JP5150949B2 - Proximity scan exposure apparatus and control method thereof - Google Patents

Proximity scan exposure apparatus and control method thereof Download PDF

Info

Publication number
JP5150949B2
JP5150949B2 JP2007160256A JP2007160256A JP5150949B2 JP 5150949 B2 JP5150949 B2 JP 5150949B2 JP 2007160256 A JP2007160256 A JP 2007160256A JP 2007160256 A JP2007160256 A JP 2007160256A JP 5150949 B2 JP5150949 B2 JP 5150949B2
Authority
JP
Japan
Prior art keywords
substrate
mask
flying height
unit
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007160256A
Other languages
Japanese (ja)
Other versions
JP2008310249A (en
Inventor
俊之 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Technology Co Ltd
Original Assignee
NSK Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Technology Co Ltd filed Critical NSK Technology Co Ltd
Priority to JP2007160256A priority Critical patent/JP5150949B2/en
Priority to KR1020097020367A priority patent/KR101111933B1/en
Priority to KR1020117014245A priority patent/KR101111934B1/en
Priority to PCT/JP2008/056413 priority patent/WO2008120785A1/en
Priority to TW97112393A priority patent/TW200907590A/en
Publication of JP2008310249A publication Critical patent/JP2008310249A/en
Application granted granted Critical
Publication of JP5150949B2 publication Critical patent/JP5150949B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、近接スキャン露光装置及びその制御方法に関し、より詳細には、浮上ユニットによって浮上・保持される基板の浮上量が目標浮上量となるように制御しながら露光する近接スキャン露光装置及びその制御方法に関する。   The present invention relates to a proximity scan exposure apparatus and a control method thereof, and more specifically, a proximity scan exposure apparatus that performs exposure while controlling the flying height of a substrate levitated and held by a flying unit to be a target flying height, and the same It relates to a control method.

従来、大型の薄形テレビ等に用いられる液晶ディスプレイやプラズマディスプレイ等の大型のフラットパネルディスプレイの製造方法として、基板を搬送しながら、基板上にマスクのパターンを露光転写するものが知られている(例えば、特許文献1参照。)。特許文献1に記載の露光装置では、基板の下側で、排気孔から気体を噴出及び吸気孔から噴出気体を吸引する吸排気エアパッド上で基板を浮上させ、この基板の一端を把持する基板駆動ユニットによって基板を一定方向に搬送しながら、露光する。
特開2007−72267号公報
Conventionally, as a manufacturing method of a large flat panel display such as a liquid crystal display or a plasma display used for a large thin television, a method of exposing and transferring a mask pattern onto the substrate while conveying the substrate is known. (For example, refer to Patent Document 1). In the exposure apparatus described in Patent Document 1, the substrate is driven on the lower side of the substrate by floating the substrate on an intake / exhaust air pad that ejects gas from the exhaust hole and sucks the ejected gas from the intake hole, and grips one end of the substrate The substrate is exposed while being transported in a certain direction by the unit.
JP 2007-72267 A

ところで、基板と吸排気エアパッド間の距離が大きく変化すると、露光時に吸排気エアパッドからの反射光量がばらついて、露光むらや解像度低下等、露光精度が低下する。特許文献1に記載の露光装置は、空気等の気体によって吸排気エアパッド上で浮上する基板の側縁部を、一対のグリップを有する基板把持部で把持して所定の方向に搬送する。吸排気エアパッド上での基板の浮上量は、気体供給装置と気体吸引装置の動作を制御して排気孔からの気体の噴出圧と吸気孔からの吸気圧の調節により行われている。しかし、基板の浮上量を所定の浮上量に維持するための具体的制御方法については記載されていない。   By the way, if the distance between the substrate and the air intake / exhaust air pad changes greatly, the amount of reflected light from the air intake / exhaust air pad varies during exposure, and the exposure accuracy decreases such as uneven exposure and reduced resolution. The exposure apparatus described in Patent Document 1 conveys a side edge portion of a substrate floating on an intake / exhaust air pad by a gas such as air with a substrate holding portion having a pair of grips in a predetermined direction. The floating amount of the substrate on the intake / exhaust air pad is controlled by controlling the operation of the gas supply device and the gas suction device to adjust the gas ejection pressure from the exhaust hole and the intake pressure from the intake hole. However, a specific control method for maintaining the flying height of the substrate at a predetermined flying height is not described.

また、基板の浮上量を制御するだけでは、基板の板厚にばらつきがある場合、これに対応することができず、マスクと基板上面とのギャップが変動して露光精度に悪影響を及ぼす問題があった。特に、全ての吸排気エアパッドの吸気孔が単一の吸気圧に、全ての吸排気エアパッドの排気孔が単一の排気圧に調節されているため、単一基板内での板厚にばらつきがある場合にも対応できないという問題がある。   Also, if the substrate thickness varies only by controlling the flying height of the substrate, it is not possible to cope with this, and the gap between the mask and the upper surface of the substrate fluctuates, and the exposure accuracy is adversely affected. there were. In particular, since the intake holes of all intake / exhaust air pads are adjusted to a single intake pressure, and the exhaust holes of all intake / exhaust air pads are adjusted to a single exhaust pressure, the board thickness within a single substrate varies. There is a problem that even some cases cannot be handled.

本発明は、前述した課題に鑑みてなされたものであり、その目的は、浮上ユニットによって浮上する基板の浮上量を精度よく制御して、露光精度を向上させることができる近接スキャン露光装置及びその制御方法を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a proximity scan exposure apparatus that can accurately control the flying height of a substrate levitated by a levitating unit and improve exposure accuracy, and its It is to provide a control method.

