JP5155989B2 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP5155989B2
JP5155989B2 JP2009271963A JP2009271963A JP5155989B2 JP 5155989 B2 JP5155989 B2 JP 5155989B2 JP 2009271963 A JP2009271963 A JP 2009271963A JP 2009271963 A JP2009271963 A JP 2009271963A JP 5155989 B2 JP5155989 B2 JP 5155989B2
Authority
JP
Japan
Prior art keywords
semiconductor
protective film
semiconductor device
semiconductor element
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009271963A
Other languages
English (en)
Other versions
JP2011114311A (ja
Inventor
仁久 國見
浩己 藤田
真一郎 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei EMD Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Priority to JP2009271963A priority Critical patent/JP5155989B2/ja
Publication of JP2011114311A publication Critical patent/JP2011114311A/ja
Application granted granted Critical
Publication of JP5155989B2 publication Critical patent/JP5155989B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Polyamides (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

本発明は、半導体素子がモールド材料によって樹脂封止されてなる半導体装置に関し、特に、作製時及び使用環境において前記半導体素子が前記モールド材料から受ける力学的ストレスを緩和する保護膜を有する半導体装置及びその製造方法に関するものである。
従来より、半導体素子や半導体IC(以下、半導体素子と呼ぶ。)が半導体基板上に形成された半導体チップを搭載する半導体装置の多くは、該半導体チップを、セラミックパッケージを用いた気密封止、又はモールド材料(例えば、エポキシ樹脂)を用いた樹脂封止(以下、プラスチックパッケージと呼ぶ。)の形態にて提供されることが一般的である。これらの中でも、特に、前記プラスチックパッケージは小型化が可能な上、低価格で形成できるため、汎用の半導体装置の多くはプラスチックパッケージの形態で提供されている。
前記プラスチックパッケージの半導体装置を組み立てる際には、前記半導体チップを型枠内に設置し、高温にして軟化させた前記モールド材料を、前記型枠内に流し込んだ後に冷却して固化させる。
しかしながら、前記モールド材料は、湿度の高い環境下にさらすことにより、モールド材料自身が水分を吸収し、モールド材料の体積膨張(吸湿による体積膨張)が生じる。また、逆に、前記モールド材料を、乾燥環境下にさらすことにより、モールド材料内の水分量が蒸発及び減少し、モールド材料の体積収縮(乾燥による体積収縮)が生じる。これらのようなモールド材料の体積変化により、半導体素子へ与える力学的ストレスが大きく変化することが一般的に知られている。
非特許文献1及び非特許文献2では、モールド材料の吸湿及び乾燥により、半導体素子へかかる力学ストレスにより誘起されるピエゾ効果が変動し、また、プラスチックパッケージ毎にそのピエゾ効果のバラツキが生じ、結果として、半導体チップを構成する半導体素子及び半導体ICの特性が大きく変動したり、バラつくことが開示されている。
しかしながら、モールド材料の吸湿及び乾燥によるモールド材料自身の体積変動が抑制された新たなモールド材料は未だ報告されていない。
したがって、半導体チップの表面に保護膜(パッシベーション膜)を挿入することによって、モールド材料から半導体素子へ加わる力学的ストレスを緩和する半導体装置が広く用いられている。
前記保護膜の材料としては、ポリイミドやPBO(ポリベンゾオキサゾール)などが広く用いられている。
D.Manic等、38th Annual International Rebiability Physics Symposium、San Jose, California.2000 A.Udo等、IEEE Sensor Conference 2004、Vienna
しかしながら、前記保護膜の材料としてポリイミドやPBOを用いて作製された半導体装置にあっては、前記モールド材料の体積変動によるストレスを緩和する効果は十分ではなく、半導体素子及び半導体ICの特性変動及びバラツキを抑制する効果を十分には期待できなかった。
本発明は上述した従来技術の問題点を解決するためになされたものであり、その目的は、モールド材料の吸湿や乾燥の結果生じる半導体素子及び半導体ICの特性変動及び特性バラツキを抑制する半導体装置及びその製造方法を提供することである。
本発明者は、上記課題を解決するために鋭意研究を重ねた結果、モールド材料によって樹脂封止される半導体チップの少なくとも一部を覆う保護膜の材料を、前記モールド材料の応力を相殺する材料に特定することにより、上記目的を達成できることを知見した。
本発明は、本発明者による前記知見に基づくものであり、上記課題を解決するための本発明の請求項1による半導体装置は、半導体素子と、該半導体素子を保護する保護膜と、
少なくとも前記半導体素子及び前記保護膜を封止するモールド材料とを有する半導体装置であって、
前記モールド材料が、吸湿により膨張し、乾燥により収縮する材料からなり、前記保護膜が、前記モールド材料の吸湿及び乾燥による前記半導体素子へのストレスを相殺するポリアミド樹脂からなり、
前記保護膜が、前記半導体素子に電気的に接続された電極PADと共に前記半導体素子の上面及び側面を覆うように形成され、
