JP5159992B2 - 水分濃度検出装置 - Google Patents

水分濃度検出装置 Download PDF

Info

Publication number
JP5159992B2
JP5159992B2 JP2012543069A JP2012543069A JP5159992B2 JP 5159992 B2 JP5159992 B2 JP 5159992B2 JP 2012543069 A JP2012543069 A JP 2012543069A JP 2012543069 A JP2012543069 A JP 2012543069A JP 5159992 B2 JP5159992 B2 JP 5159992B2
Authority
JP
Japan
Prior art keywords
moisture concentration
gas
gas chamber
moisture
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012543069A
Other languages
English (en)
Other versions
JPWO2012157349A1 (ja
Inventor
智恵子 西田
達也 矢部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012543069A priority Critical patent/JP5159992B2/ja
Application granted granted Critical
Publication of JP5159992B2 publication Critical patent/JP5159992B2/ja
Publication of JPWO2012157349A1 publication Critical patent/JPWO2012157349A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/048Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance for determining moisture content of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

この発明は、ガス絶縁機器内に充填された絶縁ガス中の水分濃度を検出する水分濃度検出装置に関するものである。
ガス絶縁機器には、例えばSFガス等の絶縁ガスが充填されている。従来のSFガス中の水分濃度検出装置では、水分を感知する水分センサがガス絶縁機器内に設置されている。この水分センサは、互いに対向して設けられた多孔質性電極と、該多孔質性電極間に設けられSFガス中の水分濃度と平衡状態にある水素イオン伝導性の固体電解質膜とを備えて構成される。この水分濃度検出装置では、多孔質性電極に交流電圧を印加し、SFガス中の水分濃度に対応して変化する電極間の交流インピーダンスを計測することにより、SFガス中の水分濃度を計測している(特許文献1参照)。
特開2006−308502号公報
実運用されているガス絶縁機器での絶縁ガス中の水分濃度は一般に数十ppm〜数百ppmである。したがって、上記従来の水分濃度検出装置の水分センサはこの環境に配置されることになる。ここで、水分濃度が数百ppmから数十ppmまで下がると、固体電解質膜の交流インピーダンスは水分濃度の低下に伴い十オーム程度から指数関数的に増加して1メガオーム以上にも達する(特許文献1参照)。
一方、大気環境では水分濃度は数10000ppmもしくはそれ以上であり、ガス絶縁機器の内部とは非常に大きな濃度差がある。そのため、測定前に例えば大気環境の水分濃度と平衡状態にあった水分センサの固体電解質膜をガス絶縁機器内に配置した場合、この固体電解質膜が数十ppm〜数百ppmのガス絶縁機器内部の水分濃度と平衡に達するまでには相当の時間を要し、水分センサが一定の計測値を示すまでには、数時間〜数日以上の時間がかかるため、短時間のうちに測定結果が出ないという問題があった。
この発明は、上記に鑑みてなされたもので、短時間で水分濃度を検出することが可能な水分濃度検出装置を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る水分濃度検出装置は、ガス絶縁機器内に充填された絶縁ガス中の水分濃度を検出する水分濃度検出装置であって、前記ガス絶縁機器から導入された前記絶縁ガスを封入するガス室と、このガス室内で互いに対向して配置された多孔質性の電極と、これらの電極間に挟持され固着された水素イオン導電性の固体電解質膜と、前記電極に交流電圧を印加して前記電極間の交流インピーダンスを測定するインピーダンス測定手段と、前記インピーダンス測定手段により測定された前記交流インピーダンスに基づいて前記絶縁ガス中の水分濃度を検出する水分濃度検出部と、前記水分濃度の測定開始前に、前記絶縁ガスが前記ガス絶縁機器から導入される前の前記ガス室内の雰囲気から水分を除去する乾燥手段と、を備えることを特徴とする。
この発明によれば、短時間で水分濃度を検出することができる、という効果を奏する。
図1は、実施の形態1に係る水分濃度検出装置の構成図である。 図2は、絶縁ガス中の水分濃度と固体電解質膜の交流インピーダンスとの関係の一例を示したグラフである。 図3は、複数の異なる水分濃度に対して温度とインピーダンスとの関係を示したグラフである。 図4は、インピーダンス素子7で測定された交流インピーダンスの時間変化曲線の例を示した図である。 図5は、実施の形態2に係る水分濃度検出装置の構成図である。 図6は、実施の形態3に係る水分濃度検出装置の構成図である。 図7は、実施の形態4に係る水分濃度検出装置の構成図である。 図8は、実施の形態5に係る水分濃度検出装置の構成図である。