本発明の上記目的は、下記の構成により達成される。
(1) 基板を浮上させて支持する浮上ユニット、及び該基板を把持しながら所定方向に搬送する基板駆動ユニットを備える基板搬送機構と、マスクを保持するマスク保持部と、前記基板搬送機構に搬送される前記基板の浮上量を検出するセンサと、を備え、前記マスクに近接しながら所定方向に搬送される基板に対して前記マスクを介して露光用光を照射し、前記基板に前記マスクのパターンを露光する近接スキャン露光装置の制御方法であって、
前記センサによって前記基板の浮上量を検出する工程と、
前記検出された基板の浮上量と目標浮上量との差が許容値を越えている時、前記浮上ユニットのエア流量とエア圧力の少なくとも一方を制御する工程と、
前記センサによって前記基板の板厚を検出する工程と、
前記基板の浮上量と前記検出された基板の板厚に基づいて、前記基板と前記マスクとのギャップを補正するように、前記マスク保持部を移動するためのマスク駆動部を駆動する工程と、
を備え
前記浮上ユニットは、フレーム上に設けられ、
前記センサは、前記フレームに固定されて前記基板の浮上量を検出することを特徴とする近接スキャン露光装置の制御方法。
) 前記基板と前記マスクとのギャップを、前記マスクの非露光領域にて検出する他のセンサをさらに備えることを特徴とする(1)に記載の近接スキャン露光装置の制御方法。
) マスクに近接しながら所定方向に搬送される基板に対して前記マスクを介して露光用光を照射し、前記基板に前記マスクのパターンを露光する近接スキャン露光装置であって、 前記基板を浮上させて支持する浮上ユニット、及び該基板を把持しながら所定方向に搬送する基板駆動ユニットを備える基板搬送機構と、
前記マスクを保持するマスク保持部と、
前記基板搬送機構に搬送される前記基板の浮上量及び板厚を検出するセンサと、
前記センサによって前記基板の浮上量を検出し、前記検出された基板の浮上量と目標浮上量との差が許容値を越えている時、前記浮上ユニットのエア流量とエア圧力の少なくとも一方を制御する制御部と、
前記基板の浮上量と前記検出された基板の板厚に基づいて、前記基板と前記マスクとのギャップを補正するように、前記マスク保持部を移動するためのマスク駆動部と、
を備え
前記浮上ユニットは、フレーム上に設けられ、
前記センサは、前記フレームに固定されて前記基板の浮上量を検出することを特徴とする近接スキャン露光装置。
) 前記基板と前記マスクとのギャップを、前記マスクの非露光領域にて検出する他のセンサをさらに備えることを特徴とする()に記載の近接スキャン露光装置。
The above object of the present invention can be achieved by the following constitution.
(1) A substrate transport mechanism including a floating unit that floats and supports a substrate, a substrate driving unit that transports the substrate in a predetermined direction while gripping the substrate, a mask holding unit that holds a mask, and the substrate transport mechanism And a sensor for detecting the flying height of the substrate, irradiating the substrate with the exposure light through the mask on the substrate conveyed in a predetermined direction while approaching the mask, A method of controlling a proximity scanning exposure apparatus that exposes a pattern,
Detecting the flying height of the substrate by the sensor;
When the difference between the detected flying height of the substrate and the target flying height exceeds an allowable value, controlling at least one of the air flow rate and the air pressure of the flying unit;
Detecting the thickness of the substrate by the sensor;
Driving a mask driving unit for moving the mask holding unit so as to correct the gap between the substrate and the mask based on the flying height of the substrate and the detected thickness of the substrate;
Equipped with a,
The levitation unit is provided on a frame;
The method of controlling a proximity scan exposure apparatus, wherein the sensor is fixed to the frame and detects the flying height of the substrate .
( 2 ) The control method of the proximity scan exposure apparatus according to (1), further comprising another sensor that detects a gap between the substrate and the mask in a non-exposure region of the mask.
( 3 ) A proximity scan exposure apparatus that irradiates exposure light through the mask onto a substrate conveyed in a predetermined direction while approaching the mask, and exposes the pattern of the mask on the substrate, A substrate transport mechanism including a floating unit that floats and supports the substrate, and a substrate drive unit that transports the substrate in a predetermined direction while holding the substrate,
A mask holding unit for holding the mask;
A sensor for detecting the flying height and thickness of the substrate transported to the substrate transport mechanism;
The sensor detects the flying height of the substrate, and controls at least one of the air flow rate and the air pressure of the flying unit when the difference between the detected flying height of the substrate and the target flying height exceeds an allowable value. A control unit,
A mask driving unit for moving the mask holding unit so as to correct a gap between the substrate and the mask based on the flying height of the substrate and the detected thickness of the substrate;
Equipped with a,
The levitation unit is provided on a frame;
The proximity scanning exposure apparatus , wherein the sensor is fixed to the frame and detects the flying height of the substrate .
( 4 ) The proximity scan exposure apparatus according to ( 3 ), further comprising another sensor that detects a gap between the substrate and the mask in a non-exposure region of the mask.

本発明の近接スキャン露光装置及びその制御方法によれば、基板搬送機構によって搬送されると共に、浮上ユニット上で浮上されて支持される基板の浮上量をセンサで検出し、検出された基板の浮上量と目標浮上量との差が許容値を越えている時、浮上ユニットのエア流量とエア圧力の少なくとも一方を制御するようにした。これにより、基板の浮上量を目標浮上量の許容値内に基板を精度よく支持することができ、露光精度の向上を図ることができる。   According to the proximity scan exposure apparatus and the control method thereof of the present invention, the flying height of the substrate that is transported by the substrate transport mechanism and that is floated and supported on the floating unit is detected by the sensor, and the detected floating of the substrate is detected. When the difference between the amount and the target flying height exceeds the allowable value, at least one of the air flow rate and air pressure of the flying unit is controlled. Accordingly, the substrate can be supported with a flying height within the allowable value of the target flying height, and the exposure accuracy can be improved.

また、センサによって基板の板厚を検出し、基板の浮上量と基板の板厚に基づいて、マスク保持部を移動するためのマスク駆動部を駆動して、基板とマスクとのギャップを補正するようにしたので、基板の板厚が変動した場合にも、変動を吸収して精度の高い露光を行うことができる。   In addition, the thickness of the substrate is detected by the sensor, and the mask driving unit for moving the mask holding unit is driven based on the flying height of the substrate and the thickness of the substrate to correct the gap between the substrate and the mask. Thus, even when the thickness of the substrate fluctuates, exposure with high accuracy can be performed by absorbing the fluctuation.

以下、本発明に係る近接スキャン露光装置及びその制御方法の一実施形態を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of a proximity scan exposure apparatus and a control method thereof according to the present invention will be described in detail with reference to the drawings.

先ず、本実施形態の近接スキャン露光装置1の構成について概略説明する。図1及び図2に示すように、本実施形態の近接スキャン露光装置1は、基板(カラーフィルタ基板)Wを浮上させて支持すると共に、所定方向(図1のX方向)に搬送する基板搬送機構10と、複数のマスクMをそれぞれ保持し、所定方向と交差する方向(図1のY方向)に沿って千鳥状に二列配置された複数(図1に示す実施形態において、左右それぞれ6個)のマスク保持部11と、マスク保持部11を移動するためのマスク駆動部12と、複数のマスク保持部11の上部にそれぞれ配置されて露光用光を照射する複数の照射部14と、近接スキャン露光装置1の各作動部分の動きを制御する制御部15と、を主に備える。   First, a schematic configuration of the proximity scan exposure apparatus 1 of the present embodiment will be described. As shown in FIGS. 1 and 2, the proximity scanning exposure apparatus 1 of the present embodiment floats and supports a substrate (color filter substrate) W and transports the substrate in a predetermined direction (X direction in FIG. 1). A plurality of mechanisms 10 and a plurality of masks M are respectively held and arranged in two rows in a staggered manner along a direction (Y direction in FIG. 1) intersecting a predetermined direction (6 in each of the left and right in the embodiment shown in FIG. 1). ) Mask holding units 11, a mask driving unit 12 for moving the mask holding unit 11, a plurality of irradiation units 14 arranged on the top of the plurality of mask holding units 11 to irradiate exposure light, And a control unit 15 that controls the movement of each operating part of the proximity scan exposure apparatus 1.