前記保護膜の膜厚が、1〜20μmであり、
前記保護膜が、下記構造式(1)であらわされる構造を構成単位とし、下記構造式(1)の繰り返し数nがポリアミド樹脂を構成する全構成単位数の総数の80〜100%の範囲内であることを特徴とする半導体装置。
ただし、構造式(1)中、Xは炭素数が6〜15の3価の有機基であり、Yは、炭素数が6〜35の4価又は2価の有機基であり、Wは炭素数が6〜15の2価の有機基であり、lは0又は1以上の整数であり、同時に(n+l)は2〜150の整数であり、R1は炭素以外の元素を含んでもよい、(メタ)アクリロイルオキシメチル基を少なくとも1つ有する炭素が5〜20の脂肪族である。
Figure 0005155989
た、本発明の請求項による半導体装置は、請求項に記載の半導体装置において、前記保護膜は、構造式(1)中のW、X、及びYが、それぞれ独立に芳香族基、脂環式基、脂肪族基、シロキサン基及びそれらの複合構造の基からなる群より選択される基であることを特徴とする。
また、本発明の請求項による半導体装置は、請求項に記載の半導体装置において、前記半導体素子がシリコン及び化合物半導体の少なくともいずれかを有することを特徴とする。
また、本発明の請求項による半導体装置は、請求項に記載の半導体装置において、前記化合物半導体が、GaAs、InSb、InAs、及びAlGa1−xAsSb1−y(ただし、x=0〜1、y=0〜1)の少なくともいずれかを含むことを特徴とする。
また、本発明の請求項による半導体装置は、請求項又はに記載の半導体装置において、前記化合物半導体に、Si、Sn、Zn、及びPbの少なくともいずれかがドープされていることを特徴とする。
また、本発明の請求項による半導体装置は、請求項に記載の半導体装置において、前記半導体素子が、ホール素子、磁気抵抗効果素子、受光素子、及び発光素子の少なくともいずれかを有することを特徴とする。
また、本発明の請求項による半導体装置は、請求項に記載の半導体装置において、前記半導体素子が、シリコンICを有することを特徴とする。
また、本発明の請求項による半導体装置の製造方法は、半導体基板上に形成された半導体素子の上面及び側面を、前記半導体素子に電気的に接続された電極PADと共に覆うように保護膜を形成する保護膜形成工程と、
リードフレームと前記半導体素子上の電極とを結線する結線工程と、
前記半導体基板、前記半導体素子、及び保護膜の全部と前記リードフレームの一部とを、吸湿により膨張し、乾燥により収縮するモールド材料で樹脂封止する封止工程とを含む半導体装置の製造方法であって、
前記保護膜及び前記モールド材料が、吸湿及び乾燥による前記半導体素子へのストレスを相殺する材料からなり、
前記保護膜の膜厚が、1〜20μmであり、
前記保護膜が、下記構造式(1)であらわされる構造を構成単位とし、下記構造式(1)の繰り返し数nがポリアミド樹脂を構成する全構成単位数の総数の80〜100%の範囲内であることを特徴とする。
(ただし、構造式(1)中、Xは炭素数が6〜15の3価の有機基であり、Yは、炭素数が6〜35の4価又は2価の有機基であり、Wは炭素数が6〜15の2価の有機基であり、lは0又は1以上の整数であり、同時に(n+l)は2〜150の整数であり、R1は炭素以外の元素を含んでもよい(メタ)アクリロイルオキシメチル基を少なくとも1つ有する炭素が5〜20の脂肪族である。
Figure 0005155989
た、本発明の請求項による半導体装置の製造方法は、請求項に記載の半導体装置の製造方法において、前記保護膜形成工程における前記保護膜を焼結形成する際の温度が、170℃以上かつ220℃以下であることを特徴とする。
以上のように、本発明によれば、モールド材料の吸湿や乾燥の結果生じる応力を相殺する材料を、半導体素子の少なくとも一部を覆う保護膜に適用したので、前記応力によって生じる半導体素子及び半導体ICの特性変動及び特性バラツキを抑制するする半導体装置及びその製造方法を提供することができる。
本発明に係る半導体装置の一実施形態における構成を示す断面模式図である。 本発明に係る半導体装置の一実施形態における構成を示す平面模式図である。 本発明に係る半導体装置の一実施形態における製造方法を示す断面模式図である。 本発明に係る半導体装置の一実施形態における製造方法を示す断面模式図である。 本発明に係る半導体装置の実施例において、半導体装置を吸湿状態にさらしたときのモールド材料及び保護膜の各層中における力学的ストレスの方向を示す断面模式図である。 本発明に係る半導体装置の実施例において、半導体装置を乾燥状態にさらしたときのモールド材料及び保護膜の各層中における力学的ストレスの方向を示す断面模式図である。 本発明に係る半導体装置の実施例において、半導体素子の活性層部分に印加されるストレスの種類とその大きさを、モールド材料の厚み、及び保護膜の厚みの相関関係を示したグラフである。 本発明に係る半導体装置の実施例において、保護膜の膜厚と、半導体素子(ホール素子)の不平衡電圧の変動バラツキ(偏差)との関係を示すグラフである。 本発明に係る半導体装置の他の実施形態における構成を示す断面模式図である。 本発明に係る半導体装置の他の実施形態における構成を示す断面模式図である。 本発明に係る半導体装置の他の実施形態における構成を示す平面模式図である。 本発明に係る半導体装置の他の実施形態における構成を示す平面模式図である。 本発明に係る半導体装置の他の実施形態における構成を示す平面模式図である。
以下、本発明に係る半導体装置の一実施の形態について、図面を参照して説明する。
<構成>
図1は、本発明に係る半導体装置の一実施形態における構成を示す断面模式図である。図2は、本発明に係る半導体装置の一実施形態における構成を示す平面模式図である。
図1に示すように、本実施形態の半導体装置1は、リードフレーム106と、該リードフレーム106上に載置された半導体チップ108とが、リードフレーム106の先端部(図示せず)を露出させるようにしてモールド材料103によって封止されてなる。
[半導体チップ]
半導体チップ108は、保護膜101と、金属ワイヤー102と、半導体素子104と、半導体基板105と、電極PAD107とを有してなる。半導体基板105上には、半導体素子104が略直方体形状で形成されている。電極PAD107は、その一端107aを半導体素子104に接触させることにより電気的に導通させて、半導体素子104の上面及び側面に沿って設置されている。保護膜101は、電極PAD107の他端107bを露出させて、電極PAD107の一部と半導体素子104の上面及び側面を被覆している。
