JP5190683B2 - 交流電源装置 - Google Patents

交流電源装置 Download PDF

Info

Publication number
JP5190683B2
JP5190683B2 JP2008153511A JP2008153511A JP5190683B2 JP 5190683 B2 JP5190683 B2 JP 5190683B2 JP 2008153511 A JP2008153511 A JP 2008153511A JP 2008153511 A JP2008153511 A JP 2008153511A JP 5190683 B2 JP5190683 B2 JP 5190683B2
Authority
JP
Japan
Prior art keywords
voltage
frequency
input
mode
vin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008153511A
Other languages
English (en)
Other versions
JP2009303349A (ja
Inventor
豊 末廣
祥一 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2008153511A priority Critical patent/JP5190683B2/ja
Publication of JP2009303349A publication Critical patent/JP2009303349A/ja
Application granted granted Critical
Publication of JP5190683B2 publication Critical patent/JP5190683B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Description

本発明は、交流―直流―交流変換回路及びバックアップ用蓄電池を備えた交流電源装置に関する。
交流―直流―交流(AC−DC−AC)変換可能な交流電源装置(電力変換装置)をハーフブリッジ型AC−DCコンバータとハーフブリッジ型DC−ACインバータとの組み合せによって構成することは公知である。また、AC−DC−AC変換装置の効率を向上させるために、ハーフブリッジ型AC−DCコンバータのスイッチとハーフブリッジ型DC−ACインバータのスイッチの全てを高い繰返し周波数でオン・オフ制御しないで、AC−DC−AC変換装置に含まれているスイッチの一部のみを高い繰返し周波数でオン・オフし、残りのスイッチを整流器として動作させるために交流入力電圧の周期でオン・オフする方式が本件出願人に係る特開2000−262071号公報(特許文献1)に開示されている。この特許文献1に開示されている電力変換装置の主回路は、後述する本願の実施例を示す図1の電力変換回路1から交流入力電源スイッチ81と、バックアップスイッチ82と、バックアップ用蓄電池83と、充電回路84と、接続ライン86,87とを除いたものに相当する。
しかし、特許文献1には無停電で電力を供給することができる電力変換装置が開示されていない。そこで、特許文献1の図1の平滑コンデンサCに相当するものにバックアップ用蓄電池を接続することが考えられる。これにより、交流入力電圧に異常が生じてもバックアップ用蓄電池の容量の範囲で負荷に対する電力供給を継続できる。もし、容量の大きいバックアップ用蓄電池を設けると、バックアップ時間が長くなるが、電力変換装置のコストの増大を招く。
特開2000−262071号公報
従って、本発明が解決しようとする課題は、バックアップ用蓄電池を有する交流電源装置のコストの低減が要求されていることであり、本発明の目的は上記要求に応えることができる交流電源装置を提供することである。
上記課題を解決し、上記目的を達成するための本発明を、実施例を示す図面の符号を参照して説明する。但し、特許請求の範囲及びここでの参照符号は本発明の理解を助けるためのものであり、本発明を限定するものではない。
本発明の交流電源装置は、負荷(11)に交流電力を無停電で供給するための交流電源装置であって、電力変換回路と該電力変換回路の制御回路とから成る。
前記電力変換回路は、交流電源(3)に接続される交流入力端子(4)と、前記負荷(11)に接続される交流出力端子(6)と、前記交流電源(3)と前記負荷(11)とに接続される共通端子(5又は7)と、正側直流導体(76)と、負側直流導体(77)と、前記正側直流導体(76)と前記負側直流導体(77)との間にそれぞれ接続された第1及び第2のスイッチ(Q1,Q2)の直列回路、第3及び第4のスイッチ(Q3,Q4)の直列回路、第5及び第6のスイッチ(Q5,Q6)の直列回路、及び平滑コンデンサ(C)と、前記第1及び第2のスイッチ(Q1,Q2)の相互接続点(8)と前記共通端子(5又は7)との間に前記交流電源(3)を選択的に接続するための交流入力電源スイッチ(81)と、
バックアップ用蓄電池(83)と、前記第1及び第2のスイッチ(Q1,Q2)の相互接続点(8)と前記共通端子(5又は7)との間に前記バックアップ用蓄電池(83)を選択的に接続するためのバックアップスイッチ(82)と、前記交流入力端子(4)と前記第1及び第2のスイッチ(Q1,Q2)の相互接続点(8)との間又は前記第3及び第4のスイッチ(Q3,Q4)の相互接続点(9)と前記共通端子(5又は7)との間に接続されたインダクタ(L1又はL3)とを備えている。
前記制御回路は、前記交流電源(3)から供給された交流入力電圧(Vin)の周波数が正常範囲(f2〜f3)内にあり且つ前記交流入力電圧(Vin)の電圧値が正常範囲内にある周波数及び電圧正常モード時に、前記交流入力電源スイッチ(81)をオンに制御し且つ前記バックアップスイッチ(82)をオフに制御し且つ前記交流入力電圧(Vin)を直流電圧に変換して前記正側直流導体(76)と前記負側直流導体(77)との間に直流電圧を得且つ前記直流電圧を交流電圧に変換して前記交流出力端子(6)と前記共通端子(5又は7)との間に定格周波数の交流出力電圧(Vo)を得るように前記第1〜第6のスイッチ(Q1〜Q6)を制御し、前記交流入力電圧(Vin)の周波数が前記負荷(11)の許容周波数変動範囲(f1〜f2、f3〜f4)内にあり且つ前記交流入力電圧(Vin)の電圧値が正常範囲内にある周波数変動及び電圧正常モード時に、前記交流入力電源スイッチ(81)をオンに制御し且つ前記バックアップスイッチ(82)をオフに制御し且つ前記交流入力電圧(Vin)を直流電圧に変換して前記正側直流導体(76)と前記負側直流導体(77)との間に直流電圧を得且つ前記直流電圧を交流電圧に変換して前記交流出力端子(6)と前記共通端子(5又は7)との間に前記交流入力電圧(Vin)の周波数と同一の周波数の交流出力電圧(Vo)を得るように前記第1〜第6のスイッチ(Q1〜Q6)を制御し、前記周波数及び電圧正常モードと前記周波数変動及び電圧正常モードとのいずれにも属さない別のモード時又は前記交流入力電圧(Vin)の電圧値が前記正常範囲内にない電圧異常モード時に、前記交流入力電源スイッチ(81)をオフに制御し且つ前記バックアップスイッチ(82)をオンに制御し且つ前記バックアップ用蓄電池(83)の直流電圧を直流―直流変換することによって前記正側直流導体(76)と前記負側直流導体(77)との間に所望の直流電圧を得且つ前記直流電圧を交流電圧に変換することによって前記定格周波数の交流出力電圧(Vo)を得るように前記第1〜第6のスイッチ(Q1〜Q6)を制御する手段から成る。
なお、請求項2に示すように、請求項1の前記制御回路は、前記交流電源(3)から供給された交流入力電圧の周波数が正常範囲(f2〜f3)内か否かを判定する機能と前記交流入力電圧(Vin)の周波数が前記正常範囲よりも低い許容周波数変動範囲(f1〜f2)内か否かを判定する機能と前記交流入力電圧(Vin)の周波数が前記正常範囲よりも高い許容周波数変動範囲(f3〜f4)内か否かを判定する機能とを有する周波数判定手段(111)と、前記交流入力電圧(Vin)の電圧値が正常範囲内か否かを判定する交流電圧判定手段(112)と、前記周波数判定手段(111)から前記周波数が正常範囲内であることを示す出力が得られ同時に前記交流電圧判定手段(112)から前記電圧値が正常範囲内であることを示す出力が得られている周波数及び電圧正常モードであるか否かを判定する周波数及び電圧正常モード判定手段(138)と、前記交流入力電圧(Vin)の周波数が前記正常範囲よりも低い許容周波数変動範囲(f1〜f2)内であることを示す出力又は前記交流入力電圧(Vin)の周波数が前記正常範囲よりも高い許容周波数変動範囲(f3〜f4)内であることを示す出力が前記周波数判定手段(111)から得られ同時に前記交流電圧判定手段(112)から前記電圧値が正常範囲内であることを示す出力が得られているか否かを判定する周波数変動及び電圧正常モード判定手段(137,139,141)と、前記周波数及び電圧正常モード判定手段(138)から前記周波数及び電圧正常モードを示す出力が得られている時、及び前記周波数変動及び電圧正常モード判定手段(137,139,141)から前記周波数変動及び電圧正常モードを示す出力が得られている時に前記交流入力電源スイッチ(81)をオン制御し且つ前記バックアップスイッチ(82)をオフ状態に制御し、且つ前記周波数及び電圧正常モードと前記周波数変動及び電圧正常モードとのいずれにも属さない別のモード時、又は前記交流電圧判定手段(112)から前記電圧値が正常範囲内にない異常であることを示す出力が得られている電圧異常モード時に前記交流入力電源スイッチ(81)をオフ状態に制御し且つ前記バックアップスイッチ(82)をオン状態に制御するためのモード切換信号を出力する手段(88,89)と、前記周波数及び電圧正常モード判定手段(136)から得られた周波数及び電圧正常モードを示す信号に応答して前記定格周波数の交流出力電圧(Vo)を得るための固定周波数を有する第1の基準電圧指令値を発生し、且つ前記周波数変動及び電圧正常モード判定手段(137,139,141)から得られた周波数変動及び電圧正常モードを示す信号に応答して前記交流入力電圧(Vin)の周波数に比例して変化する周波数を有する第2の基準電圧指令値を発生する基準電圧指令値発生手段(66)と、前記周波数及び電圧正常モード判定手段(138)から前記周波数及び電圧正常モードを示す出力が得られている時に、前記交流入力電圧(Vin)を直流電圧に変換して前記正側直流導体(76)と前記負側直流導体(77)との間に直流電圧を得且つ前記第1の基準電圧指令値に基づいて前記交流出力端子(6)と前記共通端子(5又は7)との間に定格周波数の交流出力電圧(Vo)を得るように前記第1〜第6のスイッチ(Q1〜Q6)を制御するためのスイッチ制御信号を発生し、前記周波数変動及び電圧正常モード判定手段(137,139,141)から前記周波数変動及び電圧正常モードを示す出力が得られている時に、前記第2の基準電圧指令値に基づいて前記交流出力端子(6)と前記共通端子(5又は7)との間に前記交流入力電圧(Vin)の周波数に比例して変化する周波数を有する交流出力電圧(Vo)が得られるように前記第1〜第6のスイッチ(Q1〜Q6)を制御するためのスイッチ制御信号を発生する交流入力モードスイッチ制御信号発生手段(101又は101a又は101b又は101c又は101d)と、前記周波数及び電圧正常モードと前記周波数変動及び電圧正常モードとのいずれにも属さない別のモード時、又は前記交流入力電圧(Vin)の電圧値が正常範囲にない異常の電圧異常モード時に、前記バックアップ用蓄電池(83)の直流電圧を直流―直流変換することによって前記正側直流導体(76)と前記負側直流導体(77)との間に所望の直流電圧を得且つ前記直流電圧を交流電圧に変換することによって前記定格周波数の交流出力電圧(Vo)を得るように前記第1〜第6のスイッチ(Q1〜Q6)を制御するためのスイッチ制御信号を発生するバックアップモードスイッチ制御信号発生手段(102)と備えていることが望ましい。
また、請求項3に示すように、請求項1のバックアップ用蓄電池(83)の接続箇所を前記正側直流導体(76)と前記負側直流導体(77)との間に変更することができる。この場合には、前記周波数及び電圧正常モードと周波数変動及び電圧正常モードとのいずれにも属さない別なモード時又は前記交流入力電圧(Vin)の電圧値が前記正常範囲内にない電圧異常モード時に、前記交流入力電源スイッチ(81)をオフに制御し且つ前記バックアップスイッチ(82)をオンに制御し且つ前記バックアップ用蓄電池(83)から供給された前記正側直流導体(76)と前記負側直流導体(77)との間の直流電圧を定格周波数の交流出力電圧(Vo)に変換するように前記第3〜第6のスイッチ(Q3〜Q6)を制御する。
また、請求項4に示すように、請求項3の前記制御回路は、前記交流電源(3)から供給された交流入力電圧の周波数が正常範囲(f2〜f3)内か否かを判定する機能と前記交流入力電圧(Vin)の周波数が前記正常範囲よりも低い許容周波数変動範囲(f1〜f2)内か否かを判定する機能と前記交流入力電圧(Vin)の周波数が前記正常範囲よりも高い許容周波数変動範囲(f3〜f4)内か否かを判定する機能とを有する周波数判定手段(111)と、前記交流入力電圧(Vin)の電圧値が正常範囲内か否かを判定する交流電圧判定手段(112)と、前記周波数判定手段(111)から前記周波数が正常範囲内であることを示す出力が得られ同時に前記交流電圧判定手段(112)から前記電圧値が正常範囲内であることを示す出力が得られている周波数及び電圧正常モードであるか否かを判定する周波数及び電圧正常モード判定手段(138)と、前記交流入力電圧(Vin)の周波数が前記正常範囲よりも低い許容周波数変動範囲(f1〜f2)内であることを示す出力又は前記交流入力電圧(Vin)の周波数が前記正常範囲よりも高い許容周波数変動範囲(f3〜f4)内であることを示す出力が前記周波数判定手段(111)から得られ同時に前記交流電圧判定手段(112)から前記電圧値が正常範囲内であることを示す出力が得られているか否かを判定する周波数変動及び電圧正常モード判定手段(137,139,141)と、前記周波数及び電圧正常モード判定手段(138)から前記周波数及び電圧正常モードを示す出力が得られている時及び前記周波数変動及び電圧正常モード判定手段(137,139,141)から前記周波数変動及び電圧正常モードを示す出力が得られている時に前記交流入力電源スイッチ(81)をオン制御し且つ前記周波数及び電圧正常モードと前記周波数変動及び電圧正常モードとのいずれにも属さない別のモード時、又は前記交流電圧判定手段(112)から前記電圧値が正常範囲内にない異常であることを示す出力が得られている電圧異常モード時に前記交流入力電源スイッチ(81)をオフ状態に制御し且つ前記バックアップスイッチ(82)をオン状態に制御するためのモード切換信号を出力する手段(88,89)と、前記周波数及び電圧正常モード判定手段(136)から得られた周波数及び電圧正常モードを示す信号に応答して定格周波数の交流出力電圧(Vo)を得るための固定周波数を有する第1の基準電圧指令値を発生し、且つ前記周波数変動及び電圧正常モード判定手段(137,139,141)から得られた周波数変動及び電圧正常モードを示す信号に応答して前記交流入力電圧(Vin)の周波数に比例して変化する周波数を有する第2の基準電圧指令値を発生する基準電圧指令値発生手段(66)と、前記周波数及び電圧正常モード判定手段(138)から前記周波数及び電圧正常モードを示す出力が得られている時に、前記交流入力電圧(Vin)を直流電圧に変換して前記正側直流導体(76)と前記負側直流導体(77)との間に直流電圧を得且つ前記第1の基準電圧指令値に基づいて前記交流出力端子(6)と前記共通端子(5又は7)との間に定格周波数の交流出力電圧(Vo)を得るように前記第1〜第6のスイッチ(Q1〜Q6)を制御するためのスイッチ制御信号を発生し、前記周波数変動及び電圧正常モード判定手段(137,139,141)から前記周波数変動及び電圧正常モードを示す出力が得られている時に前記第2の基準電圧指令値に基づいて前記交流出力端子(6)と前記共通端子(5又は7)との間に前記交流入力電圧(Vin)の周波数に比例して変化する周波数を有する交流出力電圧(Vo)を得るように前記第1〜第6のスイッチ(Q1〜Q6)を制御するためのスイッチ制御信号を発生する交流入力モードスイッチ制御信号発生手段(101又は101a又は101b又は101c又は101d)と、前記周波数及び電圧正常モードと前記周波数変動及び電圧正常モードとのいずれにも属さない別のモード時、又は前記交流入力電圧(Vin)の電圧値が正常範囲にない電圧異常モード時に、前記バックアップ用蓄電池(83)から供給された前記正側直流導体(76)と前記負側直流導体(77)との間の直流電圧を交流電圧に変換することによって定格周波数の交流出力電圧(Vo)を得るように前記第3〜第6のスイッチ(Q3〜Q6)を制御するためのスイッチ制御信号を発生するバックアップモードスイッチ制御信号発生手段(102)とを備えていることが望ましい。
また、請求項5に示すように、請求項3又は4の交流電源装置は、更に、前記周波数及び電圧異常モード時、又は前記電圧異常モード時に、前記バックアップ用蓄電池(83)の直流電圧を昇圧して前記正側直流導体(76)と前記負側直流導体(77)との間に供給する直流―直流変換回路(85)を有していることが望ましい。
また、請求項6に示すように、各請求項の交流電源装置において、前記周波数の正常範囲(f2〜f3)は前記交流入力電圧(Vin)の定格周波数の99%から101%の範囲であり、前記負荷(11)の許容周波数変動範囲は前記交流入力電圧(Vin)の定格周波数の90%から99%の範囲、及び101%から110%の範囲であることが望ましい。
また、請求項7に示すように、請求項2又は4の前記交流入力モードスイッチ制御信号発生手段は、前記交流入力端子(4)又は前記第1及び第2のスイッチ(Q1,Q2)の相互接続点(8)と前記共通端子(5)との間の第1の電圧(Vin又はVconv)と前記交流出力端子(6)又は前記第5及び第6のスイッチ(Q5,Q6)の相互接続点(10)と前記共通端子(5)との間の第2の電圧(Vo又はVinv)とをほぼ等しくする電圧非変換モードの時に、前記第1及び第2のスイッチ(Q1,Q2)と前記第5及び第6のスイッチ(Q5,Q6)とを前記交流入力電圧(Vin)の周期でオン・オフ制御し、且つ前記第3及び第4のスイッチ(Q3,Q4)を前記交流入力電圧(Vin)の周期よりも短い周期でオン・オフ制御する第1の機能と、前記第2の電圧(Vo又はVinv)を前記第1の電圧(Vin又はVconv)よりも低くする降圧モードの時に、前記第1及び第2のスイッチ(Q1,Q2)を前記交流入力電圧(Vin)の周期でオン・オフ制御し、且つ前記第3及び第4のスイッチ(Q3,Q4)と前記第5及び第6のスイッチ(Q5,Q6)とを前記交流入力電圧(Vin)の周期よりも短い周期でオン・オフ制御する第2の機能と、前記第2の電圧(Vo又はVinv)を前記第1の電圧(Vin又はVconv)よりも高くする昇圧モードの時に、前記第1及び第2のスイッチ(Q1,Q2)と前記第3及び第4のスイッチ(Q3,Q4)とを前記交流入力電圧(Vin)の周期よりも短い周期でオン・オフ制御し、且つ前記第5及び第6のスイッチ(Q5,Q6)を前記交流入力電圧(Vin)の周期でオン・オフ制御する第3の機能との内の少なくとも1つの機能を有していることが望ましい。
また、請求項8に示すように、請求項2又は4の前記交流入力モードスイッチ制御信号発生手段は、前記第1及び第2のスイッチ(Q1,Q2)の相互接続点(8)と前記共通端子(5)との間の第1の電圧(Vconv)を前記第1の直流電圧基準値(V59a)又は前記第2の直流電圧基準値(V59b)に対応する第1又は第2の所望値にするための第1の指令値Vrcを前記交流入力電圧(Vin)に同期して発生する第1の指令値発生手段(44)と、前記第5及び第6のスイッチ(Q5,Q6)の相互接続点(10)と前記共通端子(5)との間の第2の電圧(Vinv)を所望値にするための第2の指令値Vriを発生する第2の指令値発生手段(45)と、前記交流入力電圧(Vin)と同一の周期を有する方形波電圧Vsを発生する方形波発生器(46)と、前記第1の指令値発生手段(44)と前記第2の指令値発生手段(45)と前記方形波発生器(46)とに接続され、
Vrc−Vri+Vsを示す第1の値(Vr1)と、
Vri−Vrc+Vsを示す第2の値(Vr3)と、
Vr3−Vri又はVs−Vrc又はVs−Vriを示す第3の値(Vr2)と
を出力する演算手段(47,48,49)と、前記演算手段(47,48,49)と前記第1、第2、第3、第4、第5及び第6のスイッチ(Q1,Q2,Q3,Q4,Q5,Q6)とに接続され、前記演算手段(47,48,49)から得られた前記第1、第2及び第3の値(Vr1,Vr3,Vr2)に基づいて前記第1、第2、第3、第4、第5及び第6のスイッチ(Q1,Q2,Q3,Q4,Q5,Q6)をオン・オフ制御するための第1、第2、第3、第4、第5及び第6の制御信号(VQ1,VQ2,VQ3,VQ4,VQ5,VQ6)を形成する制御信号形成手段(52,53,54,55,56,57,58又は52,53,54,55、56'、57’、58’)とを備え、前記第2の指令値発生手段(45)に前記基準電圧指令値発生手段(66)が含まれていることが望ましい。