基板搬送機構10は、基板WをX方向に搬送する領域、即ち、複数のマスク保持部11の下方領域、及びその下方領域からX方向両側に亘る領域に設けられた浮上ユニット16と、基板WのY方向一側(図1において上辺)を保持してX方向に搬送する基板駆動ユニット17とを備える。浮上ユニット16は、複数のフレーム19上にそれぞれ設けられた複数の排気エアパッド20及び吸排気エアパッド21を備え、ポンプ45,55やソレノイドバルブ44,54を介して排気エアパッド20や吸排気エアパッド21からエアを排気或いは、吸排気する。基板駆動ユニット17は、図1に示すように、浮上ユニット16によって浮上、支持された基板Wの一端を保持する吸着パッド22を備え、モータ23、ボールねじ24、及びナット(図示せず)からなるボールねじ機構25によって、ガイドレール26に沿って基板WをX方向に搬送する。なお、図2に示すように、複数のフレーム19は、地面にレベルブロック18を介して設置された装置ベース27上に他のレベルブロック28を介して配置されている。また、基板Wは、ボールねじ機構25の代わりに、リニアサーボアクチュエータによって搬送されてもよい。   The substrate transport mechanism 10 includes a floating unit 16 provided in a region for transporting the substrate W in the X direction, that is, a region below the plurality of mask holders 11 and a region extending from the bottom region to both sides in the X direction. And a substrate driving unit 17 that holds the one side in the Y direction (the upper side in FIG. 1) and conveys it in the X direction. The levitation unit 16 includes a plurality of exhaust air pads 20 and intake / exhaust air pads 21 respectively provided on a plurality of frames 19, and is connected to the exhaust air pads 20 and the intake / exhaust air pads 21 via pumps 45 and 55 and solenoid valves 44 and 54. Exhaust or intake / exhaust air. As shown in FIG. 1, the substrate driving unit 17 includes a suction pad 22 that holds one end of the substrate W that is levitated and supported by the levitating unit 16, and includes a motor 23, a ball screw 24, and a nut (not shown). The substrate W is transported in the X direction along the guide rail 26 by the ball screw mechanism 25. As shown in FIG. 2, the plurality of frames 19 are arranged via another level block 28 on the apparatus base 27 installed on the ground via the level block 18. Further, the substrate W may be transported by a linear servo actuator instead of the ball screw mechanism 25.

マスク駆動部12は、フレーム(図示せず)に取り付けられ、マスク保持部11をX方向に沿って駆動するX方向駆動部31と、X方向駆動部31の先端に取り付けられ、マスク保持部11をY方向に沿って駆動するY方向駆動部32と、Y方向駆動部32の先端に取り付けられ、マスク保持部11をθ方向(X,Y方向からなる水平面の法線回り)に回転駆動するθ方向駆動部33と、θ方向駆動部33の先端に取り付けられ、マスク保持部11をZ方向(X,Y方向からなる水平面の鉛直方向)に駆動するZ方向駆動部34と、を有する。これにより、Z方向駆動部34の先端に取り付けられたマスク保持部11は、マスク駆動部12によってX,Y,Z,θ方向に移動可能である。なお、X,Y,θ,Z方向駆動部31,32,33,34の配置の順序は、適宜変更可能である。   The mask drive unit 12 is attached to a frame (not shown), and is attached to the X direction drive unit 31 that drives the mask holding unit 11 along the X direction, and the tip of the X direction drive unit 31. Is attached to the tip of the Y direction drive unit 32, and the mask holding unit 11 is rotationally driven in the θ direction (around the horizontal plane of the X and Y directions). A θ-direction drive unit 33 and a Z-direction drive unit 34 that is attached to the tip of the θ-direction drive unit 33 and drives the mask holding unit 11 in the Z direction (vertical direction of the horizontal plane composed of the X and Y directions). Accordingly, the mask holding unit 11 attached to the tip of the Z direction driving unit 34 can be moved in the X, Y, Z, and θ directions by the mask driving unit 12. Note that the order of arrangement of the X, Y, θ, and Z direction drive units 31, 32, 33, and 34 can be changed as appropriate.

また、図1に示すように、千鳥状に二列配置された搬入側及び搬出側マスク保持部11a,11b間には、各マスク保持部11a,11bのマスクMを同時に交換可能なマスクチェンジャー2が配設されている。マスクチェンジャー2により搬送される使用済み或いは未使用のマスクMは、マスクストッカ3,4との間でローダー5により受け渡しが行われる。なお、マスクストッカ3,4とマスクチェンジャー2とで受け渡しが行われる間にマスクプリアライメント機構(図示せず)によってマスクMのプリアライメントが行われる。   Further, as shown in FIG. 1, a mask changer 2 capable of simultaneously exchanging the masks M of the mask holding portions 11a and 11b between the carry-in side and carry-out side mask holding portions 11a and 11b arranged in two rows in a staggered manner. Is arranged. The used or unused mask M transported by the mask changer 2 is transferred to and from the mask stockers 3 and 4 by the loader 5. The mask M is pre-aligned by a mask pre-alignment mechanism (not shown) during the transfer between the mask stockers 3 and 4 and the mask changer 2.

図2に示すように、マスク保持部11の上部に配置される照射部14は、光源6、ミラー7、オプチカルインテグレータ(図示せず)、シャッター(図示せず)等を備える。光源6としては、紫外線を含んだ露光用光ELを放射する、例えば超高圧水銀ランプ、キセノンランプ又は紫外線発光レーザが使用される。   As shown in FIG. 2, the irradiation unit 14 disposed on the upper part of the mask holding unit 11 includes a light source 6, a mirror 7, an optical integrator (not shown), a shutter (not shown), and the like. As the light source 6, for example, an ultra-high pressure mercury lamp, a xenon lamp or an ultraviolet light emitting laser that emits exposure light EL including ultraviolet light is used.

このような近接スキャン露光装置1は、浮上ユニット16の排気エアパッド20及び吸排気エアパッド21の空気流によって基板Wを浮上させて保持し、基板Wの一端を基板駆動ユニット17で吸着してX方向に搬送する。そして、マスク保持部11の下方に位置する基板Wに対して、照射部14からの露光用光ELがマスクMを介して照射され、マスクMのパターンを基板Wに塗布されたカラーレジストに転写する。   Such a proximity scan exposure apparatus 1 floats and holds the substrate W by the air flow of the exhaust air pad 20 and the intake / exhaust air pad 21 of the levitation unit 16, and adsorbs one end of the substrate W by the substrate drive unit 17 in the X direction. Transport to. Then, the exposure light EL from the irradiation unit 14 is irradiated to the substrate W located below the mask holding unit 11 through the mask M, and the pattern of the mask M is transferred to the color resist applied to the substrate W. To do.