半導体基板105としては、GaAs基板、Si基板、Sapphire基板、SiC基板等の半導体基板が挙げられる。また、半導体基板105の面方位は(111)、又は(100)、又は前記面方位から7度以内の傾斜を有するものであればよい。
また、半導体チップ108は、半導体素子チップとシリコンICチップとが一緒に組み立てられたハイブリッド品として提供されてもよい。このようなハイブリッド品の形態としては、リードフレーム106上に半導体素子チップ及び/又はシリコンICチップを2つ以上並べて配置してもよいし、2つ以上の半導体素子チップ及び/又はシリコンICチップを上下(厚さ方向)に積層させて形成してもよい。また、この積層構造は、バンプを用いて積層された半導体素子チップ及び/又はシリコンICチップ間の電極PAD107同士の電気的導通を取るフリップチップ構造でもよいし、積層された半導体素子チップ及び/又はシリコンICチップ間の電極PAD107同士を金属ワイヤー102にて接続して電気的導通を取る構造でもよい。
[半導体素子]
半導体素子104は、半導体素子及び半導体ICの少なくともいずれかを有する電子部品である。
なお、本実施形態における半導体素子104は、図2に示すように、十字型の形状を呈したホール素子である。そして、この半導体素子104は、形状が半導体素子104に相似の保護膜101によって完全に覆われている。
半導体素子104は、Si(シリコン)など、単一の元素を材料とする半導体を用いてもよいが、複数の元素を材料とする化合物半導体を用いることが好ましい。
ここで、半導体素子(半導体ICを含む)を化合物半導体とした半導体装置においては、III族元素とV族元素、又はII族元素とVI族元素など、周期律表において所属する族が異なる2種類以上の元素によって電子デバイスとしての活性領域が構成されている。これらIII族元素とV族元素の各原子間、又はII族元素とVI族元素の各原子間には各元素固有の電気陰性度に基づく分極が元々生じているため、外的なストレスに非常に敏感である。外的ストレスが印加されると、その結果として半導体素子及び半導体ICの特性変動が誘発され、その影響度は、IV族の単一元素で電子デバイスとしての活性層が構成されるために、原子間の分極率が小さいシリコンを用いた半導体素子及び半導体ICよりも大きくなる傾向がある。本発明では、化合物半導体を用いた半導体素子においても、外的ストレスの変動による素子特性の変動を好適に抑制することができる。
半導体素子に化合物半導体が用いられる場合、その化合物半導体としては、GaAs、InSb、InAs、及びAlGa1−xAsSb1−y(ただし、x=0〜1、y=0〜1)の少なくともいずれかを含むことがより好ましい。
ここで、これら化合物半導体が用いられた場合の半導体素子104の膜厚d(図1参照)は、10μm以下であることが好ましく、0.2μm以上4μm以下がより好ましく、0.4μm以上1.5μm以下であることが特に好ましい。
また、化合物半導体には、Si、Sn、Zn、及びPbの少なくともいずれかがドープされていることが好ましい。
[電極PAD]
電極PAD107は、一端107aが半導体素子104の電極(図示せず)に電気的に導通されて、半導体素子104の上面及び側面に沿って設置される。なお、電極PAD107の他端107bは、保護膜101から露出され、金属ワイヤー102の一端102aが電気的に導通されている。金属ワイヤー102の他端102bは、リードフレーム106に電気的に導通されている。
[保護膜]
保護膜101は、半導体素子104の上面及び側面を電極PAD107と共に覆うように形成されている。すなわち、半導体素子104は、半導体基板105から露出した上面及び側面を、保護膜101及び電極PAD107の一端を含む一部によって覆われている。
保護膜101の材料は、吸湿状態及び乾燥状態にさらされたときに膨張又は収縮するモールド材料103の応力を相殺する材料に特定される。すなわち、保護膜101の材料は、モールド材料103が、吸湿状態及び乾燥状態にさらされたときに膨張する材料であるか、もしくは収縮する材料であるか、並びにそのときに半導体素子104に対する応力に基づいて、同様の状態においてモールド材料103の応力を相殺する材料に特定される。
保護膜101の材料としては、モールド材料103が、吸湿により膨張し、乾燥により収縮する材料(例えば、エポキシ樹脂)からなる場合、ポリアミド樹脂を用いることが好ましい。
保護膜101の材料として用いられるポリアミド樹脂は、下記構造式(1)であらわされる構造を構成単位とし、下記構造式(1)の繰り返し数nがポリアミド樹脂を構成する全構成単位数の総数の80〜100%の範囲内であるポリアミド樹脂が好ましく、下記構造式(1)であらわされる構造のみを構成単位とするポリアミド樹脂が特に好ましい。ポリアミド樹脂が下記構造式(1)であらわされる構造のみを構成単位とすることにより、モールド材料103の応力を相殺する挙動が均一となり、半導体素子の特性変動及び特性バラツキをより低減できる。
ただし、構造式(1)中、Xは炭素数が6〜15の3価の有機基であり、Yは、炭素数が6〜35の4価又は2価の有機基であり、Wは炭素数が6〜15の2価の有機基であり、lは0又は1以上の整数であり、同時に(n+l)は2〜150の整数であり、R1は炭素以外の元素を含んでもよい、(メタ)アクリロイルオキシメチル基を少なくとも1つ有する炭素が5〜20の脂肪族である。
た、構造式(1)中のW、X、及びYは、それぞれ独立に芳香族基、脂環式基、脂肪族基、シロキサン基及びそれらの複合構造の基からなる群より選択される基であってもよい。
Figure 0005155989
また、保護膜101として、ポリアミド膜を焼結形成する際の温度は、160℃以上かつ250℃以下が好ましく、170℃以上220℃以下がより好ましい。
また、焼結後の保護膜101の膜厚d(図1参照)は、1〜20μmが好ましく、2〜14μmがより好ましく、7.5μmが特に好ましい。
[モールド材料]
モールド材料103は、リードフレーム106と、リードフレーム106上に載置され、金属ワイヤー102によって半導体素子104とリードフレーム106とを電気的に導通した半導体チップ108とを封止する部材である。モールド材料としては、例えば、エポキシ樹脂が挙げられる。