以下に、本発明に係る水分濃度検出装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、本実施の形態に係る水分濃度検出装置の構成図である。図1では、例えばSFガス等の絶縁ガスが充填されたガス絶縁機器20と、このガス絶縁機器20に取り付けられた水分濃度検出装置30が示されている。具体的には、水分濃度検出装置30は、その取付口40をガス絶縁機器20の配管21にバルブ22を介して取り付けることにより、ガス絶縁機器20と接続されている。バルブ22を開放すると、ガス絶縁機器20内の絶縁ガスが配管21を通じて水分濃度検出装置30内に導入され、サンプリングガスとして使用される。
水分濃度検出装置30は、例えばポータブル式の装置であり、ガス室31及び信号処理部32から成る。ガス室31は、壁部4で互いに仕切られたガス室31a(第1のガス室)及びガス室31b(第2のガス室)から成る。ただし、壁部4にはガス室31a,31b間を連通する連通路5と、この連通路5の開閉を行うことができるバルブ6が設けられている。
ガス室31aは、配管21及びバルブ22を介して、ガス絶縁機器20と直接接続される室であり、バルブ22を開放することにより、ガス絶縁機器20からの絶縁ガスをサンプリングガスとして封入することができる。ガス室31a内には、互いに対向して配置された一対の多孔質性の電極1と、電極1間に挟持され固着された固体電解質膜2が配置されている。
電極1は、例えば白金に無電解メッキを施すことにより形成され、微視的には多孔質性である。電極1を用いることにより、絶縁ガス中の水分が固体電解質膜2に浸透し易くなる。固体電解質膜2は例えば水素イオン導電性ポリマで構成され、その含水率は絶縁ガス中の水分濃度と平衡状態となる。即ち、絶縁ガス中の水分濃度が高くなると含水率が増大し、逆に絶縁ガス中の水分濃度が低くなると含水率が低下する。固体電解質膜2としては、例えばデュポン社のナフィオン(NAFION(登録商標))を用いることができる。後述するように、電極1と固体電解質膜2とによって水分センサとしてのインピーダンス素子7が構成される。
電極1の例えば一方には、温度センサ3が取り付けられている。温度センサ3は、例えばPt100(白金抵抗体)などの測温抵抗体を備えて構成される。温度センサ3は、電極1に取り付けられているので、固体電解質膜2近傍のガス温度を測定することができる。
ガス室31b内には、吸着剤42が配置されている。この吸着剤42は、ガス室31内の水分を吸着し、固体電解質膜2近傍の雰囲気を極乾燥状態にすることができる。吸着剤42としては、吸着性に優れたものが好ましい。
信号処理部32内には、インピーダンス測定回路10、温度測定回路11、演算部12、及び表示器13が配置されている。
インピーダンス測定回路10は、電極1に接続され、電極1に交流電圧を印加することにより電極1間の交流インピーダンス(即ち、固体電解質膜2の交流インピーダンス)を測定する(インピーダンス測定手段)。インピーダンス測定回路10は、例えば、電極1に電圧を印加する交流電源(図示せず)、及びこの交流電源により電圧を印加した状態で電極1間に流れる交流電流を検出する分圧抵抗(図示せず)等を備えて構成される。なお、詳細は例えば特許文献1に記載されているので省略する。
温度測定回路11は、温度センサ3に接続され、固体電解質膜2の近傍の絶縁ガスの温度を計測することができる(温度測定手段)。温度測定回路11は、例えば温度センサ3に電圧を印加する直流電源(図示せず)、及び温度センサ3に流れる電流を検出する分圧抵抗(図示せず)等を備えて構成される。
演算部12は、演算機能及び制御処理機能を有する。演算部12は、特に水分濃度検出部としての機能を有し、インピーダンス測定回路10から得られたインピーダンス値と温度測定回路11から得られた温度測定値とに基づいて水分濃度を求めることができる。また、演算部12は、バルブ6の開閉を制御することができる。また、表示器13は、演算部12の出力を表示することができる。なお、水分濃度検出装置30は、その他、当該装置を制御等するための入力部なども備えているが、図では省略している。
ここで、演算部12による水分濃度の検出処理について具体的に説明する。絶縁ガスの温度が一定の条件下では、絶縁ガス中の水分濃度と固体電解質膜2の交流インピーダンスとの間には、例えば図2に示すような関係が存在する。図2は、温度がある一定値の場合において、絶縁ガス中の水分濃度(ppm)と固体電解質膜2の交流インピーダンス(Ω)との関係を示したグラフであり、測定結果に基づいて作成されたものである。なお、ここでは一例として電源周波数50Hzで取得した結果を示している。図2に示すように、交流インピーダンスは水分濃度の増加に対して単調減少している。そこで、図2のような関係を示すデータ、具体的には、交流インピーダンスに対して水分濃度を与えるデータを予め演算部12に付与しておけば(あるいは、演算部12に接続された図示しない記憶装置に予め保存しておけば)、演算部12は、少なくとも温度が当該一定値の環境下では、予め付与されたデータを参照することにより、インピーダンス測定回路10から得られたインピーダンス値に対応する水分濃度を求めることができる。