ここで、図3に示すように、浮上ユニット16のうち、吸排気エアパッド21は、搬送される基板Wと対向する上面に複数の開口を有すると共に、互いに連通する排気孔41と、同じく、搬送される基板Wと対向する上面に複数の開口を有すると共に、互いに連通する吸気孔51と、を備える。   Here, as shown in FIG. 3, in the levitation unit 16, the intake / exhaust air pad 21 has a plurality of openings on the upper surface facing the substrate W to be transported, and is similarly transported to the exhaust holes 41 communicating with each other. And an intake hole 51 having a plurality of openings on the upper surface facing the substrate W to be communicated with each other.

排気孔41は、エア圧力及びエア流量を調整すべく開度調節可能な正圧制御弁44と、正圧ポンプ45とに接続されており、吸排気エアパッド21と正圧制御弁44との間には、排気孔41に供給される圧縮空気のエア圧力を検出する圧力センサ42と、排気孔41に供給される圧縮空気のエア流量を検出する流量センサ43とが配置されている。吸気孔51は、エア圧力及びエア流量を調整すべく開度調節可能な真空圧制御弁54と、真空圧ポンプ55とに接続されており、吸排気エアパッド21と真空圧制御弁54との間には、吸気孔51から吸引されるエア圧力を検出する圧力センサ52と、吸気孔51から吸引されるエア流量を検出する流量センサ53とが配置されている。なお、正圧ポンプ45及び真空圧ポンプ55は、吸排気エアパッド21毎に設けずに、単一の正圧ポンプ45及び単一の真空圧ポンプ55を共有してもよく、或いは、吸排気エアパッド21をグループ化して、グループ毎に設けても良い。   The exhaust hole 41 is connected to a positive pressure control valve 44 whose opening degree can be adjusted so as to adjust the air pressure and the air flow rate, and a positive pressure pump 45, and between the intake / exhaust air pad 21 and the positive pressure control valve 44. The pressure sensor 42 for detecting the air pressure of the compressed air supplied to the exhaust hole 41 and the flow rate sensor 43 for detecting the air flow rate of the compressed air supplied to the exhaust hole 41 are arranged. The intake hole 51 is connected to a vacuum pressure control valve 54 whose opening degree can be adjusted to adjust air pressure and air flow rate, and a vacuum pressure pump 55, and between the intake / exhaust air pad 21 and the vacuum pressure control valve 54. The pressure sensor 52 for detecting the air pressure sucked from the intake hole 51 and the flow sensor 53 for detecting the air flow rate sucked from the intake hole 51 are arranged. The positive pressure pump 45 and the vacuum pressure pump 55 may not be provided for each intake / exhaust air pad 21, but may share a single positive pressure pump 45 and a single vacuum pressure pump 55, or an intake / exhaust air pad. 21 may be grouped and provided for each group.

また、図1及び図4に示すように、マスク保持部11より基板搬入側で、搬送される基板Wの下方には、基板ギャップセンサ60がY方向に沿って複数配置されており、また、各マスク保持部11の上方には、マスクギャップセンサ61がそれぞれ配置されている。   Further, as shown in FIGS. 1 and 4, a plurality of substrate gap sensors 60 are arranged along the Y direction on the substrate carry-in side from the mask holding unit 11 and below the substrate W to be transported. A mask gap sensor 61 is disposed above each mask holder 11.

基板ギャップセンサ60は、搬送される基板Wの下面Wb及び上面Waの位置を検出するためのものであり、例えば、光を照射して基板Wの下面Wb及び上面Waから反射する反射光を検出する光学センサである。基板ギャップセンサ60は、フレーム19に固定されているので、基板Wの下面Wbの位置を検出することによって浮上ユニット16と基板WとのギャップG1、即ち基板Wの浮上量を検出する。また、基板Wの下面Wbの位置と上面Waの位置との差から、基板Wの厚さtが求められる。   The substrate gap sensor 60 is for detecting the positions of the lower surface Wb and the upper surface Wa of the substrate W to be transferred. For example, the substrate gap sensor 60 detects reflected light reflected from the lower surface Wb and the upper surface Wa of the substrate W. It is an optical sensor. Since the substrate gap sensor 60 is fixed to the frame 19, the gap G <b> 1 between the flying unit 16 and the substrate W, that is, the flying height of the substrate W is detected by detecting the position of the lower surface Wb of the substrate W. Further, the thickness t of the substrate W is obtained from the difference between the position of the lower surface Wb of the substrate W and the position of the upper surface Wa.

マスクギャップセンサ61は、基板ギャップセンサ60と同様に、例えば、照射した光の反射光を検出する光学センサであり、マスク保持部11によって保持されたマスクMの上面Maの位置と下面Mbの位置、及び基板Wの上面Waの位置を、マスクMの非露光領域にて検出する。また、検出されたマスクMの下面MSの位置及び基板Wの上面Waの位置から、マスクMと基板WとのギャップG2が求められる。   Similar to the substrate gap sensor 60, the mask gap sensor 61 is, for example, an optical sensor that detects the reflected light of the irradiated light, and the position of the upper surface Ma and the position of the lower surface Mb of the mask M held by the mask holding unit 11. And the position of the upper surface Wa of the substrate W are detected in the non-exposed region of the mask M. Further, the gap G2 between the mask M and the substrate W is obtained from the detected position of the lower surface MS of the mask M and the position of the upper surface Wa of the substrate W.

従って、制御部15は、基板ギャップセンサ60によって検出される基板Wと浮上ユニット16間の浮上量G1に基づいて、基板Wの浮上量G1が目標浮上量となるように、圧力センサ42、52及び流量センサ43、53によって排気及び吸気される空気のエア圧力及びエア流量を検出しながら、所定のエア圧力及びエア流量となるようにソレノイドバルブを電気信号により開閉制御する。これにより、基板Wと浮上ユニット16との間の流体圧バランスが調整され、基板Wの浮上量が目標浮上量となるように制御する。   Therefore, the control unit 15 uses the pressure sensors 42 and 52 so that the floating amount G1 of the substrate W becomes the target floating amount based on the floating amount G1 between the substrate W and the floating unit 16 detected by the substrate gap sensor 60. While the air pressure and air flow rate of the air exhausted and taken in by the flow rate sensors 43 and 53 are detected, the solenoid valve is controlled to open and close by an electric signal so that the predetermined air pressure and air flow rate are obtained. Thereby, the fluid pressure balance between the substrate W and the flying unit 16 is adjusted, and the flying height of the substrate W is controlled to be the target flying height.

