrane-electrode assembly. Since this second membrane-electrode assembly with edge seal is provided with the second membrane-electrode assembly, the electrolyte membrane prevents the electrodes from coming into contact with each other, thereby preventing a short circuit. Can do.

本発明に係る触媒層−電解質膜積層体の製造方法は、電解質膜を準備する工程と、前記電解質膜の両面に触媒層を配置する工程と、前記電解質膜及び触媒層からなる前記触媒層−電解質膜積層体の外周を切断する工程と、を含み、前記切断工程において切断された前記触媒層−電解質膜積層体の外周面は、前記電解質膜が平面視において前記各触媒層よりも大きくなるよう前記各触媒層から前記電解質膜に向かって傾斜している。   The method for producing a catalyst layer-electrolyte membrane laminate according to the present invention includes a step of preparing an electrolyte membrane, a step of arranging a catalyst layer on both surfaces of the electrolyte membrane, and the catalyst layer comprising the electrolyte membrane and the catalyst layer. Cutting the outer periphery of the electrolyte membrane laminate, and the outer peripheral surface of the catalyst layer-electrolyte membrane laminate cut in the cutting step is larger than the catalyst layers in plan view. Inclined from each catalyst layer toward the electrolyte membrane.

この製造方法では、触媒層−電解質膜積層体の外周面が傾斜し、平面視において電解質膜が各触媒層よりも外方に飛び出した形状となるように触媒層−電解質膜積層体の外周を切断するため、触媒層同士が接触することが防止され、ひいては短絡を防止することができる。   In this manufacturing method, the outer periphery of the catalyst layer-electrolyte membrane laminate is inclined, and the outer periphery of the catalyst layer-electrolyte membrane laminate is formed so that the electrolyte membrane has a shape protruding outward from each catalyst layer in plan view. Since it cut | disconnects, it is prevented that catalyst layers contact, and by extension, a short circuit can be prevented.

本発明に係る膜−電極接合体の製造方法は、電解質膜を準備する工程と、前記電解質膜の両面に触媒層を配置する工程と、前記各触媒層上に導電性多孔質基材を配置する工程と、前記電解質膜、触媒層、及び導電性多孔質基材からなる膜−電極接合体の外周を切断する工程と、を含み、前記切断工程において切断された前記膜−電極接合体の外周面は、前記電解質膜が平面視において前記各触媒層及び前記各導電性多孔質基材よりも大きくなるよう前記各触媒層から前記電解質膜に向かって傾斜している。   The method for producing a membrane-electrode assembly according to the present invention includes a step of preparing an electrolyte membrane, a step of arranging a catalyst layer on both surfaces of the electrolyte membrane, and a conductive porous substrate on each of the catalyst layers. Cutting the outer periphery of the membrane-electrode assembly comprising the electrolyte membrane, the catalyst layer, and the conductive porous substrate, and the membrane-electrode assembly cut in the cutting step. The outer peripheral surface is inclined from each catalyst layer toward the electrolyte membrane so that the electrolyte membrane is larger than each catalyst layer and each conductive porous substrate in plan view.

この製造方法では、膜−電極接合体の外周面が傾斜し、平面視において電解質膜が各触媒層や導電性多孔質基材よりも外方に飛び出すような形状となるように膜−電極接合体の外周を切断するため、触媒層及び導電性多孔質基材からなる電極同士の接触が防止され、ひいては短絡を防止することができる。   In this manufacturing method, the membrane-electrode assembly is so shaped that the outer peripheral surface of the membrane-electrode assembly is inclined and the electrolyte membrane protrudes outward from the catalyst layers and the conductive porous substrate in plan view. Since the outer periphery of the body is cut, contact between the electrodes composed of the catalyst layer and the conductive porous substrate can be prevented, and as a result, a short circuit can be prevented.

本発明によれば、短絡を防止することのできる触媒層−電解質膜積層体、エッジシール付き触媒層−電解質膜積層体、膜−電極接合体、エッジシール付き膜−電極接合体、およびこれらの製造方法を提供することができる。   According to the present invention, a catalyst layer-electrolyte membrane laminate, an edge-sealed catalyst layer-electrolyte membrane laminate, a membrane-electrode assembly, an edge-sealed membrane-electrode assembly, and these that can prevent a short circuit A manufacturing method can be provided.

図1は本実施形態に係る固体高分子形燃料電池の正面断面図である。FIG. 1 is a front sectional view of a polymer electrolyte fuel cell according to this embodiment. 図2は本実施形態に係る膜−電極接合体の正面断面図である。FIG. 2 is a front sectional view of the membrane-electrode assembly according to the present embodiment. 図3は本実施形態に係る膜−電極接合体の平面図である。FIG. 3 is a plan view of the membrane-electrode assembly according to this embodiment. 図4は本実施形態に係るエッジシール付き膜−電極接合体の平面図である。FIG. 4 is a plan view of the membrane-electrode assembly with edge seal according to the present embodiment. 図5は本実施形態に係る触媒層−電解質膜積層体の製造過程を示した模式図である。FIG. 5 is a schematic view showing a manufacturing process of the catalyst layer-electrolyte membrane laminate according to this embodiment. 図6は図5のA−A線断面図(a)及びB−B線断面図(b)である。6 is a cross-sectional view along line AA in FIG. 5 (a) and a cross-sectional view along line BB in FIG. 5 (b). 図7は図5のC−C線断面図(a)及びD−D線断面図(b)である。7 is a cross-sectional view taken along the line CC of FIG. 5 (a) and a cross-sectional view taken along the line DD. 図8は本実施形態に係るエッジシール付き触媒層−電解質膜積層体の製造方法を示す説明図である。FIG. 8 is an explanatory view showing a method for producing a catalyst layer-electrolyte membrane laminate with an edge seal according to this embodiment. 図9は別の実施形態に係る固体高分子形燃料電池の正面断面図である。FIG. 9 is a front sectional view of a polymer electrolyte fuel cell according to another embodiment. 図10は別の実施形態に係る固体高分子形燃料電池の正面断面図である。FIG. 10 is a front sectional view of a polymer electrolyte fuel cell according to another embodiment. 図11は別の実施形態に係る触媒層−電解質膜積層体の製造過程を示した模式図である。FIG. 11 is a schematic view showing a production process of a catalyst layer-electrolyte membrane laminate according to another embodiment. 図12は別の実施形態に係る触媒層−電解質膜積層体の製造過程を示した平面図である。FIG. 12 is a plan view showing a manufacturing process of a catalyst layer-electrolyte membrane laminate according to another embodiment. 図13は別の実施形態に係る触媒層−電解質膜積層体の製造過程を示した正面断面図である。FIG. 13 is a front sectional view showing a manufacturing process of a catalyst layer-electrolyte membrane laminate according to another embodiment. 図14は別の実施形態に係る触媒層−電解質膜積層体の切り抜き方法を示した正面断面図である。FIG. 14 is a front sectional view showing a method for cutting out a catalyst layer-electrolyte membrane laminate according to another embodiment. 図15は別の実施形態に係る触媒層−電解質膜積層体の製造過程を示した正面断面図である。FIG. 15 is a front sectional view showing a manufacturing process of a catalyst layer-electrolyte membrane laminate according to another embodiment. 図16は従来の触媒層−電解質膜積層体を示す正面断面図である。FIG. 16 is a front sectional view showing a conventional catalyst layer-electrolyte membrane laminate. 図17は比較例2を示す正面断面図である。FIG. 17 is a front sectional view showing Comparative Example 2.

以下、本発明に係る固体高分子形燃料電池の実施形態について図面を参照しつつ説明する。   Hereinafter, embodiments of a polymer electrolyte fuel cell according to the present invention will be described with reference to the drawings.