なお、ガス絶縁機器20が屋外に設置される場合は、ガス絶縁機器20内部の温度が一般に数十℃も変化するので、水分濃度の検出に際しては、一般に交流インピーダンスの温度依存性を考慮する必要がある。そこで、本実施の形態では、固体電解質膜2の近傍に配置された温度センサ3を用いて絶縁ガスの温度を計測するとともに、温度と交流インピーダンスに対して水分濃度を与えるマトリックスデータを予め演算部12に付与しておく(あるいは、演算部12に接続された図示しない記憶装置に予め保存しておく)。こうすることで、演算部12は、このマトリックスデータを参照することにより、インピーダンス測定回路10から得られたインピーダンス値と温度測定回路11から得られた温度測定値とに対応する水分濃度を検出値として出力することができる。なお、マトリックデータは例えば次のようにして作成することができる。図3は、複数の異なる水分濃度に対して温度と交流インピーダンスとの関係を示したグラフであり、測定結果に基づいて作成したものである。図3では、5つの異なる曲線は、水分濃度が100(ppm)、300(ppm)、1000(ppm)、3000(ppm)、10000(ppm)の場合を示している。そこで、図3のグラフの温度及びインピーダンスをそれぞれ離散化することにより、インピーダンスと温度とに対して水分濃度を与えるマトリックスデータを得ることができる。なお、図3に示すように、3000(ppm)より低い水分濃度に対しては、温度の上昇とともにインピーダンスも増大する。3000(ppm)より高い水分濃度に対しては、温度の上昇とともにインピーダンスは減少する。
次に、インピーダンス素子7を用いた水分濃度の検出処理について説明する。ガス室31a内に絶縁ガスを導入すると、やがて固体電解質膜2の水分量は絶縁ガスに含まれる水分と平衡状態になる。その後、電極1にインピーダンス測定回路10から交流電圧を加えると、固体電解質膜2の水分濃度に応じた交流インピーダンスがインピーダンス測定回路10で測定される。インピーダンス測定回路10は、インピーダンス測定値を演算部12に出力する。また、温度測定回路11は、温度センサ3により検出された絶縁ガスの温度測定値を演算部12に出力する。演算部12は、上記のように、予め付与されたマトリックスデータを参照して、インピーダンス測定値と温度測定値に対応する水分濃度を求める。演算部12は、得られた水分濃度を表示器13に送り表示させる。
ところで、水分濃度検出装置30のガス室31は、水分濃度の測定開始前は、大気環境の通常の空気又は前回の測定で使用されたサンプリングガスが満たされた状態にある。空気中の水分濃度は一般に数10000ppmもしくはそれ以上となり得る。一方、実運用されているガス絶縁機器20内の絶縁ガス中の水分濃度は一般に数十ppm〜数百ppmであり、空気中の水分濃度とは非常に大きな濃度差が存在する。そこで、この濃度差が測定に与える影響について説明する。
図4は、インピーダンス素子7で測定された交流インピーダンスの時間変化曲線の例を示した図である。図4では、大気雰囲気中に置かれていたインピーダンス素子7を、所定の水分濃度の環境におき、水分濃度の測定を開始した場合の交流インピーダンスの時間変化を示したものである。図中、I1は水分濃度が数百ppmの場合の測定結果を示し、I2は水分濃度が数十ppmの場合の測定結果を示している。図4からわかるように、絶縁ガス中の水分濃度が高い方(より大気雰囲気に近い方)であるI2が早く収束し、水分濃度が低い方(大気雰囲気から離れている方)であるI1は収束するのに時間がかかる傾向が確認される。
このように、測定開始時に、固体電解質膜2の含水率が、測定対象となる絶縁ガス中の水分濃度と近い状態にある場合にはインピーダンス素子7の応答は短時間で収束するが、逆にその含水率が絶縁ガス中の水分濃度から大きくかけ離れていた場合には、インピーダンス素子7の応答は中々収束せず、すぐに最終的な測定値を得ることは困難である。
すなわち、短時間のうちに最終的な「測定値」を得るためには、測定当初から測定対象となる絶縁ガスの水分状態にできるだけ近い状態にインピーダンス素子7を置いておくことが望ましく、そうすることで絶縁ガス中の水分濃度の測定結果を短時間で得ることができる。
そこで、本実施の形態では、ガス室31b内に吸水性の吸着剤42を置き、例えば水分濃度の測定時以外はバルブ6を開放してガス室31aとガス室31bとを連通路5を通じて連通した状態にし、又は例えば水分濃度の測定開始前の所定時間内はバルブ6を開放してガス室31aとガス室31bとを連通路5を通じて連通した状態にすることにより、水分濃度の測定開始前に、ガス室31a内を極乾燥状態にする。そうすると、固体電解質膜2はこの乾燥した雰囲気と平衡状態となり、固体電解質膜2中の水分は著しく減少する。そして、水分濃度の測定開始時には、まず、バルブ6を閉じてガス室31aをガス室31bから隔絶した状態にして水分濃度の測定に吸着剤42が影響を及ぼさないようにし、更に配管21のバルブ22を開放して、ガス絶縁機器20内の絶縁ガスをガス室31a内に流入させる。バルブ6は、測定中には閉じた状態である。
ガス室31a内の絶縁ガス中に配置された固体電解質膜2は、既にその含水率が低減されているので、短時間で絶縁ガス中の水分濃度と平衡状態になる。つまり、本実施の形態では、吸着剤42を用いることにより、測定開始時における固体電解質膜2の含水率が絶縁ガス中の水分濃度に近くなるように低減されているので、インピーダンス値は測定開始後短時間で収束する。その後の、インピーダンス測定回路10、温度測定回路11、及び演算部12による水分濃度検出処理は既に説明したとおりである。吸着剤42の量は除湿能力に影響するが、その量は測定対象である絶縁ガス中のおよその水分濃度(一般に数十ppm〜数百ppm)に応じて決めることができる。
なお、バルブ6による連通路5の開閉は演算部12により制御される。例えば、水分濃度検出装置30の入力部を操作することにより、バルブ6の開閉信号を入力することができ、演算部12はこの開閉信号を受けると当該信号内容に応じてバルブ6を開又は閉制御するようにしてもよい。また、演算部12が、水分濃度測定の開始及び終了を自動で認識し、測定終了時にバルブ6を開状態とし、測定開始時にバルブ6を閉状態とするようにしてもよい。
このように、本実施の形態においては、インピーダンス素子7全体が配置されるガス室31a内の雰囲気を、乾燥手段としての吸着剤42を用いることで、予めガス絶縁機器20内部の絶縁ガスの水分濃度の状態と近い極乾燥状態とすることにより、固体電解質膜2の含水率が絶縁ガス中の水分濃度と平衡状態になるまでの時間が短縮されるので、水分濃度の測定を短時間で実施することができるという効果がある。
通常、水分センサは大気の湿度のコントロールなどの用途に使われるため、本実施の形態のように極めて低い水分濃度の領域を対象としていない。しかしながら、ガス絶縁機器20内部の絶縁ガス中の水分濃度を測定する場合は、通常の測定範囲を超えて測定することとなり、上記のように測定時間の問題が顕在化する。大気の湿度を測定する場合は、通常は、測定開始後数分のうちに測定結果が出力されるが、測定対象の水分濃度と固体電解質膜2の初期の含水率との間に桁違いの水分濃度差があった場合には、特に測定対象の水分濃度がより低い場合は、固体電解質膜2から水分が十分に抜ける必要があるため、その状態になるまでには非常に時間がかかる。したがって、ガス絶縁機器20内の絶縁ガス中の水分濃度の測定においては、本実施の形態は測定時間の短縮に非常に有効な手段を提供するといえる。
また、本実施の形態では、固体電解質膜2の交流インピーダンスと固体電解質膜2の近傍のガス温度を測定することにより、水分濃度を検出するようにしている。その際に、例えば、交流インピーダンス測定結果と温度測定結果を基に予め求めておいたマトリックスデータを用いて水分濃度を検出する。したがって、本実施の形態によれば、温度の影響を受けず正しい水分濃度を測定できるので、水分濃度の測定誤差を小さくすることができるという効果がある。
本実施の形態では、固体電解質膜2の有する温度特性を考慮して水分濃度を求めるために、インピーダンスと温度とに対して水分濃度を与えるマトリックスデータ(テーブルデータ)を予め用意しておき、このマトリックスデータを参照することにより水分濃度を求めるようにしているが、マトリックスに限らず、インピーダンスと温度とに対して水分濃度を与えるものであればよく、例えば関数などで与えてもよい。
なお、絶縁ガスの温度が略一定の環境下では、インピーダンスの温度依存性は無視できるので、この場合は、温度センサ3及び温度測定回路11を設けずともよく、演算部12は、インピーダンスに対して水分濃度を与えるデータ(テーブルデータ)を予め用意しておき、このデータを参照することによりインピーダンス値から水分濃度を求めることができる。
実施の形態2.
図5は、本実施の形態に係る水分濃度検出装置の構成図である。なお、図5では、図1と同一の構成要素には同一の符号を付している。実施の形態1では、インピーダンス素子7が設置されたガス室31aを、ガス絶縁機器20内部の水分状態に近い環境にするためにガス室31b内に吸着剤42を設置したが、本実施の形態では、図5に示すように、測定開始前にガス室31内の水分をガス室31外部に放出し、ガス室31内にある雰囲気を極乾燥状態にする除湿機43をガス室31に設ける構成とする。
即ち、本実施の形態では、実施の形態1の壁部4、連通路5、バルブ6、及び吸着剤42を設けることなく、ガス室31も単一の室として、ガス室31には乾燥手段としての除湿機43を設置している。除湿機43は、ガス室31内の雰囲気の水分を除去してその水分を水分濃度検出装置30外部に放出することにより、ガス室31内の雰囲気を極乾燥状態にすることができる。除湿機43には、ON/OFFのスイッチ(図示せず)が設けられており、このスイッチを操作することにより、除湿機43を稼動又は停止させることができる。
本実施の形態では、例えば水分濃度の測定開始前の所定時間内に除湿機43を稼働することにより、水分濃度の測定開始前に、ガス室31内を極乾燥状態にする。除湿機43の稼働時間は、測定対象である絶縁ガス中のおよその水分濃度(一般に数十ppm〜数百ppm)に応じて設定する。そして、水分濃度の測定開始時には、除湿機43を停止した状態にして水分濃度の測定に除湿機43の存在が影響を及ぼさないようにし、更に配管21のバルブ22を開放して、ガス絶縁機器20内の絶縁ガスをガス室31内に導入する。
ガス室31a内の絶縁ガス中に配置された固体電解質膜2は、既にその含水率が低減されているので、短時間で絶縁ガス中の水分濃度と平衡状態になる。つまり、本実施の形態では、除湿機43を用いることにより、測定開始時における固体電解質膜2の含水率が絶縁ガス中の水分濃度に近くなるように低減されているので、測定されるインピーダンス値は測定開始後短時間で収束する。その後の水分濃度検出処理は実施の形態1で説明したとおりである。
本実施の形態によれば、ガス室31内に除湿機43を設置し、測定開始前にガス室31内の雰囲気を極乾燥状態とすることにより、固体電解質膜2の含水率が絶縁ガス中の水分濃度と平衡状態になるまでの時間が短縮されるので、水分濃度の測定を短時間で実施することができるという効果がある。なお、本実施の形態のその他の構成、動作、及び効果は実施の形態1と同様である。
実施の形態3.
図6は、本実施の形態に係る水分濃度検出装置の構成図である。なお、図6では、図5と同一の構成要素には同一の符号を付している。実施の形態2では、インピーダンス素子7が設置されたガス室31を、測定開始前にガス絶縁機器20内部の水分状態に近い環境にするために、ガス室31内に除湿機43を設置したが、本実施の形態では、図6に示すように、水分濃度検出装置30の外部に真空ポンプ41を設け、この真空ポンプ41をガス室31の排気口35に接続し、測定開始前に真空ポンプ41を稼動してガス室31内のガスをそれに含まれる水分とともにガス室31外部に放出し、ガス室31内を極乾燥状態にする構成とする。
即ち、本実施の形態では、実施の形態2の除湿機43を設ける代わりに、ガス室31につながる排気口35を設け、この排気口35に乾燥手段としての真空ポンプ41を接続する。なお、排気口35には、図示しないバルブが設けられていて、真空ポンプ41を取り外したときに、このバルブを閉じることでガス室31を密封することができる。
本実施の形態では、例えば水分濃度の測定開始前の所定時間に真空ポンプ41を稼働することにより、少なくとも水分濃度の測定開始直前には、ガス室31内を極乾燥状態にする。真空ポンプ41の稼働時間は、測定対象である絶縁ガス中のおよその水分濃度(一般に数十ppm〜数百ppm)に応じて設定する。そして、水分濃度の測定開始時には、真空ポンプ41を停止した状態にして水分濃度の測定に真空ポンプ41の存在が影響を及ぼさないようにし、更に配管21のバルブ22を開放して、ガス絶縁機器20内の絶縁ガスをガス室31内に導入する。
ガス室31a内の絶縁ガス中に配置された固体電解質膜2は、既にその含水率が低減されているので、短時間で絶縁ガス中の水分濃度と平衡状態になる。つまり、本実施の形態では、真空ポンプ41を用いることにより、測定開始時における固体電解質膜2の含水率が絶縁ガス中の水分濃度に近くなるように低減されているので、測定されるインピーダンス値は測定開始後短時間で収束する。その後の水分濃度検出処理は実施の形態1,2で説明したとおりである。
本実施の形態は、実施の形態2と同様に、水分濃度の測定を短時間で実施することができるという効果がある。なお、本実施の形態のその他の構成、動作、及び効果は実施の形態2と同様である。
実施の形態4.
図7は、本実施の形態に係る水分濃度検出装置の構成図である。なお、図7では、図1と同一の構成要素には同一の符号を付している。実施の形態1では、インピーダンス素子7が設置されたガス室31aを、ガス絶縁機器20内部の水分状態に近い環境にするためにガス室31b内に吸着剤42を設置したが、本実施の形態では、図7に示すように、電極1の例えば一方の表面にヒーター45を設置し、このヒーター45で電極1の表面を加熱することにより、固体電解質膜2に含まれる水分の離脱を促進させる構成である。
即ち、本実施の形態では、実施の形態1の壁部4、連通路5、バルブ6、及び吸着剤42を設けることなく、ガス室31も単一の室として、ガス室31内の電極1の表面にヒーター45を設置している。また、信号処理部32内には、ヒーター45の加熱を制御するヒーター制御部46が設けられている。ヒーター制御部46は、更に例えば演算部12により制御される構成としてもよい。ヒーター45は、少なくともいずれか一方の電極1の表面に設けることができるが、温度センサ3が設置された電極1と対向する電極1に設けることが好ましい(図7参照)。これは、ヒーター45による局所的な加熱の影響が温度センサ3による温度計測に影響を及ぼさないようにするためである。
本実施の形態では、測定開始前に、ヒーター45によりインピーダンス素子7を加熱することにより、固体電解質膜2から水分を離脱させる。加熱時間は、長いほど好ましいが、少なくとも所定の時間は継続する。そして、水分濃度の測定開始時には、ヒーター45を停止した状態にし、更に配管21のバルブ22を開放して、ガス絶縁機器20内の絶縁ガスをガス室31内に導入する。また、ヒーター45は、測定中は停止する。
ガス絶縁機器20からガス室31内に流れ込んできた測定対象の絶縁ガスに対して、固体電解質膜2の含水率は予めヒーター45による加熱で減少しているので、固体電解質膜2の含水率は短時間で絶縁ガス中の水分濃度と平衡状態になる。その後の水分濃度検出処理は実施の形態1〜3で説明したとおりである。
本実施の形態によれば、ヒーター45の加熱により予め固体電解質膜2の含水率を低くしておくことで、水分濃度の測定を短時間で実施することができるという効果がある。なお、本実施の形態のその他の構成、動作、及び効果は実施の形態1〜3と同様である。
実施の形態5.
図8は、本実施の形態に係る水分濃度検出装置の構成図である。なお、図8では、図1及び図7と同一の構成要素には同一の符号を付している。本実施の形態は、実施の形態1に実施の形態4を適用したものであり、図8に示すように、実施の形態1の構成に更にヒーター45及びヒーター制御部46を設けたものである。
本実施の形態では、測定開始前に、実施の形態1で説明したように吸着剤42でガス室31a内を極乾燥状態にするとともに、実施の形態4で説明したようにヒーター45で固体電解質膜2からの水分の離脱促進を図る。これにより、水分濃度の測定をより一層短くすることができるという効果がある。本実施の形態のその他の構成、動作、及び効果は実施の形態1,4と同様である。
なお、図は省略するが、本実施の形態と同様にして、実施の形態2に実施の形態4を適用した構成、及び実施の形態3に実施の形態4を適用した構成も可能であり、本実施の形態と同様の効果を奏する。
本発明は、ガス絶縁機器内に充填された絶縁ガス中の水分濃度の検出に適している。
1 電極
2 固体電解質膜
3 温度センサ
4 壁部
5 連通路
6 バルブ
7 インピーダンス素子
10 インピーダンス測定回路
11 温度測定回路
12 演算部
13 表示器
20 ガス絶縁機器
21 配管
22 バルブ
30 水分濃度検出装置
31,31a,31b ガス室
32 信号処理部
35 排気口
40 取付口
41 真空ポンプ
42 吸着剤
43 除湿機
45 ヒーター
46 ヒーター制御部

Claims (7)

  1. ガス絶縁機器内に充填された絶縁ガス中の水分濃度を検出する水分濃度検出装置であって、
    前記ガス絶縁機器から導入された前記絶縁ガスを封入するガス室と、
    このガス室内で互いに対向して配置された多孔質性の電極と、
    これらの電極間に挟持され固着された水素イオン導電性の固体電解質膜と、
    前記電極に交流電圧を印加して前記電極間の交流インピーダンスを測定するインピーダンス測定手段と、
    前記インピーダンス測定手段により測定された前記交流インピーダンスに基づいて前記絶縁ガス中の水分濃度を検出する水分濃度検出部と、
    前記水分濃度の測定開始前に、前記絶縁ガスが前記ガス絶縁機器から導入される前の前記ガス室内の雰囲気から水分を除去する乾燥手段と、
    を備えることを特徴とする水分濃度検出装置。
  2. 前記ガス室は、前記電極及び前記固体電解質膜が配置された第1のガス室と、この第1のガス室との間が壁部で仕切られた第2のガス室とから成り、
    前記壁部には、前記第1のガス室と前記第2のガス室との間を連通する連通路と、この連通路を開閉するバルブが設けられ、
    前記バルブは、前記水分濃度の測定開始前の少なくとも所定の時間内は開状態にあり、かつ、前記水分濃度の測定中は閉状態にあり、
    前記乾燥手段は、前記第2のガス室内に設置された吸着性の吸着剤であることを特徴とする請求項1に記載の水分濃度検出装置。
  3. 前記乾燥手段は、前記ガス室に設置され前記ガス室から水分を除去する除湿機であることを特徴とする請求項1に記載の水分濃度検出装置。
  4. 前記乾燥手段は、前記ガス室の外部に設置されて前記ガス室と排気口を通じて接続された真空ポンプであることを特徴とする請求項1に記載の水分濃度検出装置。
  5. 少なくともいずれか一方の前記電極の表面に設けられ、前記固体電解質膜に含まれる水分の離脱を促進させるヒーター部をさらに備え、
    このヒーター部は、前記水分濃度の測定開始前の少なくとも所定の時間内は加熱状態にあり、かつ、前記水分濃度の測定中は加熱停止状態にあることを特徴とする請求項1〜4のいずれか1項に記載の水分濃度検出装置。
  6. 前記固体電解質膜の近傍に配置された温度センサを用いて前記絶縁ガスの温度を測定する温度測定手段を備え、
    前記水分濃度検出部は、前記インピーダンス測定手段により測定された前記交流インピーダンスと前記温度測定手段により測定された前記温度とに基づいて前記絶縁ガス中の水分濃度を検出することを特徴とする請求項1に記載の水分濃度検出装置。
  7. 前記水分濃度検出部は、温度と交流インピーダンスに対して水分濃度を与えるマトリックスデータを予め保持しており、このマトリックスデータを参照して、前記インピーダンス測定手段により測定された前記交流インピーダンスと前記温度測定手段により測定された前記温度とに対応する水分濃度を検出値として出力することを特徴とする請求項6に記載の水分濃度検出装置。
JP2012543069A 2011-05-18 2012-04-02 水分濃度検出装置 Active JP5159992B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012543069A JP5159992B2 (ja) 2011-05-18 2012-04-02 水分濃度検出装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011111419 2011-05-18
JP2011111419 2011-05-18
PCT/JP2012/058973 WO2012157349A1 (ja) 2011-05-18 2012-04-02 水分濃度検出装置
JP2012543069A JP5159992B2 (ja) 2011-05-18 2012-04-02 水分濃度検出装置

Publications (2)

Publication Number Publication Date
JP5159992B2 true JP5159992B2 (ja) 2013-03-13
JPWO2012157349A1 JPWO2012157349A1 (ja) 2014-07-31

Family

ID=47176690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012543069A Active JP5159992B2 (ja) 2011-05-18 2012-04-02 水分濃度検出装置

Country Status (4)

Country Link
US (1) US9201033B2 (ja)
JP (1) JP5159992B2 (ja)
CN (1) CN103430015B (ja)
WO (1) WO2012157349A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073213A1 (ja) * 2011-11-18 2013-05-23 三菱電機株式会社 水分濃度検出装置
US11474061B2 (en) * 2015-02-03 2022-10-18 Boehringer Ingelheim International Gmbh Method and device for determination of water content
WO2017069415A1 (en) * 2015-10-20 2017-04-27 Lg Electronics Inc. A sensor and method for manufacturing the sensor
US10551338B2 (en) * 2016-09-29 2020-02-04 General Electric Company Systems and methods for sensing compounds in an environment
CN109115857A (zh) * 2018-09-14 2019-01-01 东北大学 一种高温下湿度监测传感器及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02297050A (ja) * 1989-05-12 1990-12-07 New Cosmos Electric Corp ドレン除去装置を備えたガス検知装置
JPH0340553U (ja) * 1989-08-29 1991-04-18
JPH0449856U (ja) * 1990-08-31 1992-04-27
JPH05144645A (ja) * 1991-11-20 1993-06-11 Mitsubishi Electric Corp ガスセンサ装置およびそのガスセンサ装置の取付け方法
JPH0549285B2 (ja) * 1986-08-27 1993-07-23 Suzuken Kk
JP2000275199A (ja) * 1999-03-26 2000-10-06 Toray Ind Inc 気体の評価方法および評価装置
JP2003075385A (ja) * 2001-09-05 2003-03-12 Ngk Spark Plug Co Ltd 抵抗変化式湿度センサのクリーニング方法
JP2005300549A (ja) * 2004-04-14 2005-10-27 Powertech Labs Inc Sf6分解生成物質の検出器および検出方法
JP2006308502A (ja) * 2005-05-02 2006-11-09 Mitsubishi Electric Corp Sf6ガス中の水分濃度検出装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549285A (ja) 1991-08-16 1993-02-26 Mitsubishi Electric Corp 誘導電動機のベクトル制御演算装置
TWI242639B (en) * 2003-10-21 2005-11-01 Ind Tech Res Inst Humidity sensor element, device and method for manufacturing thereof
CN201184872Y (zh) * 2008-04-21 2009-01-21 郑元华 干燥保护式露点仪