以下、基板Wの浮上量の具体的な制御について、図5〜図9を参照して説明する。まず、マスク保持部11より搬入側で、排気エアパッド20によって浮上・支持された基板Wが基板駆動ユニット17によってマスク保持部11に向けて搬送される。そして、マスク保持部11より搬入側の吸排気エアパッド21上で、排気孔41及び吸気孔51によって吸排気を行うことで、基板Wと浮上ユニット16との間の流体圧バランスを調整して基板Wを浮上させる。   Hereinafter, specific control of the flying height of the substrate W will be described with reference to FIGS. First, on the carry-in side from the mask holding unit 11, the substrate W levitated and supported by the exhaust air pad 20 is transported toward the mask holding unit 11 by the substrate driving unit 17. Then, the intake / exhaust is performed by the exhaust holes 41 and the intake holes 51 on the intake / exhaust air pad 21 on the carry-in side from the mask holding unit 11, thereby adjusting the fluid pressure balance between the substrate W and the floating unit 16. W rises.

尚、吸排気エアパッド21の排気孔41及び吸気孔51のエア圧力、エア流量は、予め実際の基板Wを用いて実測により求められた、図9に示す、基板浮上量とエア圧力、エア流量との浮上特性データから、目標とする浮上量に相当するエア圧力、エア流量とされる。この浮上特性データは、実測により求められるので、計算では算出できない、配管の引き回しによる抵抗分、即ち、配管の長さや曲げによる損失分を含めた相対関係を把握することができる。   Note that the air pressure and air flow rate of the exhaust hole 41 and the intake hole 51 of the intake / exhaust air pad 21 are obtained in advance by actual measurement using the actual substrate W, as shown in FIG. The air pressure and air flow corresponding to the target flying height are obtained from the flying characteristics data. Since this levitation characteristic data is obtained by actual measurement, it is possible to grasp the relative relationship including the resistance due to piping routing, that is, the length of the piping and the loss due to bending, which cannot be calculated by calculation.

そして、図5及び図7に示すように、基板Wが搬送されて基板ギャップセンサ60の位置に達すると、基板ギャップセンサ60が基板Wの下面Wbの位置(1層目)及び上面Waの位置(2層目)を検出して取り込み(ステップS1)、基板Wの浮上量G1と基板Wの板厚tとを演算により求める(ステップS2)。求められた浮上量G1が異常か否かを判別し(ステップS3)、異常であれば浮上量エラーと判断してマスク駆動部12のZ方向駆動部34を作動させてマスク保持部11を退避させ、基板WとマスクMとの干渉を防止すると共に、基板駆動ユニット17による基板Wの搬送を中止するなどの処置を行って、基板W及びマスクMの損傷を防止する(ステップS4)。   Then, as shown in FIGS. 5 and 7, when the substrate W is transported and reaches the position of the substrate gap sensor 60, the substrate gap sensor 60 is positioned at the lower surface Wb (first layer) and the upper surface Wa. The (second layer) is detected and taken in (step S1), and the flying height G1 of the substrate W and the thickness t of the substrate W are obtained by calculation (step S2). It is determined whether or not the obtained flying height G1 is abnormal (step S3). If the flying height G1 is abnormal, it is determined that there is a flying height error, and the Z direction driving unit 34 of the mask driving unit 12 is operated to retract the mask holding unit 11. In addition, the substrate W and the mask M are prevented from interfering with each other, and the substrate drive unit 17 stops the conveyance of the substrate W to prevent the substrate W and the mask M from being damaged (step S4).

浮上量が正常であれば、浮上量が目標浮上量に対して許容値内にあるかが判断され(ステップS5)、許容値内であれば制御カウンタ値をクリアし(ステップS6)、更に、基板Wの板厚tが許容値内にあるか否かを判断する(ステップS7)。板厚tが許容値内になければ、基板WはZ方向駆動部34にて補正不能な板厚であると判断し、基板板厚エラー処理とする(ステップS8)。また、基板Wの板厚tが許容値内であれば、検出された基板Wの浮上量と板厚tに基づいてマスク駆動部12のZ方向駆動部34を作動させ、基板WとマスクMとのギャップG2が所定の露光ギャップとなるように補正する(ステップS9)。これにより、基板Wの浮上量G1及び板厚tが変動しても、該変動分の誤差を吸収することができる。   If the flying height is normal, it is determined whether the flying height is within the allowable value with respect to the target flying height (step S5). If the flying height is within the allowable value, the control counter value is cleared (step S6). It is determined whether or not the thickness t of the substrate W is within an allowable value (step S7). If the plate thickness t is not within the allowable value, it is determined that the substrate W has a plate thickness that cannot be corrected by the Z-direction drive unit 34, and a substrate plate thickness error process is performed (step S8). On the other hand, if the plate thickness t of the substrate W is within the allowable value, the Z-direction drive unit 34 of the mask drive unit 12 is operated based on the detected flying height of the substrate W and the plate thickness t, and the substrate W and the mask M The gap G2 is corrected to a predetermined exposure gap (step S9). Thereby, even if the flying height G1 and the plate thickness t of the substrate W fluctuate, the error corresponding to the fluctuation can be absorbed.

さらに、ステップS5において、浮上量G1が許容値内にないと判断されると、浮上量制御カウンタをインクリメントした後(ステップS10)、浮上量制御カウンタ値が許容値内にあるかが判断される(ステップS11)。浮上量制御カウンタ値が許容値内になければ、後述する浮上量制御を行っても目標浮上量に制御されないと判断して、浮上量制御不能エラー処理とする(ステップS12)。   Further, when it is determined in step S5 that the flying height G1 is not within the allowable value, after the flying height control counter is incremented (step S10), it is determined whether the flying height control counter value is within the allowable value. (Step S11). If the flying height control counter value is not within the allowable value, it is determined that the flying height control described later is not controlled to the target flying height, and the flying height control impossible error process is performed (step S12).

一方、浮上量制御カウンタ値が許容値内であれば、浮上量制御シーケンスに移行する。具体的に、該シーケンスでは、図8に示すように、基板ギャップセンサ60で実測された基板Wの浮上量を確認し(ステップS13)、目標浮上量との差から、補正すべき浮上量に対応するエア圧力及びエア流量を求める(ステップS14)。   On the other hand, if the flying height control counter value is within the allowable value, the flow proceeds to the flying height control sequence. Specifically, in this sequence, as shown in FIG. 8, the flying height of the substrate W measured by the substrate gap sensor 60 is confirmed (step S13), and the flying height to be corrected is determined from the difference from the target flying height. The corresponding air pressure and air flow rate are obtained (step S14).

そして、制御部15は、圧力センサ42、52及び流量センサ43、53によって排気孔41及び吸気孔51から排気及び吸気される空気のエア圧力及びエア流量を検出しながら、所定のエア圧力及びエア流量となるようにソレノイドバルブを開閉してエア圧力及びエア流量を制御する(ステップS15)。   Then, the control unit 15 detects the air pressure and the air flow rate of the air exhausted and sucked from the exhaust hole 41 and the intake hole 51 by the pressure sensors 42 and 52 and the flow rate sensors 43 and 53, and the predetermined air pressure and air flow. The solenoid valve is opened / closed to control the air pressure and the air flow rate so as to achieve the flow rate (step S15).