図1に示すように、本実施形態に係る固体高分子形燃料電池1は、電解質膜2及び触媒層3からなる触媒層−電解質膜積層体10と、この触媒層−電解質膜積層体10の両面に配置された導電性多孔質基材4とから主に構成されている。また、固体高分子形燃料電池1は、この他にも、触媒層−電解質膜積層体10から外方に延びるエッジシール5や、エッジシール5上に設置されたガスケット6や、セパレータ7なども備えている。なお、触媒層−電解質膜積層体10の両面に導電性多孔質基材4が配置されたものを膜−電極接合体20という。また、触媒層−電解質膜積層体10にエッジシール5が接着したものが本発明のエッジシール付き触媒層−電解質膜積層体に相当する。   As shown in FIG. 1, a polymer electrolyte fuel cell 1 according to this embodiment includes a catalyst layer-electrolyte membrane laminate 10 composed of an electrolyte membrane 2 and a catalyst layer 3, and the catalyst layer-electrolyte membrane laminate 10. It is mainly comprised from the electroconductive porous base material 4 arrange | positioned on both surfaces. The polymer electrolyte fuel cell 1 also includes an edge seal 5 extending outward from the catalyst layer-electrolyte membrane laminate 10, a gasket 6 installed on the edge seal 5, and a separator 7. I have. A structure in which the conductive porous substrate 4 is disposed on both surfaces of the catalyst layer-electrolyte membrane laminate 10 is referred to as a membrane-electrode assembly 20. The catalyst layer-electrolyte membrane laminate 10 having the edge seal 5 bonded thereto corresponds to the catalyst layer-electrolyte membrane laminate with edge seal of the present invention.

図2及び図3に示すように、電解質膜2は、平面視矩形状であり、この両面に触媒層3がそれぞれ配置されている。この電解質膜2の両面に触媒層3が配置されたものを触媒層−電解質膜積層体10という。触媒層−電解質膜積層体10は、矩形状のために4つの外周面101を有しているが、この4つの外周面101は、各触媒層3から電解質膜2に向かって広がるように傾斜しており、断面形状が<字状となっている。このため、平面視における電解質膜2の面積が一番大きくなっている。この外周面101の傾斜角度αは、特に限定されるものではないが、約10〜65度とすることが好ましい。また、これらも特に限定されるものではないが、電解質膜2の厚さは、約0.01〜0.2mmであることが好ましく、触媒層3の厚さは約2〜100μmであることが好ましい。   As shown in FIGS. 2 and 3, the electrolyte membrane 2 has a rectangular shape in plan view, and the catalyst layers 3 are respectively disposed on both sides thereof. A structure in which the catalyst layer 3 is disposed on both surfaces of the electrolyte membrane 2 is referred to as a catalyst layer-electrolyte membrane laminate 10. The catalyst layer-electrolyte membrane laminate 10 has four outer peripheral surfaces 101 because of its rectangular shape, and the four outer peripheral surfaces 101 are inclined so as to spread from each catalyst layer 3 toward the electrolyte membrane 2. The cross-sectional shape is <character shape. For this reason, the area of the electrolyte membrane 2 in plan view is the largest. The inclination angle α of the outer peripheral surface 101 is not particularly limited, but is preferably about 10 to 65 degrees. Although these are not particularly limited, the thickness of the electrolyte membrane 2 is preferably about 0.01 to 0.2 mm, and the thickness of the catalyst layer 3 is about 2 to 100 μm. preferable.

導電性多孔質基材4は、触媒層−電解質膜積層体10の各触媒層3上に配置されている。この導電性多孔質基材4は、特に限定されるものではないが、その厚さを約0.1〜0.5mmとすることが好ましい。この導電性多孔質基材4と触媒層3とによって電極を構成する。   The conductive porous substrate 4 is disposed on each catalyst layer 3 of the catalyst layer-electrolyte membrane laminate 10. The conductive porous substrate 4 is not particularly limited, but the thickness is preferably about 0.1 to 0.5 mm. The conductive porous substrate 4 and the catalyst layer 3 constitute an electrode.

エッジシール5は、図1及び図4に示すように、触媒層−電解質膜積層体10よりも一回り大きく、中央に開口部51を有する枠状に形成されている。エッジシール5は触媒層−電解質膜積層体10の両面に接着されており、この状態で開口部51から露出する触媒層3上に上述した導電性多孔質基材4が積層されている。なお、エッジシール5は、触媒層−電解質膜積層体10と接着する側を接着層とし、この接着層上にガスバリア層が形成されている2層構成とすることが好ましい。なお、特に限定されるものではないが、エッジシール5の厚さは約0.02〜0.5mmであり、接着層の厚さは約0.01〜0.4mm、ガスバリア層の厚さは約0.01〜0.3mmである。   As shown in FIGS. 1 and 4, the edge seal 5 is slightly larger than the catalyst layer-electrolyte membrane laminate 10 and is formed in a frame shape having an opening 51 at the center. The edge seal 5 is adhered to both surfaces of the catalyst layer-electrolyte membrane laminate 10, and the conductive porous substrate 4 described above is laminated on the catalyst layer 3 exposed from the opening 51 in this state. The edge seal 5 preferably has a two-layer structure in which the side that adheres to the catalyst layer-electrolyte membrane laminate 10 is an adhesive layer, and a gas barrier layer is formed on the adhesive layer. Although not particularly limited, the thickness of the edge seal 5 is about 0.02 to 0.5 mm, the thickness of the adhesive layer is about 0.01 to 0.4 mm, and the thickness of the gas barrier layer is About 0.01 to 0.3 mm.

ガスケット6は、図1に示すように、枠状に形成されており、各電極に供給された燃料ガスや酸化剤ガスを外部に漏出しないよう各エッジシール5上に設置されている。そして、セパレータ7は、導電性多孔質基材4及びガスケット6上に設置されており、ガス流路71が形成された領域が導電性多孔質基材4と対向した状態となっている。   As shown in FIG. 1, the gasket 6 is formed in a frame shape, and is installed on each edge seal 5 so as not to leak the fuel gas and the oxidant gas supplied to each electrode to the outside. The separator 7 is installed on the conductive porous substrate 4 and the gasket 6, and the region where the gas flow path 71 is formed is in a state of facing the conductive porous substrate 4.

次に上述した固体高分子形燃料電池1を構成する各部材の材質について説明する。   Next, the material of each member constituting the above-described polymer electrolyte fuel cell 1 will be described.

電解質膜2は、例えば、基材上に水素イオン伝導性高分子電解質を含有する溶液を塗工し、乾燥することにより形成される。水素イオン伝導性高分子電解質としては、例えば、パーフルオロスルホン酸系のフッ素イオン交換樹脂、より具体的には、炭化水素系イオン交換膜のC−H結合をフッ素で置換したパーフルオロカーボンスルホン酸系ポリマー(PFS系ポリマー)等が挙げられる。電気陰性度の高いフッ素原子を導入することで、化学的に非常に安定し、スルホン酸基の解離度が高く、高いイオン伝導性が実現できる。このような水素イオン伝導性高分子電解質の具体例としては、デュポン社製の「Nafion」(登録商標)、旭硝子(株)製の「Flemion」(登録商標)、旭化成(株)製の「Aciplex」(登録商標)、ゴア(Gore)社製の「Gore Select」(登録商標)等が挙げられる。水素イオン伝導性高分子電解質含有溶液中に含まれる水素イオン伝導性高分子電解質の濃度は、通常5〜60重量%程度、好ましくは20〜40重量%程度である。なお、上記の水素イオン伝導性高分子電解質膜以外には、アニオン導電性固高分子電解質膜や液状物質含浸膜も挙げられる。アニオン伝導性電解質膜としては炭化水素系樹脂又はフッ素系樹脂等が挙げられ、具体例としては炭化水素系樹脂としては、旭化成(株)製のAciplex(登録商標)A201,211,221や、トクヤマ(株)製のネオセプタ(登録商標)AM−1,AHA等が挙げられ、フッ素系樹脂としては、東ソー(株)製のトスフレックス(登録商標)IE−SF34等が挙げられる。また液状物質含浸膜としては、例えばポリベンゾイミダゾール(PBI)が挙げられる。   The electrolyte membrane 2 is formed, for example, by applying a solution containing a hydrogen ion conductive polymer electrolyte on a substrate and drying it. Examples of the hydrogen ion conductive polymer electrolyte include a perfluorosulfonic acid-based fluorine ion exchange resin, more specifically, a perfluorocarbonsulfonic acid-based resin in which the C—H bond of a hydrocarbon ion-exchange membrane is substituted with fluorine. Examples include polymers (PFS polymers). By introducing a fluorine atom having high electronegativity, it is chemically very stable, the dissociation degree of the sulfonic acid group is high, and high ion conductivity can be realized. Specific examples of such a hydrogen ion conductive polymer electrolyte include “Nafion” (registered trademark) manufactured by DuPont, “Flemion” (registered trademark) manufactured by Asahi Glass Co., Ltd., and “Aciplex” manufactured by Asahi Kasei Corporation. ”(Registered trademark),“ Gore Select ”(registered trademark) manufactured by Gore, and the like. The concentration of the hydrogen ion conductive polymer electrolyte contained in the hydrogen ion conductive polymer electrolyte-containing solution is usually about 5 to 60% by weight, preferably about 20 to 40% by weight. In addition to the hydrogen ion conductive polymer electrolyte membrane, an anion conductive solid polymer electrolyte membrane and a liquid substance-impregnated membrane are also included. Examples of the anion conductive electrolyte membrane include a hydrocarbon resin or a fluorine resin, and specific examples of the hydrocarbon resin include Aciplex (registered trademark) A201, 2111, 221 manufactured by Asahi Kasei Corporation, and Tokuyama. Neocepta (registered trademark) AM-1, AHA, etc. manufactured by Co., Ltd. may be mentioned, and examples of the fluorine-based resin may include Tosflex (registered trademark) IE-SF34 manufactured by Tosoh Corporation. Examples of the liquid substance-impregnated film include polybenzimidazole (PBI).

