JP5169881B2 - 内燃機関の可変圧縮比装置 - Google Patents

内燃機関の可変圧縮比装置 Download PDF

Info

Publication number
JP5169881B2
JP5169881B2 JP2009018903A JP2009018903A JP5169881B2 JP 5169881 B2 JP5169881 B2 JP 5169881B2 JP 2009018903 A JP2009018903 A JP 2009018903A JP 2009018903 A JP2009018903 A JP 2009018903A JP 5169881 B2 JP5169881 B2 JP 5169881B2
Authority
JP
Japan
Prior art keywords
oil
compression ratio
passage
movable piston
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009018903A
Other languages
English (en)
Other versions
JP2010174761A (ja
Inventor
亮介 日吉
徹 深見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009018903A priority Critical patent/JP5169881B2/ja
Publication of JP2010174761A publication Critical patent/JP2010174761A/ja
Application granted granted Critical
Publication of JP5169881B2 publication Critical patent/JP5169881B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、可動ピストンの位置に応じて機関圧縮比を変化させる可変圧縮比機構を備えた内燃機関の可変圧縮比装置に関する。
特許文献1に記載されているように、内燃機関の機関圧縮比を可変とする可変圧縮比機構は、一般に、電力や油圧を駆動源とするアクチュエータによって駆動・保持され、低負荷時には熱効率向上のために高圧縮比となり、高負荷時にはノッキング回避のために低圧縮比となるように、アクチュエータの動作が制御される。
特開2004−150353号公報
しかしながら、上述したようなアクチュエータには可変圧縮比機構側から燃焼圧や慣性力等に起因する入力荷重が作用するため、この入力荷重に抗して可変圧縮比機構を駆動・保持する必要があり、駆動エネルギーの消費が避けられず、また、アクチュエータの大型化を招くことなく、圧縮比の応答性と保持性とを両立することが難しい。
ハウジングと、ハウジングのシリンダ内に往復移動可能に配設された可動ピストンと、上記可動ピストンにより仕切られた2つの油室とを有する油圧機構と、上記可動ピストンと機械的に連結され、上記可動ピストンのシリンダ軸方向に沿う移動に伴い機関圧縮比を変化させる可変圧縮比機構と、を有する。制御部により、上記2つの油室の密閉・開放を切り換えることによって、可動ピストンの挙動を制御する。つまり、可動ピストンを所定位置に保持する圧縮比保持時には、移動する可動ピストンが向かう側の油室を密閉することで、この油室内の油圧によって、この密閉された油室側への可動ピストンの移動を抑制することができる。一方、圧縮比変更時には、少なくとも一方の油室を開放することで、この開放された油室側への可動ピストンの移動を可能とする。可動ピストンには、内燃機関の燃焼荷重等に起因する入力荷重や、付勢バネによる付勢荷重等が作用しており、これらの荷重により、圧縮比変更時には、上記開放された油室側へ可動ピストンが移動する。
このような油圧機構を用いることによって、油圧や電力を駆動源とするアクチュエータを敢えて用いることなく、圧縮比保持時には可動ピストンを所定位置に保持するとともに、圧縮比変更時には、可変圧縮比機構側からの入力荷重や適宜な付勢手段による付勢荷重等の可動ピストンに作用する荷重を利用して、可動ピストンを所期の圧縮比の方向に移動させることができる。また、この荷重の設定を適切なものとすることで、特定の圧縮比の変更時、例えば急加速時のように高圧縮比設定状態から低圧縮比側への圧縮比低下時の応答性を向上することができる。従って、アクチュエータによる駆動エネルギーの消費を解消・軽減しつつ、圧縮比の保持性と応答性とを向上することができる。
本発明に係る油抜機構を備えた内燃機関の可変圧縮比装置の一実施例を示す構成図。 リザーバタンクへの油路の接続位置を示す構成図。 上記油抜機構とアクチュエータとを併用した実施例を示す構成図。 上記油抜機構の油路切換制御の流れを示すフローチャート。 油入替運転・非循環モードでの低圧縮比側への作動時における切換弁・逆止弁の開閉状況や油の流れの一例を示す構成図。 油入替運転・循環モードでの高圧縮比側への作動時における切換弁・逆止弁の開閉状況や油の流れの一例を示す構成図。 油入替運転・循環モードでの低圧縮比側への作動時における切換弁・逆止弁の開閉状況や油の流れの一例を示す構成図。 圧縮比変更時・循環モードでの低圧縮比側への作動時における切換弁・逆止弁の開閉状況や油の流れの一例を示す構成図。 圧縮比変更時・非循環モードでの低圧縮比側への作動時における切換弁・逆止弁の開閉状況や油の流れの一例を示す構成図。 リザーバタンク内の油量回復時における切換弁・逆止弁の開閉状況や油の流れの一例を示す構成図。 リザーバタンク内の油量回復時における切換弁・逆止弁の開閉状況や油の流れの一例を示す構成図。
以下、本発明の好ましい実施の形態を図面に基づいて説明する。図1を参照して、可変圧縮比機構10は、複リンク式ピストン−クランク機構を利用し、そのリンク構成の一部を動かすことによりピストン上死点位置を変化させ、内燃機関の機械的な圧縮比つまり公称圧縮比を変化させるものであり、その基本構造は特開2003−322036号公報等により公知であるため、ここでは簡単な説明にとどめる。なお、図では簡略的に各リンクのリンク中心線のみを描いている。
可変圧縮比機構10は、内燃機関のクランクシャフト11のクランクピン12に回転可能に取り付けられたロアリンク13と、このロアリンク13の一端と内燃機関のピストン(燃焼室ピストン)14とを連結するアッパリンク15と、シリンダブロック等の機関本体側に回転可能に支持される制御軸16と、この制御軸16の回転中心に対して偏心して設けられた偏心軸部17と、一端がロアリンク13に連結され、他端が偏心軸部17に回転可能に取り付けられた制御リンク18と、を有している。制御軸16が回転すると、制御リンク18を介してロアリンク13の運動拘束条件が変化し、ピストン14の上死点位置や下死点位置の変化を伴って、機関圧縮比(公称圧縮比)が変化する。
本実施例において油圧機構に相当する油抜機構20は、シリンダ21が形成されたハウジング22と、シリンダ21内に往復移動可能に取り付けられた可動ピストン23と、を有し、この可動ピストン23によりシリンダ21内に第1油室24と第2油室25とが液密に画成されている。つまり、可動ピストン23によりシリンダ21内部が第1油室24と第2油室25とに仕切られている。
可動ピストン23と制御軸16とはレバー41及びレバーリンク42からなるリンク列によって機械的に連結されている。レバー41は、制御軸16に固定され、制御軸16の回転中心を支点として揺動する。レバーリンク42は、一端がレバー41の先端に回転可能に連結され、他端がハウジング22より突出する可動ピストン23のピストンロッド43の先端に回転可能に連結されている。可動ピストン23がシリンダ21の軸方向に沿って図の右方向つまり高圧縮比側へ移動すると、制御軸16が反時計回りに回転して、機関圧縮比が高くなり、可動ピストン23がシリンダ21の軸方向に沿って図の左方向つまり低圧縮比側へ移動すると、制御軸16が時計回りに回転して、機関圧縮比が低くなる。
シリンダ21の第1油室24内には、可動ピストン23を高圧縮比側、つまり可変圧縮比機構10側から可動ピストン23へ作用する入力荷重(のピーク値)Finの方向と逆方向へ可動ピストン23を付勢する付勢手段としてのコイルスプリングである付勢バネ44が設けられている。可動ピストン23は、最も高圧縮比側へ移動した高圧縮比の状態では、ハウジング22に設けられたストッパ45に突き当てられ、その位置が機械的に規制・制限される。ストッパ45は、図示の例では可動ピストン23との衝突時の衝撃緩和や耐久性を考慮してゴムや金属等の適宜な材質からなるハウジング22と別部材により構成しているが、ストッパ45をハウジング22に一体的に設け、つまりハウジング22の壁面をストッパとして用いてもよい。
また、油抜機構20は、一端が第1油室24に接続し、この第1油室24に作動油を供給する第1入油路26と、一端が第1油室24に接続し、この第1油室24から作動油を排出する第1抜油路27と、一端が第2油室25に接続し、この、第2油室25に作動油を供給する第2入油路28と、一端が第2油室25に接続し、この第2油室25から作動油を排出する第2抜油路29と、第1入油路26と第2入油路28の上流側の他端が接続するリザーバタンク30と、一端が第1抜油路27と第2抜油路29の合流部31に接続するとともに、他端がリザーバタンク30に接続し、第1,第2抜油路27,29側からリザーバタンク30を介して第1,第2入油路26,28側へ作動油を循環させる循環油路32と、一端がリザーバタンク30に接続し、リザーバタンク30へ新規の作動油をこの油抜機構20の外部より供給する供給油路33と、一端が第1抜油路27と第2抜油路29の合流部31に接続し、抜油路27,29を介して油室24,25内の作動油を油抜機構20の外部へ排出する排出油路34と、を有している。作動油は、図示せぬ内燃機関のオイルパンからポンプによって供給油路33を通して油抜機構20へ供給され、排出油路34を通して排出されて、最終的にオイルパンへと戻される。第1入油路26に第1逆止弁G1,第2入油路28に第2逆止弁G2,第1抜油路27に第3逆止弁G3,及び第2抜油路29に第4逆止弁G4がそれぞれ介装されている。各逆止弁G1〜G4には、弁体39を所期の流れ方向と逆方向へ付勢するリターンスプリング40が設けられている。
また、油抜機構20の各油路を開閉する油路切換手段として、供給油路33に第1切換弁K1,第1抜油路27における逆止弁G3の下流側に第2切換弁K2,第2抜油路29における逆止弁G4の下流側に第3切換弁K3,循環油路32に第4切換弁K4,排出油路34に第5切換弁K5が設けられている。これらの切換弁K1〜K5は、制御部50からの制御信号により油路を開閉する制御弁である。なお、切換弁の構成は上記のものに限られず、例えば周知の4ポート2位置切換弁や4ポート3位置切換弁を用いて上記の第2切換弁K2と第3切換弁K3とを一体化してもよい。
例えば、低負荷運転時などでは、高圧縮比の設定要求がなされ、この場合、第1抜油路27の第2切換弁K2を閉とし、第2抜油路29の切換弁K3を開とする。これによって、第1油室24が密閉され、この第1油室24内の作動油が排出されることがなく、一方、第2油室25が開放され、第2抜油路29を通して第2油室25内の作動油が排出されるため、可動ピストン23は密閉された第1油室25側つまり低圧縮比側(図の左側)への移動が抑制・防止され、開放された第2油室25側つまり高圧縮比側(図1の右側)への移動のみが許容される形となり、主として付勢バネ44による高圧縮比側への付勢荷重Fsprによって、最終的にはストッパ45に突き当てられた高圧縮比状態となる。
一方、高負荷・全開運転時などでは、低圧縮比の設定要求がなされ、この場合、第1抜油路27の第2切換弁K2を開とし、第2抜油路29の第3切換弁K3を閉とする。これによって、第2油室25が密閉され、この第2油室25の作動油が排出されることがなく、一方、第1油室24が開放され、第1抜油路27を通して第1油室24内の作動油のみが排出されるため、可動ピストン23は高圧縮比側への移動が抑制・防止され、実質的に低圧縮比側(図1の左側)への移動のみが可能となる。このため、主とし燃焼圧に起因して可変圧縮比機構10側から可動ピストン23へ作用する低圧縮比側への入力荷重Finによって、可動ピストン23が低圧縮比側へ移動する。入力荷重Finは負荷の上昇とともに大きくなるために、高圧縮比の設定を用いる状態からの加速時には、負荷の増加に伴って可動ピストン23を低圧縮比側へ速やかに移動させることができる。
また、抜油路27,29の切換弁K2,K3の双方を閉とすることで、第1油室24及び第2油室25のいずれからも作動油が排出されず、可動ピストン23を所定の中間位置に保持し、機関圧縮比を適宜な中間の中圧縮比に保持することができる。
このように、油抜機構20は、一般的なアクチュエータのように油圧や電力によりピストンを動かすものではなく、入力荷重Finや付勢バネ44の付勢荷重Fsprのように可動ピストン23へ作用する荷重を利用して移動し、切換弁K2,K3により抜油路27,29の開閉を切り換えることによって、油室を密閉状態として可動ピストン23の移動を抑制・防止したり、油室を開放状態として可動ピストン23の移動を許容するものである。つまり、圧縮比保持時には、少なくとも一方の油室を密閉することで、この密閉された油室側への可動ピストン23の移動を抑制し、圧縮比変更時には、少なくとも一方の油室を開放することで、この開放された油室側への可動ピストン23の移動を許容するものである。従って、入油路26,28を介して油室24,25へ供給される作動油は、加圧されている必要はなく、大気圧程度のものであっても良い。
このような油抜機構20を用いることによって、油圧や電力を駆動源とするアクチュエータを敢えて用いることなく、圧縮比保持時には可動ピストン23を所定位置に保持するとともに、圧縮比変更時には、可動ピストンに作用する入力荷重Finや付勢荷重Fsprを利用して、可動ピストン23を所期の圧縮比の方向に移動させることができる。特に、これらの荷重Fin,Fsprの設定を適切なものとすることで、高圧縮比の設定状態に保持する状態では、高圧縮比側への荷重(Fspr)を低圧縮比側への荷重(Fin)よりも大きくして、圧縮比保持性を高め、かつ、例えば急加速時のように高圧縮比設定状態から低圧縮比側への変更時には、負荷の増加に応じて低圧縮比側への荷重(Fin)を高圧縮比側への荷重(Fspr)よりも上回らせることで、低圧縮比側への応答性を向上することができる。
図2は、リザーバタンク30と、このリザーバタンク30に接続する油路との位置関係を示している。同図に示すように、空気混入が多い新規の作動油の供給油路33は、リザーバタンク30の最上部に接続させ、つまり作動油が供給油路33からリザーバタンク30へ鉛直上方より下方へ向けて流入・滴下する構成とする。一方、油室への入油路26,28は、空気が混入することのないように、リザーバタンク30の最下方に接続させる。同様に、循環油路32も、空気が混入することのないように、リザーバタンク30の下方に接続させる。
図3は、上記の油抜機構20とは別に、可動ピストン23をシリンダ軸方向に駆動するアクチュエータ60が、油抜機構20と直列に設けられている。このアクチュエータ60は、電動モータ61を備えた電動式のものであり、かつ、モータ61の出力軸61Aの回転動力を減速しつつ直線動力に変換してハウジング22に伝達するボールネジを利用した減速機構を有し、可動ピストン23を含めたハウジング22全体をシリンダ軸方向に駆動することで、可動ピストン23を低圧縮比側又は高圧縮比側へ駆動する。モータ61の動作は上記の制御部50により制御される。上記減速機構は、一端がハウジング22に固定されたボールネジシャフト62と、モータ61の出力軸61Aに取り付けられた第1減速ギヤ63と、この第1減速ギヤ63にかみ合う第2減速ギヤ64と、この第2減速ギヤ64が取り付けられ、ボールネジシャフト62とかみ合うボールネジナット65と、を有している。
例えば、急加速による過渡的なノッキング回避時のように、低圧縮比側への高い応答速度が要求され、かつ、その圧縮比可変幅が大きい場合には、油抜機構20とアクチュエータ60とを併用して低圧縮比化を行い、緩加速時等のように、高い応答性が要求されず、その圧縮比可変幅が比較的小さい場合には、上記のアクチュエータ60又は油抜機構20の一方により可動ピストン23の低圧縮比化を行う。このように、油抜機構20とアクチュエータ60とを併用することで、機関圧縮比の更なる応答性及び保持性の向上を図ることができる。また、油抜機構20とアクチュエータ60を直列に配列することで、油抜機構20の可動ピストン23のストロークを低減させ、油抜機構20の小型化を図ることができる。
図4は、切換弁K1〜K5による油抜機構20の油路切換制御の流れを示すフローチャートである。ステップS11では、機関負荷や機関回転数などに基づいて、目標圧縮比(ε)の変更要求が有るか、つまり目標圧縮比が変化し、可動ピストン23を低圧縮比側又は高圧縮比側へ移動する圧縮比変更時であるか、あるいは目標圧縮比が変化せず、可動ピストン23を所定位置に保持する圧縮比保持時であるかを判定する。例えばアクセルペダルの踏込み操作による加速時には低圧縮比側への変更要求がなされ、減速時には高圧縮比側への変更要求がなされる。
圧縮比変更要求がない場合、つまり目標圧縮比が変化しない圧縮比保持時には、ステップS12へ進み、油室24,25内の油温(以下、油室内油温とも呼ぶ)が所定の低温側判定値Tl以下であるかを判定する。油温が低温側判定値Tl以下の場合には、ステップS13において、油室内の暖機のため、内燃機関の運転条件が圧縮比を保持する条件であっても、油室内の作動油を強制的に入れ替える油入替運転が行われる。この油入替運転では、後述するように、切換弁K1〜K5を適宜に開閉制御することによって、可動ピストン23を高圧縮比側と低圧縮比側に往復移動させ、これに伴い油室24,25内の作動油の入れ替えを行う。
ステップS14では、油室内油温が所定の高温側判定値Th1(>Tl)以上であるかを判定する。ステップS15では、油抜機構の可動ピストン23の位置変動量が所定の変動判定量Δx以上であるかを判定する。油室内油温が高温側判定値Th1(>Tl)以上であるか、可動ピストン23の位置変動量が所定の変動判定量Δx以上である場合、ステップS16へ進み、内燃機関の運転条件が圧縮比を保持する条件であっても、油入替運転を行う。ここでの油入替運転では、後述するように、油室内の高温油を排出し、新規の低温油を油室内へ供給する非循環モードにより行われる。
目標圧縮比の変更要求がある圧縮比変更時には、ステップS11からステップS17へ進み、油室内油温が所定の第2高温側判定値Th2以上であるかを判定する。第2高温側判定値Th2以上であればステップS18Aへ進み、非循環モードにより可動ピストン23を作動させる。一方、第2高温側判定値Th2未満であれば、ステップS18Bへ進んで、循環モードにより可動ピストン23を作動させる。後述するように、循環モードでは、油室内の油を第1油室24と第2油室25との間で循環させ、非循環モードでは、油室内の油を排出油路34を通して外部へ排出するとともに、新規の油を供給油路33を通して供給する。
ステップS19では、リザーバタンク30内の油量が所定の判定油量V以下に減少したかを判定する。あるいは、油抜機構20の可変頻度が所定回数N(回/s)以上であるかを判定することによって、リザーバタンク30内の油量が判定油量V以下に減少したかを推定しても良い。リザーバタンク30内の油量が判定油量V以下、あるいは油抜機構の可変頻度が所定回数N(回/s)以上と判定された場合、ステップS20へ進む。
このステップS20において、例えば圧縮比変更要求に応じて可動ピストン23を作動させる場合には、後述する循環モードによって、油室内の油を排出油路34を介して油抜機構20の外部へ排出させることなく、循環油路32を通して第1油室24と第2油室25との間で油を循環させる(S20A)。あるいは、油抜機構を低圧縮比側の位置に保持し、リザーバタンク内の油量が回復するまで、油入替運転の実行を禁止する。あるいは、油抜機構と電動アクチュエータとを併用する構成においては、図11に示すように油抜機構20を高圧縮比側に保持し、電動アクチュエータ60を低圧縮比側に保持する。
次に、図示実施例を参照して、本発明の特徴的な構成について列記する。但し、本発明は図示実施例の構成に限定されるものではなく、その趣旨を逸脱しない範囲で、種々の変形・変更を含むものである。
[1]上述したように、高圧縮比状態での保持性と低圧縮比側への応答性とを向上する手段として油抜機構20を用いた場合、目標圧縮比が変化しない圧縮比保持状態では、基本的に、抜油路26,28の切換弁K2,K3を閉とし、油室24,25が密閉・閉鎖された状態に保持される。このため、油室内に混入した空気が燃焼荷重や慣性荷重を受けて繰り返し圧縮されて、油室内の油に伝熱し、油温度が上昇し、油粘度が低下する。このようにして油温度が過度に上昇すると、目標圧縮比が変化しない圧縮比保持時においても、可動ピストン23の位置が変動して実圧縮比が変動し、これによるエネルギー損失を生じ、燃費が悪化するという問題がある。また、油室内の油温度がさらに上昇していくと、油が劣化し、油抜機構の固着や応答性の低下によるノッキングの発生を招くという問題がある。空気混入回避対策として、図1等に示すように、油室24,25へ作動油を供給する入油路26,28の上流にリザーバタンク30を配置し、このリザーバタンク30内で一定時間以上放置することにより暖められた油を油室に供給する方法などがある。しかしながら、このような空気混入回避対策を行った場合でも、油室内の作動油への数%程度の空気混入は避けられず、密閉された油室内の油の圧縮による温度上昇対策を取る必要がある。油温度管理方法として、例えば冷却水により強制的に油抜機構を冷却する方法もあるが、冷却水配管の取り回しによる搭載位置の制約や大型化の問題がある。
そこで、圧縮比保持時、つまり加速時や減速時のように機関運転状態に応じた目標圧縮比の変更要求がなされていない運転状況において、油抜機構20の圧縮比保持状態での可動ピストン23の位置変動に影響するパラメータに応じて、油抜機構20の油室24,25内の作動油を強制的に入れ替える油入替運転を行う。上記パラメータは、典型的には、油室内の油温、油室内の油の空気(エア)混入率、あるいはリザーバタンク30内の油量である。
油抜機構の油室内温度を適正な範囲(Tl〜Th)内に制御することによって、油温の過度な上昇を抑制し、圧縮比保持時における可動ピストン23のがたつきによる圧縮比変動を抑制し、これに起因する燃費悪化を抑制することができる。また、冷機始動時のように油室内油温が過度に低い場合には、油入替運転により油抜機構の油室内油温を速やかに上昇させることで、油温低下に伴う油粘性の増大による低圧縮比化の応答性の低下を抑制し、急加速時などにおけるノッキングの発生を抑制することができる。
油室内の油の空気混入率が過大となると、例えば可動ピストン23を高圧縮比側のストッパ45に突き当てた最高圧縮比の保持状態で、ピストン位置の変動つまりがたつきが増大し、ストッパ45への衝突による着座音つまり異音の発生が繰り返されるおそれがある。そこで、圧縮比保持時に、油抜機構の可動ピストン23の位置変動量が所定の変動判定量Δx以上であると判定された場合には(図4のS11,S15参照)、空気混入率が増大したと判断し、油室内の油を入れ替える油入替運転を行うことで(図4のS16参照)、空気混入率の増加を抑制・防止することができる。
[2−1]低油温時には油粘度が低下するため、油抜機構作動時(可動ピストン23の移動時)の油排出流速が低下し、圧縮比可変速度つまり応答性が低下し、急加速時に圧縮比可変速度が不十分となるとノッキングが発生する。これを回避するために、ノッキングしない圧縮比まで予め圧縮比の設定を低下したり、吸入空気量を制限すると、機関の出力トルクが低下して加速性能が低下する。
そこで、図4のステップS12において、油抜機構の油室内油温が所定の低温側判定値Tl以下と判定されると、ステップS13において、油入替運転を行う。図5及び図6は、非循環モードでの油入替運転における切換弁・逆止弁の開閉状況や油の流れの一例を示している。油入替運転においては、図5に示すように、先ず一方の抜油路27の切換弁K2を開,他方の抜油路29の切換弁K3を閉として可動ピストン23を低圧縮比化方向(図の左方向)へ移動させた後、図6に示すように、一方の抜油路27の切換弁K2を閉,他方の抜油路29の切換弁K3を開として可動ピストン23を高圧縮比化方向(図の右方向)へ移動させる。このように可動ピストン23をシリンダ21内で一回以上往復させることで、2つの油室24,25内の作動油を強制的に入れ替えることができる。
冷機時など、油室内油温が低い状況では、圧縮比変更要求が無くても、上記の油入替運転を行い、燃焼熱などにより加熱された高温の油を油室内に供給・循環させて、油室内を暖機することにより、油室内温度の昇温を促進し、これによって油温低下による圧縮比の応答性の低下を抑制・防止し、急加速時等におけるノッキングの発生を抑制することができる。
より具体的には、油抜機構の可動ピストン23がストッパ45により高圧縮比位置に保持されている高圧縮比保持状態で、油入替運転を行う場合、図5に示すように、可動ピストン23を低圧縮比化方向に1度作動させる。可動ピストン23の低圧縮比方向への移動に伴って、第1油室24内の容積が低下して低温の油が排出されるとともに、第2油室25は膨張して高温の油が供給される。この状態では第1油室24には低温の油が残留しているため、次に図6に示すように可動ピストン23を高圧縮比化方向へ移動させる。この可動ピストンの高圧縮比側への移動に伴い、第1油室24の内部にも高温の油が供給され、第2油室25からは一度供給された高温の油が再度排出される。このように可動ピストン23をシリンダ21内で一往復させ、つまり機関圧縮比を上下に一往復させることによって、両油室24,25ともに低温の油を排出し高温の油に交換できるため、次回の圧縮比の変更に伴い油抜機構を作動するときには、低温・低粘度の油の影響を受けることなく高速で圧縮比を変化させることができる。従って、急加速時のように高圧縮比設定状態から低圧縮比側への切換過渡期にも、その応答性を十分に確保して、ノッキングの発生を抑制・回避することができる。
油室内油温の判定は、例えば第1,第2油室24,25やリザーバタンク30の内部又はその壁面の温度や、供給油路,排出油路あるいは循環油路のいずれかの温度を検出し、これを用いて行うことができる。ここで、低圧縮比化応答性に最も影響するのは、低圧縮比化時に第1油室24から油が排出される第1抜油路27上の、最も流路が絞られる逆止弁G3や切換弁K2の近傍や、リザーバタンク30から第2油室25へ油を供給する第2入油路28上の、最も流路が絞られる逆止弁G2近傍であり、これらの部分の油温を低下させて、その粘性抵抗を低減することが有効である。従って、第1油室24の油温とリザーバタンク30内の油温と、を検出・管理し、これらの油温を所定の判定値以上に保持することで、低圧縮比側への変更時における高い応答性を安定して得ることができる。
圧縮比変更時や油入替運転時のような可動ピストン23の作動時における油抜機構20の作動油の流れ方式として、非循環モード(S13A,S16)と、循環モード(S13B,S18B,S20A)とがあり、制御部50により機関運転状態に応じてこれらのモードが切り換えられる。
例えば、油室内油温の低下により油入替運転を行う場合(S13)において、暖機後の運転状態のように外部から供給される油の温度が比較的高い場合には、非循環モード(S13A)とされる。この非循環モードでは、図5及び図6に示すように、循環油路32の切換弁K4を閉、供給油路33,排出油路34の切換弁K1,K5を開とする。これによって、油室内の低温の油を排出油路34を通して機構の外部へ排出し、新規の高温の油を供給油路33より油室内へ供給し、油室内油温を速やかに上昇させることができる。
[2−2]一方、冷機始動直後のように、外部から供給される油の温度やリザーバタンク30内の油の温度が低い状況では、上述したような非循環モードにより新規の油を油室内に供給しても、油室内の暖機が促進されず、応答性が十分に改善されない場合がある。そこで、このような場合には、図4のステップS13B及び図7に示すように、循環モードとする。つまり、循環油路の切換弁K4を開,排出油路の切換弁K5を閉として、循環油路32を介して第1油室24と第2油室25との間で油を循環・還流させる。加えて、循環油路32(又はリザーバタンク30)に、燃焼熱により加熱した冷却水が通流する冷却水通路等の熱交換部51を近接配置させて、燃焼熱を利用して油抜機構内を循環する油を昇温することによって、油室内の昇温を更に促進し、応答性を改善することができる。
[2−3]目標圧縮比が一定で可動ピストン23の位置が変化しない圧縮比保持状態で、油抜機構の油室内温度が過度に上昇した場合には、油粘度の低下によりピストン位置変動が増大し、燃費悪化等の不具合を招いてしまう。油温度の過度な上昇による不具合としては、低粘度化した油が閉鎖された油室から漏れることよる油漏れ損失の増大,油漏れによって油室容積が変化して圧縮比保持時においても可動ピストン23の位置が変動することによる油抜機構のフリクション増大,燃焼行程のピストン位置変動による冷却損失・時間損失の増大,吸気・排気行程時のピストン位置変動によるポンプ損失増大によるエンジン熱効率悪化,圧縮比保持精度の低下に伴う熱効率低下,最高圧縮比時のピストン位置変動を許容するために吸・排気弁との干渉回避用のピストン冠面のリセス深さの増大化による冷却損失増大、などが挙げられる。これらの不具合を抑制・最小化するために、油室内油温を適切な範囲に制御して、過度な油温の上昇を抑制する必要がある。また、過度に油温が上昇することによる油の劣化を回避するためにも油温度を管理する必要がある。
そこで、図4のステップS11,S14,S16及び図5に示すように、圧縮比保持状態で、油室内油温が所定の高温側判定値Th1以上となる場合、非循環モードでの油入替運転を行い、具体的には図5に示すように、循環油路32の切換弁K4を閉,供給油路33や排出油路34の切換弁K1,K5を開として、油室内の高温の油を排出油路34を通して排出するとともに、低温の油を供給油路33を通して油室内に供給して、油室内油温を速やかに低下させる。これによって、油室内油温の過度な上昇に伴う油粘度の低下を抑制し、ピストン位置変動が増大することによる燃費悪化を抑制することができる。
ただし、油温上昇が小さく油抜機構作動による消費エネルギーの方が高油温状態での圧縮比保持時のエネルギー損失よりも大きい場合には、油が劣化しない所定油温以内において、高油温のまま油抜機構の圧縮比を保持するほうが良い場合もある。そのため、上述した油入替運転の判定に用いられる高温側判定値Th1は、圧縮比保持中であっても油入替運転を行った方が燃費悪化を抑制でき、かつ油劣化を招くことのないように、これらを考慮して設定される。
[3]油室内油温が上昇すると、油粘度の低下により圧縮比保持状態での可動ピストン23の変動量が大きくなるために、この可動ピストン23の位置変動量を検出することによって、油室内の油温の過度な上昇を推定することもできる。また、油温が高温側判定値Th1より低い場合であっても、油室内の油の空気混入率が増大することによって、油抜機構のピストン位置変動量が増大することがある。
そこで、図4のステップS11,S15,S16に示すように、上記圧縮比保持状態で、油抜機構の可動ピストン23の位置変動量が所定の変動判定量Δx以上に増大した場合に、上記油入替運転を行うことによって、高温,高空気混入率の油を油室から排出しつつ、低温,低空気混入率の油を油室に供給することで、圧縮比保持時における可動ピストン23の位置変動による圧縮比の変動を抑制し、これに起因する燃費悪化を抑制することができる。なお、可動ピストン23の位置変動量は、例えば制御軸16の角度を検出する制御軸センサを用いて検出することができる。
[4]加速時や減速時のように、目標圧縮比の変化に伴う機関圧縮比の変更要求がある圧縮比変更時には、可動ピストン23を低圧縮比側又は高圧縮比側へ移動させるために、上述したように、抜油路27,29の切換弁K2,K3の一方を開,他方を閉として、一方の油室から油を排出し、他方の油室へ油を供給する。このような圧縮比変更要求による可動ピストン23の移動時においても、上記の油入替運転時と同様、循環モードと非循環モードとを油温度やピストン位置変動量などに応じて使い分けることによって、油室内の油の温度や空気混入率を適切な範囲に保持し、燃費・トルク性能の低下を抑制することができる。
循環モードでは、図8に示すように、循環油路32の切換弁K4を開,排出油路の切換弁K5を閉として、油を油抜機構の外部へ排出させることなく、循環油路32を介して油室24,25間で同じ油を循環させる。従って、油室内の油の温度や空気混入率が適正な範囲内にある場合には、循環モードにより可動ピストン23を作動させることによって、油の供給・排出によるポンプ損失を抑制することができる。一方、非循環モードでは、図9に示すように、循環油路32の切換弁K4を閉,供給油路33,排出油路34の切換弁K1,K5を開として、排出油路34を介して油室内の油を油抜機構の外部へ排出するとともに新規の油を外部より給油する。従って、油室内の油の温度や空気混入率が適正な範囲から外れているような場合には、この非循環モードにより可動ピストン23を作動させることによって、油室内の油を適正な温度の油と入れ替えることができる。
具体的には、図4のステップS11,S17,S18A,S18Bを参照して、圧縮比変更要求に応じて可動ピストンを低圧縮比側又は高圧縮比側へ移動する圧縮比変更時に、ステップS17において、油抜機構の油室内の油の温度や空気混入率が適正な範囲から外れているかを判定する。例えば、油室内油温が所定の第2高温側判定値Th2以上であるかを判定する。この第2高温側判定値Th2は、上記の高温側判定値Th1と同様、適正な油温の上限に相当するものである。油抜機構の油室内の油の温度や空気混入率が適正範囲にある場合には、ステップS18Aに進み、循環モードにより可動ピストン23を作動させることで、油抜機構の油室内の油の温度や空気混入率を適正範囲に維持しつつ、油の供給・排出に伴う損失の増加を防止することができる。一方、油抜機構の油室内の油の温度や空気混入率が適正範囲から外れている場合には、ステップS18Bへ進み、非循環モードにより可動ピストン23を作動させて、油室内の油を外部からの油と積極的に入れ替えることによって、圧縮比変更時の可動ピストン23の移動を利用して、油抜機構の油室内の油の温度や空気混入率を所期の適正範囲に速やかに復帰させること可能となる。
[5]油抜機構の油室へ油を供給する入油路の上流側に、油から空気を抜くためのリザーバタンク30を備える構成では、リザーバタンク30の容量が低下している場合、不用意に可動ピストン23を作動させると、空気が油室に混入し、油室内の油の空気混入率を増加させる恐れがある。そこで、リザーバタンク30内の油量が所定の判定油量V以下となる場合、以下の[5−1,2,3]のような制御を行い、リザーバタンク30内の油量を速やかに回復させる。
[5−1]圧縮比の変更要求がある圧縮比変更時には、図4のステップS20Aに示すように、上記の循環モードによりピストンを作動させる。これによって、リザーバタンク内の油の消費を抑え、リザーバタンク30内の油量を速やかに回復させることができる。
[5−2]図10に示すように、油抜機構を低圧縮比側に保持した状態で、供給油路の切換弁K1のみを開とし、他の切換弁K2〜K5を閉として、可動ピストン23を動かないようにすることで、リザーバタンク内の油量を速やかに回復することができる。また、低圧縮比状態に保持しておくことで、急加速時にも圧縮比の低下遅れによるノッキングの発生を招くことがない。
[5−3]図2にも示すような油抜機構20と併用して電動アクチュエータ60を用いる構成の場合には、図11に示すように、油抜機構20によって可動ピストン23を高圧縮比側(図の右側)に保持し、かつ、アクチュエータ60により可動ピストン23を含むハウジング22を低圧縮比側(図の左側)に保持した状態、つまり最終的な圧縮比を中間圧縮比に保持した状態で、供給油路の切換弁K1のみを開とし、他の切換弁K2〜K5を閉として、可動ピストン23を動かないようにする。これによって、リザーバタンク内の油量を速やかに回復することができ、かつ、急加速時に圧縮比を低下させる場合には、第1抜油路及び排出油路の切換弁K2,K5を開として、第1油室24を開放することで、可動ピストン23をシリンダ21内で速やかに低圧縮比側へ移動させることができ、ノッキングの発生を抑制することができる。
[6]油抜機構の圧縮比可変頻度が所定以上の場合には、リザーバタンク内の油量が低下していると推定して、上記[5−1,2,3]と同様の制御を行うようにしても良い。
[7]油抜機構の油室内油温の制御方法として、リザーバタンク内の油温に基づいて制御を行うようにしても良い。つまり、リザーバタンク内油温が所定温度T1以下のとき、循環モードとして、油室からの排出油をリザーバタンク内に戻し、リザーバタンク内油温が所定温度T2以上のとき、非循環モードとして、油を油抜機構の外部からリザーバタンクへ供給するとともに、油室からの排出油をリザーバタンク内に戻すことなく外部へ排出するように構成しても良い。
10…可変圧縮比機構
20…油抜機構
21…シリンダ
22…ハウジング
23…可動ピストン
24…第1油室
25…第2油室
26…第1入油路
27…第1抜油路
28…第2入油路
29…第2抜油路
30…リザーバタンク
32…循環油路
33…供給油路
34…排出油路
50…制御部
K1〜K4…切換弁(油路切換手段)

Claims (8)

  1. ハウジングと、ハウジングのシリンダ内に往復移動可能に配設された可動ピストンと、上記可動ピストンにより仕切られた2つの油室とを有する油圧機構と、
    上記可動ピストンと機械的に連結され、上記可動ピストンのシリンダ軸方向に沿う移動に伴い機関圧縮比を変化させる可変圧縮比機構と、
    上記2つの油室の密閉・開放を切り換える制御部と、を有し、
    上記制御部は、圧縮比保持時には、少なくとも一方の油室を密閉することで、この密閉された油室側への可動ピストンの移動を抑制し、圧縮比変更時には、移動する可動ピストンが向かう側の油室を開放することで、この開放された油室側への可動ピストンの移動を可能とし、
    かつ、上記制御部は、上記内燃機関の運転条件が圧縮比を保持する条件であっても、上記可動ピストンを往復移動させることにより上記油室内の油を入れ替える油入替運転を行うことを特徴とする内燃機関の可変圧縮比装置。
  2. 上記制御部は、上記内燃機関の運転条件が圧縮比を保持する条件であっても、上記油室内の油温が所定の低温判定値以下、あるいは所定の高温判定値以上の場合に、上記油入替運転を行うことを特徴とする請求項に記載の内燃機関の可変圧縮比装置。
  3. 上記制御部は、上記内燃機関の運転条件が圧縮比を保持する条件であっても時に、上記ピストンの実際の位置変動量が所定の変動判定量以上となる場合に、上記油入替運転を行うことを特徴とする請求項又はに記載の内燃機関の可変圧縮比装置。
  4. 上記制御部は、上記油入替運転時には、2つの油室のうちの一方の油室を開放し、上記可動ピストンを開放された一方の油室側へ移動させた後、他方の油室を開放し、上記可動ピストンを開放された他方の油室側へ移動させることを特徴とする請求項1〜3のいずれかに記載の内燃機関の可変圧縮比装置。
  5. 上記制御部は、上記可動ピストンの作動時に、上記2つの油室間で油を循環させる循環モードと、上記油室内の油を油圧機構の外部へ排出させるとともに外部より油室へ油を供給する非循環モードと、を切り換えることを特徴とする請求項1〜のいずれかに記載の内燃機関の可変圧縮比装置。
  6. 上記油圧機構は、
    上記2つの油室の一方の第1油室に作動油を供給する第1入油路と、
    上記第1入油路の作動油の上記供給方向への流れと反対向きの流れを抑える第1逆止弁と、
    上記第1油室から作動油を排出する第1抜油路と、
    上記2つの油室の他方の第2油室に作動油を供給する第2入油路と、
    上記第2入油路の作動油の上記供給方向への流れと反対向きの流れを抑える第2逆止弁と、
    上記第2油室から作動油を排出する第2抜油路と、
    上記第1抜油路及び第2抜油路を開閉する油路切換手段と、を有し、
    上記制御部は、上記可動ピストンを第2油室側へ移動させるときには、上記第1抜油路を閉,第2抜油路を開とし、上記可動ピストンを第1油室側へ移動させるときには、上記第1抜油路を開,第2抜油路を閉とすることを特徴とする請求項1〜のいずれかに記載の内燃機関の可変圧縮比装置。
  7. 上記油圧機構が、上記第1入油路及び第2入油路の上流側に、油室へ供給する油への空気の混入を低減するリザーバタンクを有することを特徴とする請求項に記載の内燃機関の可変圧縮比装置。
  8. 上記油圧機構は、
    上記油圧機構の外部よりリザーバタンクへ油を供給する供給油路と、
    上記第1,第2抜油路から分岐して、上記リザーバタンクと第1,第2抜油路とを接続する循環油路と、
    上記第1,第2抜油路から分岐して、第1,第2油室内の油を油圧機構の外部へ排出する排出油路と、を有し、
    上記油路切換手段が、上記第1,第2抜油路と上記循環油路及び排出油路との連通を切換え可能なものであり、
    上記制御部は、上記第1,第2油室間で油を循環させる循環モードでは、上記循環油路を開,上記排出油路を閉とし、非循環モードでは、上記循環油路を閉,上記排出油路を開とすることを特徴とする請求項に記載の内燃機関の可変圧縮比装置。
JP2009018903A 2009-01-30 2009-01-30 内燃機関の可変圧縮比装置 Active JP5169881B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009018903A JP5169881B2 (ja) 2009-01-30 2009-01-30 内燃機関の可変圧縮比装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009018903A JP5169881B2 (ja) 2009-01-30 2009-01-30 内燃機関の可変圧縮比装置

Publications (2)

Publication Number Publication Date
JP2010174761A JP2010174761A (ja) 2010-08-12
JP5169881B2 true JP5169881B2 (ja) 2013-03-27

Family

ID=42705968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009018903A Active JP5169881B2 (ja) 2009-01-30 2009-01-30 内燃機関の可変圧縮比装置

Country Status (1)

Country Link
JP (1) JP5169881B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101509664B1 (ko) * 2009-10-06 2015-04-08 현대자동차 주식회사 가변 압축비 장치

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5673331B2 (ja) * 2011-04-26 2015-02-18 日産自動車株式会社 内燃機関の可変圧縮比装置
AT519360B1 (de) * 2017-02-24 2018-06-15 Avl List Gmbh Verfahren zum Betrieb einer Hubkolbenmaschine mit wenigstens einer hydraulisch längenverstellbaren Pleuelstange
JP2019100231A (ja) * 2017-11-30 2019-06-24 株式会社Ihi エンジンシステム及び可変圧縮装置の制御方法
CN115324729B (zh) * 2022-09-02 2023-10-27 一汽解放汽车有限公司 车辆发动机压缩比调节装置及车辆

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322036A (ja) * 2002-05-07 2003-11-14 Nissan Motor Co Ltd 内燃機関の可変圧縮比機構
GB0219708D0 (en) * 2002-08-23 2002-10-02 Mayflower Engines Ltd Internal combustion engines
JP2005351280A (ja) * 2004-06-08 2005-12-22 Hitachi Ltd アクチュエータ装置
JP2008025431A (ja) * 2006-07-20 2008-02-07 Nissan Motor Co Ltd 流体圧アクチュエータ
JP4822184B2 (ja) * 2006-09-15 2011-11-24 本田技研工業株式会社 ストローク特性可変エンジン

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101509664B1 (ko) * 2009-10-06 2015-04-08 현대자동차 주식회사 가변 압축비 장치

Also Published As

Publication number Publication date
JP2010174761A (ja) 2010-08-12

Similar Documents

Publication Publication Date Title
JP5656148B2 (ja) オイル制御バルブ及びバルブトレインの内部のオイルフローを制御する方法
JP5169881B2 (ja) 内燃機関の可変圧縮比装置
EP1369567B1 (en) System and method for controlling operation of a Otto-Miller engine
KR101509664B1 (ko) 가변 압축비 장치
WO2017150651A1 (ja) 内燃機関のオイル供給装置
US20180051620A1 (en) Engine system having coolant control valve
JP2006214286A (ja) オイルポンプ
GB2480474A (en) Engine piston cooling jet oil supply system comprising a pressure operated valve
JP2007146839A (ja) 流れ及び圧力が可変の液圧ポンプ及びその電子式制御装置
KR102371257B1 (ko) 냉각수 제어 밸브유닛을 구비한 엔진 냉각시스템
KR102359946B1 (ko) 냉각수 제어밸브 유닛의 제어방법
US20180245489A1 (en) Solenoid-actuated pressure-relief valve
KR101510352B1 (ko) 가변 압축비 엔진
JP5293343B2 (ja) 内燃機関の潤滑装置
RU2677020C2 (ru) Двигатель внутреннего сгорания
WO2015072175A1 (ja) 排気弁動弁機構、ディーゼルエンジン及び排気弁動弁機構の排気弁冷却方法
JP6632227B2 (ja) エンジンのオイル回路のリリーフ装置
JP6718304B2 (ja) 内燃機関の動弁装置と内燃機関
JP2008163806A (ja) 燃料蓄圧装置及び燃料噴射装置
EP2682573B1 (en) Control valve
JP2021055562A (ja) 内燃機関の制御装置及び、制御方法
CN110318903A (zh) 发动机气缸体、发动机及车辆
JP6350567B2 (ja) エンジンのオイル供給装置
JPH076418B2 (ja) 内燃機関の圧縮比可変装置
JP2005291183A (ja) 内燃機関の給油量制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Ref document number: 5169881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150