次いで、エア流量が許容範囲内にあるかを判断し(ステップS16)、許容範囲から外れているとエア流量エラー処理を行い(ステップS17)、許容範囲内であればエア圧力が許容範囲内にあるかが判断される(ステップS18)。そして、許容範囲から外れているとエア圧力エラー処理を行い(ステップS19)、許容範囲内であれば再びステップS1の前に戻って、同様の制御が繰り返し行われる。なお、上述する基板板厚エラー処理、浮上量制御不能エラー処理、エア流量エラー処理、エア圧力エラー処理は、上述した浮上量エラー処理と同様、Z方向駆動部34を作動させてマスク保持部11を退避させると共に、基板駆動ユニット17による基板Wの搬送を中止する等の処置を行う。   Next, it is determined whether the air flow rate is within the allowable range (step S16). If the air flow rate is out of the allowable range, air flow error processing is performed (step S17). It is determined whether or not there is (step S18). If it is out of the allowable range, an air pressure error process is performed (step S19). If it is within the allowable range, the process returns to step S1 again and the same control is repeated. The above-described substrate plate thickness error processing, flying height control impossible error processing, air flow error processing, and air pressure error processing are performed by operating the Z direction driving unit 34 and the mask holding unit 11 in the same manner as the above flying height error processing. Is taken out, and the substrate driving unit 17 stops the conveyance of the substrate W.

これにより、吸排気エアパッド21の排気孔41及び吸気孔51から排気、また吸気される空気の圧力、流量が制御されて、基板Wが目標浮上量に精度よく制御されながらマスクMの下方位置に搬送される。   As a result, the pressure and flow rate of the air exhausted and sucked from the exhaust hole 41 and the intake hole 51 of the intake / exhaust air pad 21 are controlled, and the substrate W is positioned below the mask M while being accurately controlled to the target flying height. Be transported.

また、図6に示すように、基板Wがマスクギャップセンサ61の位置に達すると、マスクギャップセンサ61が基板Wの上面Waの位置とマスクMの下面MSの位置とを検出して、基板WとマスクMの間のギャップG2を求める。そして、制御部15は、マスクギャップセンサ61によって得られたギャップG2が所定の露光ギャップとなるように、マスク駆動部12のZ方向駆動部34を作動させてマスク保持部11を移動させる。その後、照射部14からマスクMを介して露光用光ELを照射してマスクMのパターンを基板Wに露光転写する。   6, when the substrate W reaches the position of the mask gap sensor 61, the mask gap sensor 61 detects the position of the upper surface Wa of the substrate W and the position of the lower surface MS of the mask M, and the substrate W And a gap G2 between the mask M and the mask M are obtained. Then, the control unit 15 operates the Z direction driving unit 34 of the mask driving unit 12 to move the mask holding unit 11 so that the gap G2 obtained by the mask gap sensor 61 becomes a predetermined exposure gap. Thereafter, the exposure light EL is irradiated from the irradiation unit 14 through the mask M, and the pattern of the mask M is exposed and transferred to the substrate W.

また、基板ギャップセンサ60は、Y方向に沿って複数配置されているので、各基板ギャップセンサ60で得られた浮上量G1及び基板の板厚tは、基板ギャップセンサ60が位置するY方向位置に対応する各吸排気エアパッド21のエア流量及びエア圧力制御と、基板WとマスクMとのギャップ制御に利用される。従って、吸排気エアパッド21毎に基板Wの浮上量を可変可能であり、露光結果により基板浮上量に起因する露光ムラに対して、基板Wの浮上量を変更して対応することが可能となる。また、少なくとも3箇所の吸排気エアパッドのエア流量及びエア圧力を制御することで、マスク保持部11にチルト機構を設けなくても、基板Wのチルト補正を行うことができる。さらに、基板WのY方向の板厚にばらつきがある場合にも、各マスク保持部11のZ方向駆動部34を駆動して、均一ギャップにて露光することができ、露光精度を向上することができる。   Further, since a plurality of substrate gap sensors 60 are arranged along the Y direction, the flying height G1 and the board thickness t obtained by each substrate gap sensor 60 are the Y direction positions where the substrate gap sensors 60 are located. Are used to control the air flow rate and air pressure of each of the intake / exhaust air pads 21 and to control the gap between the substrate W and the mask M. Accordingly, the flying height of the substrate W can be varied for each intake / exhaust air pad 21, and it is possible to cope with the exposure unevenness caused by the flying height of the substrate by changing the flying height of the substrate W according to the exposure result. . In addition, by controlling the air flow rate and air pressure of at least three intake / exhaust air pads, the tilt correction of the substrate W can be performed without providing a tilt mechanism in the mask holding unit 11. Further, even when the thickness of the substrate W in the Y direction varies, the Z direction driving unit 34 of each mask holding unit 11 can be driven to perform exposure with a uniform gap, thereby improving exposure accuracy. Can do.

本実施形態の近接スキャン露光装置1及びその制御方法によれば、基板搬送機構10によって搬送されると共に、浮上ユニット16上で浮上されて支持される基板Wの浮上量G1を基板ギャップセンサ60で検出し、検出された基板Wの浮上量G1と目標浮上量との差が許容値を越えている時、浮上ユニット16のエア流量及びエア圧力を制御するようにしたので、基板Wを目標浮上量の許容値内に精度よく支持することができる。これにより、露光精度の向上を図ることができる。   According to the proximity scan exposure apparatus 1 and its control method of the present embodiment, the substrate gap sensor 60 determines the flying height G1 of the substrate W that is transported by the substrate transport mechanism 10 and that is floated and supported on the flying unit 16. When the difference between the detected flying height G1 of the substrate W and the target flying height exceeds the allowable value, the air flow rate and the air pressure of the flying unit 16 are controlled. It can be accurately supported within the amount tolerance. As a result, the exposure accuracy can be improved.

また、基板ギャップセンサ60によって基板Wの板厚tを検出し、基板Wの浮上量G1と基板Wの板厚tに基づいて、マスク保持部11を移動するためのマスク駆動部12を駆動して、基板WとマスクMとのギャップG2を補正するようにしたので、基板Wの板厚tが変動した場合にも、変動を吸収して精度の高い露光を行うことができる。   Further, the substrate gap sensor 60 detects the plate thickness t of the substrate W, and drives the mask drive unit 12 for moving the mask holding unit 11 based on the flying height G1 of the substrate W and the plate thickness t of the substrate W. Since the gap G2 between the substrate W and the mask M is corrected, even when the thickness t of the substrate W varies, the variation can be absorbed and high-precision exposure can be performed.

尚、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。例えば、上記実施形態においては、基板Wがカラーフィルタ基板である場合について述べたが、これに限られず、所定の露光パターンを形成するものであれば半導体基板等如何なるものであってもよい。
また、上記実施形態においては、正圧制御弁44、真空圧制御弁54は、エア流量とエア圧力のいずれかを制御するものであってもよい。
In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably. For example, in the above embodiment, the case where the substrate W is a color filter substrate has been described. However, the present invention is not limited to this, and any substrate such as a semiconductor substrate may be used as long as it forms a predetermined exposure pattern.
In the above embodiment, the positive pressure control valve 44 and the vacuum pressure control valve 54 may control either the air flow rate or the air pressure.