触媒層3は、公知の白金含有の触媒層(カソード触媒及びアノード触媒)とすることができる。具体的には、触媒粒子を担持させた炭素粒子と、水素イオン伝導性高分子電解質とを含有する。水素イオン伝導性高分子電解質としては、上述した電解質膜2に使用されるものと同じ材料を使用することができる。   The catalyst layer 3 can be a known platinum-containing catalyst layer (cathode catalyst and anode catalyst). Specifically, it contains carbon particles carrying catalyst particles and a hydrogen ion conductive polymer electrolyte. As the hydrogen ion conductive polymer electrolyte, the same material as that used for the electrolyte membrane 2 described above can be used.

触媒粒子としては、例えば、白金や白金化合物等が挙げられる。白金化合物としては、例えば、ルテニウム、パラジウム、ニッケル、モリブデン、イリジウム、鉄等からなる群から選ばれる少なくとも1種の金属と、白金との合金等が挙げられる。なお、通常は、カソード触媒層に含まれる触媒粒子は白金であり、アノード触媒層に含まれる触媒粒子は前記金属と白金との合金である。   Examples of the catalyst particles include platinum and platinum compounds. Examples of the platinum compound include an alloy of platinum and at least one metal selected from the group consisting of ruthenium, palladium, nickel, molybdenum, iridium, iron and the like. In general, the catalyst particles contained in the cathode catalyst layer are platinum, and the catalyst particles contained in the anode catalyst layer are an alloy of the metal and platinum.

炭素粒子は、導電性を有しているものであれば限定的ではなく、公知又は市販のものを広く使用できる。例えば、カーボンブラックや、黒鉛、活性炭等を1種又は2種以上で用いることができる。カーボンブラックの例としては、チャンネルブラック、ファーネスブラック、ケッチェンブラック、アセチレンブラック、ランプブラック等を挙げることができる。炭素粒子の算術平均粒子径は通常5nm〜200nm程度、好ましくは20〜80nm程度である。この炭素粒子の平均粒子径は、例えば、粒子径分布測定装置LA−920:(株)堀場製作所製等により測定できる。   The carbon particles are not limited as long as they have electrical conductivity, and known or commercially available carbon particles can be widely used. For example, carbon black, graphite, activated carbon, or the like can be used alone or in combination. Examples of carbon black include channel black, furnace black, ketjen black, acetylene black, and lamp black. The arithmetic average particle diameter of the carbon particles is usually about 5 nm to 200 nm, preferably about 20 to 80 nm. The average particle size of the carbon particles can be measured by, for example, a particle size distribution measuring device LA-920: manufactured by Horiba, Ltd.

導電性多孔質基材4としては、公知であり、燃料極、空気極を構成する各種の導電性多孔質基材を使用でき、燃料である燃料ガス及び酸化剤ガスを効率よく触媒層に供給するため、多孔質の導電性基材からなっている。多孔質の導電性基材としては、例えば、カーボンペーパーやカーボンクロス等が挙げられる。   The conductive porous substrate 4 is well-known and can use various conductive porous substrates constituting the fuel electrode and the air electrode, and efficiently supplies fuel gas and oxidant gas as fuel to the catalyst layer. Therefore, it consists of a porous conductive substrate. Examples of the porous conductive substrate include carbon paper and carbon cloth.

エッジシール5は、熱圧着等の方法で電極部材に接合できる材料であれば限りはなく、フッ素系樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリプロピレン、ポリエチレン、ポリエステル系等のオレフィン樹脂からなることが好ましい。さらに、エッジシールが接着層とガスバリア層の2層から構成されている場合、ガスバリア層は、水蒸気、水、燃料ガス及び酸化剤ガスに対するバリア性を有するポリエステル、ポリアミド、ポリイミド、ポリメチルテンペン、ポリフェニレンオキサイド、ポリサルホン、ポリエーテルエーテルケトン、ポリフェニレンサルファイドなどを好ましく使用することができる。なお、ポリエステルは、具体的には、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート等を挙げることができる。   The edge seal 5 is not limited as long as it is a material that can be joined to the electrode member by a method such as thermocompression bonding, and is preferably made of an olefin resin such as a fluorine resin, a polyamide resin, a polyimide resin, polypropylene, polyethylene, or a polyester. Furthermore, when the edge seal is composed of two layers of an adhesive layer and a gas barrier layer, the gas barrier layer is made of polyester, polyamide, polyimide, polymethyl tempene, polyphenylene having barrier properties against water vapor, water, fuel gas and oxidant gas. Oxide, polysulfone, polyether ether ketone, polyphenylene sulfide, and the like can be preferably used. Specific examples of the polyester include polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and polybutylene naphthalate.

また、接着層は、それ自体の粘着性によって電解質膜に接着したり、もしくは加熱されることで触媒層−電解質膜積層体10と溶着するような材質とすることが好ましい。このような材質としては、ポリオレフィン系樹脂が好ましく、例えば、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、エチレン−α・オレフィン共重合体、ポリプロピレン、ポリブテン、ポリイソブテン、ポエイソブチレン、ポリブタジエン、ポリイソプレン、エチレン−メタクリル酸共重合体、あるいはエチレン−アクリル酸共重合体等のエチレンと不飽和カルボン酸との共重合体、エチレン−アクリル酸エチル共重合体、アイオノマー樹脂、エチレン−酢酸ビニル共重合体等を使用することができる。またそれらを変性した酸変性ポリオレフィン系樹脂、シラン変性ポリオレフィン系樹脂を使用することができ、その中でも不飽和カルボン酸でグラフト変性したポリプロピレンもしくは不飽和カルボン酸で変性したポリエチレンを使用することが絶縁性もしくは耐熱性の点で好ましい。   The adhesive layer is preferably made of a material that adheres to the electrolyte membrane due to its own tackiness or is welded to the catalyst layer-electrolyte membrane laminate 10 when heated. Such a material is preferably a polyolefin resin, for example, medium density polyethylene, high density polyethylene, linear low density polyethylene, ethylene-α-olefin copolymer, polypropylene, polybutene, polyisobutene, poeisobutylene, polybutadiene, polybutadiene, and the like. Copolymers of ethylene and unsaturated carboxylic acid such as isoprene, ethylene-methacrylic acid copolymer, or ethylene-acrylic acid copolymer, ethylene-ethyl acrylate copolymer, ionomer resin, ethylene-vinyl acetate copolymer Coalescence etc. can be used. In addition, acid-modified polyolefin resins and silane-modified polyolefin resins modified with them can be used. Among them, it is insulating to use polypropylene modified with unsaturated carboxylic acid or polyethylene modified with unsaturated carboxylic acid. Or it is preferable in terms of heat resistance.

ガスケット6としては、熱プレスに耐えうる強度を保ち、かつ、外部に燃料及び酸化剤を漏出しない程度のガスバリア性を有しているものを使用することができ、例えば、ポリエチレンテレフタレートシートやテフロン(登録商標)シート、シリコンゴムシート等を例示することができる。   As the gasket 6, it is possible to use a gasket that has a strength sufficient to withstand heat pressing and has a gas barrier property that does not leak fuel and oxidant to the outside. For example, a polyethylene terephthalate sheet or Teflon ( (Registered trademark) sheet, silicon rubber sheet, and the like.

セパレータ7としては、公知であり、燃料電池内の環境においても安定な導電性板であればよく、一般的には、カーボン板にガス流路を形成したものが用いられる。また、セパレータ7をステンレス等の金属により構成し、金属の表面にクロム、白金族金属又はその酸化物、導電性ポリマーなどの導電性材料からなる被膜を形成したものや、同様にセパレータ7を金属によって構成し、該金属の表面に銀、白金族の複合酸化物、窒化クロム等の材料によるメッキ処理を施したもの等も使用可能である。   The separator 7 may be any known conductive plate that is known and stable even in the environment within the fuel cell. In general, a carbon plate having a gas flow path is used. In addition, the separator 7 is made of a metal such as stainless steel, and a film made of a conductive material such as chromium, a platinum group metal or oxide thereof, or a conductive polymer is formed on the surface of the metal. It is also possible to use the metal surface plated with a material such as silver, a platinum group composite oxide, or chromium nitride.

次に、上述した固体高分子形燃料電池1の製造方法について説明する。   Next, a manufacturing method of the above-described polymer electrolyte fuel cell 1 will be described.

図5に示すように、まずは、長尺状の電解質膜の両面全体に触媒層が形成された触媒層−電解質膜積層体10’をロール状としたものを準備する。なお、電解質膜に触媒層を形成する方法は種々の公知の方法を採用することができ、例えば、ペースト状の触媒層を電解質膜上に塗工して乾燥することで形成したり、スクリーン印刷によって形成したり、離型シート上に触媒層を形成した触媒層転写シートを使用する転写法によって形成したりすることができる。   As shown in FIG. 5, first, a catalyst layer-electrolyte membrane laminate 10 ′ in which a catalyst layer is formed on both surfaces of a long electrolyte membrane is prepared in a roll shape. Various known methods can be adopted as a method for forming the catalyst layer on the electrolyte membrane. For example, the catalyst layer can be formed by applying a paste-like catalyst layer on the electrolyte membrane and drying it, or by screen printing. Or a transfer method using a catalyst layer transfer sheet in which a catalyst layer is formed on a release sheet.

次に、長尺状の触媒層−電解質膜積層体10’を下流側(図5の右側)へ搬送し、その幅方向の縁部分を外周面が傾斜するように切断する。より詳細には、まず、触媒層−電解質膜積層体10’の両サイドに第1の切断刃11が固定した状態で設置されており、触媒層−電解質膜積層体10’が第1の切断刃11を通過することで、触媒層−電解質膜積層体10’の上面側の両縁部が切断される(図6(a)参照)。続いて、この第1の切断刃11の下流側において触媒層−電解質膜積層体10’の両サイドに設置された第2の切断刃12を通過することで、触媒層−電解質膜積層体10’は下面側の両縁部が切断される(図6(b))。なお、各切断刃11,12によって切断された各両縁部は、巻き取り装置(図示省略)によってロール状に巻き取ってもよい。このようにして、触媒層−電解質膜積層体10’の幅方向の外周面は、傾斜面として形成される。   Next, the long catalyst layer-electrolyte membrane laminate 10 ′ is conveyed to the downstream side (right side in FIG. 5), and the edge portion in the width direction is cut so that the outer peripheral surface is inclined. More specifically, first, the first cutting blade 11 is fixed on both sides of the catalyst layer-electrolyte membrane laminate 10 ′, and the catalyst layer-electrolyte membrane laminate 10 ′ is cut first. By passing through the blade 11, both edge portions on the upper surface side of the catalyst layer-electrolyte membrane laminate 10 ′ are cut (see FIG. 6A). Subsequently, the catalyst layer-electrolyte membrane laminate 10 is passed through the second cutting blades 12 installed on both sides of the catalyst layer-electrolyte membrane laminate 10 ′ on the downstream side of the first cutting blade 11. 'Is cut at both edges on the lower surface side (FIG. 6B). In addition, each edge part cut | disconnected by each cutting blade 11 and 12 may be wound up in roll shape with a winding device (illustration omitted). In this way, the outer peripheral surface in the width direction of the catalyst layer-electrolyte membrane laminate 10 'is formed as an inclined surface.

続いて、長尺状の触媒層−電解質膜積層体10’を第3の切断刃13によって長さ方向に切断して枚葉状の触媒層−電解質膜積層体10とする。この第3の切断刃13によって切断されることによってできた長さ方向の外周面は、上面側から下面側まで一直線の傾斜面となっている(図7(a)参照)。このように枚葉状となった触媒層−電解質膜積層体10をさらに第4の切断刃14によって裏面側から切断することで、平面視において電解質膜が一番大きくなるように各触媒層3から電解質膜2に向かって傾斜した傾斜面が外周面として形成される(図7(b))。以上により、4つの外周面の断面形状が<字状となった枚葉状の触媒層−電解質膜積層体10が形成される。   Subsequently, the long catalyst layer-electrolyte membrane laminate 10 ′ is cut in the length direction by the third cutting blade 13 to obtain a sheet-like catalyst layer-electrolyte membrane laminate 10. The outer peripheral surface in the length direction formed by cutting with the third cutting blade 13 is a straight inclined surface from the upper surface side to the lower surface side (see FIG. 7A). The catalyst layer-electrolyte membrane laminate 10 thus formed into a single sheet is further cut from the back surface side by the fourth cutting blade 14 so that the electrolyte membrane is maximized from the respective catalyst layers 3 in plan view. An inclined surface inclined toward the electrolyte membrane 2 is formed as an outer peripheral surface (FIG. 7B). As described above, the single-wafer catalyst layer-electrolyte membrane laminate 10 in which the cross-sectional shapes of the four outer peripheral surfaces are <-shaped is formed.

以上の枚葉状の触媒層−電解質膜積層体10の両面に以下のようにしてエッジシール5を接着する。図8に示すように、まず、接着層及びガスバリア層の2層構成のエッジシール5を2枚準備し、接着層同士が向き合うようにして重ねて1辺を残した状態にして残りの3辺を互いに接着させる。これによりコ字状に接着部が形成されるとともに左側の一辺が開口している袋体となる(図8(a))。なお、接着方法は種々の公知の方法を採用することができ、例えば、高周波接着、インパルス式接着、コテ式接着、超音波接着などによって接着させることもできる。   The edge seals 5 are adhered to both surfaces of the above-described single-wafer catalyst layer-electrolyte membrane laminate 10 as follows. As shown in FIG. 8, first, two edge seals 5 having a two-layer structure of an adhesive layer and a gas barrier layer are prepared, and the remaining three sides are left in a state where the adhesive layers face each other and leave one side. Are glued together. As a result, an adhesive portion is formed in a U-shape, and a bag body having an open left side is obtained (FIG. 8A). Note that various known methods can be adopted as the bonding method. For example, high-frequency bonding, impulse bonding, iron bonding, ultrasonic bonding, or the like can be used.

エッジシール5によって袋体を形成すると、次に、この袋体を構成する各エッジシール5の中央部に易除去領域52を形成する(図8(b))。易除去領域52の大きさは、触媒層3よりも一回り小さく形成する。好ましくは、触媒層3の傾斜面の全てがエッジシール5と接着するような大きさとする。なお、この易除去領域52とは、容易に取り除ける領域のことをいい、例えば、その外周縁にミシン目を入れることや、一部だけ残して切込みを入れること等によって形成することができる。このように易除去領域52が形成された袋体に、その接着されていない左側から、触媒層−電解質膜積層体10を挿入して所定位置まで移動させる(図8(c))。この所定位置とは、触媒層−電解質膜積層体10の触媒層3の中央部が易除去領域52に対向している位置のことをいう。   When the bag body is formed by the edge seal 5, an easy-removal region 52 is then formed at the center of each edge seal 5 constituting the bag body (FIG. 8B). The size of the easy removal region 52 is formed to be slightly smaller than that of the catalyst layer 3. Preferably, the size is such that all of the inclined surfaces of the catalyst layer 3 adhere to the edge seal 5. The easy-removal region 52 refers to a region that can be easily removed. For example, the easy-removable region 52 can be formed by making a perforation in the outer peripheral edge or making a cut while leaving only a part. Thus, the catalyst layer-electrolyte membrane laminated body 10 is inserted into the bag body in which the easy-removal region 52 is formed from the left side where it is not bonded, and is moved to a predetermined position (FIG. 8C). The predetermined position refers to a position where the central portion of the catalyst layer 3 of the catalyst layer-electrolyte membrane laminate 10 faces the easy removal region 52.

触媒層−電解質膜積層体10を所定位置まで移動させた後、易除去領域52の外周縁のミシン目を切断して易除去領域52を各エッジシール5から取り外すことで、触媒層−電解質膜積層体10の触媒層3の中央部が各エッジシール5の内側から露出した状態となる(図8(d))。そして、この状態でエッジシール5の接着されていなかった残りの部分を公知の方法で接着させることで、エッジシール5の接着層は、触媒層−電解質膜積層体10の傾斜面101に接着するとともに、エッジシール5同士でも接着する。以上により、エッジシール付き触媒層−電解質膜積層体が完成する(図8(e))。   After moving the catalyst layer-electrolyte membrane laminate 10 to a predetermined position, the perforation at the outer peripheral edge of the easy-removal region 52 is cut and the easy-removal regions 52 are removed from the edge seals 5, whereby the catalyst layer-electrolyte membrane The central portion of the catalyst layer 3 of the laminate 10 is exposed from the inside of each edge seal 5 (FIG. 8D). In this state, the remaining portion of the edge seal 5 that has not been bonded is bonded by a known method so that the adhesive layer of the edge seal 5 is bonded to the inclined surface 101 of the catalyst layer-electrolyte membrane laminate 10. At the same time, the edge seals 5 are bonded together. Thus, the edge-sealed catalyst layer-electrolyte membrane laminate is completed (FIG. 8E).

上述したエッジシール付き触媒層−電解質膜積層体の開口から露出している触媒層3上に、導電性多孔質基材4を熱圧着により積層形成して、エッジシール付き膜−電極接合体を作製する。そして、触媒層3及び導電性多孔質基材4からなる電極の周囲を囲むようにエッジシール5上にガスケット6を配置する。続いて、ガス流路71が導電性多孔質基材4と対向するよう、セパレータ7を導電性多孔質基材4及びガスケット6上に配置する。最後に、導電性多孔質基材4とセパレータ7とが電気的に接続するようにセパレータ7でエッジシール付き膜−電極接合体を挟持することによって、固体高分子形燃料電池1が完成する。   On the catalyst layer 3 exposed from the opening of the catalyst layer-electrolyte membrane laminate with edge seal described above, the conductive porous substrate 4 is laminated by thermocompression bonding, and the membrane-electrode assembly with edge seal is formed. Make it. And the gasket 6 is arrange | positioned on the edge seal 5 so that the circumference | surroundings of the electrode which consists of the catalyst layer 3 and the electroconductive porous base material 4 may be enclosed. Subsequently, the separator 7 is disposed on the conductive porous substrate 4 and the gasket 6 so that the gas flow path 71 faces the conductive porous substrate 4. Finally, the polymer electrolyte fuel cell 1 is completed by sandwiching the membrane-electrode assembly with an edge seal with the separator 7 so that the conductive porous substrate 4 and the separator 7 are electrically connected.

以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to these, A various change is possible unless it deviates from the meaning of this invention.

例えば、上記実施形態では、触媒層−電解質膜積層体10の外周を切断して傾斜面を形成した後に導電性多孔質基材4を触媒層上に形成していたが、図9に示すように、膜−電極接合体20を形成した後に、その膜−電極接合体20の外周を切断することもできる。この場合は、膜−電極接合体20の外周面の断面形状が<字状であり、また、上記実施形態におけるロール状の触媒層−電解質膜積層体10’の代わりにロール状の膜−電極接合体20を使用する。また、エッジシール5は、触媒層−電解質膜積層体10ではなく、膜−電極接合体20の両面に上記実施形態と同様の方法で接着させることができる。なお、膜−電極接合体20にエッジシール5が接着したものが本発明のエッジシール付き膜−電極接合体に相当する。   For example, in the above embodiment, the conductive porous substrate 4 is formed on the catalyst layer after the outer periphery of the catalyst layer-electrolyte membrane laminate 10 is cut to form the inclined surface, but as shown in FIG. In addition, after the membrane-electrode assembly 20 is formed, the outer periphery of the membrane-electrode assembly 20 can be cut. In this case, the cross-sectional shape of the outer peripheral surface of the membrane-electrode assembly 20 is <shaped, and a roll-shaped membrane-electrode is used instead of the roll-shaped catalyst layer-electrolyte membrane laminate 10 ′ in the above embodiment. The joined body 20 is used. Further, the edge seal 5 can be bonded to both surfaces of the membrane-electrode assembly 20 instead of the catalyst layer-electrolyte membrane laminate 10 by the same method as in the above embodiment. In addition, what adhered the edge seal 5 to the membrane-electrode assembly 20 corresponds to the membrane-electrode assembly with an edge seal of the present invention.

また、触媒層−電解質膜積層体10又は膜−電極接合体20の全ての外周面を傾斜するように切断する必要はなく、図16に示すように電解質膜2と触媒層3との端面が面一となっている部分のみ傾斜面にすればよい。例えば、図10に示すように、電解質膜2が触媒層3よりも外方に突出している部分は傾斜面としなくてもよい。   Further, it is not necessary to cut all the outer peripheral surfaces of the catalyst layer-electrolyte membrane laminate 10 or the membrane-electrode assembly 20 so as to incline, and the end surfaces of the electrolyte membrane 2 and the catalyst layer 3 are formed as shown in FIG. Only a portion that is flush with the surface may be inclined. For example, as shown in FIG. 10, the portion where the electrolyte membrane 2 protrudes outward from the catalyst layer 3 may not be inclined.

また、上記実施形態の触媒層−電解質膜積層体10は、長尺状の電解質膜の両面全体に触媒層が形成されていたが、図11に示すように電解質膜2の幅方向両端部には触媒層3が形成されていなくてもよい。この場合は、幅方向における外周面は電解質膜2が触媒層3よりも外方に突出しているために傾斜面とする必要がない。   In the catalyst layer-electrolyte membrane laminate 10 of the above embodiment, the catalyst layers are formed on both surfaces of the long electrolyte membrane. However, as shown in FIG. The catalyst layer 3 may not be formed. In this case, the outer peripheral surface in the width direction does not need to be inclined because the electrolyte membrane 2 protrudes outward from the catalyst layer 3.

また、上記実施形態では、長尺状の触媒層−電解質膜積層体10から所望の大きさの触媒層−電解質膜積層体10を切り取っていたが、図12に示すように、大判の触媒層−電解質膜積層体10”から所望の大きさの触媒層−電解質膜積層体10を切り抜くこともできる。この場合は、例えば、図13に示すように、傾斜角度を有する切断刃によって、まず表面から切断し(図13(a))、その後、同様に傾斜角度を有する切断刃によって裏面から切断する(図13(b))。なお、このような所望の大きさの触媒層−電解質膜積層体10を切り抜く方法として、図14(a)に示すような平板に切断刃が設けられた平抜きや、図14(b)に示すような円筒状部材に切断刃が設けられた円筒抜きが挙げられる。この切断刃としては、例えば、ゼンマイ刃やトムソン刃、彫刻刃、腐食刃などを挙げることができる。また、上記実施形態の下流側に搬送される長尺状の触媒層−電解質膜積層体も同様に、切断刃によって、表面から打ち抜くように切断した後、裏面から打ち抜くように切断することもできる。   Moreover, in the said embodiment, although the catalyst layer-electrolyte membrane laminated body 10 of the desired magnitude | size was cut out from the elongate catalyst layer-electrolyte membrane laminated body 10, as shown in FIG. It is also possible to cut out a catalyst layer having a desired size from the electrolyte membrane laminate 10 ″. In this case, for example, as shown in FIG. (FIG. 13 (a)), and then cut from the back surface with a cutting blade having an inclination angle (FIG. 13 (b)). As a method of cutting out the body 10, a flat punching provided with a cutting blade on a flat plate as shown in FIG. 14A or a cylindrical punching provided with a cutting blade on a cylindrical member as shown in FIG. Examples of this cutting blade include , Spring blades, Thomson blades, engraving blades, corrosion blades, etc. In addition, the long catalyst layer-electrolyte membrane laminate conveyed to the downstream side of the above embodiment is similarly cut by a cutting blade. After cutting so as to punch from the front surface, it can also be cut so as to punch from the back surface.

また、図15に示すように、まずは、ハーフカットなどによって触媒層−電解質膜積層体10の途中まで切断して切込みを入れ(図15(a))、その後、裏面側から切断刃によって切断することができる(図15(b))。   As shown in FIG. 15, first, the catalyst layer-electrolyte membrane laminate 10 is cut halfway by cutting or the like to make a cut (FIG. 15 (a)), and then cut from the back side by a cutting blade. (FIG. 15B).

また、長尺状の触媒層−電解質膜積層体10’を支持シート上に貼着した状態で、長尺状の触媒層−電解質膜積層体10’を枚葉状に切断することもできる。この場合は、まず上記実施形態と同様に第1及び第2の切断刃11、12で幅方向の縁部分を切断する。次に、第3の切断刃13で支持シートは切断せずに触媒層−電解質膜積層体10’のみを切断する。そして、触媒層−電解質膜積層体10’は長尺状の状態を保持したまま、次の第4の切断刃14によって枚葉状の触媒層−電解質膜積層体10となるように切断される。なお、触媒層−電解質膜積層体10に残った支持シートは、使用前に剥離すればよく、使用直前まで触媒層−電解質膜積層体を保護するので有効である。   In addition, the long catalyst layer-electrolyte membrane laminate 10 ′ can be cut into single sheets in a state where the long catalyst layer-electrolyte membrane laminate 10 ′ is stuck on the support sheet. In this case, first, the edge part of the width direction is cut | disconnected with the 1st and 2nd cutting blades 11 and 12 similarly to the said embodiment. Next, only the catalyst layer-electrolyte membrane laminate 10 ′ is cut without cutting the support sheet with the third cutting blade 13. Then, the catalyst layer-electrolyte membrane laminate 10 ′ is cut into a sheet-like catalyst layer-electrolyte membrane laminate 10 by the next fourth cutting blade 14 while maintaining the long state. The support sheet remaining on the catalyst layer-electrolyte membrane laminate 10 may be peeled off before use, and is effective because it protects the catalyst layer-electrolyte membrane laminate immediately before use.

以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

(実施例1)
電解質膜2として、53.5×53.5mmの大きさに切断された膜厚53μmのNRE212CS(Dupont社製)を使用した。
Example 1
As the electrolyte membrane 2, NRE212CS (manufactured by Dupont) having a film thickness of 53 μm cut to a size of 53.5 × 53.5 mm was used.

次に、触媒層形成用転写シートを次の要領で作製した。まず、白金触媒担持カーボン(白金担持量:45.7wt%、田中貴金属社製、TEC10E50E)2gに、1−ブタノール10g、3−ブタノール10g、フッ素樹脂(5wt%ナフィオンバインダー、デュポン社製)20g及び水6gを加え、これらを分散機にて攪拌混合することにより、触媒ペーストを調製した。そして、転写用基材としてポリエステルフィルム(東レ製、X44、膜厚25μm)を準備し、この転写用基材上に上記触媒ペーストを塗布した。   Next, a transfer sheet for forming a catalyst layer was prepared as follows. First, 2 g of platinum catalyst-supported carbon (platinum support amount: 45.7 wt%, manufactured by Tanaka Kikinzoku Co., Ltd., TEC10E50E), 1-butanol 10 g, 3-butanol 10 g, fluororesin (5 wt% Nafion binder, manufactured by DuPont) 20 g and 6 g of water was added, and these were stirred and mixed with a disperser to prepare a catalyst paste. Then, a polyester film (X44, film thickness 25 μm) was prepared as a transfer substrate, and the catalyst paste was applied onto the transfer substrate.

以上のように作製した触媒層形成用転写シートを53×53mmの大きさに切断し、電解質膜2の両面それぞれに触媒層3が電解質膜3側を向くように中心を合わせて配置した。そして、135℃、5.0MPa、150秒の条件で熱プレスすることで、電解質膜2の両面に触媒層3を形成し、触媒層−電解質膜積層体10を作製した。なお、触媒層3の厚さは20μmである。   The transfer sheet for forming a catalyst layer produced as described above was cut into a size of 53 × 53 mm, and placed on both surfaces of the electrolyte membrane 2 so that the catalyst layer 3 faced the electrolyte membrane 3 side. And the catalyst layer 3 was formed in both surfaces of the electrolyte membrane 2 by heat-pressing on conditions of 135 degreeC, 5.0 Mpa, and 150 second, and the catalyst layer-electrolyte membrane laminated body 10 was produced. The catalyst layer 3 has a thickness of 20 μm.

以上のように作製した触媒層−電解質膜積層体10の外周を図13に示すような方法で以下のように切断した。まず触媒層−電解質膜積層体10の触媒層3の端部よりも内側0.5mmに切断刃を当て、そこから外周面の傾斜角αが15度となるように触媒層−電解質膜積層体10の外周を切断した。続いて触媒層−電解質膜積層体10を裏返し、表面と同様に触媒層3の端部よりも内側に0.5mmの部分に切断刃を当て、そこから外周面の傾斜角αが15度となるように切断して、図13(b)に示すような触媒層−電解質膜積層体10を作製した。   The outer periphery of the catalyst layer-electrolyte membrane laminate 10 produced as described above was cut as follows by the method shown in FIG. First, a cutting blade is applied to 0.5 mm inside the end of the catalyst layer 3 of the catalyst layer-electrolyte membrane laminate 10, and the catalyst layer-electrolyte membrane laminate so that the inclination angle α of the outer peripheral surface is 15 degrees therefrom. Ten perimeters were cut. Subsequently, the catalyst layer-electrolyte membrane laminate 10 is turned over, and a cutting blade is applied to a 0.5 mm portion inside the end of the catalyst layer 3 in the same manner as the surface, and the inclination angle α of the outer peripheral surface is 15 degrees from there. The catalyst layer-electrolyte membrane laminate 10 as shown in FIG. 13B was produced.

続いて、エッジシール5を作製した。ガスバリア層である二軸遠心ポリエチレンナフタレート(帝人社製、テオネックス、膜厚12μm)上に溶融させた状態の不飽和カルボン酸グラフト変性ポリプロピレンを溶融押出し法により50μmの厚さで押し出して接着層を形成した。その後、80×80mmの大きさに切断し、その中央部に50×50mmの大きさの開口部51を形成した。そのエッジシール5を触媒層−電解質膜積層体10の両面に中心を合わせ配置し、100℃、1.0MPa、30秒の条件で熱プレスすることでエッジシール5を触媒層−電解質膜積層体10に接着し、エッジシール付き触媒層−電解質膜積層体を作製した。   Subsequently, an edge seal 5 was produced. Unsaturated carboxylic acid graft-modified polypropylene melted on a biaxially centrifuge polyethylene naphthalate (Teijin, Teonex, film thickness 12 μm), which is a gas barrier layer, is extruded at a thickness of 50 μm by a melt extrusion method to form an adhesive layer. Formed. Then, it cut | disconnected to the magnitude | size of 80x80 mm, and the opening part 51 of a magnitude | size of 50x50 mm was formed in the center part. The edge seal 5 is centered on both sides of the catalyst layer-electrolyte membrane laminate 10 and hot pressed under the conditions of 100 ° C., 1.0 MPa, 30 seconds, so that the edge seal 5 is catalyst layer-electrolyte membrane laminate. 10 was attached to produce a catalyst layer-electrolyte membrane laminate with an edge seal.

さらに続いて、エッジシール5の開口部51から露出している触媒層3上に、導電性多孔質基材4として、49×49mmの大きさに切断されたカーボンペーパー(東レ社製、TGP−H−090、厚さ280μm)を積層し、エッジシール付き膜−電極接合体を形成した。   Subsequently, carbon paper (TGP-, manufactured by Toray Industries, Inc.) cut as a conductive porous substrate 4 on the catalyst layer 3 exposed from the opening 51 of the edge seal 5 as the conductive porous substrate 4. H-090, 280 μm thick) was laminated to form a membrane-electrode assembly with an edge seal.

(比較例1)
触媒層−電解質膜積層体10の外周面の傾斜角度が異なる点以外は、上記実施例1と同様にエッジシール付き膜−電極接合体を作製した。なお、比較例1の触媒層−電解質膜積層体は、その外周面の傾斜角αは90度、すなわち、図16に示すような外周面が傾斜していない形状である。
(Comparative Example 1)
A membrane-electrode assembly with an edge seal was prepared in the same manner as in Example 1 except that the inclination angle of the outer peripheral surface of the catalyst layer-electrolyte membrane laminate 10 was different. The catalyst layer-electrolyte membrane laminate of Comparative Example 1 has an inclination angle α of the outer peripheral surface of 90 degrees, that is, a shape in which the outer peripheral surface is not inclined as shown in FIG.

(比較例2)
実施例1では、触媒層−電解質膜積層体の表面から切断を行った後、触媒層−電解質膜積層体の裏面からも切断を行っているが、比較例2では、触媒層−電解質膜積層体の表面のみから切断を行い、裏面からの切断を行わなかった。なお、その他は、上記実施例1と同様にエッジシール付き膜−電極接合体を作製した。この比較例2の触媒層−電解質膜積層体は、図17に示すように、下面側の触媒層3が最も大きい形状となるような傾斜となっている。
(Comparative Example 2)
In Example 1, after cutting from the surface of the catalyst layer-electrolyte membrane laminate, cutting is also performed from the back surface of the catalyst layer-electrolyte membrane laminate. In Comparative Example 2, the catalyst layer-electrolyte membrane laminate is cut. Cutting was done only from the front side of the body, and not from the back side. In other respects, a membrane-electrode assembly with an edge seal was produced in the same manner as in Example 1. As shown in FIG. 17, the catalyst layer-electrolyte membrane laminate of Comparative Example 2 is inclined so that the catalyst layer 3 on the lower surface side has the largest shape.

(評価方法)
実施例1、比較例1〜2のエッジシール付き膜−電極接合体にガスケット及びセパレータを設置して固体高分子形燃料電池を50枚作製した。そして、エッジシール付き膜−電極接合体の両電極に低抵抗計(敦賀電機株式会社製MODEL 356E)の端子を取り付け、抵抗を測定した。この結果、実施例1では全ての膜−電極接合体において電極間の短絡はなかった。しかし比較例1は4枚、比較例2は2枚の膜−電極接合体において電極間の短絡が発生した。
(Evaluation method)
Gaskets and separators were installed on the membrane-electrode assemblies with edge seals of Example 1 and Comparative Examples 1 and 2 to produce 50 polymer electrolyte fuel cells. And the terminal of the low resistance meter (Tsuruga Electric Co., Ltd. MODEL 356E) was attached to both electrodes of the membrane-electrode assembly with an edge seal, and resistance was measured. As a result, in Example 1, there was no short circuit between the electrodes in all the membrane-electrode assemblies. However, a short circuit between the electrodes occurred in the membrane-electrode assembly of Comparative Example 1 and 4 of Comparative Example 2.

2 電解質膜
3 触媒層
4 導電性多孔質基材
5 エッジシール
51 開口部
10 触媒層−電解質膜積層体
20 膜−電極接合体
2 Electrolyte membrane 3 Catalyst layer 4 Conductive porous substrate 5 Edge seal 51 Opening 10 Catalyst layer-electrolyte membrane laminate 20 Membrane-electrode assembly

Claims (10)

電解質膜と、
前記電解質膜の両面に配置された触媒層と、を備えた触媒層−電解質膜積層体であって
前記触媒層−電解質膜積層体の少なくとも1つの外周面は、前記電解質膜が平面視において前記各触媒層よりも大きくなるよう前記各触媒層から前記電解質膜に向かって傾斜しており、その断面形状が<字状である、触媒層−電解質膜積層体。
An electrolyte membrane;
A catalyst layer-electrolyte membrane laminate comprising a catalyst layer disposed on both surfaces of the electrolyte membrane ,
At least one outer peripheral surface of the catalyst layer-electrolyte membrane laminate is inclined from each catalyst layer toward the electrolyte membrane so that the electrolyte membrane is larger than each catalyst layer in plan view, and a cross section thereof. A catalyst layer-electrolyte membrane laminate having a <character shape .
請求項1に記載の触媒層−電解質膜積層体と、
前記各触媒層上に配置された導電性多孔質基材と、
を備えた、膜−電極接合体。
The catalyst layer-electrolyte membrane laminate according to claim 1,
A conductive porous substrate disposed on each of the catalyst layers;
A membrane-electrode assembly comprising:
電解質膜と、前記電解質膜の両面に配置された触媒層と、を備えた触媒層−電解質膜積層体であって、前記触媒層−電解質膜積層体の少なくとも1つの外周面は、前記電解質膜が平面視において前記各触媒層よりも大きくなるよう前記各触媒層から前記電解質膜に向かって傾斜している、触媒層−電解質膜積層体と、
中央に開口部を有し、前記開口部から前記触媒層が露出するよう前記触媒層−電解質膜積層体の少なくとも一方面の外周面に接着したエッジシールと、
を備えた、エッジシール付き触媒層−電解質膜積層体。
A catalyst layer-electrolyte membrane laminate comprising an electrolyte membrane and catalyst layers disposed on both sides of the electrolyte membrane, wherein at least one outer peripheral surface of the catalyst layer-electrolyte membrane laminate is the electrolyte membrane Is inclined from each catalyst layer toward the electrolyte membrane so as to be larger than each catalyst layer in plan view, and a catalyst layer-electrolyte membrane laminate,
An edge seal bonded to the outer peripheral surface of at least one surface of the catalyst layer-electrolyte membrane laminate so as to have an opening in the center and to expose the catalyst layer from the opening;
The catalyst layer-electrolyte membrane laminated body with an edge seal | sticker provided with.
請求項3に記載のエッジシール付き触媒層−電解質膜積層体と、
前記各触媒層上に配置された導電性多孔質基材と、
を備えた、エッジシール付き膜−電極接合体。
The catalyst layer-electrolyte membrane laminate with an edge seal according to claim 3,
A conductive porous substrate disposed on each of the catalyst layers;
A membrane-electrode assembly with an edge seal, comprising:
電解質膜と、
前記電解質膜の両面に配置された触媒層と、
前記各触媒層上に配置された導電性多孔質基材と、を備えた膜−電極接合体であって
前記膜−電極接合体の少なくとも1つの外周面は、前記電解質膜が平面視において前記各触媒層及び前記各導電性多孔質基材よりも大きくなるよう前記各触媒層から前記電解質膜の端部に向かって傾斜している、膜−電極接合体。
An electrolyte membrane;
A catalyst layer disposed on both surfaces of the electrolyte membrane;
A conductive porous substrate disposed on each catalyst layer, and a membrane-electrode assembly comprising:
At least one outer peripheral surface of the membrane-electrode assembly has an end portion of the electrolyte membrane from each catalyst layer such that the electrolyte membrane is larger than each catalyst layer and each conductive porous substrate in plan view. Membrane-electrode assembly that is inclined toward.
前記膜−電極接合体の少なくとも1つの外周面の断面形状が<字状である、請求項5に記載の膜−電極接合体。The membrane-electrode assembly according to claim 5, wherein the cross-sectional shape of at least one outer peripheral surface of the membrane-electrode assembly is <-shaped. 請求項5または6に記載の膜−電極接合体と、
中央に開口部を有し、前記開口部から前記導電性多孔質基材が露出するよう前記膜−電極接合体の少なくとも一方面に接着したエッジシールと、
を備えた、エッジシール付き膜−電極接合体。
The membrane-electrode assembly according to claim 5 or 6 ,
An edge seal that has an opening in the center and is adhered to at least one surface of the membrane-electrode assembly so that the conductive porous substrate is exposed from the opening;
A membrane-electrode assembly with an edge seal, comprising:
電解質膜を準備する工程と、
前記電解質膜の両面に触媒層を配置する工程と、
前記電解質膜及び触媒層を備えた触媒層−電解質膜積層体の外周を切断する工程と、を含み、
前記切断工程において切断された前記触媒層−電解質膜積層体の外周面は、前記電解質膜が平面視において前記各触媒層よりも大きくなるよう前記各触媒層から前記電解質膜に向かって傾斜しており、その断面形状が<字状である、触媒層−電解質膜積層体の製造方法。
A step of preparing an electrolyte membrane;
Disposing a catalyst layer on both surfaces of the electrolyte membrane;
Cutting the outer periphery of the catalyst layer-electrolyte membrane laminate comprising the electrolyte membrane and the catalyst layer,
The outer peripheral surface of the catalyst layer-electrolyte membrane laminate cut in the cutting step is inclined from each catalyst layer toward the electrolyte membrane so that the electrolyte membrane is larger than each catalyst layer in plan view. The method for producing a catalyst layer-electrolyte membrane laminate , wherein the cross-sectional shape is <character shape .
電解質膜を準備する工程と、
前記電解質膜の両面に触媒層を配置する工程と、
前記各触媒層上に導電性多孔質基材を配置する工程と、
前記電解質膜、触媒層、及び導電性多孔質基材を備えた膜−電極接合体の外周を切断する工程と、を含み、
前記切断工程において切断された前記膜−電極接合体の外周面は、前記電解質膜が平面視において前記各触媒層及び前記各導電性多孔質基材よりも大きくなるよう前記各触媒層から前記電解質膜の端部に向かって傾斜している、膜−電極接合体の製造方法。
A step of preparing an electrolyte membrane;
Disposing a catalyst layer on both surfaces of the electrolyte membrane;
Disposing a conductive porous substrate on each catalyst layer;
Cutting the outer periphery of the membrane-electrode assembly comprising the electrolyte membrane, the catalyst layer, and the conductive porous substrate,
The outer peripheral surface of the membrane-electrode assembly cut in the cutting step is from the catalyst layer to the electrolyte so that the electrolyte membrane is larger than the catalyst layer and the conductive porous substrate in plan view. The manufacturing method of the membrane-electrode assembly which inclines toward the edge part of a film | membrane.
前記膜−電極接合体の外周面の断面形状が<字状である、請求項9に記載の膜−電極接合体の製造方法。The method for producing a membrane-electrode assembly according to claim 9, wherein a cross-sectional shape of the outer peripheral surface of the membrane-electrode assembly is <-shaped.
JP2010077960A 2010-03-30 2010-03-30 Catalyst layer-electrolyte membrane laminate, catalyst layer with edge seal-electrolyte membrane laminate, membrane-electrode assembly, membrane-electrode assembly with edge seal, and production method thereof Expired - Fee Related JP5533134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010077960A JP5533134B2 (en) 2010-03-30 2010-03-30 Catalyst layer-electrolyte membrane laminate, catalyst layer with edge seal-electrolyte membrane laminate, membrane-electrode assembly, membrane-electrode assembly with edge seal, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010077960A JP5533134B2 (en) 2010-03-30 2010-03-30 Catalyst layer-electrolyte membrane laminate, catalyst layer with edge seal-electrolyte membrane laminate, membrane-electrode assembly, membrane-electrode assembly with edge seal, and production method thereof

Publications (2)

Publication Number Publication Date
JP2011210588A JP2011210588A (en) 2011-10-20
JP5533134B2 true JP5533134B2 (en) 2014-06-25

Family

ID=44941420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010077960A Expired - Fee Related JP5533134B2 (en) 2010-03-30 2010-03-30 Catalyst layer-electrolyte membrane laminate, catalyst layer with edge seal-electrolyte membrane laminate, membrane-electrode assembly, membrane-electrode assembly with edge seal, and production method thereof

Country Status (1)

Country Link
JP (1) JP5533134B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6368995B2 (en) * 2013-08-28 2018-08-08 凸版印刷株式会社 Membrane electrode assembly and membrane electrode assembly laminate
JP6326862B2 (en) * 2014-02-26 2018-05-23 凸版印刷株式会社 Membrane electrode assembly, fuel cell, and method of manufacturing membrane electrode assembly
JP6349961B2 (en) * 2014-05-26 2018-07-04 日産自動車株式会社 Manufacturing apparatus and manufacturing method of membrane electrode assembly with resin frame
JP6747188B2 (en) * 2016-09-01 2020-08-26 日産自動車株式会社 Joint body of electrolyte membrane and frame
JP7114511B2 (en) * 2019-03-08 2022-08-08 株式会社東芝 Fuel cells and sealing materials for fuel cells
WO2021199721A1 (en) * 2020-03-30 2021-10-07 パナソニックIpマネジメント株式会社 Laminated battery production method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079059A (en) * 2003-09-03 2005-03-24 Sekisui Chem Co Ltd Fuel cell
JP2005310641A (en) * 2004-04-23 2005-11-04 Toyota Motor Corp Fuel cell and its manufacturing method
JP2008059853A (en) * 2006-08-30 2008-03-13 Toyota Motor Corp Manufacturing method of membrane-electrode assembly, and fuel cell
JP5828613B2 (en) * 2008-07-10 2015-12-09 大日本印刷株式会社 Catalyst layer with reinforcing membrane-electrolyte membrane laminate, electrode with reinforcing membrane-electrolyte membrane laminate, and polymer electrolyte fuel cell

Also Published As

Publication number Publication date
JP2011210588A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
US8512907B2 (en) Membrane catalyst layer assembly with reinforcing films, membrane electrode assembly with reinforcing films, and polymer electrolyte fuel cells
JP5309518B2 (en) Electrolyte membrane reinforcing sandwich, method for producing electrolyte membrane-catalyst layer assembly with electrolyte membrane reinforcing sandwich, and method for producing solid polymer fuel cell
JP5552766B2 (en) Edge-sealed catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane assembly, polymer electrolyte fuel cell, catalyst layer-electrolyte membrane laminate production method, and edge-sealed catalyst layer-electrolyte membrane laminate production method
JP5533134B2 (en) Catalyst layer-electrolyte membrane laminate, catalyst layer with edge seal-electrolyte membrane laminate, membrane-electrode assembly, membrane-electrode assembly with edge seal, and production method thereof
JP5326250B2 (en) Polymer electrolyte fuel cell structure and polymer electrolyte fuel cell using the same
JP5338998B2 (en) Electrolyte membrane-electrode assembly and solid polymer fuel cell using the same
JP5277792B2 (en) Electrolyte membrane-electrode assembly with auxiliary membrane, and polymer electrolyte fuel cell using the same
JP6120674B2 (en) Solid polymer fuel cell and manufacturing method thereof
JP2010225495A (en) Electrolyte membrane with reinforced film, catalyst layer with reinforced film-electrolyte membrane laminate, membrane-electrode assembly with reinforced film, liquid material impregnated electrolyte membrane type fuel cell, and their manufacturing methods
JP5533131B2 (en) Edge-sealed catalyst layer-electrolyte membrane laminate, edge-sealed membrane-electrode assembly, and polymer electrolyte fuel cell
JP5887692B2 (en) Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane-electrode assembly with reinforcing membrane, polymer electrolyte fuel cell, and production method thereof
JP6024398B2 (en) REINFORCED CATALYST LAYER-ELECTROLYTE MEMBRANE LAMINATE, SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING REINFORCING CATALYST LAYER-ELECTROLYTE MEMBRANE
JP6085935B2 (en) REINFORCED CATALYST LAYER-ELECTROLYTE MEMBRANE LAMINATE, SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING REINFORCING CATALYST LAYER-ELECTROLYTE MEMBRANE
JP2011159458A (en) Catalyst layer-electrolyte film laminate, membrane-electrode assembly, polymer electrolyte fuel cell, and method of manufacturing catalyst layer-electrolyte film laminate
JP5577797B2 (en) Catalyst layer-electrolyte membrane laminate, membrane-electrode assembly including the same, and polymer electrolyte fuel cell
JP5544781B2 (en) Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane electrode assembly with reinforcing membrane, polymer electrolyte fuel cell, and reinforcing membrane
JP5791222B2 (en) Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane electrode assembly with reinforcing membrane, and polymer electrolyte fuel cell
JP5828613B2 (en) Catalyst layer with reinforcing membrane-electrolyte membrane laminate, electrode with reinforcing membrane-electrolyte membrane laminate, and polymer electrolyte fuel cell
WO2022186340A1 (en) Membrane electrode assembly aggregate roll, membrane electrode assembly, and solid polymer fuel cell
JP4802452B2 (en) Fuel cell and manufacturing method thereof
JP2010009797A (en) Gas diffusion electrode, membrane electrode conjugant, and solid polymer fuel cell
JP5266734B2 (en) Electrolyte membrane-catalyst layer assembly with reinforcing sheet, electrolyte membrane-electrode assembly with reinforcing sheet, solid polymer fuel cell, and method for producing electrolyte membrane-catalyst layer assembly with reinforcing sheet
JP2010257930A (en) Catalyst layer-electrolyte film laminate with reinforcing membrane, membrane electrode assembly with reinforced membrane, and solid polymer fuel cell
JP2005294016A (en) Current collection sheet
JP2007149545A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5533134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

LAPS Cancellation because of no payment of annual fees