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549285B2 (ja) * 1986-08-27 1993-07-23 Suzuken Kk
JPH02297050A (ja) * 1989-05-12 1990-12-07 New Cosmos Electric Corp ドレン除去装置を備えたガス検知装置
JPH0340553U (ja) * 1989-08-29 1991-04-18
JPH0449856U (ja) * 1990-08-31 1992-04-27
JPH05144645A (ja) * 1991-11-20 1993-06-11 Mitsubishi Electric Corp ガスセンサ装置およびそのガスセンサ装置の取付け方法
JP2000275199A (ja) * 1999-03-26 2000-10-06 Toray Ind Inc 気体の評価方法および評価装置
JP2003075385A (ja) * 2001-09-05 2003-03-12 Ngk Spark Plug Co Ltd 抵抗変化式湿度センサのクリーニング方法
JP2005300549A (ja) * 2004-04-14 2005-10-27 Powertech Labs Inc Sf6分解生成物質の検出器および検出方法
JP2006308502A (ja) * 2005-05-02 2006-11-09 Mitsubishi Electric Corp Sf6ガス中の水分濃度検出装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6012019850; 亀井光仁 他: 'GIS/GCB絶縁ガス中の水分検出センサに関する研究' 電気学会論文誌E Vol.130 No.11, 20101102, pp.531-536 *
JPN6012020046; 永尾栄一 他: '固体電解質膜を用いたSF6ガス中水分濃度検出(2)' 平成17年電気学会 電力・エネルギー部門大会論文集 , 2005, pp.40-1〜40-2 *
JPN6012020047; 永尾栄一 他: '固体電解質膜を用いたSF6ガス中水分濃度検出' 平成17年電気学会全国大会講演論文集 , 2005, pp.244-245 *

Also Published As

Publication number Publication date
WO2012157349A1 (ja) 2012-11-22
US9201033B2 (en) 2015-12-01
CN103430015A (zh) 2013-12-04
US20130313111A1 (en) 2013-11-28
CN103430015B (zh) 2015-11-25
JPWO2012157349A1 (ja) 2014-07-31

Similar Documents

Publication Publication Date Title
JP5159992B2 (ja) 水分濃度検出装置
CA2950795C (en) Methods and systems for selective hydrogen gas extraction for dissolved gas analysis applications
CN103380367B (zh) 水分浓度检测装置
JP2019526049A5 (ja)
JP4616069B2 (ja) Sf6ガス中の水分濃度検出装置
US20060180466A1 (en) Method and apparatus for providing an electrochemical sensor at an elevated temperature
US9952188B2 (en) Apparatus and method for measuring a gas
WO2013073213A1 (ja) 水分濃度検出装置
JP2015125138A (ja) 水素酸素濃度計測装置、水素酸素濃度計測システム、および水素酸素濃度計測方法
JP2014228457A (ja) ガスセンサとガス検出装置
JP6654406B2 (ja) ガス検出装置とガス検出方法
JP2021128036A (ja) ガス濃度湿度検出装置
JP6347976B2 (ja) 水素ガスセンサ及び水素ガス検知方法
JP2019148432A (ja) 電気化学ガスセンサを有するガス検出装置とガス検出方法
US8720255B2 (en) Water uptake measurement system
US20120274337A1 (en) Method and Apparatus for Diagnosing Electrochemical Sensor
CN106124701B (zh) 电力变压器性能监测系统
JP5122034B1 (ja) 水分濃度検出装置
CN201993307U (zh) 气体分析仪器及其样品池
JP2019132756A (ja) ガス濃度検出方法及びガス濃度検出装置
EP1613950A1 (en) Electrochemical solid electrolyte sensor for the detection of oxygen, hydrocarbons and moisture in vacuum environments
JPH0429026B2 (ja)
JPH07333183A (ja) 金属酸化物半導体薄膜を用いた酸素分圧検出素子および該素子を備えた酸素分圧計ならびに真空装置
JP2015200625A (ja) 真空用ガス検知素子
JP2024119103A (ja) 検出装置及び検出システム

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121211

R150 Certificate of patent or registration of utility model

Ref document number: 5159992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250