本発明の実施形態であるスキャン露光装置の平面図である。It is a top view of the scanning exposure apparatus which is embodiment of this invention. 図1におけるスキャン露光装置の正面図である。It is a front view of the scanning exposure apparatus in FIG. 基板を浮上・支持する浮上ユニットの概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the floating unit which floats and supports a board | substrate. 基板ギャップセンサ及びマスクギャップセンサの位置関係を示す模式図である。It is a schematic diagram which shows the positional relationship of a substrate gap sensor and a mask gap sensor. 基板ギャップセンサによって搬送される基板の浮上量が検出される状態を示す模式図である。It is a schematic diagram which shows the state in which the flying height of the board | substrate conveyed by a board | substrate gap sensor is detected. マスクギャップセンサによってマスク及び基板間のギャップが検出される状態を示す模式図である。It is a schematic diagram which shows the state by which the gap between a mask and a board | substrate is detected by a mask gap sensor. 浮上ユニットからのエア圧力及びエア流量を制御して基板の浮上量を制御する手順を示すフローチャートである。It is a flowchart which shows the procedure which controls the flying height of a board | substrate by controlling the air pressure and air flow rate from a floating unit. 浮上ユニットからのエア圧力及びエア流量を制御して基板の浮上量を制御する手順を示すフローチャートである。It is a flowchart which shows the procedure which controls the flying height of a board | substrate by controlling the air pressure and air flow rate from a floating unit. 基板の浮上量と、エア流量及びエア圧力との浮上特性データを示すテーブルである。It is a table which shows the floating characteristic data of the floating amount of a board | substrate, an air flow rate, and an air pressure.

符号の説明Explanation of symbols

1 近接スキャン露光装置
10 基板搬送機構
11 マスク保持部
12 マスク駆動部
15 制御部
16 浮上ユニット
17 基板駆動ユニット
60 基板ギャップセンサ(センサ)
EL 露光用光
G1 浮上ユニットと基板とのギャップ(浮上量)
G2 基板とマスクとのギャップ
M マスク
t 基板の板厚
W 基板
DESCRIPTION OF SYMBOLS 1 Proximity scanning exposure apparatus 10 Substrate conveyance mechanism 11 Mask holding part 12 Mask drive part 15 Control part 16 Levitation unit 17 Substrate drive unit 60 Substrate gap sensor (sensor)
EL exposure light G1 Gap between flying unit and substrate (flying amount)
G2 Gap between substrate and mask M Mask t Substrate thickness W Substrate

Claims (4)

基板を浮上させて支持する浮上ユニット、及び該基板を把持しながら所定方向に搬送する基板駆動ユニットを備える基板搬送機構と、マスクを保持するマスク保持部と、前記基板搬送機構に搬送される前記基板の浮上量を検出するセンサと、を備え、前記マスクに近接しながら所定方向に搬送される基板に対して前記マスクを介して露光用光を照射し、前記基板に前記マスクのパターンを露光する近接スキャン露光装置の制御方法であって、
前記センサによって前記基板の浮上量を検出する工程と、
前記検出された基板の浮上量と目標浮上量との差が許容値を越えている時、前記浮上ユニットのエア流量とエア圧力の少なくとも一方を制御する工程と、
前記センサによって前記基板の板厚を検出する工程と、
前記基板の浮上量と前記検出された基板の板厚に基づいて、前記基板と前記マスクとのギャップを補正するように、前記マスク保持部を移動するためのマスク駆動部を駆動する工程と、
を備え
前記浮上ユニットは、フレーム上に設けられ、
前記センサは、前記フレームに固定されて前記基板の浮上量を検出することを特徴とする近接スキャン露光装置の制御方法。
A floating unit that floats and supports the substrate, a substrate transport mechanism that includes a substrate driving unit that transports the substrate in a predetermined direction while gripping the substrate, a mask holding unit that holds a mask, and the substrate transport mechanism that transports the substrate A sensor that detects the flying height of the substrate, and irradiates the substrate with the exposure light through the mask and exposes the pattern of the mask to the substrate that is transported in a predetermined direction while being close to the mask. A method for controlling a proximity scan exposure apparatus, comprising:
Detecting the flying height of the substrate by the sensor;
When the difference between the detected flying height of the substrate and the target flying height exceeds an allowable value, controlling at least one of the air flow rate and the air pressure of the flying unit;
Detecting the thickness of the substrate by the sensor;
Driving a mask driving unit for moving the mask holding unit so as to correct the gap between the substrate and the mask based on the flying height of the substrate and the detected thickness of the substrate;
Equipped with a,
The levitation unit is provided on a frame;
The method of controlling a proximity scan exposure apparatus, wherein the sensor is fixed to the frame and detects the flying height of the substrate .
前記基板と前記マスクとのギャップを、前記マスクの非露光領域にて検出する他のセンサをさらに備えることを特徴とする請求項1に記載の近接スキャン露光装置の制御方法。 The method of controlling a proximity scan exposure apparatus according to claim 1, further comprising another sensor that detects a gap between the substrate and the mask in a non-exposure region of the mask. マスクに近接しながら所定方向に搬送される基板に対して前記マスクを介して露光用光を照射し、前記基板に前記マスクのパターンを露光する近接スキャン露光装置であって、 前記基板を浮上させて支持する浮上ユニット、及び該基板を把持しながら所定方向に搬送する基板駆動ユニットを備える基板搬送機構と、
前記マスクを保持するマスク保持部と、
前記基板搬送機構に搬送される前記基板の浮上量及び板厚を検出するセンサと、
前記センサによって前記基板の浮上量を検出し、前記検出された基板の浮上量と目標浮上量との差が許容値を越えている時、前記浮上ユニットのエア流量とエア圧力の少なくとも一方を制御する制御部と、
前記基板の浮上量と前記検出された基板の板厚に基づいて、前記基板と前記マスクとのギャップを補正するように、前記マスク保持部を移動するためのマスク駆動部と、
を備え
前記浮上ユニットは、フレーム上に設けられ、
前記センサは、前記フレームに固定されて前記基板の浮上量を検出することを特徴とする近接スキャン露光装置。
A proximity scan exposure apparatus that irradiates exposure light through a mask onto a substrate conveyed in a predetermined direction while approaching a mask, and exposes a pattern of the mask on the substrate, the substrate being levitated A substrate transport mechanism including a floating unit that supports the substrate and a substrate driving unit that transports the substrate in a predetermined direction while gripping the substrate;
A mask holding unit for holding the mask;
A sensor for detecting the flying height and thickness of the substrate transported to the substrate transport mechanism;
The sensor detects the flying height of the substrate, and controls at least one of the air flow rate and the air pressure of the flying unit when the difference between the detected flying height of the substrate and the target flying height exceeds an allowable value. A control unit,
A mask driving unit for moving the mask holding unit so as to correct a gap between the substrate and the mask based on the flying height of the substrate and the detected thickness of the substrate;
Equipped with a,
The levitation unit is provided on a frame;
The proximity scanning exposure apparatus , wherein the sensor is fixed to the frame and detects the flying height of the substrate .
前記基板と前記マスクとのギャップを、前記マスクの非露光領域にて検出する他のセンサをさらに備えることを特徴とする請求項に記載の近接スキャン露光装置。 The proximity scanning exposure apparatus according to claim 3 , further comprising another sensor that detects a gap between the substrate and the mask in a non-exposure region of the mask.
JP2007160256A 2007-04-03 2007-06-18 Proximity scan exposure apparatus and control method thereof Expired - Fee Related JP5150949B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007160256A JP5150949B2 (en) 2007-06-18 2007-06-18 Proximity scan exposure apparatus and control method thereof
KR1020097020367A KR101111933B1 (en) 2007-04-03 2008-03-31 Exposure apparatus and exposure method
KR1020117014245A KR101111934B1 (en) 2007-04-03 2008-03-31 Exposure apparatus and exposure method
PCT/JP2008/056413 WO2008120785A1 (en) 2007-04-03 2008-03-31 Exposure apparatus and exposure method
TW97112393A TW200907590A (en) 2007-04-03 2008-04-03 Exposure apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007160256A JP5150949B2 (en) 2007-06-18 2007-06-18 Proximity scan exposure apparatus and control method thereof