ここで、モールド材料103は、プラスチックパッケージ組み立て後において、モールド材料103を安定固化させるために、一定時間だけ高い温度でアニールするのが一般的である。このときの温度は、モールド材料が十分焼結固化するガラス転移点以上、かつ保護膜101の焼結温度よりも低くすることが好ましい。具体的には、モールド材料103の固化温度は175℃以下であることが好ましく、プラスチックパッケージ形成後のモールド材料103の固化に問題が無ければ、キュア温度はより一層低くすることが好ましく、170℃以下であることが特に好ましく、例えば、165℃以上175℃以下である。
<製造方法>
次に、本実施形態における半導体装置の製造方法について図面を参照して以下に説明する。
図3(a)〜図3(e)及び図4(a)〜図4(c)は、本発明に係る半導体装置の一実施形態における製造方法を示す断面模式図である。
本実施形態における半導体装置の製造方法は、保護膜形成工程と、結線工程と、封止工程とを少なくとも含み、前記保護膜形成工程の前に行う工程として、半導体チップ形成工程を含む。また、保護膜形成工程と結線工程との間には、切断工程が行われる。
[半導体チップ形成工程]
半導体チップ形成工程は、半導体素子形成工程と、電極PAD形成工程とを含む。
半導体素子形成工程は、半導体基板105上に半導体素子104を形成する工程である(図3(a)参照)。
半導体素子104を半導体基板105上に形成する方法としては、半導体基板105の表面に、化合物半導体薄膜を構成する元素のビームを照射して多数の化合物半導体薄膜を成長させる分子線エピタキシー(MBE)法が挙げられる。半導体基板105上に多数の化合物半導体薄膜が形成された後は、洗浄工程、リソグラフィー工程、エッチング工程、及びデポジション工程を繰り返すことによって、半導体基板105上に半導体素子104が形成される。
ここで、半導体素子104の形成は、MBEによる形成に限定されるものではなく、MOCVDによる薄膜形成でもよいし、イオン注入により、半導体基板105とは電気伝導度の異なる層を半導体基板105の表面から所定の深さ(例えば、1μm程度)までの範囲に形成することにより代用してもよい。
電極PAD形成工程は、半導体素子104と一端107aとを接触させて電気的に導通させた電極PAD107を半導体素子104の上面及び側面に沿うように設置する工程である(図3(b)参照)。電極PAD107を半導体素子104上及び半導体基板105上に形成する方法としては、電極PAD107の材料をAu、Pt、Ti、Ge、Niとしたスパッタリング法や蒸着法が挙げられる。
[保護膜形成工程]
保護膜形成工程は、半導体基板上に形成された半導体素子の上面及び側面を、前記半導体素子に電気的に接続された電極PADと共に覆うように保護膜を形成する工程である(図3(c)参照)。すなわち、本工程は、前述の半導体チップ形成工程において、半導体基板105上に形成された半導体素子104及び電極PAD107を、電極PAD107の他端107bを露出させるように、保護膜101で被覆する工程である。具体的には、まず、保護膜101を形成する材料の塗布液を、半導体素子104上、半導体基板105上、及び電極PAD107上にスピンコート法で塗布する(図3(c)参照)。そして、保護膜101に対して露光処理及び現像処理を行って、半導体素子104の活性層の上部と側面を電極PAD107と共に覆うように保護膜101を形成する(図3(d)参照)。
その後、このようにして半導体素子104、電極PAD107、及びポリアミド膜(保護膜)101が上面に形成された半導体基板105を、例えば180℃の窒素雰囲気下に約2時間さらして保護膜101中の残存溶媒を蒸発させると同時に保護膜101を焼結固化させる。
ここで、焼結固化後の保護膜101の膜厚d(図1参照)は、1μm〜20μm以下が好ましく、2μm以上14μm以下がより好ましく、7.5μmが特に好ましい。
[切断工程]
切断工程は、半導体基板105上に多数形成した半導体素子104をダイシング装置(図示せず)により切断して、個々の半導体チップ108に分割する工程である(図3(e)参照)。
[結線工程]
結線工程は、リードフレーム106と電極PAD107の他端107bとを結線する工程であり、公知のボンディング方法でリードフレーム106と電極PAD107の他端107bとが結線処理される。金属ワイヤー102の主成分としては、例えば、AuやAlが挙げられる。
[封止工程]
封止工程は、結線工程後の半導体チップ108をモールド材料103で樹脂封止する工程である。すなわち、保護膜101、半導体素子104、半導体基板105、電極PAD107の周囲とリードフレーム106の一部とをモールド材料103で樹脂封止する工程である。
以下、実施例により本発明を更に具体的に説明するが、本発明の実施態様はこれらに限定されるものではない。
(実施例1)
本実施例では、下記手順により半導体装置1を作製した。
[半導体チップ形成工程]
まず、半導体素子形成工程として、膜形成装置としての分子線エピタキシー装置(VG社製V100+MBE)内に、半導体基板105として、GaAs基板を導入し、600℃〜700℃程度の温度でサーマルアニーリングを実施することにより、GaAs基板105の表面の酸化膜を除去して、GaAs単結晶表面を露出させた。
次に、このGaAs基板105の表面から酸化膜層を除去した後に基板温度を下げ、ついで化合物半導体薄膜を構成する元素のビームを照射して化合物半導体の薄膜積層構造としてGaAs/AlGa1−xAsSb1−y/InAs/AlGa1−xAsSb1−yを合計膜厚で約1μm成長させた。
次いで、GaAs基板105を膜形成装置より取り出し、洗浄工程、リソグラフィー工程、エッチング工程、及びデポジション工程を繰り返し、図2に示すような、電子デバイスとして機能する電気的活性層が、GaAs基板105の表面と平行に十字型の構造をしたホール素子(半導体素子)104を形成した(図3(a)参照)。
次いで、電極PAD形成工程として、このホール素子104の十字形の各頂点部付近にAu/Ti構造をした電極PAD107を取り付けたホール素子104をGaAs基板105上に多数形成した(図3(b)参照)。
[保護膜形成工程]
次に、保護膜101の材料として、下記の処方で保護膜形成用塗布液(ポリアミド樹脂塗布液)を調製した。
・下記構造式(3)に示すポリアミド・・・・・70wt%
・溶媒:N−メチルピロリドン・・・・・30wt%
Figure 0005155989
ついで、前記GaAs基板105上に、保護膜形成用塗布液をスピンコート法にて塗布してポリアミド樹脂層101aを形成した(図3(c)参照)。そして、このポリアミド樹脂層101aを露光装置によって露光した後、現像し、その後、ホール素子104の十字型の活性層の上部と側面を覆うようにポリアミド膜(保護膜)101を形成した(図2及び図3(d)参照)。
その後、このようにして半導体素子104、電極PAD107、及びポリアミド膜(保護膜)101が上面に形成されたGaAs基板105を180℃の窒素雰囲気下に約2時間さらしてポリアミド膜101中の残存溶媒を蒸発させると同時にポリアミド膜101を焼結固化させた。本焼結固化後のポリアミド膜101の膜厚d(図1参照)は7.5μmであった。
[切断工程]
ついで、半導体基板105上に多数形成したホール素子104をダイシング装置(図示せず)により切断して、個々の半導体チップ108に分割した(図3(e)参照)。
[結線工程]
ついで、この半導体チップ108をリードフレーム106上に固定積層し(図4(a)参照)、半導体チップ108上の電極PAD107とリードフレーム105を金属ワイヤー102により公知のボンディング方法で電気的に接続した(図4(b)参照)。この時、金属ワイヤー102の主成分はAu又はAlとした。
[封止工程]
次いで、半導体チップ108とリードフレーム106が一体固定されたものを金型内に導入し、更にプラスチックパッケージの原料となるモールド材料103をこの金型内に流し込んで、ホール素子104、半導体基板105、リードフレーム106、電極PAD107、及び金属ワイヤー102を覆うようにしてモールド材料103で封止した(図4(c)参照)。この時、モールド材料103はエポキシ系樹脂(CV4180,Panasonic電工社製)を用いた。
次いで、モールド材料103を固化安定化させるためのモールドキュアを約175℃の温度にて2時間実施した。
以上の手順により、半導体素子104としてホール素子を有する半導体装置1が得られた。
(比較例1)
実施例1において保護膜形成用塗布液をポリイミドとした以外は実施例1と同様にして、半導体装置1を作製した。なお、保護膜形成用塗布液は、下記の処方で調製した。
・下記構造式(4)に示すポリイミド・・・・・70wt%
・溶媒:N−メチルピロリドン・・・・・30wt%
Figure 0005155989
(比較例2)
実施例1において保護膜形成用塗布液をポリベンゾオキサゾール(PBO)とした以外は実施例1と同様にして、半導体装置1を作製した。なお、保護膜形成用塗布液は、下記の処方で調製した。
・下記構造式(5)に示すポリベンゾオキサゾール(PBO)・・・・・70wt%
・溶媒:γ−ブチルラクトン・・・・・30wt%
Figure 0005155989
<評価>
ホール素子の重要な電気特性の内、磁場が印加されていない条件下において僅かな出力電圧信号が出る、いわゆる不平衡電圧と称されるものが有る。この不平衡電圧の発現メカニズムは未だ完全には解明されておらず、様々な要因によって発生すると言われているが、この不平衡電圧発生原因の主たるものとして、モールド材料からの力学的ストレス、ホール素子活性層表面付近の界面準位、ホール素子活性層中の結晶欠陥などが挙げられる。
特に、プラスチックパッケージに組み立てたホール素子では、モールド材料の吸湿や乾燥によるモールド材料自身の体積膨張及び収縮による力学的ストレス変化がホール素子へと与える影響が特に顕著であり、使用環境の差により、同一チップでも不平衡電圧が大きく変動してしまう。このためホール素子及びそれらを半導体ICと組み合わせたハイブリッド品の出力のS/Nが著しく劣化し、製品の信頼性を著しく低下させてしまっている。
そこで、実施例1、比較例1及び比較例2で作製した半導体装置について、乾燥条件下及び吸湿条件下と連続的にさらす試験を実施して、これらの試験前後での不平衡電圧の変動、特に不平衡電圧の変動量のバラツキを評価した。
[吸湿乾燥試験]
吸湿乾燥試験は、実施例1、比較例1及び比較例2で作製した半導体装置に対して、まず125℃のオーブン内にて24時間放置し、次いで85℃85%の湿度環境下に146時間放置し、最後に260℃のオーブン内に10秒間だけの投入を3回行った。これら一連の試験の前後における不平衡電圧の変動の素子間バラツキをまとめたものを表1に示す。
Figure 0005155989
表1に示す不平衡電圧の変動値の標準偏差からも明らかなように、一般的な保護膜(パッシベーション膜)として用いられているポリイミド膜を適用した比較例1、及びPBOを適用した比較例2の半導体装置では、前記吸湿乾燥試験前後での不平衡電圧の変動幅の標準偏差(N数は各242チップ)がそれぞれ、0.56mV、0.60mVであったのに対し、ポリアミド膜を適用した実施例1の半導体装置では、不平衡電圧の変動幅の標準偏差が0.16mVへと大きく改善していることがわかる。つまり、比較例1及び比較例2の半導体装置では、半導体素子の変動バラツキは実施例1の半導体装置における変動バラツキよりも約4倍も悪いことが明らかであるため、実施例1の半導体装置におけるポリアミド膜の方が比較例1又は比較例2の半導体装置におけるポリイミド膜又はPBO膜よりも効果的に抑制できていることが示唆されている。
[半導体基板への残留応力]
ここで、本発明に用いられるポリアミド膜による外的な力学的ストレスの緩和メカニズムを調査するため、GaAs基板上全面に膜厚9.5μmのポリアミド膜を塗布形成したウエハ(実施例2)と、GaAs基板上全面にポリイミド膜を塗布形成したウエハ(比較例3)とを作製し、前記と同様の吸湿乾燥試験を実施し、吸湿や乾燥の各工程毎にそれぞれのウエハの反り量を随時測定し、それぞれのウエハへの残留応力の変化傾向を評価した。この時、それぞれのウエハへの残留応力評価は、光学反射からそれぞれのウエハの反り量を測定する反り測定機(FSM8800、FSM社製)を用いて測定・算出を行った。その結果を表2に示す。
Figure 0005155989
表2に示すように、ポリイミド膜を用いた比較例3のウエハは、ポリイミド膜の焼結後、吸湿・乾燥の両方を個別に実施しても、残留応力は殆ど一定である。
ゆえに、ポリイミド膜を形成したホール素子をモールド材料にてプラスチックパッケージで組み立てた半導体装置(上記比較例1の半導体装置に相当)においては、ポリイミド膜形成に起因する残留応力に、モールド材料の吸湿及び乾燥による力学ストレスが単純に加算されるだけであるため、結局はモールド材料の吸湿・乾燥による力学的ストレスを緩和する作用を十分には発揮しないことがわかる。
一方、ポリアミド膜を用いた実施例2のウエハは、一般的な高分子材料の挙動とは異なり、85℃85%の吸湿によりポリアミド膜の収縮により残留応力が大きくなっていることが表2から明らかである。さらに、この吸湿により収縮したポリアミド膜を260℃10秒間の急速乾燥を3回実施すると、ポリアミド膜が膨張し残留応力が減少する結果となった。これはモールド材料の吸湿による体積膨張、及びモールド材料の乾燥による体積収縮とは全く逆の挙動である。
以下、モールド材料及び保護膜の吸湿及び乾燥における挙動について図面を参照して説明する。
図5は、本実施例において、半導体装置を吸湿状態にさらしたときのモールド材料及び保護膜、各層中における力学的ストレスの方向を示す断面模式図である。また、図6は、本実施例において、半導体装置を乾燥状態にさらしたときのモールド材料及び保護膜、各層中における力学的ストレスの方向を示す断面模式図である。
図5に示すように、ポリアミド膜101を形成したホール素子104をモールド材料103にて封止した半導体装置(上記実施例1の半導体装置に相当)では、吸湿環境下にさらすことにより、モールド材料103は矢印110の向きに膨張するが、ホール素子104とモールド材料103との間に形成されているポリアミド膜101は矢印111の向きに収縮し、結果としてモールド材料103とポリアミド膜101とが互いにストレスを相殺し、ホール素子104へと加わるストレスが効果的に相殺・抑制できている。このストレス相殺は乾燥条件下でもメカニズムは前記と同様である。
具体的には、図6に示すように、モールド材料103の乾燥による体積収縮の向き(図6中の矢印110)と、ポリアミド膜101の膨張の向き(図6中の矢印111)とに起因する両者のストレスが互いに相殺し、結果としてホール素子104へと加わるストレスを効果的に抑制できていることがわかる。
次に、モールド材料の厚み、及び保護膜の厚みdと、半導体素子の活性層部分に印加されるストレスとの関係について図面を参照して説明する。
図7は、本実施例において、半導体素子の活性層部分に印加されるストレスの種類及びその大きさと、モールド材料の厚みD(図1参照)、及び保護膜の厚みd(図1参照)との相関関係を示したグラフである。なお、図7において、矢印121は、保護膜101が半導体素子104に与えるストレスの大きさと向きのイメージ線を示し、矢印122は、モールド材料103が半導体素子104に与えるストレスの大きさと向きのイメージ線を示し、矢印123は、矢印121と矢印122との間の力学的ストレスの相殺によって、半導体素子104に実際に印加されるであろう力学的ストレスの大きさと、向きとを表したイメージ線を示す。
前記力学的ストレス相殺関係は、図7に示すように、モールド材料103の厚みD(図1参照)に依存する力学的ストレス122と、ポリアミド101の膜厚dに依存する力学的ストレス123とに密接な関係を持っている。前述のとおり、使用環境下に応じて変化するモールド材料103からの力学的ストレスと、ポリアミド膜101に起因する力学的ストレスとは互いに逆の向きをもっており、結果として半導体素子104に印加される力学的ストレスは121と122の差分の123のようになる。つまりは、ポリアミド膜101とモールド材料103との各膜厚の相関関係が重要となる。
これを裏付けるため、本発明に用いられるポリアミド膜101の膜厚dを7.5μm、9.5μm、14μmと変化させ、モールド材料103の厚さDを一定とした条件下において、前述の乾燥・吸湿試験を実施した。図8は、その試験前後におけるポリアミド膜101の膜厚dと、半導体素子(ホール素子)の不平衡電圧Vuの変動バラツキ(偏差)との関係を示すグラフである。図8に示す結果からも、前記力学的ストレス相殺関係の説明が支持される。
以上の結果から、保護膜の材料を、モールド材料の応力を相殺する材料に特定した本発明の半導体装置及びその製造方法によれば、半導体素子及び半導体ICの各チップをプラスチック材料として組み立てた後、吸湿や乾燥等の使用環境の変化により発生するモールド材料起因のストレスが、半導体素子及び半導体ICの各電子デバイスとしての活性層に影響することを効果的に抑制でき、ひいては、半導体素子及び半導体ICの特性信頼性を向上できることが証明された。
(他の実施形態)
以下、本発明に係る半導体装置の他の実施の形態について、図面を参照して説明する。
図9〜図13は、それぞれ、本発明に係る半導体装置の他の実施の形態を示す模式図である。
本発明に係る半導体装置は、図9〜図13のそれぞれに挙げるような構成とされてもよい。なお、以下の説明では、上記実施形態と同様の構成については説明を省略する。また、図11〜図13では、保護膜101の形成領域をハッチングで示している。図9〜図13に示すような形状の保護膜101は、前述の保護膜形成工程における露光処理及び現像処理を適宜調整して形成される。
まず、図9に示す半導体装置1は、電極PAD107が半導体素子104の上面に形成されている構成が上記実施形態と異なる(図1参照)。すなわち、この実施形態では、電極PAD107以外の半導体素子104の上部の一部と側面全てが保護膜101で覆われていることを示している。
また、図10に示す半導体装置1は、半導体素子104の側面が保護膜で覆われていない構成が上記実施形態と異なる(図9参照)。すなわち、この実施形態では、半導体素子104の上部の一部が保護膜101で覆われていることを示している。
また、図11に示す半導体装置1は、8角形の形状を有する保護膜101で半導体素子104を完全に覆っている構成が上記実施形態と異なる。ここで、保護膜101の形状は8角形に限定するものではなく、半導体素子104を完全に覆う多角形であればよい。
また、図12に示す半導体装置1は、円形の形状を有する保護膜101で半導体素子104が完全に覆われている構成が上記実施形態と異なる。ここで、保護膜101の形状は、完全な円形に限定するものではなく、半導体素子104を完全に覆っていれば楕円形でもよい。
また、図13に示す半導体装置1は、半導体素子104を含む半導体基板105のうち、電極PAD107の他端107を含む一部を除くほぼ全ての半導体素子104の上面及び側面並びに半導体基板105の上面が保護膜101によって覆われている構成が上記実施形態と異なる。
本発明は、半導体基板上に形成された半導体素子及び半導体ICの各チップ又は両方のチップを組み合わせてプラスチックパッケージとして組み立てたものにおいて、その使用環境の変化によりプラスチックパッケージの構成材料であるモールド材料が吸湿・乾燥することにより生じる力学的ストレスが、プラスチックパッケージ内に梱包されている半導体素子及び半導体ICの各チップに加わることを抑制できる構造及び製造方法に関するものであり、これにより、高湿度環境下や高乾燥条件下での使用後に半導体素子及び半導体ICの特性変動を抑制することが可能となる。その結果、半導体素子及び半導体ICの電気的特性の信頼性の著しい向上が期待できる。
1 半導体装置
101 保護膜
102 金属ワイヤー
103 モールド材料
104 半導体素子
105 半導体基板
106 リードフレーム
107 電極PAD
108 半導体チップ

Claims (9)

  1. 半導体素子と、該半導体素子を保護する保護膜と、少なくとも前記半導体素子及び前記保護膜を封止するモールド材料とを有する半導体装置であって、
    前記モールド材料が、吸湿により膨張し、乾燥により収縮する材料からなり、前記保護膜が、前記モールド材料の吸湿及び乾燥による前記半導体素子へのストレスを相殺するポリアミド樹脂からなり、
    前記保護膜が、前記半導体素子に電気的に接続された電極PADと共に前記半導体素子の上面及び側面を覆うように形成され、
    前記保護膜の膜厚が、1〜20μmであり、
    前記保護膜が、下記構造式(1)であらわされる構造を構成単位とし、下記構造式(1)の繰り返し数nがポリアミド樹脂を構成する全構成単位数の総数の80〜100%の範囲内であることを特徴とする半導体装置。
    ただし、構造式(1)中、Xは炭素数が6〜15の3価の有機基であり、Yは、炭素数が6〜35の4価又は2価の有機基であり、Wは炭素数が6〜15の2価の有機基であり、lは0又は1以上の整数であり、同時に(n+l)は2〜150の整数であり、R1は炭素以外の元素を含んでもよい、(メタ)アクリロイルオキシメチル基を少なくとも1つ有する炭素が5〜20の脂肪族である。
    Figure 0005155989
  2. 前記保護膜は、構造式(1)中のW、X、及びYが、それぞれ独立に芳香族基、脂環式基、脂肪族基、シロキサン基及びそれらの複合構造の基からなる群より選択される基であることを特徴とする請求項1に記載の半導体装置。
  3. 前記半導体素子がシリコン及び化合物半導体の少なくともいずれかを有することを特徴とする請求項1に記載の半導体装置。
  4. 前記化合物半導体が、GaAs、InSb、InAs、及びAl Ga 1−x As Sb 1−y (ただし、x=0〜1、y=0〜1)の少なくともいずれかを含むことを特徴とする請求項3に記載の半導体装置。
  5. 前記化合物半導体に、Si、Sn、Zn、及びPbの少なくともいずれかがドープされていることを特徴とする請求項3又は4に記載の半導体装置。
  6. 前記半導体素子が、ホール素子、磁気抵抗効果素子、受光素子、及び発光素子の少なくともいずれかを有することを特徴とする請求項に記載の半導体装置。
  7. 前記半導体素子が、シリコンICを有するハイブリッドICであることを特徴とする請求項に記載の半導体装置。
  8. 半導体基板上に形成された半導体素子の上面及び側面を、前記半導体素子に電気的に接続された電極PADと共に覆うように保護膜を形成する保護膜形成工程と、
    リードフレームと前記半導体素子上の電極とを結線する結線工程と、
    前記半導体基板、前記半導体素子、及び保護膜の全部と前記リードフレームの一部とを、吸湿により膨張し、乾燥により収縮するモールド材料で樹脂封止する封止工程とを含む半導体装置の製造方法であって、
    前記保護膜及び前記モールド材料が、吸湿及び乾燥による前記半導体素子へのストレスを相殺する材料からなり、
    前記保護膜の膜厚が、1〜20μmであり、
    前記保護膜が、下記構造式(1)であらわされる構造を構成単位とし、下記構造式(1)の繰り返し数nがポリアミド樹脂を構成する全構成単位数の総数の80〜100%の範囲内であることを特徴とする半導体装置の製造方法。
    (ただし、構造式(1)中、Xは炭素数が6〜15の3価の有機基であり、Yは、炭素数が6〜35の4価又は2価の有機基であり、Wは炭素数が6〜15の2価の有機基であり、lは0又は1以上の整数であり、同時に(n+l)は2〜150の整数であり、R1は炭素以外の元素を含んでもよい(メタ)アクリロイルオキシメチル基を少なくとも1つ有する炭素が5〜20の脂肪族である。
    Figure 0005155989
  9. 前記保護膜形成工程における前記保護膜を焼結形成する際の温度が、170℃以上かつ220℃以下であることを特徴とする請求項8に記載の半導体装置の製造方法。
JP2009271963A 2009-11-30 2009-11-30 半導体装置及びその製造方法 Active JP5155989B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009271963A JP5155989B2 (ja) 2009-11-30 2009-11-30 半導体装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009271963A JP5155989B2 (ja) 2009-11-30 2009-11-30 半導体装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2011114311A JP2011114311A (ja) 2011-06-09
JP5155989B2 true JP5155989B2 (ja) 2013-03-06

Family

ID=44236386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009271963A Active JP5155989B2 (ja) 2009-11-30 2009-11-30 半導体装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP5155989B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014174100A (ja) * 2013-03-12 2014-09-22 Asahi Kasei Electronics Co Ltd 湿度センサ
JP6304700B2 (ja) * 2016-09-26 2018-04-04 株式会社パウデック 半導体パッケージ、モジュールおよび電気機器
WO2018056426A1 (ja) * 2016-09-26 2018-03-29 株式会社パウデック 半導体パッケージ、モジュールおよび電気機器
JP7446125B2 (ja) * 2020-02-21 2024-03-08 エイブリック株式会社 半導体装置およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1135915A (ja) * 1997-07-15 1999-02-09 Toray Ind Inc 樹脂封止型半導体装置
JP3708490B2 (ja) * 2001-09-12 2005-10-19 株式会社東芝 光半導体装置及びその製造方法
JP4240306B2 (ja) * 2004-05-13 2009-03-18 旭化成エレクトロニクス株式会社 回転検出器
JP5169169B2 (ja) * 2007-11-22 2013-03-27 住友ベークライト株式会社 ポリアミド樹脂、ポジ型感光性樹脂組成物、硬化膜、保護膜、絶縁膜およびそれを用いた半導体装置、表示体装置
KR20110122135A (ko) * 2009-02-13 2011-11-09 스미토모 베이클리트 컴퍼니 리미티드 포지티브형 감광성 수지 조성물, 및 그것을 이용한 경화막, 보호막, 절연막, 반도체 장치 및 표시 장치

Also Published As

Publication number Publication date
JP2011114311A (ja) 2011-06-09

Similar Documents

Publication Publication Date Title
US9978694B2 (en) Semiconductor package and method of fabricating the same
US9831195B1 (en) Semiconductor package structure and method of manufacturing the same
US7833810B2 (en) Method of fabricating isolation structures for CMOS image sensor chip scale packages
US8154280B2 (en) Thin film lamination, thin film magnetic sensor using the thin film lamination and method for manufacturing the thin film lamination
US7462930B2 (en) Stack chip and stack chip package having the same
JP5155989B2 (ja) 半導体装置及びその製造方法
US20190267361A1 (en) Methods of manufacturing rf filters
CN107799481B (zh) 半导体封装装置及制造半导体封装装置的方法
US20120138951A1 (en) Semiconductor chip and process for production thereof
US8963545B2 (en) Magnetic sensor
US9805979B2 (en) Electronic package and fabrication method thereof
US9786609B2 (en) Stress shield for integrated circuit package
US10832984B2 (en) Environmental protection for wafer level and package level applications
US6046070A (en) Method of post-processing solid-state imaging device
US20160066406A1 (en) Electronic module and fabrication method thereof
JP6017160B2 (ja) ホール素子
JP2004158668A (ja) ハイブリッド磁気センサ及びその製造方法
US20130341807A1 (en) Semiconductor package structure
US20190341322A1 (en) Semicondcutor package and manufacturing method thereof
Yoon Challenges and improvement of reliability in advanced wafer level packaging technology
US20200259073A1 (en) Hall effect sensor with low offset and high level of stability
US9842828B1 (en) Stacked semiconductor package with compliant corners on folded substrate
US9806034B1 (en) Semiconductor device with protected sidewalls and methods of manufacturing thereof
JP5135612B2 (ja) 半導体素子
US20240266307A1 (en) Method of fabricating semiconductor package and semiconductor package structure including the semiconductor package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5155989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350