また、前記制御信号形成手段は、鋸波電圧又は三角波電圧から成る比較波(Vt)を前記交流入力電圧(Vin)の周期よりも短い周期で発生する比較波発生器(52)と、前記演算手段(47,48,49)と前記比較波発生器(52)と前記第1のスイッチ(Q1)とに接続され、前記第1の値(Vr1)と前記比較波(Vt)とを比較して前記第1の値(Vr1)が前記比較波(Vt)よりも高い時には第1の電圧レベルとなり、前記第1の値(Vr1)が前記比較波(Vt)よりも低い時には第2の電圧レベルとなる第1の制御信号(VQ1)を形成し、この第1の制御信号(VQ1)を前記第1のスイッチ(Q1)に供給するための第1のコンパレータ(53)と 前記第1のコンパレータ(53)と前記第2のスイッチ(Q2)とに接続され、前記第1の制御信号(VQ1)と逆位相の第2の制御信号(VQ2)を形成し、この第2の制御信号(VQ2)を前記第2のスイッチ(Q2)に供給する第1のNOT回路(56)と、前記演算手段(47,48,49)と前記比較波発生器(52)と前記第3のスイッチ(Q3)とに接続され、前記第3の値(Vr2)と前記比較波(Vt)とを比較して前記第3の値(Vr2)が前記比較波(Vt)よりも高い時には第1の電圧レベルとなり、前記第3の値(Vr2)が前記比較波(Vt)よりも低い時には第2の電圧レベルとなる第3の制御信号(VQ3)を形成し、この第3の制御信号(VQ3)を前記第3のスイッチ(Q3)に供給するための第2のコンパレータ(54)と、前記第2のコンパレータ(54)と前記第4のスイッチ(Q4)とに接続され、前記第3の制御信号(VQ3)と逆位相の第4の制御信号(VQ4)を形成し、この第4の制御信号(VQ4)を前記第4のスイッチ(Q4)に供給する第2のNOT回路(57)と、前記演算手段(47,48,49)と前記比較波発生器(52)と前記第5のスイッチ(Q5)とに接続され、前記第2の値(Vr3)と前記比較波(Vt)とを比較して前記第2の値(Vr3)が前記比較波(Vt)よりも高い時には第1の電圧レベルとなり、前記第2の値(Vr3)が前記比較波(Vt)よりも低い時には第2の電圧レベルとなる第5の制御信号(VQ5)を形成し、この第5の制御信号(VQ5)を前記第5のスイッチ(Q5)に供給するための第3のコンパレータ(55)と、前記第3のコンパレータ(55)と前記第6のスイッチ(Q6)とに接続され、前記第5の制御信号(VQ5)と逆位相の第6の制御信号(VQ6)を形成し、この第6の制御信号(VQ6)を前記第6のスイッチ(Q6)に供給する第3のNOT回路(58)とから成ることが望ましい。
また、前記制御信号形成手段を、鋸波電圧又は三角波電圧から成る比較波(Vt)を前記交流入力電圧(Vin)の周期よりも短い周期で発生する比較波発生器(52)と、前記演算手段(47,48,49)と前記比較波発生器(52)と前記第1のスイッチ(Q1)とに接続され、前記第1の値(Vr1)と前記比較波(Vt)とを比較して前記第1の値(Vr1)が前記比較波(Vt)よりも高い時には第1の電圧レベルとなり、前記第1の値(Vr1)が前記比較波(Vt)よりも低い時には第2の電圧レベルとなる第1の制御信号(VQ1)を形成し、この第1の制御信号(VQ1)を前記第1のスイッチ(Q1)に供給するための第1のコンパレータ(53)と、前記演算手段(47,48,49)と前記比較波発生器(52)と前記第2のスイッチ(Q2)とに接続され、前記第1の値(Vr1)と前記比較波(Vt)とを比較して前記第1の値(Vr1)が前記比較波(Vt)よりも低い時には第1の電圧レベルとなり、前記第1の値(Vr1)が前記比較波(Vt)よりも高い時には第2の電圧レベルとなる第2の制御信号(VQ2)を形成し、この第2の制御信号(VQ2)を前記第2のスイッチ(Q2)に供給する第2のコンパレータ(56´)と、前記演算手段(47,48,49)と前記比較波発生器(52)と前記第3のスイッチ(Q3)とに接続され、前記第3の値(Vr2)と前記比較波(Vt)とを比較して前記第3の値(Vr2)が前記比較波(Vt)よりも高い時には第1の電圧レベルとなり、前記第3の値(Vr2)が前記比較波(Vt)よりも低い時には第2の電圧レベルとなる第3の制御信号(VQ3)を形成し、この第3の制御信号(VQ3)を前記第3のスイッチ(Q3)に供給するための第3のコンパレータ(54)と、前記演算手段(47,48,49)と前記比較波発生器(52)と前記第4のスイッチ(Q4)とに接続され、前記第3の値(Vr2)と前記比較波(Vt)とを比較して前記第3の値(Vr2)が前記比較波(Vt)よりも低い時には第1の電圧レベルとなり、前記第3の値(Vr2)が前記比較波(Vt)よりも高い時には第2の電圧レベルとなる第4の制御信号(VQ4)を形成し、この第4の制御信号(VQ4)を前記第4のスイッチ(Q4)に供給する第4のコンパレータ(57´)と、前記演算手段(47,48,49)と前記比較波発生器(52)と前記第5のスイッチ(Q5)とに接続され、前記第2の値(Vr3)と前記比較波(Vt)とを比較して前記第2の値(Vr3)が前記比較波(Vt)よりも高い時には第1の電圧レベルとなり、前記第2の値(Vr3)が前記比較波(Vt)よりも低い時には第2の電圧レベルとなる第5の制御信号(VQ5)を形成し、この第5の制御信号(VQ5)を前記第5のスイッチ(Q5)に供給するための第5のコンパレータ(55)と、前記演算手段(47,48,49)と前記比較波発生器(52)と前記第6のスイッチ(Q6)とに接続され、前記第2の値(Vr3)と前記比較波(Vt)とを比較して前記第2の値(Vr3)が前記比較波(Vt)よりも低い時には第1の電圧レベルとなり、前記第2の値(Vr3)が前記比較波(Vt)よりも高い時には第2の電圧レベルとなる第6の制御信号(VQ6)を形成し、この第6の制御信号(VQ6)を前記第6のスイッチ(Q6)に供給する第6のコンパレ−タ(58´)とで構成することができる。
また、前記演算手段は、前記第1の指令値発生手段(44)と前記第2の指令値発生手段(45)と前記方形波発生器(46)とに接続され、Vrc−Vri+Vsを演算して前記第1の値(Vr1)を出力する第1の演算回路(47)と、前記第1の指令値発生手段(44)と前記第2の指令値発生手段(45)と前記方形波発生器(46)とに接続され、Vri−Vrc+Vsを演算して、前記第2の値(Vr3)を出力する第2の演算回路(48)と、 前記第2の指令値発生手段(45)と前記第2の演算回路(48)とに接続され、Vr3−Vriを演算して前記第3の値(Vr2)を出力する第3の演算回路(49)とから成ることが望ましい。
また、更に、前記第1の演算回路(47)に接続され,前記第1の演算回路(47)の出力を、前記方形波電圧(Vs)の最大値以上に設定された上限値で制限し且つ前記方形波電圧(Vs)の最小値以下に設定された下限値で制限する第1のリミッタ(50)と、前記第2の演算回路(48)に接続され,前記第2の演算回路(48)の出力を、前記方形波電圧(Vs)の最大値以上に設定された上限値で制限し且つ前記方形波電圧(Vs)の最小値以下に設定された下限値で制限する第2のリミッタ(51)とを設けることができる。
また、前記演算手段を、前記第1の指令値発生手段(44)と前記第2の指令値発生手段(45)とに接続され、前記第2の指令値Vriから前記第1の指令値Vrcを減算して△V=Vri−Vrcを演算する第1の演算回路(47a)と、 前記第1の演算回路(47a)と前記方形波発生器(46)とに接続され、
もし、△V>0の時は、
Vr1=Vs−△V
Vr3=Vs
もし、△V=0の時は、
Vr1=Vs
Vr3=Vs
もし、△V<0の時は、
Vr1=Vs
Vr3=Vs+△V
を出力する第2の演算回路(48a)と、 前記第1の指令値発生手段(44)と前記第2の演算回路(48a)とに接続され、Vr2=Vr1−Vrcを演算する第3の演算回路(49a)とで構成することができる。
また、前記演算手段を、前記第1の指令値発生手段(44)と前記第2の指令値発生手段(45)とに接続され、ΔV1=Vrc−Vriを演算する第1の演算回路(47b)と、前記第1の指令値発生手段(44)と前記第2の指令値発生手段(45)とに接続され、Vri−Vrcを演算する第2の演算回路(48b)と、 前記第1の指令値発生手段(44)と前記第2の指令値発生手段(45)とに接続され、第1の演算回路(47b)から得られた前記ΔV1が0の時及び前記ΔV1が0より大きい時にVrcを出力し、前記ΔV1が0より小さい時にVriを出力する選択回路(49b)と、前記第1の演算回路(47b)と前記方形波発生器(46)とに接続され、Vs+(Vrc−Vri)から成る第1の値(Vr1)を出力する第1の加算器(71)と、前記第2の演算回路(48b)と前記方形波発生器(46)とに接続され、Vs+(Vri−Vrc)から成る第2の値(Vr3)を出力する第1の加算器(73)と、前記選択回路(49b)と前記方形波発生器(46)とに接続され、Vs−Vrc又はVs−Vriから成る第3の値(Vr2)を出力する第1の加算器(72)とで構成することができる。
また、更に、前記第1の加算器(71)に接続され,前記第1の加算器(71)の出力を、前記方形波電圧(Vs)の最大値以上に設定された上限値で制限し且つ前記方形波電圧(Vs)の最小値以下に設定された下限値で制限する第1のリミッタ(50)と、前記第2の加算器(73)に接続され,前記第2の加算器(73)の出力を、前記方形波電圧(Vs)の最大値以上に設定された上限値で制限し且つ前記方形波電圧(Vs)の最小値以下に設定された下限値で制限する第2のリミッタ(51)と、前記減算器(72)に接続され,前記減算器(72)の出力を、前記方形波電圧(Vs)の最大値以上に設定された上限値で制限し且つ前記方形波電圧(Vs)の最小値以下に設定された下限値で制限する第3のリミッタ(74)とを設けることができる。
また、前記演算手段を、前記第1の指令値発生手段(44)と前記第2の指令値発生手段(45)とに接続され、ΔV1=Vrc−Vriを演算する演算回路(47b)と、前記第1の指令値発生手段(44)と前記第2の指令値発生手段(45)と前記演算回路(47b)とに接続され、前記演算回路(47b)から得られた前記ΔV1が0の時及び前記ΔV1が0より大きい時にVrcを出力し、前記ΔV1が0より小さい時にVriを出力する選択回路(49b)と、前記演算回路(47b)と前記方形波発生器(46)とに接続され、Vs+(Vrc−Vri)から成る第1の値(Vr1)を出力する加算器(71)と、前記演算回路(47b)と前記方形波発生器(46)とに接続され、Vs−(Vrc−Vri)から成る第2の値(Vr3)を出力する第1の減算器(73´)と、前記選択回路(49b)と前記方形波発生器(46)とに接続され、Vs−Vrc又はVs−Vriから成る第3の値(Vr2)を出力する第2の減算器(72)とで構成することができる。
また、更に、前記加算器(71)に接続され,前記加算器(71)の出力を、前記方形波電圧(Vs)の最大値以上に設定された上限値で制限し且つ前記方形波電圧(Vs)の最小値以下に設定された下限値で制限する第1のリミッタ(50)と、前記第1の減算器(73´)に接続され,前記第1の減算器(73’)の出力を、前記方形波電圧(Vs)の最大値以上に設定された上限値で制限し且つ前記方形波電圧(Vs)の最小値以下に設定された下限値で制限する第2のリミッタ(51)と、前記第2の減算器(72)に接続され,前記第2の減算器(72)の出力を、前記方形波電圧(Vs)の最大値以上に設定された上限値で制限し且つ前記方形波電圧(Vs)の最小値以下に設定された下限値で制限する第3のリミッタ(74)とを設けることができる。
また、前記第1の指令値発生手段は、前記交流入力端子(4)と前記共通端子(5)との間の交流入力電圧(Vin)を検出し、交流入力電圧検出信号を出力する入力電圧検出回路(41)と、前記コンデンサ(C)の直流電圧を検出して直流電圧検出信号を出力する直流電圧検出回路(42)と、前記交流入力端子(4)を流れる電流を検出し、前記電流に比例した電圧値を有する電流検出信号を出力する電流検出器(23)と、基準直流電圧を発生する基準直流電圧源(59)と、 前記基準直流電圧源(59)と前記直流電圧検出回路(42)とに接続され、前記基準直流電圧と前記直流電圧検出信号との差を示す信号を出力する第1の減算器(60)と、前記入力電圧検出回路(41)と前記第1の減算器(60)とに接続され、前記交流入力電圧検出信号に前記第1の減算器(60)の出力を乗算する乗算器(62)と、前記乗算器(62)と前記電流検出器(23)とに接続され、前記乗算器(62)の出力から前記電流検出信号を減算して前記第1の指令値(Vrc)を出力する第2の減算器(63)とから成ることが望ましい。
また、前記第2の指令値発生手段は、基準出力電圧指令値を発生する基準出力電圧指令値発生器(66)と、前記交流出力端子(6)と前記共通端子(5)との間の出力電圧(V0)を検出し、出力電圧検出信号を出力する出力電圧検出回路(43)と、前記基準出力電圧指令値発生器(66)と前記出力電圧検出回路(43)とに接続され、前記基準出力電圧指令値と前記出力電圧検出信号との差に相当する信号を前記第2の指令値(Vri)として出力する第3の減算器(67)とから成ることが望ましい。
また、前記基準出力電圧指令値発生器(66)は、レベルの異なる複数の基準出力電圧指令値を選択的に発生することができるものであることが望ましい。
各請求項の発明は次の効果を有する。
(1)特許文献1と同様な電力変換回路を有する交流電源装置において、交流入力電圧異常時(例えば停電時)にバックアップ用蓄電池(83)の容量の範囲で負荷(11)に対する電力供給を継続できる。
(2)交流入力電圧の周波数変動が負荷(11)が容認する範囲であれば、直ちにバックアップ用蓄電池(83)への切換えを実行しないで、電力変換回路におけるAC−DC−AC変換動作を継続させるので、バックアップ用蓄電池(83)の容量低下が抑制され、バックアップ可能期間を長くすることができる。
次に、図面を参照して本発明の実施形態を説明する。
図1に示す実施例1に従う無停電交流電源装置は、力率改善機能を有する電圧調整装置又は電力変換装置と呼ぶこともできるものであって、大別して電力変換回路1とこの制御回路2とから成る。電力変換回路1は、特許文献1と同様に交流電源3、交流入力端子4、電源側の接地された共通端子(グランド端子)5、交流出力端子6、負荷側の共通端子7、交流入力導体75、正側直流導体76、負側直流導体77、第1、第2、第3、第4、第5及び第6のスイッチQ1 、Q2 、Q3 、Q4 、Q5 、Q6、有極の電解コンデンサから成る直流リンクコンデンサと呼ぶこともできる平滑コンデンサC、入力段リアクトルと呼ぶこともできる第1のインダクタL1 、出力段リアクトルと呼ぶこともできる第のインダクタL2 、入力段フィルタ用コンデンサC1 、及び出力段フィルタ用コンデンサC2 を有する他に、交流入力電源スイッチ81、バックアップスイッチ82、バックアップ用蓄電池83、充電回路84、及び接続ライン86,87を有する。
第1〜第6のスイッチQ1 〜Q6 はソースをバルク(サブストレート)に接続した構造の絶縁ゲート型(MOS型)電界効果トランジスタであって、第1、第2、第3、第4、第5及び第6のFETスイッチS1 、S2 、S3 、S4 、S5 、S6とこれに逆並列に接続された第1、第2、第3、第4、第5及び第6のダイオードD1 、D2 、D3 、D4 、D5、D6 、D7,D8、D9とを有する。なお、第1〜第6のダイオードD1 〜D6 を第1〜第6のスイッチQ1 〜Q6 に内蔵させないで個別部品とすることができる。また、第1〜第6のFETスイッチS1 〜S6 をバイポーラトランジスタ、IGBT(絶縁・ゲート・バイポーラ・トランジスタ)等の別の半導体スイッチとすることができる。
第1及び第2のスイッチQ1 、Q2 の直列回路、第3及び第4のスイッチQ3 、Q4 の直列回路、及び第5及び第6のスイッチQ5 、Q6 の直列回路は正側直流導体76と負側直流導体77との間にそれぞれ接続されている。第1及び第2のスイッチQ1 、Q2 の相互接続点8は第1のインダクタL1 と接続手段としての交流入力導体75と交流入力電源スイッチ81とを介して交流入力端子4に接続されている。第5及び第6のスイッチQ5 、Q6 の相互接続点10は出力段の第2のインダクタL2と交流出力導体78とを介して交流出力端子6に接続されている。第3及び第4のスイッチQ3 、Q4 の相互接続点9は接続導体79によって共通端子5に接続されている。
第1のフィルタ用コンデンサC1 は入力電流の高周波成分を除去するために交流入力端子4と共通端子5間に接続されている。第2のフィルタ用コンデンサC2 は出力電圧の高周波成分を除去するために交流出力端子6と共通端子7間に接続されている。
なお、入力側の第1のインダクタL1は交流出力端子6に交流電源端子3の交流入力電圧Vinよりも高い交流出力電圧Voを得るため、及び交流入力端子4における力率改善及び電流の波形改善を行うために必要なものである。図1では、交流入力端子4と第1及び第2のスイッチQ1、Q2の相互接続点8との間に第1のインダクタL1が接続されているが、この代りに第1のインダクタL1を第3及び第4のスイッチQ3、Q4の相互接続点9と共通端子5との間に接続することができる。即ち、図1において点線で示す第3のインダクタL3の位置に第1のインダクタL1を移動することができる。また、第1のインダクタL1に追加して点線で示す第3のインダクタL3を設けることもできる。
フィルタ機能を有する第2のインダクタL2は第5及び第6のスイッチQ5、Q6の相互接続点10と交流出力端子6との間に接続されている。しかし、負荷11が十分なインダクタンスを有する時には、第2のインダクタL2を省くこともできる。
交流入力電源スイッチ81は、第1及び第2のスイッチ(Q1,Q2)の相互接続点8と共通端子5又は7との間に交流電源3を第1のインダクタL1を介して選択的に接続するためのものであって、交流入力端子4と第1のインダクタL1との間に接続され、且つ電気的に制御可能に構成されている。この交流入力電源スイッチ81は例えば制御可能な電磁開閉器又は半導体スイッチで構成することができる。なお、交流入力電源スイッチ81を共通端子5に接続された共通ラインに設けることもできる。
バックアップスイッチ82は第1及び第2のスイッチQ1,Q2の相互接続点8と共通端子5との間にバックアップ用蓄電池83を選択的に接続するためのものである。バックアップ用蓄電池83は、バックアップスイッチ82を介して交流入力電源スイッチ81の出力側端子と共通端子5との間に接続されている。即ち、バックアップ用蓄電池83は、バックアップスイッチ82を介して第1のフィルタ用コンデンサC1に並列に接続されている。バックアップ用蓄電池83を充電するための充電回路84は交流入力端子4と共通端子5との間に接続されている。バックアップスイッチ82は交流入力電源スイッチ81と逆に動作し、交流入力電源スイッチ81がオフの時にオンになるものであり、電気的に制御可能な電磁開閉器又は半導体スイッチで構成することができる。
制御回路2によって第1〜第6のスイッチQ1 〜Q6 を制御するために、制御回路2と第1〜第6のスイッチQ1 〜Q6 のゲート(制御端子)との間がライン12、13、14、15、16、17で接続されている。なお、周知のように第1〜第6のスイッチQ1〜Q6の制御はゲート・ソース間に制御信号を供給して行われる。しかし、図1では図示を簡単化するために第1〜第6のスイッチQ1〜Q6の駆動回路の詳細は省略されている。
制御回路2によって第1〜第6のスイッチQ1 〜Q6 の制御信号を形成するために、交流入力端子4及び共通端子5がライン18、19によって、また交流出力端子6がライン20によって、また平滑コンデンサCの両端即ち正側直流導体76と負側直流導体77がライン21、22によって、また交流入力端子4 に流れる電流を検出する電流検出器23がライン24によって制御回路2にそれぞれ接続されている。更に、本発明で追加された交流入力電源スイッチ81及びバックアップスイッチ82の制御端子がライン88,89によって制御回路2にそれぞれ接続されている。
図1の制御回路2の詳細を図2〜図7によって説明する前に、図1の電力変換回路1の動作を説明する。電力変換回路1は、交流入力電源スイッチ81がオン、バックアップスイッチ82がオフであり、且つ交流入力電圧Vinが正常の時に、前述した特許文献1と同様に電圧非変換モード、降圧モード、昇圧モードから選択された少なくとも1つの交流入力モ−ド(AC−DC−AC変換モード)で動作することができる。
電圧非変換モードは、交流電源3の電圧即ち交流入力電圧Vin(例えば100V)とほぼ同一の出力電圧Vo が交流出力端子6と負荷側の共通端子7との間に得られるモードである。
降圧モードは、交流入力電圧Vin(100V)よりも低い出力電圧Vo が交流出力端子6と負荷側の共通端子7との間に得られるモードである。
昇圧モードは、交流入力電圧Vinよりも高い出力電圧Vo が交流出力端子6と負荷側の共通端子7との間に得られるモードである。
電圧非変換モード、降圧モード及び昇圧モードは、いずれも交流入力電圧VinをAC−DC−AC変換するモードであるので、これ等をまとめて交流入力モードと呼ぶこともできる。
なお、本実施例では、後述から明らかなように、図4の示す第1の指令値Vrcと第2の指令値Vriとの大小関係によって、電圧非変換モード、降圧モード、昇圧モードが決定されている。第1の指令値Vrcは、図1の交流入力端子4と電源側の共通端子5との間の電圧Vin又は第1及び第2のスイッチQ1、Q2の相互接続点8と電源側の共通端子5との間の第1の電圧Vconvと比例関係を有する。第2の指令値Vriは、図1の交流出力端子6と電源側の共通端子5又は負荷側の共通端子7との間の電圧Vo又は第5及び第6のスイッチQ5、Q6の相互接続点10と電源側の共通端子5又は負荷側の共通端子7との間の第2の電圧Vinvと比例関係を有する。従って、第1の電圧Vconvと第2の電圧Vinvとがほぼ等しい時を電圧非変換モ−ド、第2の電圧Vinvが第1の電圧Vconvよりも低い時を降圧モ−ド、第2の電圧Vinvが第1の電圧Vconvよりも高い時を昇圧モ−ドと呼ぶこともできる。
いずれの交流入力モードにおいても、第1及び第2のスイッチQ1 、Q2 から成る入力段スイッチ回路と第5及び第6のスイッチQ5 、Q6から成る出力段スイッチ回路のいずれか一方又は両方の高周波(例えば20kHz)のオン・オフが禁止される。このため入力段スイッチ回路及び/又は出力段スイッチ回路の損失低減効果が生じる。
(電圧非変換モード)
交流入力電圧Vinと同一の交流出力電圧Vo を得る時の非変換モードの場合には、第1〜第6のスイッチQ1 〜Q6 に図8(B)〜(G)の第1〜第6の制御信号VQ1〜VQ6が供給される。即ち、第1及び第5のスイッチQ1 、Q5 は電源3の50Hzの正弦波電圧と同一の周波数の50Hz方形波パルスによって180度間隔で断続的にオンになり、第2及び第6のスイッチQ2 、Q6 は第1及び第5のスイッチQ1 、Q5 と反対に動作する。また、第3及び第4のスイッチQ3 、Q4 は図8(A)の交流入力電圧Vinの周波数の2倍よりも高い周波数(例えば20kHz)でオン・オフ制御される。なお、力率改善及び入力電流の波形改善がされるように第3及び第4のスイッチQ3、Q4が高い周波数でオン・オフされる。
図8に示すように第1〜第6のスイッチQ1 〜Q6 を制御すると、交流入力電圧Vinが正の半波の期間(t0 〜t1 )では、交流電源3、第1のインダクタL1 、第1のスイッチQ1 、第5のスイッチQ5 、第2のインダクタL2 、及び負荷11の経路で正方向電流が流れる。また、交流入力電圧Vinが負の半波の期間(t1 〜t2 )では、交流電源3、負荷11、第2のインダクタL2 、第6のスイッチQ6 、第2のスイッチQ2 、及び第1のインダクタL1 の経路で負方向電流が流れる。この電圧非変換モードの場合、第1、第2、第5及び第6のスイッチQ1 、Q2 、Q5 、Q6 は高周波(例えば20kHz)でオン・オフされないので、単位時間当りのスイッチング回数が少なくなり、スイッチング損失による効率低下が少なくなる。
第3及び第4のスイッチQ3、Q4のオン・オフによる力率改善及び波形改善は次のように行われる。交流入力電圧Vinの正の半波の期間であって、且つ第3のスイッチQ3がオンの期間には、交流電源3、第1のインダクタL1、第1のスイッチQ1、及び第3のスイッチQ3の経路に電流が流れる。第3のスイッチQ3のオン・オフ時間の調整即ち制御によって、交流入力電流を操作即ち調整することが可能になり、力率改善及び波形改善即ち高調波成分の除去が可能になる。交流入力電圧Vinの負の半波期間であり、且つ第4のスイッチQ4がオンの期間には、交流電源3、第4のスイッチQ4、第2のスイッチQ2、及び第1のインダクタL1の経路に電流が流れる。第4のスイッチQ4のオン・オフ時間の調整即ち制御によって、交流入力電流を操作即ち調整することが可能になり、力率改善及び波形改善即ち高調波成分の除去が可能になる。この結果、交流入力電流が近似正弦波になる。
(降圧モード)
交流入力電圧Vinよりも低い交流出力電圧Voが得られる降圧モードの場合には、第1〜第6の主スイッチQ1 〜Q6 に図9(B)〜(G)に示す第1〜第6の制御信号VQ1〜VQ6が供給される。即ち、第1及び第2のスイッチQ1 、Q2 は図9(A)の交流入力電圧Vinと同一の低周波(50Hz)でオン・オフし、第3〜第6のスイッチQ3 〜Q6 は高周波(例えば20kHz)のPWM(パルス幅変調)パルスでオン・オフする。図9の交流入力電圧Vinの正の半波の期間t0 〜t1 であり且つ第1及び第5のスイッチQ1、Q5 がオンの期間には、交流電源3、第1のインダクタL1 、第1のスイッチQ1 、第5のスイッチQ5 、第2のインダクタL2 及び負荷11の経路で正方向電流が流れる。この時の第5及び第6のスイッチQ5,Q6の相互接続点10と電源側の共通端子5又は負荷側の共通端子7との間の電圧Vinvは、入力交流電圧Vinにほぼ等しくなる。また、入力交流電圧Vinの正の半波の期間t0 〜t1 であり且つ第1及び第6のスイッチQ1 、Q6 がオンの期間には、交流電源3、第1のインダクタL1 、第1のスイッチQ1 、平滑コンデンサC、第6のスイッチQ6 、第2のインダクタL2 及び負荷11の経路で正方向電流が流れる。この時の第5及び第6のスイッチQ5、Q6の相互接続点10と電源側の共通端子5又は負荷側の共通端子7との間の電圧Vinvは入力交流電圧Vinから平滑コンデンサCの電圧Vcを減算した値にほぼ等しくなる。
降圧モードにおける交流入力電圧Vinの負の半波の期間t1 〜t2 であり且つ第2及び第6のスイッチQ2,Q6 がオンの期間には、交流電源3、負荷11、第2のインダクタL2 、第6のスイッチQ6 、第2のスイッチQ2 及び第1のインダクタL1 の経路で負方向の電流が流れる。この時の第5及び第6のスイッチQ5、Q6の相互接続点10と共通端子5又は7との間の電圧Vinvの値は交流入力電圧Vinにほぼ等しくなる。また、交流入力電圧Vinの負の半波の期間t1 〜t2 であり且つ第2及び第5のスイッチQ2,Q5 のオンの期間には、交流電源3、負荷11、第2のインダクタL2 、第5のスイッチQ5 、平滑コンデンサC1、C2、第2のスイッチQ2 及び第1のインダクタL1 の経路で負方向電流が流れる。この時の第5及び第6のスイッチQ5、Q6の相互接続点10と電源側の共通端子5又は負荷側の共通端子7との間の電圧Vinvの値はVin−Vcにほぼ等しくなる。
上述から明らかなように、降圧モード時には、第5及び第6のスイッチQ5 、Q6 の高周波でのオン・オフ動作によって、第5及び第6のスイッチQ5,Q6の相互接続点10と電源側の共通端子5又は負荷側の共通端子7との間の電圧Vinvが交流入力電圧Vinとほぼ同一になる期間と、第5及び第6のスイッチQ5,Q6の相互接続点10と電源側の共通端子5又は負荷側の共通端子7との間の電圧Vinvが交流入力電圧VinからコンデンサCの電圧Vcを差し引いた値になる期間とが交互に生じる。この結果、交流入力電圧Vinよりも低い出力電圧Vo が得られる。
降圧モード時の第3及び第4のスイッチQ3,Q4のオン・オフによっても、電圧非変換モード時と同様に、力率改善及び電流の波形改善即ち高周波成分の除去の動作が生じる。
第3及び第4のスイッチQ3,Q4のオン・オフによって次に示すように平滑コンデンサCの電圧Vcの制御も達成される。降圧モードにおいて平滑コンデンサCは第1、第2、第5及び第6のスイッチQ1 Q2 、Q5 、Q6 を通る回路で充電される。このため、もし平滑コンデンサCの電圧Vc を制御しないと、この電圧Vc は徐々に高くなる。そこで、第3及び第4のスイッチQ3 、Q4 を高い周波数(例えば20kHz)でオン・オフして平滑コンデンサCの電荷を放出し、この電圧Vc を制御する。平滑コンデンサCの放電回路は次のようにして形成される。まず、交流入力電圧Vinが正の半波の期間t0 〜t1 であり且つ第4のスイッチQ4 のオンの期間には、平滑コンデンサC、第1のスイッチQ1 、第1のインダクタL1 、交流電源3及び第4のスイッチQ4 から成る閉回路で平滑コンデンサCの放電電流が流れる。この時、第1のインダクタL1 にエネルギーが蓄積される。次に、入力交流電圧Vinが正の半波の期間t0 〜t1 であり且つ第3のスイッチQ3 のオン期間には、第1のインダクタL1 、交流電源3、第3のスイッチQ3 、第1のスイッチQ1 から成る閉回路で第1のインダクタL1 のエネルギーの放出が行われ、第1のインダクタL1 のエネルギーは交流電源3に帰還される。第3及び第4のスイッチQ3 、Q4 が図9(D)(F)に示すように交流入力電圧Vinよりも十分に高い周波数でPWMパルスで断続され、このPWMパルスの幅の制御によって平滑コンデンサCの放電期間が制御され、平滑コンデンサCの電圧Vc はほぼ一定値に保たれる。なお、交流入力電圧Vinが負の期間t1 〜t2 であり且つ第3のスイッチQ3 がオンの期間には、平滑コンデンサC、第3のスイッチQ3 ,交流電源3、第1のインダクタL1 及び第2のスイッチQ2 から成る閉回路で平滑コンデンサCの電荷が放出される。また、交流入力電圧Vinが負の期間t1 〜t2 であり且つ第4のスイッチQ4 のオン期間には、第1のインダクタL1 、第2のスイッチQ2 、第4のスイッチQ4 及び交流電源3から成る閉回路で第1のインダクタL1 のエネルギーが放出される。
(昇圧モード)
交流入力電圧Vinよりも高い交流出力電圧Voが得られる昇圧モードの場合には、図10(B)〜(G)に示す制御信号VQ1〜VQ6で第1〜第6のスイッチQ1 〜Q6 がオン・オフ制御される。即ち、第1〜第4のスイッチQ1 〜Q4 は高周波でオン・オフされ、第5及び第6のスイッチQ5 、Q6 は電源周波数(50Hz)でオン・オフされる。図10の入力交流電圧Vinが正の半波の期間t0 〜t1 であり且つ第1及び第5のスイッチQ1 、Q5のオン期間には、交流電源3、第1のインダクタL1 、第1のスイッチQ1 、第5のスイッチQ5 、第2のインダクタL2 、負荷11から成る経路で第1の方向の電流が流れる。この時の第5及び第6のスイッチQ5,Q6の相互接続点10と電源側の共通端子5又は負荷側の共通端子7との間の電圧Vinvは、交流入力電圧Vinとほぼ同一になる。昇圧モードにおいて、交流入力電圧Vinが正の半波の期間t0 〜t1 であり且つ第2及び第5のスイッチQ2 、Q5のオン期間には、交流電源3、第1のインダクタL1 、第2のスイッチQ2 、平滑コンデンサC1、C2、第5のスイッチQ5 、第2のインダクタL2 及び負荷11から成る経路で第1の方向の電流が流れる。この時には、交流入力電圧Vinに平滑コンデンサCの電圧Vc が加算された値の出力電圧Voが得られる。
昇圧モードにおいて、交流入力電圧Vinが負の半波の期間t1 〜t2 であり且つ第2及び第6のスイッチQ2 、Q6がオンの期間には、交流電源3、負荷11、第2のインダクタL2 、第6のスイッチQ6 、第2のスイッチQ2 及び第1のインダクタL1 から成る経路で第2の方向の電流が流れる。この時は交流入力電圧Vinに第1のインダクタL1 の電圧が加算されて交流出力電圧Vo となる。また、交流入力電圧Vinが負の半波の期間t1 〜t2 であり且つ第1及び第6のスイッチQ1 、Q6がオンの期間には、交流電源3、負荷11、第2のインダクタL2 、第6のスイッチQ6 、平滑コンデンサC、第1のスイッチQ1 及び第1のインダクタL1 から成る経路で第2の方向の電流が流れる。この時の第5及び第6のスイッチQ5,Q6の相互接続点10と電源側の共通端子5又は負荷側の共通端子7との間の電圧Vinvは交流入力電圧Vinとほぼ同一になる。
この昇圧モ−ドにおいても、第3及び第4のスイッチQ3、Q4のオン・オフによって電圧非変換モード時と同様に力率の改善及び波形改善が行われる。
第3及び第4のスイッチQ3,Q4のオン・オフによって次に示すような平滑コンデンサCの電圧Vc制御も達成される。昇圧モードにおいて平滑コンデンサCの放電が生じ、この電圧が低下する。そこで、第3及び第4のスイッチQ3 、Q4 を第5及び第6のスイッチQ5 、Q6 よりも高い周波数(例えば20kHz)で断続することによって平滑コンデンサCの電圧Vc をほぼ一定に制御する。この詳しい動作を次に述べる。入力交流電圧Vinが正の半波の期間t0 〜t1 であり且つ第4のスイッチQ4 のオン期間には、交流電源3、第1のインダクタL1 、第1のスイッチQ1 、平滑コンデンサC、第4のスイッチQ4 から成る閉回路で平滑コンデンサCを充電する。この時、第1のインダクタL1 の蓄積エネルギーの放出があるので、平滑コンデンサCは、交流電源3の電圧Vinと第1のインダクタL1 の電圧との和で充電される。即ち、出力電圧Vo よりも高い電圧で平滑コンデンサCが充電される。交流入力電圧Vinが正の半波の期間t0 〜t1 であり且つ第3のスイッチQ3 のオン期間には、交流電源3、第1のインダクタL1 、第1のスイッチQ1 、第3のスイッチQ3 の経路に電流が流れ、第1のインダクタL1 にエネルギーが蓄積される。
交流入力電圧Vinが負の半波の期間t1 〜t2 であり且つ第3のスイッチQ3 がオンの期間には、交流電源3、第3のスイッチQ3 、平滑コンデンサC、第2のスイッチQ2 及び第1のインダクタL1 から成る経路に電流が流れ、交流電源3の電圧Vinと第1のインダクタL1 の電圧の和で平滑コンデンサCが充電される。
交流入力電圧Vinが負の半波の期間t1 〜t2 であり且つ第4のスイッチQ4 のオンの期間には、交流電源3、第4のスイッチQ4 、第2のスイッチQ2 及び第1のインダクタL1 から成る経路に電流が流れ、第1のインダクタL1 にエネルギーが蓄積される。
上述から明らかなように、第1及び第2のスイッチQ1,Q2は主として昇圧のために使用されている。第3及び第4のスイッチQ3,Q4は、主として力率改善及び波形改善のために使用されている。第5及び第6のスイッチQ5,Q6は主として降圧のために使用されている。
本実施例の交流電源装置は、上記の電圧非変換モード、降圧モード、及び昇圧モードの他に、次の4つのモードに従って動作する。¥
(1)交流電源3に基づいて負荷11に電力を供給する交流入力モード。
(2)バックアップ用蓄電池83に基づいて負荷11に電力を供給するバックアップモード
(3)一定周波数の交流出力電圧Voを得るモード。
(4)交流入力電圧Vinの周波数に同期した交流出力電圧Voを得るモード。
次に、制御回路2の一例を詳しく説明する。制御回路2は、交流電源3から供給された交流入力電圧Vinの周波数の状態を検知して電力変換回路1の動作状態を切換えるように構成されている。交流入力電圧Vinの周波数に依存した電力変換回路1の制御は次の通りである。
(1)交流入力電圧Vinの周波数変動が極めて小さい第1の範囲(例えば定格周波数の0.99〜1.01)の時には、入力電源スイッチ81をオン、バックアップスイッチ82をオフにし、且つ一定周波数の交流出力電圧Voが得られるように第1〜第6のスイッチQ1〜Q6をAC−DC−AC変換動作させる。
(2)交流入力電圧Vinの周波数が前記第1の範囲よりも低く且つ下限値(例えば定格周波数の0.9)以上の時、及び前記第1の範囲よりも高く且つ上限値(例えば定格周波数の1.1)以下の時には、入力電源スイッチ81をオン、バックアップスイッチ82をオフにし、且つ交流入力電圧Vinの周波数に同期した交流出力電圧Voを得るように第1〜第6のスイッチQ1〜Q6をAC−DC−AC変換動作させる。
(3)交流入力電圧Vinの周波数が前記下限値(例えば定格周波数の0.9)よりも低い時、及び前記上限値(例えば定格周波数の1.1)よりも高い時には、入力電源スイッチ81をオフ、バックアップスイッチ82をオンにし、且つDC−DC−AC変換によぅて一定周波数(定格周波数)の交流出力電圧Voを得るように第1〜第6のスイッチQ1〜Q6を制御する。
上記(1)(2)を交流入力モード(AC−DC−AC変換モード)の制御と呼び、上記(3)をバックアップモード(DC−DC−AC変換モード)の制御と呼ぶことにする。
上記(1)(2)(3)の制御を実行するための制御回路2は、原理的に図2に示すようにモード切換信号形成手段100と、交流入力モードスイッチ制御信号発生手段101と、バックアップモードスイッチ制御信号発生手段102とで示すことができる。バックアップモードスイッチ制御信号発生手段102は、DC−DC(直流―直流)変換スイッチ制御信号発生手段103とDC−AC(直流―交流)変換スイッチ制御信号発生手段104とを有する。
モード切換信号形成手段100は、交流入力モード(AC−DC−AC変換モード)を示す信号をライン88に送出し、バックアップモード(DC−DC−AC変換モード)を示す信号をライン89に送出する。ライン88は入力電源スイッチ81の制御手段と呼ぶこともできるものであり、図1の入力電源スイッチ81の制御端子に接続されている。入力電源スイッチ81はライン88の高レベル信号に応答してオンになり、低レベル信号に応答してオフになる。ライン89はバックアップスイッチ82の制御手段と呼ぶこともできるものであり、図1のバックアップスイッチ82の制御端子に接続されている。なお、図示を簡略化するために図1において制御回路2とバックアップスイッチ82の制御端子との間のライン89の一部が省略されている。バックアップスイッチ82はライン89の高レベル信号に応答してオンになり、低レベル信号に応答してオフになる。ライン88の信号とライン89の信号は互いに反対の論理値を有する。
ライン88の信号は、このライン88から分岐されたライン88aを介して交流入力モードスイッチ制御信号発生手段101にも送られる。以下、ライン88aの信号を交流入力モード切換信号と呼ぶことにする。
ライン89の信号は、このライン89から分岐されたライン89aを介してDC−DC変換スイッチ制御信号発生手段103とDC−AC変換スイッチ制御信号発生手段104にも送られる。以下、ライン89aの信号をバックアップモード切換信号と呼ぶことにする。
モード切換信号発生手段100は、上記(1)(3)の制御に従って一定周波数(定格周波数)の交流出力電圧Voを得るための第1の基準電圧指令値切換信号(第1のモード信号)をライン107に送出し、上記(2)の制御に従って入力同期周波数の交流出力電圧Voを得るための第2の基準電圧指令値切換信号(第2のモード信号)をライン108に送出する。ライン107の第1の基準電圧指令値切換信号(第1のモード信号)は、一定周波数(定格周波数)の交流出力電圧Voを得る時に高レベルになる。ライン108の第2の基準電圧指令値切換信号(第2のモード信号)は入力同期周波数の交流出力電圧Voを得る時に高レベルになる。モード切換信号発生手段100の詳細は後述する。
交流入力モードスイッチ制御信号発生手段101は、前述した電圧非変換モード、降圧モード、及び昇圧モードからなるAC−DC−AC変換モードが得られるように電力変換回路1を動作させるためのスイッチ制御信号即ち第1、第2、第3、第4、第5及び第6のスイッチQ1,Q2、Q3,Q4、Q5,Q6の制御信号を発生する。即ち、交流入力モードスイッチ制御信号発生手段101は、モード切換信号発生手段100からライン88aに送出された高レベルの交流入力モード切換信号に応答してAC−DC−AC変換動作のために第1〜第6のスイッチQ1〜Q6の制御信号を発生する。
この交流入力モードスイッチ制御信号発生手段101はライン107の第1の基準電圧指令値切換信号(第1のモード信号)に応答して一定周波数(定格周波数)の交流出力電圧Voを得るための第1〜第6のスイッチQ1〜Q6の制御信号を出力し、ライン108の第2の基準電圧指令値切換信号(第2のモード信号)に応答して入力周波数に同期した交流出力電圧Voを得るための第1〜第6のスイッチQ1〜Q6の制御信号を出力する。この交流入力モードスイッチ制御信号発生手段101の詳細は追って説明する。
バックアップモードスイッチ制御信号発生手段102は、上記(3)に示した交流入力電圧Vinの周波数が所定下限値(例えば定格周波数の0.9)よりも低い時、及び所定上限値(例えば定格周波数の1.1)よりも高い時に、DC−DC−AC変換によぅて一定周波数(定格周波数)の交流出力電圧Voを得るように第1〜第6のスイッチQ1〜Q6を制御する。このバックアップモードスイッチ制御信号発生手段102に含まれているDC−DC変換スイッチ制御信号発生手段103は、ライン89aのバックアップモード切換信号に応答して第1及び第2のスイッチQ1,Q2を昇圧コンバータ動作させるための制御信号を形成する。このDC−DC変換スイッチ制御信号発生手段103の詳細は追って説明する。
バックアップモードスイッチ制御信号発生手段102に含まれているDC−AC変換スイッチ制御信号発生手段104は、ライン89aのバックアップモード切換信号に応答して第3、第4、第5及び第6のスイッチQ3,Q4、Q5,Q6を制御する信号を発生する。このDC−AC変換スイッチ制御信号発生手段104の詳細は追って説明する。
なお、交流入力モード時においては、DC−DC変換スイッチ制御信号発生手段103とDC−AC変換スイッチ制御信号発生手段104とによる第1〜第6のスイッチQ1〜Q6の制御が禁止され、バックアップモード時においては、交流入力モードスイッチ制御信号発生手段101による第1〜第6のスイッチQ1〜Q6の制御が禁止される。
モード切換信号形成手段100はソフトウェアで構成されているが、この理解を容易にするために図3にこの等価回路の一例が示されている。勿論、モード切換信号形成手段100をハードウェアで構成することもできる。このモード切換信号形成手段100は、交流電源3から供給された交流入力電圧Vinの周波数状態を交流入力電圧Vinの1周期毎に判定する周波数判定手段111と、交流入力電圧Vinの実効値が正常範囲内か否かを交流入力電圧Vinの1周期毎に判定する交流電圧判定手段112と、モード決定手段110とを有し、ライン88に送出する交流入力モード切換信号、ライン89に送出するバックアップモード切換信号、ライン107に送出する第1の基準電圧指令値切換信号(第1のモード信号)、ライン108に送出する第2の基準電圧指令値切換信号(第2のモード信号)を形成する。
周波数判定手段111は、周波数演算手段113と、第1、第2、第3及び第4の周波数基準値発生手段114,115,116,117と、第1、第2、第3及び第4の周波数判定比較手段118,119,120,121と、第1、第2、第3、第4及び第5の周波数判定ANDゲート回路(論理積回路)122,123,124,125,126と、第1、第2、第3及び第4のNOT回路(否定回路)とから成る。更に詳しく説明すると、周波数演算手段113は図4に示す同期モードスイッチ制御信号発生手段101の入力電圧検出回路41から導出された交流入力電圧Vinを示すライン41aに接続され、交流入力電圧Vinの周波数を示す周波数検出信号を出力する。この周波数検出信号は交流入力電圧Vinの周波数に比例した直流電圧からなる。
第1、第2、第3及び第4の周波数基準値発生手段114,115,116,117は、順次に高くなる所定値として第1、第2、第3及び第4の周波数基準値f1、f2、f3及びf4を発生する。この実施例では、定格周波数をxとした時に、第1、第2、第3及び第4の周波数基準値f1、f2、f3及びf4は、図5(B)に示す0.9x、0.99x、1.01x、1.1xに決定されている。
第1の周波数判定比較手段118は、周波数演算手段113から得られた交流入力電圧Vinの周波数を示す周波数検出信号と第1の周波数基準値発生手段114から得られた第1の周波数基準値f1(0.9x)とを比較し、周波数検出信号が第1の周波数基準値f1以上の時に高レベル(論理の1)を出力し、周波数検出信号が第1の周波数基準値f1よりも低い時に低レベル(論理の0)を出力する。
第2の周波数判定比較手段119は、周波数演算手段113から得られた周波数検出信号と第2の周波数基準値発生手段115から得られた第2の周波数基準値f2(0.99x)とを比較し、周波数検出信号が第2の周波数基準値f2以上の時に高レベル(論理の1)を出力し、周波数検出信号が第2の周波数基準値f2よりも低い時に低レベル(論理の0)を出力する。
第3の周波数判定比較手段120は、周波数演算手段113から得られた周波数検出信号と第3の周波数基準値発生手段116から得られた第3の周波数基準値f3(1.01x)とを比較し、周波数検出信号が第3の周波数基準値f3以上の時に高レベル(論理の1)を出力し、周波数検出信号が第3の周波数基準値f3よりも低い時に低レベル(論理の0)を出力する。
第4の周波数判定比較手段121は、周波数演算手段113から得られた周波数検出信号と第4の周波数基準値発生手段117から得られた第4の周波数基準値f4(1.1x)とを比較し、周波数検出信号が第4の周波数基準値f4以上の時に高レベル(論理の1)を出力し、周波数検出信号が第4の周波数基準値f4よりも低い時に低レベル(論理の0)を出力する。
第1の周波数判定ANDゲート回路122は、第1の周波数判定比較手段118に接続された一方の入力端子と第2のNOT回路128を介して第2の周波数判定比較手段119に接続された他方の入力端子とを有し、両入力が高レベルの時、即ち周波数検出信号が第1の周波数基準値f1と第2の周波数基準値f2との間(0.9x〜0.99x)の時に高レベル信号を出力する。従って、第1の周波数判定ANDゲート回路122を、負荷11が許容する下方許容周波数変動範囲判定手段と呼ぶこともできる。
第2の周波数判定ANDゲート回路123は、第2の周波数判定比較手段119に接続された一方の入力端子と第3のNOT回路129を介して第3の周波数判定比較手段120に接続された他方の入力端子とを有し、両入力が高レベルの時、即ち周波数検出信号が第2の周波数基準値f2と第3の周波数基準値f3との間(0.99x〜1.01x期間)の時に高レベル信号を出力する。第2の周波数基準値f2と第3の周波数基準値f3との間は、交流入力電圧Vinの正常周波数範囲である。従って、第2の周波数判定ANDゲート回路123を、正常周波数範囲判定手段と呼ぶこともできる。
第3の周波数判定ANDゲート回路124は、第3の周波数判定比較手段120に接続された一方の入力端子と第4のNOT回路130を介して第4の周波数判定比較手段121に接続された他方の入力端子とを有し、両入力が高レベルの時、即ち周波数検出信号が第3の周波数基準値f3と第4の周波数基準値f4との間(1.01x〜1.1x期間)の時に高レベル信号を出力する。従って、第3の周波数判定ANDゲート回路124を、負荷11が許容する上方許容周波数変動範囲判定手段と呼ぶこともできる。
第4の周波数判定ANDゲート回路125は、第1、第2、第3及び第4のNOT回路127,128,129,130を介して第1、第2、第3及び第4の周波数判定比較手段118,119,120、121に接続され、第1、第2、第3及び第4の周波数判定比較手段118,119,120、121の出力の全てが低レベルの時、即ち第1、第2、第3及び第4のNOT回路127,128,129,130の出力の全てが高レベルの時にのみ高レベル信号を出力する。即ち、交流入力電圧Vinの入力周波数finの検出信号が図5(B)の第1の周波数基準値f1(0.9x)よりも低いことを示している時に、第4の周波数判定ANDゲート回路125は高レベル信号を出力する。従って、第4の周波数判定ANDゲート回路125を下方周波数異常判定手段と呼ぶこともできる。
第5の周波数判定ANDゲート回路126は、第1、第2、第3及び第4の周波数判定比較手段118,119,120、121に接続され、第1、第2、第3及び第4の周波数判定比較手段118,119,120、121の出力の全てが高レベルの時にのみ高レベル信号を出力する。即ち、交流入力電圧Vinの入力周波数finの検出信号が図5(B)の第4の周波数基準値f4(1.1x)よりも低いことを示している時に、第5の周波数判定ANDゲート回路126は高レベル信号を出力する。従って、第5の周波数判定ANDゲート回路126を上方周波数異常判定手段と呼ぶこともできる。
なお、第1〜第5の周波数判定ANDゲート回路122,123,124,125、126の出力段にNOT回路をそれぞれ接続すること、又はこれと等価な論理出力を得るように周波数判定手段111を変形することができる。
周波数判定手段111の第1〜第5の周波数判定ANDゲート回路122,123,124,125、126の出力は次段のモード決定手段110で使用される。
電圧判定手段112は、実効値演算手段131と電圧上限値発生手段132と電圧下限値発生手段133と電圧上限比較手段134と電圧下限比較手段135と電圧判定AND回路136とから成り、交流入力電圧Vinの実効値が正常範囲(所定範囲)内か否かを判定する。更に詳しく説明すると、実効値演算手段131は図4に示すAC−DC−AC変換モードスイッチ制御信号発生手段101の入力電圧検出回路41から導出された交流入力電圧Vinを示すライン41aに接続され、交流入力電圧Vinの実効値を示す電圧検出信号を出力する。この電圧検出信号は実効値に比例した直流電圧からなる。電圧上限値発生手段132は交流入力電圧Vinの定格電圧(実効値)よりも所定値高い電圧上限値(例えば定格電圧よりも10%高い110%の値を示す電圧)を発生する。電圧下限値発生手段133は交流入力電圧Vinの定格電圧よりも所定値低い電圧下限値(例えば定格よりも10%低い90%の値を示す電圧)を発生する。電圧上限値と電圧下限値とで決まる電圧正常範囲は電力変換回路1の許容交流入力電圧範囲に相当する。電圧上限比較手段134は実効値演算手段131から得られた電圧検出信号と電圧上限値発生手段132から得られた電圧上限値とを比較し、電圧検出信号が電圧上限値よりも低い時に論理の1即ち高レベル電圧を発生し、電圧検出信号が電圧上限値以上の時に論理の0即ち低レベル電圧を発生する。勿論、電圧検出信号が電圧上限値よりも低い時に論理の0即ち低レベル電圧を発生し、電圧検出信号が電圧上限値以上の時に論理の1即ち高レベル電圧を発生するように電圧上限比較手段134を変形し、この変形された電圧上限比較手段134の出力をNOT回路を介して電圧判定AND回路136に入力させることもできる。電圧下限比較手段123は実効値演算手段131から得られた電圧検出信号と電圧下限値発生手段133から得られた電圧下限値とを比較し、電圧検出信号が電圧下限値よりも高い時に論理の1即ち高レベル電圧を発生し、電圧検出信号が電圧下限値以下の時に論理の0即ち低レベル電圧を発生する。勿論、電圧検出信号が電圧下限値よりも低い時に論理の1即ち高レベル電圧を発生し、電圧検出信号が電圧下限値以上の時に論理の0即ち低レベル電圧を発生するように電圧下限比較手段135を変形し、この変形された電圧下限比較手段135の出力をNOT回路を介して電圧判定AND回路136に入力させることもできる。電圧判定AND回路136は、電圧上限比較手段134に接続された一方の入力端子と電圧下限比較手段135に接続された他方の入力端子とを有し、両方の入力が論理の1の時に論理の1即ち高レベル電圧を出力する。即ち、電圧判定AND回路136は、電圧検出信号が正常範囲(90%〜110%)の時に論理の1即ち高レベル電圧を出力し、異常範囲の時に論理の0即ち低レベル電圧を出力する。なお、電圧判定手段136を、電圧検出信号が正常範囲の時に論理の0即ち低レベル電圧を出力し、異常範囲の時に論理の1即ち高レベル電圧を出力するように変形することもできる。
モード決定手段110は、周波数判定手段111と電圧判定手段112との出力に基づいてライン88の交流入力モード切換信号、ライン88のバックアップモード切換信号、ライン107の第1の基準電圧指令値切換信号(第1のモード信号)、及びライン108の第2の基準電圧指令値切換信号(第2のモード信号)を形成するものであり、第1、第2及び第3のモード決定AND回路137,138,139と、第1、第2及び第3のモード決定OR回路(論理和回路)140、141,142と、第1及び第2のモード決定NOT回路143,144とから成る。このモード決定手段110は、図3の論理回路に限定されるものでなく、等価な動作をする種々のソフトウエア又はハードウエアで構成することができる。
第1のモード決定OR回路140は周波数判定手段111の第4及び第5の周波数判定AND回路125,126に接続され、入力周波数finが下方異常値(f1より小)の時及び上方異常値(f4より大)の時に高レベルの周波数異常を示す出力を送出する。この第1のモード決定OR回路140の出力は、第1及び第2のモード決定NOT回路143,144を介してライン89に送られ、バックアップモード切換信号として使用される。バックアップモード切換信号が高レベルの時には図1のバックアップスイッチ82がオンになる。交流入力モード切換信号を出力するライン88は第1モード決定NOT回路143に接続されているので、バックアップモード切換信号が高レベルの時には逆に低レベルになり、交流入力電源スイッチ81がオフになる。なお、ライン88を第1のモード決定NOT回路143を介して第1のモード決定OR回路140に接続する代りに図3で鎖線170で示すように電圧判定AND回路136に接続することができる。この場合には、電圧判定手段122で交流入力電圧の異常が検出されると、交流入力電源スイッチ81がオフになり、バックアップスイッチ82がオンになる。
ライン88の交流入力モード切換信号はここから分岐されたライン88aによって図2の交流入力モードスイッチ制御信号発生手段101に接続されている。従って、ライン88に高レベルの交流入力モード切換信号が送出されている時には、ライン88aにも交流入力モード切換信号が送出され、交流入力モードスイッチ制御信号発生手段101がAC−DC−AC変換動作状態になる。
ライン89のバックアップモード切換信号はここから分岐されたライン89aによって図2のバックアップモードモードスイッチ制御信号発生手段102のDC−DC変換スイッチ制御信号発生手段103とDC−AC変換スイッチ制御信号発生手段104に接続されている。従って、バックアップモード時には、DC−DC変換スイッチ制御信号発生手段103とDC−AC変換スイッチ制御信号発生手段104とが動作し、バックアップ用蓄電池83を直流電源としたDC−DC−AC変換動作に基づいて負荷11に電力が供給される。
第1のモード決定OR回路140は第3のOR回路142を介してライン107にも接続されている。従って、第1のモード決定OR回路140から入力周波数finが異常であることを示す高レベルの時には、ライン107における固定周波数の交流出力電圧Voを得るための第1の基準電圧指令値切換信号(第1のモード信号)も高レベルになる。
第1のモード決定AND回路137は、交流入力電圧Vinの入力周波数finが下方許容周波数変動範囲(f1〜f2)であると同時に交流入力電圧Vinの実効値が正常範囲内であるか否かを判定するものであって、この一方の入力端子は第1の周波数判定AND回路122に接続され、他方の入力端子は電圧判定AND回路136に接続されている。従って、第1の第1のモード決定AND論理回路137は、入力周波数finが下方許容周波数変動範囲(f1〜f2)にあり且つ交流入力電圧Vinの実効値が正常範囲内の時に高レベルの出力を送出する。この第1のモード決定AND論理回路137の出力は、第2のモード決定OR回路141を介してライン108に送られ、入力周波数に同期した交流出力電圧Voを得るための第2の基準電圧指令値切換信号(第2のモード信号)として使用される。
第2のモード決定AND回路138は、周波数が正常範囲内であると同時に交流入力電圧Vinの実効値が正常範囲内であるか否かを判定するものであり、この一方の入力端子は第2の周波数判定AND回路123に接続され、他方の入力端子は電圧判定AND回路136に接続され、出力端子は第3のモード決定OR回路142を介してライン107に接続されている。従って、周波数及び電圧正常モード時には、ライン107における固定周波数の交流出力電圧Voを得るための第1の基準電圧指令値切換信号(第1のモード信号)が高レベルになる。
第3のモード決定AND回路139は周波数判定手段111から上方許容周波数変動範囲(f3〜f4)であることを示す出力が得られ同時に交流電圧判定手段112から実効値が正常範囲内にあることを示す出力が得られるか否かを判定する機能を有している。この第3の第1のモード決定AND論理回路139の出力は第2のモード決定OR回路141を介してライン108に送られ、入力周波数に同期した交流出力電圧Voを得るための第2の基準電圧指令値切換信号(第2のモード信号)として使用される。
制御回路2に含まれているAC―DC−AC変換のための交流入力モードスイッチ制御信号発生手段101は、図4に示すように、入力電圧検出回路41、直流電圧検出回路42、出力電圧検出回路43、第1の指令値発生手段44、第2の指令値発生手段45、方形波発生器46、第1、第2及び第3の演算回路47、48、49、第1及び第2のリミッタ50、51、比較波発生手段又はキャリア波発生手段としての三角波発生器52、第1、第2及び第3のコンパレータ53、54、55、第1、第2及び第3のNOT回路56、57、58を有する。
入力電圧検出回路41は、ライン18、19によって交流入力端子4と共通端子5とに接続されており、交流電源3の交流入力電圧Vinを検出し、基準正弦波を発生する。直流電圧検出回路42はライン21、22によって平滑コンデンサCの両端に接続され、平滑コンデンサCの電圧Vc を示す検出信号を出力する。出力電圧検出回路43はライン20、19によって交流出力端子6と負荷側の共通端子7に接続され、交流出力電圧Vo を示す検出信号を出力する。各検出回路41、42、43は、交流入力電圧Vin、平滑コンデンサCの電圧Vc 、交流出力電圧Vo の実際の値よりも低い電圧を出力するが、理解を容易にするためにここでは実際の電圧と同一の値が出力されるものとする。
第1の指令値発生手段44は、入力段電圧指令値発生手段又はコンバータ電圧指令値発生手段とも呼ぶことができるものであり、直流基準電圧源59と、2つの減算器60、63と、2つの比例積分(PI)回路61、64と、乗算器62とから成る。
直流基準電圧源59は平滑コンデンサCの電圧Vcの目標電圧に相当する基準電圧を発生する。減算器60は基準電圧源59の基準電圧と直流電圧検出回路42の検出出力の差を示す誤差信号を出力する。この誤差信号は比例積分回路61を介して乗算器62に入力し、入力電圧検出回路41から得られた基準正弦波(例えば実効値100Vの正弦波)に乗算される。乗算器62の出力は平滑コンデンサCの電圧Vc を一定に保つための入力電流指令値である。減算器63は乗算器62の出力(入力電流指令値)と電流検出器23に接続されたライン24の検出値(検出電流値)との差を示す信号を出力する。減算器63の出力は比例積分回路64を介して出力される。比例積分回路64の出力は第1の指令値Vrcとなる。第1の指令値Vrcは、第1及び第2のスイッチQ1,Q2の相互接続点8と第3及び第4のスイッチQ3、Q4の相互接続点9との間の基本波の電圧Vconvを所望値にするための指令値である。ここで、基本波とは交流電源電圧Vinと同一の周波数の信号である。なお、この第1の指令値Vrcは交流電源電圧Vinに同期した正弦波又は正弦波に近似した波形であり、平滑コンデンサCの電圧を所定値に制御するための情報と入力の力率を改善するための情報とを含む。
第2の指令値発生手段45は、出力段電圧指令値発生手段又はインバータ電圧指令値発生手段とも呼ぶことができるものであって、基準出力電圧指令値発生器66と、減算器67と、比例積分微分(PID)回路68とから成る。
基準出力電圧指令値発生器66は交流出力電圧Voの目標値を示す基準出力電圧指令値を発生するものであり、ライン41bによって入力電圧検出回路41に接続され、且つライン107,108によって図2及び図3に示すモード切換信号形成手段100に接続されている。
図5に基準出力電圧指令値発生器66が詳しく示されている。この基準出力電圧指令値発生器66は、固定周波数正弦波発生手段151と可変周波数正弦波発生手段152と振幅調整手段153とから成る。固定周波数正弦波発生手段151は一定周波数の正弦波を発生する固定発振回路155と第1のモード選択スイッチ156とから成る。固定発振回路155は入力電圧検出回路41から与えられたライン41bの交流入力電圧の定格周波数に近い実質的に一定(固定)の周波数を有する正弦波電圧を出力する。即ち、交流入力電圧Vin 及び交流出力電圧Voの定格周波数(例えば50Hz又は60Hz)の正弦波電圧を第1の基準出力電圧指令値として発生する。固定発振回路155の出力は第1モード選択スイッチ156のオン期間のみ振幅周波数手段153を介して出力ライン154に送出される。出力ライン154は図3の減算器67に接続されている。
第1のモ−ド選択スイッチ156はライン107の第1の基準電圧指令値切換信号が高レベルの時にのみオンになる。即ち、第1のモード選択スイッチ156は、図5(B)に示す入力周波数finがf2〜f3の正常時、f1よりも低い異常時、f4よりも高い異常時にオン状態になる。第1の選択スイッチ156がオンの時には、交流出力電圧Voの周波数foutが一定に制御される。なお、固定発振回路155をライン41bに接続しない構成にすることもできる。
可変周波数基準信号発生手段152は、可変発生回路157と第2のモード選択スイッチ158とから成る。可変発振回路157はライン41bの交流入力電圧Vinの周波数finと同一の周波数を有する正弦波を発生する。可変発振回路157の出力は第2のモード選択スイッチ158と振幅調整手段153とを介してライン154に送られる。第2のモード選択スイッチ158はライン108の第2の基準電圧指令値切換信号の高レベルに応答してオンになる。従って、第2のモード選択スイッチ158は図5(B)の入力周波数finがf1〜f2期間、f3〜f4期間の時にオンになり、これ等の期間では入力周波数finに比例した出力周波数foutが得られる。
図5(A)の振幅調整手段153は、正弦波の振幅を調整して前述した電圧非変換モード、降圧モード、昇圧モードを設定するために設けられている。交流入力電圧Vinが一定の状態において基準出力電圧指令値としての正弦波の振幅を変えると、電圧非変換モード、降圧モード、昇圧モード用の基準出力電圧の指令値を選択的に送出することができる。
基準出力電圧指令値発生器66は、非電圧変換モード時には入出力電圧が等しいこと即ちVo=Vinであることを示す第1の基準出力電圧指令値Vo1を発生し、降圧モード時には、出力電圧Voが交流電源電圧Vinよりもaボルト低いこと即ちVo=Vin−aを示す第2の基準出力電圧指令値Vo2を発生し、昇圧モード時には、交流出力電圧Voが交流電源電圧Vinよりもbボルト高いこと即ちVo=Vin+bを示す第3の基準出力電圧指令値Vo3を発生する。基準出力電圧指令値発生器66の出力は、交流入力電圧Vinに同期して正弦波又は正弦波に近似した波形を有する。
なお、電圧非変換モードと降圧モードと昇圧モードとの全てが要求されず、3つのモ−ドの内の任意の2つのモードのみが要求される場合には、3つのモードから選択された2つのモードのための2つの基準出力電圧指令値を出力するように基準出力電圧指令値発生器66を構成する。
減算器67は基準電圧指令値発生器66の出力と出力電圧検出回路43の出力との差を示す信号を出力する。この減算器67の出力は比例積分微分(PID)回路68を介して出力され、第2の指令値Vriとなる。第2の指令値Vriは第3及び第4のスイッチQ3,Q4の相互接続点9と第5及び第6のスイッチQ5,Q6の相互接続点10との間の基本波の電圧Vinvを所望値にするための指令値であり、交流入力電圧Vinに同期した正弦波又は正弦波に近似した波形から成る。
第2の指令値発生手段45から発生する第2の指令値Vriは、交流入力電圧Vinが一定の場合には、電圧非変換モード時に第1の指令値Vrcに等しい値、降圧モード時に第1の指令値Vrcよりも低い値、昇圧モード時に第1の指令値Vrcよりも高い値になる。
交流出力電圧Voを常に一定に保つ時には、基準電圧指令値発生器66の出力が一定に保たれる。即ち、交流入力電圧Vinが例えば100Vの場合と例えば200Vの場合とのいずれであっても、一定の交流出力電圧Vo(例えば100V)を得る時には、基準電圧指令値発生器66の出力が一定に保たれる。このように基準電圧指令値発生器66の出力が一定あっても、交流入力電圧Vinが変化すると、入力電圧検出回路41の出力が変化し、第1の指令値発生手段44から得られる第1の指令値Vrcが変化し、交流出力電圧Voを一定に保つ制御が生じる。
交流出力電圧Voまたは交流入力電圧Vinの変化に基づく第1〜第6のスイッチQ1〜Q6の制御モードの切換えは後述する演算手段によって自動的に行われる。
本実施例の交流入力モードスイッチ制御信号発生手段101は、降圧モード、昇圧モ−ド、及び電圧非変換モ−ドを選択的に設定するための方形波発生器46と第1、第2及び第3の演算回路47、48、49とを有する。
方形波発生器46は、増幅器69とリミッタ70とから成る。増幅器69は入力電圧検出回路41から得られる図11(A)の50Hzの基準正弦波Vf をピークが200Vよりも十分に高い電圧に増幅するものである。リミッタ70は、三角波発生器52の出力三角波の最大値以上の第1の電圧+Vs (+200V)と三角波の最小値以下の第2の電圧−Vs (−200V)との間に増幅器出力69を制限し、図12(B)に示す+Vs の高レベルと−Vs の低レベルとを交互に有する方形波電圧Vs を発生する。
第1の演算回路47は、コンバータ電圧指令値発生手段即ち第1の指令値発生手段44、インバータ電圧指令値発生手段即ち第2の指令値発生手段45、及び方形波発生器46に接続されており、Vrc+Vs −Vriの演算を実行する。即ち、第1の演算回路47は加算器と減算器とを含み、コンバータ電圧指令値即ち第1の指令値Vrcに方形波電圧Vs を加算した値からインバータ電圧指令値即ち第2の指令値Vriを減算する。なお、加算と減算の順序を逆にしてVrc−Vri+Vs とすることもできる。
第2の演算回路48はコンバータ電圧指令値発生手段即ち第1の指令値発生手段44とインバータ電圧指令値発生手段即ち第2の指令値45と方形波発生器46とに接続されており、Vri+Vs −Vrcの演算を実行する。即ち、第2の演算回路48は加算器と減算器とを含み、インバータ電圧指令値即ち第2の指令値Vriに方形波電圧Vs を加算した値からコンバータ電圧指令値即ち第1の指令値Vrcを減算する。なお、加算と減算の順序を逆にしてVri−Vrc+Vs とすることもできる。
第1のリミッタ50は、第1の演算回路47の出力を方形波電圧Vs の最大値+Vs と同一又は+Vsよりも少し高い値に設定された上限値と方形波電圧Vs の最小値−Vs と同一又は−Vsよりも少し低い値に設定された下限値との間に制限して第1のスイッチ制御指令値Vr1を出力する。この具体例では上限値が+Vs、下限値が−Vsである。なお、第1のスイッチ制御指令値Vr1は入力段スイツチQ1、Q2に基づいて発生させるべき電圧を指令する第1の値と呼ぶこともできる。
第1の値Vr1は、第1及び第2の同期モード時に図12(A)及び図13(A)に示すように方形波電圧Vsと同じ値となる。第3の同期モードの時に図14(A)に示すように+Vsと−Vsとの間の第2の値となる。
第2のリミッタ51は第2の演算回路48の出力を方形波電圧Vs の最大値+Vs と同一又は+Vsよりも少し高い値に設定された上限値と方形波電圧Vs の最小値−Vs と同一又は−Vsよりも少し低い値に設定された下限値との間に制限して第2のスイッチ制御指令値Vr3を出力する。この具体例では上限値が+Vs、下限値が−Vsである。なお、第2のスイッチ制御指令値Vr3を出力段スイッチQ5、Q6に基づいて発生させるべき電圧を指令する第2の値と呼ぶこともできる。
第2の値と呼ばれることもあるVr3は、電圧非変換モード及び昇圧モードの時に図12(C)及び図14(C)に示すように方形波電圧Vsと同一になり、降圧モ−ド時に図13(C)に示すように+Vsと−Vsとの間の値となる。
第3の演算回路49はインバータ電圧指令値発生手段45と第2のリミッタ51とに接続され、Vr3−Vriの演算を実行する。即ち、第3の演算回路49は減算器であって、第2のスイッチ制御指令値Vr3からインバータ電圧指令値Vriを減算して指令値Vr2を発生する。この指令値Vr2は、第3の値と呼ぶこともできるものであって、平滑コンデンサCの電圧Vcの指令値、又は力率改善指令値と呼ぶこともできる。平滑コンデンサCの電圧Vcの1/2の電位を基準にして、第1及び第2のスイッチQ1,Q2の相互接続点8の基本波の電圧をV1,第3及び第4のスイッチQ3,Q4の相互接続点9の基本波の電圧をV2、第5及び第6のスイッチQ5,Q6の相互接続点10の基本波の電圧をV3とした時に、このV1,V2,V3とスイッチ制御指令値Vr1,Vr2,Vr3との関係は、
V1=(Vc/2)Vr1,
V2=(Vc/2)Vr2,
V3=(Vc/2)Vr3,
Vinv=V3−V2,
Vconv=V1−V2となる。
Vr2は、電圧非変換モード、降圧モ−ド及び昇圧モードのいずれにおいても図12(B)、図13(B)及び図14(B)に示すように+Vs−Vsとの間の値になる。
第1、第2及び第3の演算回路47,48,49と第1及び第2のリミッタ50,51とから成る演算手段から得られる出力Vr1,Vr2,Vr3に基づいて、第1〜第6のスイッチQ1〜Q6の第1〜第6の制御信号VQ1〜VQ6を形成する制御信号形成手段として、三角波発生器52と第1、第2及び第3のコンパレータ53,54,55と第1、第2及び第3のNOT回路56、57、58とが設けられている。
比較波発生器又はキャリア波発生器としての三角波発生器52は交流電源3の交流電源電圧Vinの周波数(50Hz)の2倍よりも高い周波数(例えば20kHz)の三角波電圧Vtを図12〜図14に示すように発生する。三角波電圧Vtの最大値は方形波電圧Vsの最大値及び第1及び第2のリミッタ50,51の上限値+Vsと同一又はこれよりも少し低い値に設定される。三角波電圧Vtの最低値は、方形波電圧Vsの最低値及び第1及び第2のリミッタ50,51の下限値−Vsと同一又はこれよりも少し高く設定される。図4では1つの三角波発生器52が第1、第2及び第3のコンパレータ53、54、55に接続されているが、第1、第2及び第3のコンパレータ53、54、55のための専用の3つの三角波発生器を設けることもできる。また、三角波発生器52を周知の鋸波発生回路にすることができる。
第1のコンパレータ53は第1のリミッタ50と三角波発生器52とに接続され、図12(A)、図13(A)及び図14(A)に示すように第1の値Vr1と三角波電圧Vt とを比較して図8(B)、図9(B)及び図10(B)に示す第1のスイッチQ1 のオン・オフ制御信号VQ1をライン12に出力する。
第2のコンパレータ54は第3の演算回路49と三角波発生器52とに接続され、図12(B)、図13(B)及び図14(B)に示すように第2の値Vr2と三角波電圧Vt とを比較して図8(D)、図9(D)及び図10(D)に示す第3のスイッチQ3 のオン・オフ制御信号VQ3をライン14に出力する。
第3のコンパレータ55は第2のリミッタ51と三角波発生器52とに接続され、図12(C)、図13(C)及び図14(C)に示すように第2の値Vr3と三角波電圧Vt とを比較して図8(F)、図9(F)及び図10(F)に示す第5のスイッチQ5 のオン・オフ制御信号VQ5をライン16に出力する。
第1の逆相信号形成手段としてのNOT回路56は第1のコンパレータ53に接続され、第1のスイッチQ1 のオン・オフ制御信号VQ1の逆相信号から成る図8(C)、図9(C)及び図10(C)に示す第2のスイッチQ2 のオン・オフ制御信号VQ2をライン13に出力する。
第2の逆相信号形成手段としてのNOT回路57は、第2のコンパレータ54に接続され、第3のスイッチQ3 のオン・オフ制御信号VQ3の逆相信号から成る図8(E)、図9(E)及び図10(E)に示す第4のスイッチQ4 のオン・オフ制御信号VQ4をライン15に出力する。
第3の逆相信号形成手段としてのNOT回路58は、第3のコンパレータ55に接続され、第5のスイッチQ5 のオン・オフ制御信号VQ5の逆相信号から成る図8(G)、図9(G)及び図10(G)に示す第6のスイッチQ6 のオン・オフ制御信号VQ6を出力する。
なお、第1、第2及び第3のコンパレータ53、54、55に第1、第2及び第3のNOT回路56、57、58をそれぞれ内蔵させることができる。
(変換モード切換制御)
次に、基準出力電圧指令値発生器66の出力の切換えによって交流出力電圧Voの切換え及び各モード切換を行うことができることを図15〜図17を参照して説明する。ここで、各モードの交流入力電圧Vinを100V、電圧非変換モードの交流出力電圧Vo を100V、降圧モードの交流出力電圧Vo を80V、昇圧モードの交流出力電圧Vo を120Vとする。また、理解を容易にするために、コンバータ電圧指令値即ち第1の指令値Vrcは各モードにおいて100Vとし、またインバータ電圧指令値即ち第2の指令値Vriは電圧非変換モードで100V、降圧モードで80V、昇圧モードで120Vとする。
(電圧非変換モード)
上記条件において、交流入力電圧Vinの正の半波期間の電圧非変換モードの第1の演算回路47の出力は、Vrc+Vs −Vri=100+200−100=200Vとなる。この値は第1のリミッタ50の上限に一致するので、第1のリミッタ50から出力される第1の値Vr1も200Vとなる。このVr1=200Vは図15に示すように三角波電圧Vt の最大値200Vに一致し、三角波電圧Vt を横切らない。この結果、交流入力電圧Vinの正の半波の期間の第1のコンパレータ53の出力は連続して高レベルになる。また、電圧非変換モードにおける交流入力電圧Vinの負の半波期間の第1のコンパレータ53の出力は連続して低レベルになる。これにより、電圧非変換モード時には図8(B)(C)に示すように第1及び第2のスイッチQ1 、Q2 は50Hzの低周波でオン・オフ制御され、整流素子として動作する。
電圧非変換モード時の交流入力電圧Vinの正の半波期間の第2の演算回路48の出力は、Vri+Vs −Vrc=100+200−100=200Vとなる。この値は第2のリミッタ51の上限に一致しているので、第2の値Vr3も200Vになる。また、交流入力電圧Vinの負の半波期間のVr3は−200Vになる。この結果、第3のコンパレータ55の出力は第1のコンパレータ53の出力と同一になり、第5及び第6のスイッチQ5 、Q6 は図8(F)(G)に示すように低周波(50Hz)でオン・オフ制御され、整流素子として動作する。
電圧非変換モード時の交流入力電圧Vinの正の半波期間の第3の演算回路49の出力Vr2はVr3−Vri=200−100=100Vとなる。また、交流入力電圧Vinの負の半波の期間の第3の演算回路49の出力Vr2は−100Vになる。従って、図15に示すように第2のコンパレータ54において第3の値Vr2が三角波電圧Vt を横切り、図8(D)(E)に示すように第3及び第4のスイッチQ3 、Q4 に例えば20kHzの高周波のオン・オフ制御信号(PWMパルス)が供給される。
(降圧モード)
降圧モード時の交流入力電圧Vinの正の半波期間の第1の演算回路47の出力は、Vrc+Vs −Vri=100+200−80=220Vとなる。これは第1のリミッタ50で制限されるので、第1の値Vr1は200Vとなり、図16に示すように第1のコンパレータ53において三角波電圧Vt を横切らない。このため、第1のコンパレータ53の出力は高レベルになる。交流入力電圧Vinの負の半波ではVr1が−200Vとなり、第1のコンパレータ53の出力は低レベルになる。従って、降圧モード時には第1及び第2のスイッチQ1 、Q2 が図9(B)(C)に示すように低周波でオン・オフ制御され、整流素子として動作する。
降圧モード時の交流入力電圧Vinの正の半波期間の第2の演算回路48の出力は、Vri+Vs −Vrc=80+200−100=180Vとなる。この値は第2のリミッタ51で制限されないので、第2の値Vr3も180Vとなり、第3のコンパレータ55において図16に示すように三角波電圧Vt を横切る。交流入力電圧Vinの負の半波期間にはVr3が−180Vとなり、三角波電圧Vt を横切る。従って、降圧モード時には、第5及び第6のスイッチQ5 、Q6 が図9(F)(G)に示すように高周波のオン・オフ制御信号即ちPWMパルスで制御される。
降圧モード時の正の半波期間の第3の演算回路49の出力即ち第3の値Vr2はVr3−Vri=180−80=100Vになり、第2のコンパレータ54において図16に示すように三角波電圧Vt を横切る。また、負の半波期間にはVr2が−100Vとなり、三角波電圧Vt を横切る。この結果、第3及び第4のスイッチQ3 、Q4 には図9(D)(E)に示すように高周波のオン・オフ制御信号が供給される。
(昇圧モード)
昇圧モード時の交流入力電圧Vinの正の半波期間の第1の演算回路47の出力は、Vrc+Vs −Vri=100+200−120=180Vとなる。これは第1のリミッタ50の制限を受けないので、第1の値Vr1も180Vとなり、第1のコンパレータ53を図17に示すように三角波電圧Vt を横切る。また、負の半波期間にはVr1が−180Vとなり、三角波電圧Vt を横切る。この結果、第1及び第2のスイッチQ1 、Q2 は図10(B)(C)に示すように高周波のオン・オフ制御信号即ちPWMパルスで制御される。
昇圧モードにおける第2の演算回路48の出力はVri+Vs −Vrc=120+200−100=220Vとなり、第2のリミッタ51で200Vに制限される。これにより、第3のコンパレータ55の入力即ち第2の値Vr3は200Vとなり、図17に示すように三角波電圧Vt を横切らない。また負の半波期間にはVr3が−200Vとなり、三角波電圧Vt を横切らない。この結果、第5及び第6のスイッチQ5 、Q6 は図10(F)(G)に示すように低周波でオン・オフ制御され、整流素子として動作する。
昇圧モード時の正の半波期間における第3の演算回路49の出力即ち第3の値Vr2はVr3−Vri=200−120=80Vとなり、図17に示すように三角波電圧Vt を横切る。また負の半波期間の第3の値Vr2は−80Vとなり、三角波電圧Vt を横切る。この結果、第3及び第4のスイッチQ3 、Q4 は図10(D)(F)に示すように高周波でオン・オフ制御される。
なお、交流入力電圧Vinの変化に拘らず交流出力電圧Voを一定に保つ時にも図15〜図17と同様な動作が生じる。
上述から明らかなように交流入力モードスイッチ制御信号発生手段101は特許文献1と同様に次の効果を有する。
(1)電圧非変換モードには第1、第2、第5及び第6のスイッチQ1,Q2,Q5,Q6、また、降圧モードには第1及び第2のスイッチQ1 、Q2 、また、昇圧モードにおいては第5及び第6のスイッチQ5 、Q6 をそれぞれ50Hzの低周波でオン・オフ制御するので、単位時間当りのスイッチング回数及びスイッチング損失が少なくなり、電力変換回路1の効率を高めることができる。
(2)電圧非変換モード、降圧モード、及び昇圧モードのいずれにおいても、第3及び第4のスイッチQ3、Q4が高周波でオン.オフ制御されるので、力率改善及び交流入力電流の波形改善即ち高調波成分の低減を図ることができる。
(3)基準出力電圧指令値発生器66の出力を変えることによって電圧非変換モード、降圧モード、及び昇圧モードの切換が実行され、所望の交流出力電圧Voが得られる。従って、モード切換回路の構成が簡単になり、交流電源装置のコストの低減、及び小型化が達成される。
(4)基準出力電圧指令値発生器66の出力を一定に保つことによって、交流入力電圧Vinの変化に拘らず一定の交流出力電圧Voを得ることができる。また、交流入力電圧Vinの変化に応じて第1〜第6のスイッチQ1〜Q6を電圧非変換モード、降圧モード、及び昇圧モードから選択された最適なモードで制御することができる。
図6にバックアップモードスイッチ制御信号発生手段102に含まれているDC−DC変換スイッチ制御信号発生手段103の一例が詳細に示されている。なお、図6の入力電圧検出回路41、直流電圧検出回路42、三角波発生器52、第1のコンパレータ53、第1のNOT回路56、直流基準電圧源59、2つの減算器60、63、2つの比例積分(PI)回路61、64、及び乗算器62は図4で同一の参照符号で示すものと同一であり、兼用されているが、理解を容易にするためにDC−DC変換スイッチ制御信号発生手段103の一部として示されている。勿論、これ等を図4と兼用しないで図6のDC−DC変換スイッチ制御信号発生手段103のために独立に設けることもできる。
バックアップモード時には、図6の入力電圧検出回路41の出力を1に固定する。また、ライン24の値を0に固定する。これにより一方の比例積分(PI)回路61の出力は他方の比例積分(PI)回路64に直接に入力する。図6のDC−DC変換スイッチ制御信号発生手段103では、第1のコンパレータ53の一方の入力端子(正端子)が比例積分(PI)回路64に直接に接続されている。即ち、図6では、比例積分(PI)回路64が図4の第1の演算回路47及び第1のリミッタ50を介さないで第1のコンパレータ53に直接に接続されている。第1のコンパレータ53の他方の入力端子(負端子)は三角波発生器52に接続されている。この比例積分(PI)回路64と第1のコンパレータ53との間の信号伝送は、図2のライン89aのバックアップモード信号で制御される。即ち、モード切換信号発生手段100から交流入力モード切換信号がライン88に送出されている時には、図4の第1のリミッタ50の出力が第1のコンパレータ53の一方の入力端子(正端子)に入力し、モード切換信号発生手段100からバックアップモード切換信号がライン89に送出されている時には図6に示すように比例積分(PI)回路64の出力が第1のコンパレータ53の一方の入力端子(正端子)に入力する。なお、図示を簡略化するために図4、図6及び図7において、第1、第2、及び第3のコンパレータ53、54,55に信号を選択的に入力させるための手段は省略されている。第1、第2、及び第3のコンパレータ53、54,55がデジタル比較手段である場合には、モード切換信号形成手段100の出力によって第1、第2、及び第3のコンパレータ53、54,55への入力信号の伝送を制御する。第1、第2、及び第34のコンパレータ53、54,55がアナログ比較手段の場合には、第1、第2、及び第3のコンパレータ53、54,55の入力段に信号選択回路を設け、選択された信号のみを第1、第2、及び第3のコンパレータ53、54,55に入力させる。
図6の第1のコンパレータ53は、図4の第1のコンパレータ53と同様に動作し、PWMパルスから成る制御信号を形成し、これをライン12を介して第1のスイッチQ1の制御端子に送り、且つNOT回路56とライン13を介して第2のスイッチQ2の制御端子に送る。
バックアップモード時には図1において、入力電源スイッチ81がオフ、バックアップスイッチ82がオンになる。この状態で、第1及び第2のスイッチQ1、Q2が交互にオンオフすると、昇圧モードDC−DC変換動作が生じる。即ち、第2のスイッチQ2のオン期間にバックアップ用蓄電池83、バックアップスイッチ82、第1のインダクタL1、第2のスイッチQ2、及び第4のダイオードD4から成る回路に電流が流れ、第1のインダクタL1にエネルギーが蓄積される。第2のスイッチQ2のオフ期間にバッアップ用蓄電池83、バックアップスイッチ82、第1のインダクタL1、第1のスイッチQ1又は第1のダイオードD1、及び平滑コンデンサCから成る回路に電流が流れ、平滑コンデンサCがバックアップ用蓄電池83よりも高い電圧に充電される。なお、第1のスイッチQ1は第1のダイオードD1を内蔵しているので、第2のスイッチQ2のオフ期間に第1のスイッチQ1をオン制御しなくとも第1のダイオードD1を介して平滑コンデンサCの充電電流を流すことができる。従って、バックアップモード時に図6のライン12の信号による第1のスイッチQ1のオン制御を禁止し、第2のスイッチQ2のみをオンオフ制御することもできる。
図7にバックアップモードスイッチ制御信号発生手段102に含まれているDC−AC変換スイッチ制御信号発生手段104の一例が詳しく示されている。なお、図7の出力電圧検出回路43、三角波発生器52、第2及び第3のコンパレータ54,55、第2及び第3のNOT回路57,58、基準電圧指令値発生器66、減算器67、比例積分微分(PID)回路68は図4で同一の参照符号で示すものと同一であり、兼用されているが、理解を容易にするためにDC−AC変換スイッチ制御信号発生手段104を構成するものとして示されている。勿論、図7に示す各部を図4と兼用しないで図7のDC−AC変換スイッチ制御信号発生手段104のために独立(個別)に設けることもできる。また、図6のDC−DC変換スイッチ制御信号発生手段103と図7のDC−AC変換スイッチ制御信号発生手段104は共にバックアップモード時に動作するものであるので、これ等を一体に形成することもできる。
バックアップモード時には、ライン107の第1の基準電圧指令値切換信号が高レベルになるので、図5(A)の固定発振回路155の出力に基づいて交流出力周波数foutが一定に制御される。
図7において、第2及び第3のコンパレータ54,55の一方の入力端子(正端子)は、比例積分微分(PID)回路68に直接に接続されている。即ち、バックアップモード時には、比例積分微分(PID)回路68が図4の第3の演算回路49と第2のリミッタ51を介さないで第2及び第3のコンパレータ54,55に接続される。第2及び第3のコンパレータ54,55の他方の入力端子(負端子)、三角波発生器52に接続されている。比例積分微分(PID)回路68と第2及び第3のコンパレータ54,55との間の信号伝送は、図2のモード切換信号形成手段100の出力で図6のDC−DC変換スイッチ制御信号発生手段103と同様に制御される。
図7において、第3のコンパレータ55の出力端子は、ライン17を介して図2の第6のスイッチQ6の制御端子に接続され、且つ第3のNOT回路58とライン16とを介し図2の第5のスイッチQ5の制御端子に接続されている。図7における第3のコンパレータ55の出力端子と第5及び第6のスイッチ、Q5、Q6との接続は図4と異なる。この第3のコンパレータ55の出力端子と第5及び第6のスイッチ、Q5、Q6との接続の切換はモード切換信号形成手段100の出力で実行され、交流入力モードの時に図4の回路を形成し、バックアップモード時に図7の回路を形成する。
バックアップモード時の第3〜第6のスイッチQ3〜Q6は、周知のブリッジ型インバータとして動作し、平滑コンデンサCの電圧を交流出力電圧Voに変換して負荷11に供給する。
なお、既に説明したように、バックアップモードの時には、図6のDC−DC変換スイッチ制御信号発生手段103、及び図7のDC−AC変換スイッチ制御信号発生手段104のみを動作させ、図4の交流入力モードスイッチ制御信号発生手段101の動作を禁止する。
上述から明らかなように本実施例は、特許文献1に開示されているAC−DC−AC変換装置と同様な効果を有する他に、次の効果も有する。
(1)バックアップ用蓄電池83を設け、交流電源3が異常の時にバックアップ用蓄電池83と第1〜第6のスイッチQ1〜Q6との組合せで負荷11に電力を供給するので、無停電の交流電源装置を比較的簡単な回路で提供することができる。
(2)入力周波数finがf2〜f3の正常から外れても直ちにバックアップ用蓄電池83による給電に切換えないで、入力周波数finがf1〜f2及びf3〜f4に期間には、交流入力モード(AC−DC−AC変換モード)で負荷11に電力を供給するので、バックアップ用蓄電池83の容量低下を防ぐことができる。これにより、比較的長い停電時にも負荷11に対する電力供給を継続できる。
(3)周波数異常を周波数演算手段113等を使用して判定し、電圧異常を実効値演算手段131等を使用して判定するので、周波数異常判定及び電圧異常判定をコストの上昇を抑えて比較的容易に達成できる。
次に図18に示す実施例2の交流電源装置を説明する。但し、図18において図1に示す実施例1の交流電源装置と実質的に同一の部分に同一の参照符号を付し、その説明を省略する。図18に示す実施例2の交流電源装置の変形された電力変換回路1aは、図1の電力変換回路1におけるバックアップスイッチ82、バックアップ用蓄電池83、充電回路84の接続位置を変え、且つDC−DC(直流―直流)変換回路85を付加した他は図1と同様に構成されている。即ち、図18においては、バックアップ用蓄電池83の一端がDC−DC変換回路85とバックアップスイッチ82と接続ライン86´とを介して正側直流導体76に接続され、バックアップ用蓄電池83の他端がDC−DC変換回路85と接続ライン87´とを介して負側直流導体77に接続されている。DC−DC変換回路85はバックアップ用蓄電池83の直流電圧を昇圧して正側直流導体76と負側直流導体77との間に供給する機能を有する。図18の変形された電力変換回路1aにおいて、交流入力電源スイッチ81がオン、バックアップスイッチ82がオフの時には、第1〜第6のスイッチQ1〜Q6はAC−DC−AC変換動作する。また、交流入力電源スイッチ81がオフ、バックアップスイッチ82がオンの時には、第3〜第6のスイッチQ3〜Q6がブリッジ型インバータ動作し、正側直流導体76と負側直流導体77との間の直流電圧を交流電圧に変換して負荷11に供給する。
図18の制御回路2aは、図2のモード切換信号形成手段100、交流入力モードスイッチ制御信号発生手段101、DC−AC変換スイッチ制御信号発生手段104と同様なものを含む。バックアップモード時には、バックアップ用蓄電池83から供給された正側直流導体76と負側直流導体77との間の直流電圧Vcを交流出力電圧Voに変換する。
図18の実施例2の第1〜第6のスイッチQ1〜Q6は交流入力モード時に図1の実施例1における第1〜第6のスイッチQ1〜Q6と同様に動作し、また図18の実施例2のDC−DC変換回路85はバックアップモード時に実施例1の第1及び第2のスイッチQ1、Q2による昇圧回路と同様に機能する。従って、図18の実施例2によって図1の実施例1と同様な効果を得ることができる。
次に図19に示す実施例3の交流電源装置を説明する。但し、図19において図1及び図18に示す実施例1及び2の交流電源装置と実質的に同一の部分に同一の参照符号を付し、その説明を省略する。図19に示す実施例3の交流電源装置の変形された電力変換回路1bは、図18の電力変換回路1aからDC−DC変換回路85を省いた他は図18と同様に構成されている。即ち、図19においては、バックアップ用蓄電池83の一端がバックアップスイッチ82と接続ライン86´とを介して正側直流導体76に接続され、バックアップ用蓄電池83の他端が接続ライン87´を介して負側直流導体77に接続されている。図19のバックアップ用蓄電池83は、この直流電圧を第3〜第6のスイッチQ3〜Q6で交流電圧に変換した時に負荷11が要求する交流出力電圧Voを得ることができる値に充電されている。
図19に示す実施例3の交流電源装置は、DC−DC変換回路85を省いた他は図18と同様に構成されているので、図18の実施例2と同様な効果を有する。
図20は変形された交流入力モードスイッチ制御信号発生手段101aを示す。図20の変形された交流入力モードスイッチ制御信号発生手段101aにおいて図4の交流入力モードスイッチ制御信号発生手段101と実質的に同一の部分に同一の符号を付してその説明を省略する。なお、実施例4に従う交流電源装置の交流入力モードスイッチ制御信号発生手段101a以外の部分は実施例1と同様に構成されている。
図20の変形された交流入力モードスイッチ制御信号発生手段101aは図4の交流入力モードスイッチ制御信号発生手段101の第1、第2及び第3の演算回路47,48,49を変形した第1、第2及び第3の演算回路47a,48a,49aを設け、この他は図4と同一に形成したものである。
図20の第1の演算回路47aは、第1及び第2の指令値発生手段44,45に接続され、次式の演算を行い、差信号△Vを出力する。
△V=Vri−Vrc
第2の演算回路48aは第1の演算回路47aと方形波発生器46とに接続され、次の演算を行う。
もし△V>0なら
Vr1=Vs−△V
Vr3=Vs
もし△V=0なら
Vr1=Vs
Vr3=Vs
もし△V<0なら
Vr1=Vs
Vr3=Vs+△V
第3の演算回路49aは第1の指令値発生手段44と第2の演算回路48aとに接続され、次の演算を行う。
Vr2=Vr1−Vrc
図18の第1、第2及び第3のモードで第2及び第3の演算回路48a,49aから得られるVr1,Vr2,Vr3は、図4で同一符号で示すものと同一である。従って、実施例2によっても、実施例1と同一の効果を得ることができる。
図21は変形された交流入力モードスイッチ制御信号発生手段101bを示す。図21の変形された交流入力モードスイッチ制御信号発生手段101bにおいて図4の同期モードスイッチ制御信号発生手段101と実質的に同一の部分に同一の符号を付してその説明を省略する。なお、実施例5の交流電源装置の交流入力モードスイッチ制御信号発生手段101b以外の部分は実施例1と同様に構成されている。
図21の変形された交流電源装置の交流入力モードスイッチ制御信号発生手段101bは図4の交流電源装置の交流入力モードスイッチ制御信号発生手段101の第1、第2及び第3の演算回路47,48,49を変形した第1及び第2の演算回路47b,48bと選択回路49bとを設け、更に、2つの加算器71、73と1つの減算器72と、第3のリミッタ74を設け、この他は図4と同一に形成したものである。
図21の第1の演算回路47bは、第1及び第2の指令値発生手段44,45に接続され、Vrc−Vriの減算を行い、差信号△V1を出力する。
第2の演算回路48bは、第1及び第2の指令値発生手段44,45に接続され、Vri−Vrcの減算を行い、差信号△V2を出力する。
選択回路49bは、第1及び第2の指令値発生手段44,45と第1の演算回路47bとに接続され、第1の演算回路47bの出力△V1に基づいて次の演算を行う。
もし△V1=0ならVrcを選択する。
もし△V1>0ならVrcを選択する。
もし△V1<0ならVriを選択する。
加算器71は、第1の演算回路47bと方形波発生器46とに接続され、これらの出力を加算する。従って,図21の第1の演算回路47bと加算器71との組み合せは図4の第1の演算回路47と等価である。
減算器72は、選択回路49bと方形波発生器76とに接続され、方形波電圧Vsから選択回路49bの出力を減算し、図4の第3の演算回路49の出力と実質的に同じ信号を出力する。従って,図21の選択回路49bと減算器72との組み合せは図4の第3の演算回路49と等価である。
加算器73は、第2の演算回路48bと方形波発生器76とに接続され、これらの出力を加算する。従って,図21の第2の演算回路48bと加算器72との組み合せは図4の第2の演算回路48と等価であり、Vri―Vrc+Vsを出力する。
第3のリミッタ74は減算器72と第2のコンパレータ54との間に接続され、減算器72の出力を上限値+Vsと下限値―Vsとの間に制限する。
第1、第2及び第3の同期モードにおいて、図21の第1、第2及び第3のリミッタ50,51,74から得られるVr1,Vr2,Vr3は、図4で同一符号で示すものと同一である。従って、実施例5によっても、実施例1と同一の効果を得ることができる。
図22は変形された交流電源装置の交流入力モードスイッチ制御信号発生手段101cを示す。図22の変形された同期モードスイッチ制御信号発生手段101cにおいて図4の交流電源装置の交流入力モードスイッチ制御信号発生手段101と実質的に同一の部分に同一の符号を付してその説明を省略する。なお、実施例6の交流電源装置の交流電源装置の交流入力モードスイッチ制御信号発生手段101c以外の部分は実施例1と同様に構成されている。
図22の変形された交流電源装置の交流入力モードスイッチ制御信号発生手段101cは図4の同期モードスイッチ制御信号発生手段101の第2の演算回路48bを省き、図21の加算器73を減算器73´に変形し、この他は図21と同一に形成したものである。
図22の減算器73´は、第1の演算回路47bと方形波発生器46とに接続され、方形波電圧Vsから第1の演算回路47bの出力を減算し、Vs―(Vrc―Vri)=Vs―Vrc+Vriを出力する。従って,図22の減算器73´から図21の加算器73と同じ出力を得ることができる。
第1、第2及び第3のモードにおいて、図22の第1、第2及び第3のリミッタ50,51,74から得られるVr1,Vr2,Vr3は、図4及び図21で同一符号で示すものと同一である。従って、実施例6によっても、実施例1及び5と同一の効果を得ることができる。
図23は変形された交流電源装置の交流入力モードスイッチ制御信号発生手段101dを示す。図23の変形された交流入力モードスイッチ制御信号発生手段101dにおいて図4の同期モードスイッチ制御信号発生手段101と実質的に同一の部分に同一の符号を付してその説明を省略する。なお、実施例7の交流電源装置の交流入力モードスイッチ制御信号発生手段101d以外の部分は実施例1と同様に構成されている。
図23の変形された交流入力モードスイッチ制御信号発生手段101dは図4の交流入力モードスイッチ制御信号発生手段101の第1、第2及び第3のNOT回路56,57,58の代りに、第4、第5及び第6のコンパレータ56’、57’、58’を設け、この他は図4と同一に形成したものである。第4、第5及び第6のコンパレータ56'、57’、58’の負入力端子は、第1のリミッタ50と、第3の演算回路49と、第2のリミッタ51とにそれぞれ接続され、Vr1,Vr2,Vr3の供給を受ける。第4、第5及び第6のコンパレータ56'、57’、58’の正入力端子は三角波発生器52に接続されている。第4、第5及び第5のコンパレータ56'、57’、58’は、第1、第2及び第3のコンパレータ53,54,55から出力される第1、第3及び第5の制御信号VQ1,VQ3,VQ5に対して逆位相の第2、第4及び第6の制御信号VQ2,VQ4,VQ6を形成してライン13,15,17に送出する。この図23の交流入力モードスイッチ制御信号発生手段101dによっても図4の交流入力モードスイッチ制御信号発生手段101と同一の効果を得ることができる。
なお、図20,図21及び図22の第1、第2及び第3のNOT回路56,57,58を図23の第4、第5及び第6のコンパレータ56’、57’58’と同様なものに置き換えることができる。
図24は図5(A)に示す基準出力電圧指令値発生器66を変形した基準出力電圧指令値発生器66aを示す。この変形された基準出力電圧指令値発生器66aは、固定クロック発生手段155aと、可変クロック発生手段157aと、第1及び第2モード選択スイッチ156、158と、正弦波発生手段160とから成る。固定クロック発生手段155aは交流出力電圧Voの目標周波数を得るために一定周波数(固定周波数)でクロックを発生する。図5(B)の入力周波数finがf1よりも低い時、f2〜f3の正常時、f4よりも高い時におけるライン107の信号に応答して第1モード選択スイッチ156がオンになると、固定クロック発生手段155aの一定周波数(固定周波数)のクロックがメモリから成る正弦波発生手段160に送られ、正弦波発生手段160から一定周波数(固定周波数)の正弦波電圧が出力される。
可変クロック発生手段157aは、ライン41bの交流入力電圧Vinの周波数finと同一の周波数を有する正弦波を得るためのクロックを交流入力電圧Vinに同期して発生する。図5(B)の入力周波数finがf1〜f2の時、f3〜f4の時におけるライン108の信号に応答して第1モード選択スイッチ158がオンになると、可変クロック発生手段157aの入力周波数に同期したクロックがメモリから成る正弦波発生手段160に送られ、正弦波発生手段160から入力周波数に同期した正弦波電圧が出力される。
図24の変形された基準出力電圧指令値発生器66aは、図5(A)の基準出力電圧指令値発生器66と同一の出力をライン154に送出するので、図24に示す変形された基準出力電圧指令値発生器66aを有する交流電源装置によっても、実施例1と同一の効果を得ることができる。
本発明は上述の実施例に限定されるものでなく、例えば次の変形が可能なものである。
(1)交流入力モードスイッチ制御信号発生手段101〜101dを、電圧非変換モードと降圧モードとの2つのみ、又は電圧非変換モードと昇圧モードとの2つのみ、又は降圧モードと昇圧モードとの2つのみで動作させることができる。また、電圧非変換モードと降圧モードと昇圧モードとから選択された1つのみで動作させることができる。
(2)交流入力モードスイッチ制御信号発生手段101〜101dの多くの部分をデジタル回路で構成することことができる。
(3)第1及び第2のスイッチQ1 、Q2 のオン期間の相互間、第3及び第4のスイッチQ3 、Q4 のオン期間の相互間、第5及び第6のスイッチQ5 、Q6 のオン期間の相互間に周知のデッドタイム(休止期間)を設けて各スイッチのストレージによって対のスイッチが同時にオンになることを防止し、対の直流ライン間の短絡を防止してもよい。
(4)第1、第2及び第3のリミッタ50、51、74を省いた構成にすることができる。
(5)方形波発生器46のリミッタ70及び第1、第2及び第3のリミッタ50、51、74の上側制限電圧を200Vよりも高くし、下側制限電圧を−200Vよりも低くすることができる。
(6)電力変換回路1、1a、1bに対して同一回路構成のものを並列的に接続して多相の電力変換装置を構成することができる。
(7)バックアップ用蓄電池83を予め充電することにより、充電回路84を省くことができる。また、図19の実施例3において、バックアップスイッチ82をオンにしてバックアップ用蓄電池83を予め充電することができる。
(8)モード切換信号形成手段100を図3以外の構成にすることができる。
(9)交流入力電圧の周波数及び電圧の変化が推定できると時は、交流入力電源スイッチ81、バックアップスイッチ82、図5(A)及び図24のスイッチ156,158を手動操作することもできる。
本発明の実施例1に従う交流電源装置を示す回路図である。 図1の制御回路を示すブロック図である。 図2のモード切換信号形成手段を等価的に示すブロック図である。 図2の交流入力モードスイッチ制御信号発生手段を詳しく示す回路図である。 図4の可変直流基準電圧源を詳しく示す回路図である。 図2のDC−DC変換スイッチ制御信号発生手段を詳しく示す回路図である。 図2のDC−AC変換スイッチ制御信号発生手段を詳しく示す回路図である。 図1の電力変換回路を電圧非変換モードで動作させた時の交流入力電圧と第1〜第6のスイッチの制御信号とを示す波形図である。 図1の電力変換回路を降圧モードで動作させた時の交流入力電圧と第1〜第6のスイッチの制御信号とを示す波形図である。 図1の電力変換回路を昇圧モードで動作させた時の交流入力電圧と第1〜第6のスイッチの制御信号とを示す波形図である。 図4の方形波発生器の入力及び出力を示す波形図である。 電圧非変換モード時の図4の第1、第2及び第3のコンパレータの入力を示す波形図である。 降圧モード時の図4の第1、第2及び第3のコンパレータの入力を示す波形図である。 昇圧モード時の図4の第1、第2及び第3のコンパレータの入力を示す波形図である。 電圧非変換モード時の三角波電圧と各コンパレータの入力との関係を詳しく示す波形図である。 降圧モード時の三角波電圧と各コンパレータの入力との関係を詳しく示す波形図である。 昇圧モード時の三角波電圧と各コンパレータの入力との関係を詳しく示す波形図である。 実施例2の交流電源装置を示す回路図である。 実施例3の交流電源装置を示す回路図である。 実施例4の交流入力モードスイッチ制御信号発生手段を示す回路図である。 実施例5の交流入力モードスイッチ制御信号発生手段を示す回路図である。 実施例6の交流入力モードスイッチ制御信号発生手段を示す回路図である。 実施例7の交流入力モードスイッチ制御信号発生手段を示す回路図である。 実施例8の基準出力電圧指令値発生器を示す回路図である。
符号の説明
1,1a、1b 電力変換回路
2,2a 制御回路
3 交流電源
53、54、55 第1、第2及び第3のコンパレータ
56、57、58 第1、第2及び第3のNOT回路
81 交流入力電源スイッチ
82 バックアップスイッチ
83 バックアップ用蓄電池
Q1 〜Q6 第1〜第6のスイッチ
C 平滑コンデンサ
L1 、L2 第1及び第2のインダクタ

Claims (8)

  1. 負荷(11)に交流電力を無停電で供給するための交流電源装置であって、電力変換回路と該電力変換回路の制御回路とから成り、
    前記電力変換回路は、
    交流電源(3)に接続される交流入力端子(4)と、
    前記負荷(11)に接続される交流出力端子(6)と、
    前記交流電源(3)と前記負荷(11)とに接続される共通端子(5又は7)と、
    正側直流導体(76)と、
    負側直流導体(77)と、
    前記正側直流導体(76)と前記負側直流導体(77)との間にそれぞれ接続された第1及び第2のスイッチ(Q1,Q2)の直列回路、第3及び第4のスイッチ(Q3,Q4)の直列回路、第5及び第6のスイッチ(Q5,Q6)の直列回路、及び平滑コンデンサ(C)と、
    前記第1及び第2のスイッチ(Q1,Q2)の相互接続点(8)と前記共通端子(5又は7)との間に前記交流電源(3)を選択的に接続するための交流入力電源スイッチ(81)と、
    バックアップ用蓄電池(83)と、
    前記第1及び第2のスイッチ(Q1,Q2)の相互接続点(8)と前記共通端子(5又は7)との間に前記バックアップ用蓄電池(83)を選択的に接続するためのバックアップスイッチ(82)と、
    前記交流入力端子(4)と前記第1及び第2のスイッチ(Q1,Q2)の相互接続点(8)との間又は前記第3及び第4のスイッチ(Q3,Q4)の相互接続点(9)と前記共通端子(5又は7)との間に接続されたインダクタ(L1又はL3)とを備え、
    前記制御回路は、前記交流電源(3)から供給された交流入力電圧(Vin)の周波数が正常範囲(f2〜f3)内にあり且つ前記交流入力電圧(Vin)の電圧値が正常範囲内にある周波数及び電圧正常モード時に、前記交流入力電源スイッチ(81)をオンに制御し且つ前記バックアップスイッチ(82)をオフに制御し且つ前記交流入力電圧(Vin)を直流電圧に変換して前記正側直流導体(76)と前記負側直流導体(77)との間に直流電圧を得且つ前記直流電圧を交流電圧に変換して前記交流出力端子(6)と前記共通端子(5又は7)との間に定格周波数の交流出力電圧(Vo)を得るように前記第1〜第6のスイッチ(Q1〜Q6)を制御し、前記交流入力電圧(Vin)の周波数が前記負荷(11)の許容周波数変動範囲(f1〜f2、f3〜f4)内にあり且つ前記交流入力電圧(Vin)の電圧値が正常範囲内にある周波数変動及び電圧正常モード時に、前記交流入力電源スイッチ(81)をオンに制御し且つ前記バックアップスイッチ(82)をオフに制御し且つ前記交流入力電圧(Vin)を直流電圧に変換して前記正側直流導体(76)と前記負側直流導体(77)との間に直流電圧を得且つ前記直流電圧を交流電圧に変換して前記交流出力端子(6)と前記共通端子(5又は7)との間に前記交流入力電圧(Vin)の周波数と同一の周波数の交流出力電圧(Vo)を得るように前記第1〜第6のスイッチ(Q1〜Q6)を制御し、前記周波数及び電圧正常モードと前記周波数変動及び電圧正常モードとのいずれにも属さない別のモード時又は前記交流入力電圧(Vin)の電圧値が前記正常範囲内にない電圧異常モード時に、前記交流入力電源スイッチ(81)をオフに制御し且つ前記バックアップスイッチ(82)をオンに制御し且つ前記バックアップ用蓄電池(83)の直流電圧を直流―直流変換することによって前記正側直流導体(76)と前記負側直流導体(77)との間に所望の直流電圧を得且つ前記直流電圧を交流電圧に変換することによって前記定格周波数の交流出力電圧(Vo)を得るように前記第1〜第6のスイッチ(Q1〜Q6)を制御する手段から成ることを特徴とする交流電源装置。
  2. 前記制御回路は、
    前記交流電源(3)から供給された交流入力電圧の周波数が正常範囲(f2〜f3)内か否かを判定する機能と前記交流入力電圧(Vin)の周波数が前記正常範囲よりも低い許容周波数変動範囲(f1〜f2)内か否かを判定する機能と前記交流入力電圧(Vin)の周波数が前記正常範囲よりも高い許容周波数変動範囲(f3〜f4)内か否かを判定する機能とを有する周波数判定手段(111)と、
    前記交流入力電圧(Vin)の電圧値が正常範囲内か否かを判定する交流電圧判定手段(112)と、
    前記周波数判定手段(111)から前記周波数が正常範囲内であることを示す出力が得られ同時に前記交流電圧判定手段(112)から前記電圧値が正常範囲内であることを示す出力が得られている周波数及び電圧正常モードであるか否かを判定する周波数及び電圧正常モード判定手段(138)と、
    前記交流入力電圧(Vin)の周波数が前記正常範囲よりも低い許容周波数変動範囲(f1〜f2)内であることを示す出力又は前記交流入力電圧(Vin)の周波数が前記正常範囲よりも高い許容周波数変動範囲(f3〜f4)内であることを示す出力が前記周波数判定手段(111)から得られ同時に前記交流電圧判定手段(112)から前記電圧値が正常範囲内であることを示す出力が得られているか否かを判定する周波数変動及び電圧正常モード判定手段(137,139,141)と、
    前記周波数及び電圧正常モード判定手段(138)から前記周波数及び電圧正常モードを示す出力が得られている時、及び前記周波数変動及び電圧正常モード判定手段(137,139,141)から前記周波数変動及び電圧正常モードを示す出力が得られている時に前記交流入力電源スイッチ(81)をオン制御し且つ前記バックアップスイッチ(82)をオフ状態に制御し、且つ前記周波数及び電圧正常モードと前記周波数変動及び電圧正常モードとのいずれにも属さない別のモード時、又は前記交流電圧判定手段(112)から前記電圧値が正常範囲内にない異常であることを示す出力が得られている電圧異常モード時に前記交流入力電源スイッチ(81)をオフ状態に制御し且つ前記バックアップスイッチ(82)をオン状態に制御するためのモード切換信号を出力する手段(88,89)と、
    前記周波数及び電圧正常モード判定手段(136)から得られた周波数及び電圧正常モードを示す信号に応答して前記定格周波数の交流出力電圧(Vo)を得るための固定周波数を有する第1の基準電圧指令値を発生し、且つ前記周波数変動及び電圧正常モード判定手段(137,139,141)から得られた周波数変動及び電圧正常モードを示す信号に応答して前記交流入力電圧(Vin)の周波数に比例して変化する周波数を有する第2の基準電圧指令値を発生する基準電圧指令値発生手段(66)と、
    前記周波数及び電圧正常モード判定手段(138)から前記周波数及び電圧正常モードを示す出力が得られている時に、前記交流入力電圧(Vin)を直流電圧に変換して前記正側直流導体(76)と前記負側直流導体(77)との間に直流電圧を得且つ前記第1の基準電圧指令値に基づいて前記交流出力端子(6)と前記共通端子(5又は7)との間に定格周波数の交流出力電圧(Vo)を得るように前記第1〜第6のスイッチ(Q1〜Q6)を制御するためのスイッチ制御信号を発生し、前記周波数変動及び電圧正常モード判定手段(137,139,141)から前記周波数変動及び電圧正常モードを示す出力が得られている時に、前記第2の基準電圧指令値に基づいて前記交流出力端子(6)と前記共通端子(5又は7)との間に前記交流入力電圧(Vin)の周波数に比例して変化する周波数を有する交流出力電圧(Vo)が得られるように前記第1〜第6のスイッチ(Q1〜Q6)を制御するためのスイッチ制御信号を発生する交流入力モードスイッチ制御信号発生手段(101又は101a又は101b又は101c又は101d)と、
    前記周波数及び電圧正常モードと前記周波数変動及び電圧正常モードとのいずれにも属さない別のモード時、又は前記交流入力電圧(Vin)の電圧値が正常範囲にない異常の電圧異常モード時に、前記バックアップ用蓄電池(83)の直流電圧を直流―直流変換することによって前記正側直流導体(76)と前記負側直流導体(77)との間に所望の直流電圧を得且つ前記直流電圧を交流電圧に変換することによって前記定格周波数の交流出力電圧(Vo)を得るように前記第1〜第6のスイッチ(Q1〜Q6)を制御するためのスイッチ制御信号を発生するバックアップモードスイッチ制御信号発生手段(102)と
    を備えていることを特徴とする請求項1記載の交流電源装置。
  3. 負荷(11)に交流電力を無停電で供給するための交流電源装置であって、電力変換回路と該電力変換回路の制御回路とから成り、
    前記電力変換回路は、
    交流電源(3)に接続される交流入力端子(4)と、
    前記負荷(11)に接続される交流出力端子(6)と、
    前記交流電源(3)と前記負荷(11)とに接続される共通端子(5又は7)と、
    正側直流導体(76)と、
    負側直流導体(77)と、
    前記正側直流導体(76)と前記負側直流導体(77)との間にそれぞれ接続された第1及び第2のスイッチ(Q1,Q2)の直列回路、第3及び第4のスイッチ(Q3,Q4)の直列回路、前記正側直流導体(76)と前記負側直流導体(77)との間に接続された第5及び第6のスイッチ(Q5,Q6)の直列回路、及び平滑コンデンサ(C)と、
    前記交流入力端子(4)と前記第1及び第2のスイッチ(Q1,Q2)の相互接続点(8)との間に接続された交流入力電源スイッチ(81)と、
    バックアップ用蓄電池(83)と、
    前記バックアップ用蓄電池(83)を前記正側直流導体(76)と前記負側直流導体(77)との間に選択的に接続するためのバックアップスイッチ(82)と、
    前記交流入力端子(4)と前記第1及び第2のスイッチ(Q1,Q2)の相互接続点(8)との間又は前記第3及び第4のスイッチ(Q3,Q4)の相互接続点(9)と前記共通端子(5又は7)との間に接続されたインダクタ(L1又はL3)とを備え、
    前記制御回路は、前記交流電源(3)から供給された交流入力電圧(Vin)の周波数が正常範囲(f2〜f3)内にあり且つ前記交流入力電圧(Vin)の電圧値が正常範囲内にある周波数及び電圧正常モード時に、前記前記交流入力電源スイッチ(81)をオンに制御し且つ前記バックアップスイッチ(82)をオフに制御し且つ前記交流入力電圧(Vin)を直流電圧に変換して前記正側直流導体(76)と前記負側直流導体(77)との間に直流電圧を得且つ前記直流電圧を交流電圧に変換して前記交流出力端子(6)と前記共通端子(5又は7)との間に定格周波数の交流出力電圧(Vo)を得るように前記第1〜第6のスイッチ(Q1〜Q6)を制御し、前記交流入力電圧(Vin)の周波数が前記負荷(11)の許容周波数変動範囲(f1〜f2、f3〜f4)内であり且つ前記交流入力電圧(Vin)の電圧値が正常範囲内にある周波数変動及び電圧正常モード時に、前記交流入力電源スイッチ(81)をオンに制御し且つ前記バックアップスイッチ(82)をオフに制御し且つ前記交流入力電圧(Vin)を直流電圧に変換して前記正側直流導体(76)と前記負側直流導体(77)との間に直流電圧を得且つ前記直流電圧を交流電圧に変換して前記交流出力端子(6)と前記共通端子(5又は7)との間に前記交流入力電圧(Vin)の周波数と同一の周波数の交流出力電圧(Vo)を得るように前記第1〜第6のスイッチ(Q1〜Q6)を制御し、前記周波数及び電圧正常モードと前記周波数変動及び電圧正常モードとのいずれにも属さない別のモード時、又は前記交流入力電圧(Vin)の電圧値が前記正常範囲内にない電圧異常モード時に、前記交流入力電源スイッチ(81)をオフに制御し且つ前記バックアップスイッチ(82)をオンに制御し且つ前記バックアップ用蓄電池(83)から供給された前記正側直流導体(76)と前記負側直流導体(77)との間の直流電圧を定格周波数の交流出力電圧(Vo)に変換するように前記第3〜第6のスイッチ(Q3〜Q6)を制御する手段から成ることを特徴とする交流電源装置。
  4. 前記制御回路は、
    前記交流電源(3)から供給された交流入力電圧の周波数が正常範囲(f2〜f3)内か否かを判定する機能と前記交流入力電圧(Vin)の周波数が前記正常範囲よりも低い許容周波数変動範囲(f1〜f2)内か否かを判定する機能と前記交流入力電圧(Vin)の周波数が前記正常範囲よりも高い許容周波数変動範囲(f3〜f4)内か否かを判定する機能とを有する周波数判定手段(111)と、
    前記交流入力電圧(Vin)の電圧値が正常範囲内か否かを判定する交流電圧判定手段(112)と、
    前記周波数判定手段(111)から前記周波数が正常範囲内であることを示す出力が得られ同時に前記交流電圧判定手段(112)から前記電圧値が正常範囲内であることを示す出力が得られている周波数及び電圧正常モードであるか否かを判定する周波数及び電圧正常モード判定手段(138)と、
    前記交流入力電圧(Vin)の周波数が前記正常範囲よりも低い許容周波数変動範囲(f1〜f2)内であることを示す出力又は前記交流入力電圧(Vin)の周波数が前記正常範囲よりも高い許容周波数変動範囲(f3〜f4)内であることを示す出力が前記周波数判定手段(111)から得られ同時に前記交流電圧判定手段(112)から前記電圧値が正常範囲内であることを示す出力が得られているか否かを判定する周波数変動及び電圧正常モード判定手段(137,139,141)と、
    前記周波数及び電圧正常モード判定手段(138)から前記周波数及び電圧正常モードを示す出力が得られている時及び前記周波数変動及び電圧正常モード判定手段(137,139,141)から前記周波数変動及び電圧正常モードを示す出力が得られている時に前記交流入力電源スイッチ(81)をオン制御し且つ前記周波数及び電圧正常モードと前記周波数変動及び電圧正常モードとのいずれにも属さない別のモード時、又は前記交流電圧判定手段(112)から前記電圧値が正常範囲内にない異常であることを示す出力が得られている電圧異常モード時に前記交流入力電源スイッチ(81)をオフ状態に制御し且つ前記バックアップスイッチ(82)をオン状態に制御するためのモード切換信号を出力する手段(88,89)と、
    前記周波数及び電圧正常モード判定手段(136)から得られた周波数及び電圧正常モードを示す信号に応答して定格周波数の交流出力電圧(Vo)を得るための固定周波数を有する第1の基準電圧指令値を発生し、且つ前記周波数変動及び電圧正常モード判定手段(137,139,141)から得られた周波数変動及び電圧正常モードを示す信号に応答して前記交流入力電圧(Vin)の周波数に比例して変化する周波数を有する第2の基準電圧指令値を発生する基準電圧指令値発生手段(66)と、
    前記周波数及び電圧正常モード判定手段(138)から前記周波数及び電圧正常モードを示す出力が得られている時に、前記交流入力電圧(Vin)を直流電圧に変換して前記正側直流導体(76)と前記負側直流導体(77)との間に直流電圧を得且つ前記第1の基準電圧指令値に基づいて前記交流出力端子(6)と前記共通端子(5又は7)との間に定格周波数の交流出力電圧(Vo)を得るように前記第1〜第6のスイッチ(Q1〜Q6)を制御するためのスイッチ制御信号を発生し、前記周波数変動及び電圧正常モード判定手段(137,139,141)から前記周波数変動及び電圧正常モードを示す出力が得られている時に前記第2の基準電圧指令値に基づいて前記交流出力端子(6)と前記共通端子(5又は7)との間に前記交流入力電圧(Vin)の周波数に比例して変化する周波数を有する交流出力電圧(Vo)を得るように前記第1〜第6のスイッチ(Q1〜Q6)を制御するためのスイッチ制御信号を発生する交流入力モードスイッチ制御信号発生手段(101又は101a又は101b又は101c又は101d)と、
    前記周波数及び電圧正常モードと前記周波数変動及び電圧正常モードとのいずれにも属さない別のモード時、又は前記交流入力電圧(Vin)の電圧値が正常範囲にない電圧異常モード時に、前記バックアップ用蓄電池(83)から供給された前記正側直流導体(76)と前記負側直流導体(77)との間の直流電圧を交流電圧に変換することによって定格周波数の交流出力電圧(Vo)を得るように前記第3〜第6のスイッチ(Q3〜Q6)を制御するためのスイッチ制御信号を発生するバックアップモードスイッチ制御信号発生手段(102)と
    を備えていることを特徴とする請求項3記載の交流電源装置。
  5. 更に、前記周波数及び電圧異常モード時、又は前記電圧異常モード時に、前記バックアップ用蓄電池(83)の直流電圧を昇圧して前記正側直流導体(76)と前記負側直流導体(77)との間に供給する直流―直流変換回路(85)を有していることを特徴とする請求項3又は4記載の交流電源装置。
  6. 前記周波数の正常範囲(f2〜f3)は前記交流入力電圧(Vin)の定格周波数の99%から101%の範囲であり、前記負荷(11)の許容周波数変動範囲は前記交流入力電圧(Vin)の定格周波数の90%から99%の範囲、及び101%から110%の範囲であることを特徴とする請求項1乃至5のいずれかに記載の交流電源装置。
  7. 前記交流入力モードスイッチ制御信号発生手段は、
    前記交流入力端子(4)又は前記第1及び第2のスイッチ(Q1,Q2)の相互接続点(8)と前記共通端子(5)との間の第1の電圧(Vin又はVconv)と前記交流出力端子(6)又は前記第5及び第6のスイッチ(Q5,Q6)の相互接続点(10)と前記共通端子(5)との間の第2の電圧(Vo又はVinv)とをほぼ等しくする電圧非変換モードの時に、前記第1及び第2のスイッチ(Q1,Q2)と前記第5及び第6のスイッチ(Q5,Q6)とを前記交流入力電圧(Vin)の周期でオン・オフ制御し、且つ前記第3及び第4のスイッチ(Q3,Q4)を前記交流入力電圧(Vin)の周期よりも短い周期でオン・オフ制御する第1の機能と、
    前記第2の電圧(Vo又はVinv)を前記第1の電圧(Vin又はVconv)よりも低くする降圧モードの時に、前記第1及び第2のスイッチ(Q1,Q2)を前記交流入力電圧(Vin)の周期でオン・オフ制御し、且つ前記第3及び第4のスイッチ(Q3,Q4)と前記第5及び第6のスイッチ(Q5,Q6)とを前記交流入力電圧(Vin)の周期よりも短い周期でオン・オフ制御する第2の機能と、
    前記第2の電圧(Vo又はVinv)を前記第1の電圧(Vin又はVconv)よりも高くする昇圧モードの時に、前記第1及び第2のスイッチ(Q1,Q2)と前記第3及び第4のスイッチ(Q3,Q4)とを前記交流入力電圧(Vin)の周期よりも短い周期でオン・オフ制御し、且つ前記第5及び第6のスイッチ(Q5,Q6)を前記交流入力電圧(Vin)の周期でオン・オフ制御する第3の機能と
    の内の少なくとも1つの機能を有していることを特徴とする請求項2又は4記載の交流電源装置。
  8. 前記交流入力モードスイッチ制御信号発生手段は、
    前記第1及び第2のスイッチ(Q1,Q2)の相互接続点(8)と前記共通端子(5)との間の第1の電圧(Vconv)を前記第1の直流電圧基準値(V59a)又は前記第2の直流電圧基準値(V59b)に対応する第1又は第2の所望値にするための第1の指令値Vrcを前記交流入力電圧(Vin)に同期して発生する第1の指令値発生手段(44)と、
    前記第5及び第6のスイッチ(Q5,Q6)の相互接続点(10)と前記共通端子(5)との間の第2の電圧(Vinv)を所望値にするための第2の指令値Vriを発生する第2の指令値発生手段(45)と、
    前記交流入力電圧(Vin)と同一の周期を有する方形波電圧Vsを発生する方形波発生器(46)と、
    前記第1の指令値発生手段(44)と前記第2の指令値発生手段(45)と前記
    方形波発生器(46)とに接続され、
    Vrc−Vri+Vsを示す第1の値(Vr1)と、
    Vri−Vrc+Vsを示す第2の値(Vr3)と、
    Vr3−Vri又はVs−Vrc又はVs−Vriを示す第3の値(Vr2)と
    を出力する演算手段(47,48,49)と、
    前記演算手段(47,48,49)と前記第1、第2、第3、第4、第5及び第6のスイッチ(Q1,Q2,Q3,Q4,Q5,Q6)とに接続され、前記演算手段(47,48,49)から得られた前記第1、第2及び第3の値(Vr1,Vr3,Vr2)に基づいて前記第1、第2、第3、第4、第5及び第6のスイッチ(Q1,Q2,Q3,Q4,Q5,Q6)をオン・オフ制御するための第1、第2、第3、第4、第5及び第6の制御信号(VQ1,VQ2,VQ3,VQ4,VQ5,VQ6)を形成する制御信号形成手段(52,53,54,55,56,57,58又は52,53,54,55、56'、57’、58’)と
    を備え、前記第2の指令値発生手段(45)に前記基準電圧指令値発生手段(66)が含まれていることを特徴とする請求項2又は4記載の交流電源装置。
JP2008153511A 2008-06-11 2008-06-11 交流電源装置 Active JP5190683B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008153511A JP5190683B2 (ja) 2008-06-11 2008-06-11 交流電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008153511A JP5190683B2 (ja) 2008-06-11 2008-06-11 交流電源装置

Publications (2)

Publication Number Publication Date
JP2009303349A JP2009303349A (ja) 2009-12-24
JP5190683B2 true JP5190683B2 (ja) 2013-04-24

Family

ID=41549652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008153511A Active JP5190683B2 (ja) 2008-06-11 2008-06-11 交流電源装置

Country Status (1)

Country Link
JP (1) JP5190683B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI658678B (zh) 2017-12-25 2019-05-01 台達電子工業股份有限公司 不斷電電源供應裝置
US11462938B2 (en) 2019-09-05 2022-10-04 Toshiba Mitsubishi-Electric Industrial Systems Corporation Uninterruptible power supply system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3550573B2 (ja) * 1998-06-23 2004-08-04 東芝三菱電機産業システム株式会社 電力変換装置
JP3050314B1 (ja) * 1999-03-10 2000-06-12 サンケン電気株式会社 電力変換装置
JP2000341879A (ja) * 1999-05-25 2000-12-08 Ntt Power & Building Facilities Inc 交流無停電電源システム
JP3546325B2 (ja) * 1999-06-16 2004-07-28 株式会社日立製作所 無停電電源装置
US6160722A (en) * 1999-08-13 2000-12-12 Powerware Corporation Uninterruptible power supplies with dual-sourcing capability and methods of operation thereof
JP4001060B2 (ja) * 2003-02-18 2007-10-31 富士電機システムズ株式会社 電力変換装置
JP4410670B2 (ja) * 2004-12-10 2010-02-03 山洋電気株式会社 無停電電源装置

Also Published As

Publication number Publication date
JP2009303349A (ja) 2009-12-24

Similar Documents

Publication Publication Date Title
JP6569839B1 (ja) 電力変換装置
US10622914B2 (en) Multi-stage DC-AC inverter
US20120235607A1 (en) Dc bus boost method and system for regenerative brake
JP5631499B2 (ja) 電力変換装置
US20110273916A1 (en) Power converting apparatus
CN107710588B (zh) 转换设备以及对其进行控制的方法
JP2008022625A (ja) 交流−直流変換装置
Vinnikov et al. New bi-directional DC/DC converter for supercapacitor interfacing in high-power applications
CN106464150B (zh) 电力转换装置
KR101742231B1 (ko) 고역률 고효율 인터리브드 듀얼-벅 컨버터 및 제어방법
JP5370519B2 (ja) 電力変換装置
EP2608381A2 (en) AC-DC converter
CN107750424A (zh) 电力转换装置和用于控制该电力转换装置的方法
WO2020256690A1 (en) Voltage balance systems and methods for multilevel converters
JP5190683B2 (ja) 交流電源装置
JP2022036422A (ja) 電力変換装置
JP3541887B2 (ja) 電力変換装置
JP2011193704A (ja) 直流−交流電力変換装置
JP5950970B2 (ja) 電力変換装置
CN107431445A (zh) 直流/交流系统互连装置及交流/交流系统互连装置
JP2003134842A (ja) 昇降圧コンバータ及びこれを用いた系統連系インバータ
JP2009303348A (ja) 交流電源装置
JP2009261142A (ja) 電力変換装置
US20190115847A1 (en) Energy recovery rectifier device
JP4386160B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130117

R150 Certificate of patent or registration of utility model

Ref document number: 5190683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250