Publications (2)

Publication Number Publication Date
JP2008310249A JP2008310249A (en) 2008-12-25
JP5150949B2 true JP5150949B2 (en) 2013-02-27

Family

ID=40237868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007160256A Expired - Fee Related JP5150949B2 (en) 2007-04-03 2007-06-18 Proximity scan exposure apparatus and control method thereof

Country Status (1)

Country Link
JP (1) JP5150949B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5057370B2 (en) * 2007-06-15 2012-10-24 Nskテクノロジー株式会社 Proximity scan exposure apparatus and illuminance control method thereof
JP5418962B2 (en) * 2009-04-13 2014-02-19 株式会社ニコン Alignment apparatus, alignment method, exposure apparatus, exposure method, and device manufacturing method
JP5081261B2 (en) * 2010-02-24 2012-11-28 東京エレクトロン株式会社 Coating device
JP5399963B2 (en) * 2010-03-30 2014-01-29 大日本スクリーン製造株式会社 Substrate transfer apparatus and substrate processing apparatus
JP5608469B2 (en) * 2010-08-20 2014-10-15 東京応化工業株式会社 Coating device
US20120064461A1 (en) * 2010-09-13 2012-03-15 Nikon Corporation Movable body apparatus, exposure apparatus, device manufacturing method, flat-panel display manufacturing method, and object exchange method
JP5933920B2 (en) * 2010-12-24 2016-06-15 東京応化工業株式会社 Coating apparatus and coating method
JP6055253B2 (en) * 2012-09-25 2016-12-27 東レエンジニアリング株式会社 Substrate levitating apparatus and substrate levitating amount measuring method
EP2752870A1 (en) 2013-01-04 2014-07-09 Süss Microtec Lithography GmbH Chuck, in particular for use in a mask aligner
JP6535206B2 (en) * 2014-05-08 2019-06-26 株式会社ブイ・テクノロジー Exposure method and exposure apparatus
JP2016161007A (en) 2015-02-27 2016-09-05 株式会社日本製鋼所 Gas flotation workpiece support device and non-contact workpiece support method
JP2017126011A (en) * 2016-01-15 2017-07-20 株式会社東芝 Exposure apparatus
US10689209B2 (en) 2016-06-21 2020-06-23 Core Flow Ltd. Noncontact support platform with edge lifting
JP6456904B2 (en) * 2016-12-07 2019-01-23 株式会社日本製鋼所 Gas floating work support device
JP6890438B2 (en) * 2017-03-03 2021-06-18 株式会社Screenホールディングス Floating amount calculation device, coating device and coating method
JP6814879B2 (en) * 2018-04-03 2021-01-20 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Devices, systems and methods for aligning substrates
CN112236379B (en) * 2018-06-10 2022-10-11 科福罗有限公司 Non-contact supporting platform controlled by open loop
KR102278091B1 (en) * 2021-03-26 2021-07-16 (주)코썸사이언스 Roll-to-roll laser processing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11194501A (en) * 1997-12-26 1999-07-21 Dainippon Printing Co Ltd Proximity exposure device and gap-adjusting method in proximity exposure device
JP4917780B2 (en) * 2005-09-08 2012-04-18 住友化学株式会社 Exposure equipment
JP4535972B2 (en) * 2005-09-09 2010-09-01 株式会社ブイ・テクノロジー Work stage and exposure apparatus

Also Published As

Publication number Publication date
JP2008310249A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP5150949B2 (en) Proximity scan exposure apparatus and control method thereof
JP4495752B2 (en) Substrate processing apparatus and coating apparatus
KR101603343B1 (en) Substrate transportation and processing apparatus
KR101111934B1 (en) Exposure apparatus and exposure method
JP4451385B2 (en) Coating processing apparatus and coating processing method
JP2007150280A (en) Substrate supporting apparatus, substrate supporting method, substrate processing apparatus, substrate processing method, and method of manufacturing display apparatus constitutional member
JP2007088201A (en) Method and device for processing substrate
CN111584391B (en) Substrate processing apparatus and substrate processing method
JP2009302122A (en) Coating device, and coating method
JP2009295950A (en) Scan exposure equipment and scan exposure method
JP5933920B2 (en) Coating apparatus and coating method
JP5068107B2 (en) Substrate transport mechanism for exposure apparatus and control method thereof
JP4874876B2 (en) Proximity scan exposure apparatus and exposure method therefor
JP2009094184A (en) Substrate treatment apparatus and treating method
JP2007316561A (en) Exposure device and exposure method
JP5462028B2 (en) Exposure apparatus, exposure method, and substrate manufacturing method
CN116520649A (en) Substrate carrying and exposing device and method, flat panel display and device manufacturing method
JP5057370B2 (en) Proximity scan exposure apparatus and illuminance control method thereof
JP5105152B2 (en) Proximity scan exposure apparatus and control method thereof
JP2009210598A (en) Glass substrate, and proximity scan exposure apparatus, and proximity scan exposure method
JP7355174B2 (en) Substrate transport device, exposure device, flat panel display manufacturing method, device manufacturing method, substrate transport method, and exposure method
JP2012173512A (en) Proximity exposure apparatus and proximity exposure method therefor
JP2009003365A (en) Proximity scanning exposure apparatus and method for controlling the same
JP2010049015A (en) Scan exposure apparatus and substrate for liquid crystal display
JP5288104B2 (en) Scan exposure apparatus and scan exposure method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5150949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees