JP5150560B2 - 下水処理方法 - Google Patents

下水処理方法 Download PDF

Info

Publication number
JP5150560B2
JP5150560B2 JP2009123682A JP2009123682A JP5150560B2 JP 5150560 B2 JP5150560 B2 JP 5150560B2 JP 2009123682 A JP2009123682 A JP 2009123682A JP 2009123682 A JP2009123682 A JP 2009123682A JP 5150560 B2 JP5150560 B2 JP 5150560B2
Authority
JP
Japan
Prior art keywords
exhaust gas
concentration
dissolved oxygen
reaction tank
biological reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009123682A
Other languages
English (en)
Other versions
JP2010269255A (ja
Inventor
剛 武本
一郎 山野井
みさき 隅倉
直樹 原
秀之 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009123682A priority Critical patent/JP5150560B2/ja
Publication of JP2010269255A publication Critical patent/JP2010269255A/ja
Application granted granted Critical
Publication of JP5150560B2 publication Critical patent/JP5150560B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treating Waste Gases (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、下水処理の過程で発生する温室効果ガス、特に生物反応槽の曝気槽から発生するN2Oを削減するための下水処理方法に関する。
下水処理方法には、活性汚泥と呼ばれる微生物により生物学的に処理する活性汚泥法がある。活性汚泥法では、廃水中の窒素は、アンモニア体窒素を硝酸体窒素に酸化する硝化工程と、硝酸体窒素を窒素ガスに還元する脱窒工程により除去される。硝化工程,脱窒工程の副生成物としてN2Oが生成することが知られている。〔非特許文献1〕には、排ガス中のN2Oは硝化反応が進行するほど増加することが記載されている。N2OはCO2に比べ310倍の温室効果を有しており、地球温暖化防止のための排出削減対象物質になっている。
〔非特許文献2〕に記載のように、脱窒反応でN2OはN2に還元される。このため、脱窒反応を有する反応槽にN2Oを溶解させると除去できる。〔特許文献1〕には、N2Oを含有する排気ガスを反応槽に導入して、N2Oを溶解させ除去する方法が記載されている。
特開2007−075821号公報
松原誠,水落元之:下水処理場からの亜酸化窒素放出量調査、環境衛生工学研究、Vol.8,No.3(1994) 下水道の長期的技術開発に関する基礎調査、(財)下水道新技術推進機構(1996)http://www.jiwet.jp/result/annual/plan/1996a1-1-2m.htm
下水処理場では流入条件が変動するため、排ガス中のN2O濃度が変化する。〔特許文献1〕に記載の従来の技術では、常に排気ガスの全量が反応槽に導入される。N2Oが低濃度の場合でもガスを全量処理するため、処理効率が低下する恐れがある。
本発明の目的は、N2O濃度の高い排ガスを選択的に回収することで、N2O処理効率を向上できる下水処理方法を提供することにある。
上記目的を達成するために、本発明の下水処理方法は、生物反応槽に設置された溶存酸素計と、生物反応槽にエアレーションされたガスを回収するための排ガス回収手段と、排ガス回収手段に設けられた制御弁を開閉制御する制御手段を備え、制御手段は前記溶存酸素計の計測値の少なくとも6時間以上の平均値を、前記溶存酸素計の計測値の現状値が超えた場合に、前記制御弁を開閉制御してエアレーションされたガスを回収する、又は、溶存酸素計の計測値に応じて排ガス回収手段からの回収ガス流量を制御するものである。
又、複数の生物反応槽にエアレーションして、活性汚泥により廃水を処理する下水処理方法であって、複数の生物反応槽の各々設置された溶存酸素計と、生物反応槽にエアレーションされたガスを回収するための排ガス回収手段と、排ガス回収手段平均値を、前記溶存酸素計の計測値の現状値が超えた場合に、排ガス回収手段に設けられた制御弁を開閉制御してエアレーションされたガスを回収する制御手段を備え、制御手段は上流側の前記溶存酸素計と下流側の前記溶存酸素計の計測値の差分を求め、少なくとも6時間以上の平均値を算出し、平均値を、溶存酸素計の計測値の差分の現状値が超えた場合に、前記制御弁を開閉制御してエアレーションされたガスを回収する、又は、差分の現状値で排ガス回収手段の回収ガス流量を制御するものである。
又、生物反応槽に流入する流量と濃度の情報を有する流入条件管理手段と、プラントの仕様と運転条件の現状値の情報を有するプラント条件管理手段と、流入条件管理手段とプラント条件管理手段の情報を元にエアレーションの排気ガスに含有するN2O濃度を算出するN2O濃度算出手段と、生物反応槽にエアレーションされたガスを回収するための排ガス回収手段と、排ガス回収手段に設けられた制御弁を開閉制御する制御手段を備え、制御手段はN2O濃度算出手段の算出値が、設定値以上の場合に制御弁を開閉制御する、又は、算出値で排ガス回収手段からの排ガス回収流量を制御するものである。
又、生物反応槽の反応液の硝酸体窒素濃度,亜硝酸体窒素,アンモニア体窒素のうちの一つ以上を計測するための窒素計測手段と、生物反応槽にエアレーションされたガスを回収するための排ガス回収手段と、排ガス回収手段に設けられた制御弁を開閉制御する制御手段を備え、制御手段は窒素計測手段の計測値によって制御弁を開閉制御する、又は、計測値で排ガス回収手段からの排ガス回収流量を制御するものである。
本発明によれば、生物反応槽の溶存酸素、又は窒素濃度からN2O発生量を予測し、排ガス中のN2O濃度が高い場合に、排ガスを処理できるので、N2O処理効率を向上できる。
本発明の実施例1を示す廃水処理装置の構成図である。 本発明の実施例2を示す廃水処理装置の構成図である。 本発明の実施例3を示す廃水処理装置の構成図である。 本発明の実施例4を示す廃水処理装置の構成図である。 本発明の実施例5を示す廃水処理装置の構成図である。 本発明の実施例6を示す廃水処理装置の構成図である。 本発明の実施例7を示す廃水処理装置の構成図である。
本発明の各実施例について図面を用いて説明する。
本発明の実施例1を図1により説明する。図1に示すように、本実施例の反応槽は、生物反応槽1と沈殿池2で構成されている。
生物反応槽1には、流入水が流入し、沈殿池2から処理水が流出する。生物反応槽1には複数の微生物群が生息する活性汚泥が混入されている。ブロワ3に接続された散気手段4により、生物反応槽1にエアレーションされ、エアレーションにより空気中の溶存酸素が活性汚泥に供給される。図1では、生物反応槽1は1つの槽として示しているが、生物反応槽1を複数に分割し、エアレーションする好気槽とエアレーションしない嫌気槽を設けてもよい。
生物反応槽1の上部には、エアレーションされた排気ガスを回収するための排ガス回収手段5が設置されている。排ガス回収手段5には制御弁6が設けられ、制御手段7の信号により排ガスの回収するために、on−off信号により制御弁6が開閉制御され、排ガス回収量が制御される。制御弁6は、排ガス処理装置に接続されている。生物反応槽1には反応液の溶存酸素を計測するための溶存酸素計8が設置され、その計測信号が制御手段7に入力される。なお、生物反応槽1の廃水処理性能は、排ガス回収手段5による排ガスの回収有無で影響されない。
生物反応槽1の下流には、反応液と活性汚泥とを固液分離する沈殿池2が設置されている。沈殿池2に沈降した活性汚泥の一部は生物反応槽1に返送汚泥として循環し、一部が余剰汚泥として排出される。
生物反応槽1に流入した廃水は、活性汚泥により処理される。流入水中の有機物は酸化分解され、最終的にCO2として除去される。流入水中の窒素成分の大部分は、アンモニア体窒素と有機体窒素であるが、活性汚泥により有機体窒素はアンモニア体窒素となり、アンモニア体窒素は亜硝酸体窒素,硝酸体窒素に酸化される。
有機物や窒素が酸化する際に、反応液中の溶存酸素が消費される。酸素供給速度が等しい場合は、反応液中のこれら被処理物質の濃度が低下すると、すなわち処理が終了すると溶存酸素濃度が増加する。一般に、下水は流入水量や流入水濃度が変化するため、溶存酸素濃度は増減する場合が多い。すなわち、溶存酸素濃度が上昇した場合は、酸化が終了しており、硝酸体窒素濃度が増加していることが分かる。
排ガス中のN2O濃度は、アンモニア体窒素の減少と、硝酸体窒素の増加に比例して増加する。制御手段7は、溶存酸素計8の計測信号を元に制御弁6を制御することで高濃度にN2Oを含有する排ガスを選択的に処理することができる。
制御手段7の制御方法について説明する。制御手段7は、溶存酸素計8の計測値を設定された期間保存する。制御手段7は、例えば6時間前までの溶存酸素計8の計測値の平均値を算出する。平均値と現状の溶存酸素計8の計測値とを比較し、計測値が、平均値以上の場合には、制御弁6を制御して排ガスを処理装置に導入する。平均値以上の代わりに、上限値を設け、溶存酸素計8の計測値が、上限値以上で制御弁6を制御するようにしてもよい。この場合、上限値は1mg/L程度にするとよい。また、制御手段7は溶存酸素計8の計測値を元に制御弁6を制御し、計測値に比例して排気ガスの回収量を増加させてもよい。
制御手段7に、ブロワ3から供給される空気量の情報を入力してもよく、空気量が増加すると溶存酸素計8の計測値も増加するため、空気量も考慮して溶存酸素濃度により制御弁6を制御することで、N2O濃度の予測精度を向上できるので、N2Oの回収効率が向上できる。
このように、本実施例によれば、溶存酸素濃度を計測することでN2O濃度の高い排ガスを選択的に回収でき、N2O処理効率を向上できる。
本発明の実施例2を図2により説明する。図1に示す実施例1との違いは、実施例2では、生物反応槽1を分割して、上流側溶存酸素濃度計8−1と下流側溶存酸素濃度計8−2の2つの溶存酸素濃度計を設置したことにある。生物反応槽1は、仕切り壁がなくてもよく、本実施例では排ガス回収手段5を下流側溶存酸素濃度計8−2が設置された反応槽に設置したが、両槽に設置してもよい。制御手段7には、上流側溶存酸素濃度計8−1と下流側溶存酸素濃度計8−2の両方の信号が入力されている。散気手段4の散気量が均一の場合は、上流側の生物反応槽の方が下流側の生物反応槽に比べ、アンモニア対窒素や有機物が多く、溶存酸素濃度計の値も低い場合が多い。
制御手段7による制御方法について説明する。制御手段7は、下流側溶存酸素濃度計8−2と上流側溶存酸素濃度計8−1の計測値の差分を求める。制御手段7は、6時間前までの差分の平均値を算出する。算出された平均値と、計測値の差分とを比較し、計測値の差分が平均値以上の場合には、制御弁6を制御して排ガスを処理装置に導入する。また、制御手段7は、計測値の差分が設定値を超えた場合に、制御弁6を制御して排ガスを処理装置に導入してもよい。この場合、設定値は0.5mg/L以上にするとよい。
制御手段7は、制御弁6を制御し、計測値の差分の大きさに比例して排気ガスの回収量を増加させてもよい。なお、設定値は、散気手段4から各々生物反応槽1へ供給される空気量のデータを基に変更すると良く、空気量が少ない場合は設定値を小さくし、空気量が多い場合は設定値を大きくする。設定値以上となった下流側溶存酸素濃度計8−2の設置された生物反応槽では硝化反応が進行し、硝酸体窒素濃度が増加して排ガス中のN2O含有率が高い。
このように、実施例2によれば、溶存酸素濃度を計測することでN2O濃度の高い排ガスを選択的に回収でき、N2O処理効率を向上できる。
本発明の実施例3を図3により説明する。実施例3と実施例1との違いは溶存酸素計8と窒素濃度計9との違いである。窒素濃度計9は、アンモニア体窒素,亜硝酸体窒素,硝酸体窒素の内少なくとも1つ以上を計測できる。窒素濃度計9の計測値は制御手段7に入力され、制御手段7は計測値に応じて制御弁6を制御する。
制御手段7による制御方法について説明する。制御手段7は、計測項目がアンモニア体窒素の場合は、計測値が予め設定した設定値以下の場合に、計測項目が亜硝酸体窒素,硝酸体窒素の場合は、計測値が設定値以上の場合に、制御弁6を制御して排ガスを処理装置に導入する。設定値は、アンモニア体窒素の場合が10mg/L、亜硝酸体窒素の場合が0.5mg/L、硝酸体窒素の場合が5mg/Lにするとよい。
また、制御手段7は、24時間前までの窒素濃度計9の計測値の平均値を算出する。平均値と現状値とを比較し、計測項目がアンモニア体窒素の場合は、計測値が平均値以下、計測項目が亜硝酸体窒素と硝酸体窒素の場合は、計測値が平均値以上の場合に、制御弁6を制御して排ガスを処理装置に導入するとよい。
また、制御手段7は制御弁6を制御して、アンモニア体窒素濃度が少ない程、亜硝酸体窒素と硝酸体窒素が多い程排気ガスの回収流量を増加させるとよい。
このように、実施例3によれば、窒素濃度を直接計測することで硝化反応の進行が分かり、硝化反応が進行したN2O濃度の高い排ガスを選択的に回収でき、N2O処理効率を向上できる。
本発明の実施例4を図4により説明する。実施例4と実施例3との違いは、実施例3の窒素濃度計9の代わりに、実施例4では、N2O濃度演算手段10、流入条件管理手段11及びプラント条件管理手段12が設けられている点である。制御手段7は、N2O濃度演算手段10の演算結果を元にして、演算結果が設定値を超えた場合に制御弁6を制御する。
2O濃度演算手段10の演算方法について説明する。N2O濃度演算手段10には、流入条件管理手段11から流入水量及び流入水質の情報と、プラント条件管理手段12からプラントの仕様や現在の運転情報が入力される。図示していないが、流入条件管理手段11には、流入水量,流入水質のデータベースや流入水量計測器,流入水質計測器からの計測値が蓄積されている。図示していないが、プラント条件管理手段12には、生物反応槽1の水温や散気手段4からの送風量,活性汚泥の濃度などの情報のデータベースがあり、それらの情報は逐次更新されている。
2O濃度演算手段10には、活性汚泥の反応をモデル化した活性汚泥モデル、例えば、IWA(International Water Association、国際水学会)モデルが記録されている。活性汚泥モデルは、硝化反応がモデル化されており、流入条件やプラント運転条件によって生物反応槽1のアンモニア体窒素濃度や硝酸体窒素濃度を算出できるようになっている。流入条件管理手段11の流入水の濃度と反応槽の濃度の差分から硝化量を求め、硝化量からN2O濃度を推定する。この推定されたN2O濃度から生物反応槽にエアレーションされた排気ガスに含有されるN2O濃度を算出する。制御手段7は、N2O濃度が設定値以上の場合に制御弁6を制御する。制御手段7は、N2O濃度の算出値に応じて、排ガス処理装置の排ガス回収流量を制御してもよい。
このように、実施例4によれば、モデルによりN2Oガス濃度を予測でき、N2O濃度の高い排ガスを選択的に回収できるので、N2O処理効率を向上できる。
本発明の実施例5を図5により説明する。実施例5は、実施例3と同様に構成されているが、実施例5では、窒素濃度計9が設置されていなく、生物反応槽1が前段の嫌気槽と後段の好気槽に分割され、生物反応槽1の上流側に排ガス処理装置13−1が設置され制御弁6と接続されている。
流入水は、排ガス処理装置13−1を経て生物反応槽1に流入する。排気ガスは、排ガス処理装置13−1に導入され、N2Oガスは流入水中に溶解する。流入水に溶解したN2Oは、生物反応槽1に流入する。生物反応槽1の流入水は、嫌気槽(無酸素槽ともいう)に流入する。嫌気槽は、溶存酸素が実質的にない槽であり、N2Oは嫌気槽で活性汚泥により脱窒反応でN2ガスに還元処理される。排ガス処理装置13−1では、排ガスを流入水に溶解させる際に、ポンプなどの動力が必要だが、本実施例では、N2O濃度の高い排ガスを選択的に回収でき、処理する排ガス量が削減できるためN2O処理効率を向上できる。
本発明の実施例6を図6により説明する。実施例6は、実施例1と同様に構成されているが、実施例6では、溶存酸素計8が設置されていなく、沈殿池2の下流側に排ガス処理装置13−2が設置され制御弁6と接続されている。
排ガス処理装置13−2は、処理水が滞留している。排気ガスは、排ガス処理装置13−2に導入され、N2Oガスは処理水中に溶解する。排ガス処理装置13−2では、排ガスを流入水に溶解させる際に、ポンプなどの動力が必要だが、本実施例では、N2O濃度の高い排ガスを選択的に回収でき、処理する排ガス量が削減できるためN2O処理効率を向上できる。
本発明の実施例7を図7により説明する。実施例7は、実施例6と同様に構成されているが、実施例7では、排ガス中のN2Oを熱分解するための排ガス熱分解装置14が設置されており、制御手段7が排ガス熱分解装置14に接続されている。
適用される排ガス熱分解装置14には、触媒が充填されているもの、発電機,汚泥焼却炉などが挙げられる。N2Oは熱で分解できるので、例えば汚泥焼却炉ではフリーボードの燃焼温度を850℃以上に上げることでN2Oを削減できる。
排ガスが多いと排ガス熱分解装置14への負荷が増加するが、N2O濃度の高い排ガスを選択的に回収でき、排ガス量を低減しているので消費エネルギーを削減できる。本実施例では、N2O濃度の高い排ガスを選択的に回収でき、処理する排ガス量が削減できるためN2O処理効率を向上できる。
1 生物反応槽
2 沈殿池
3 ブロワ
4 散気手段
5 排ガス回収手段
6 制御弁
7 制御手段
8 溶存酸素計
9 窒素濃度計
10 N2O濃度演算手段
11 流入条件管理手段
12 プラント条件管理手段
13−1,13−2 排ガス処理装置
14 排ガス熱分解装置

Claims (4)

  1. 活性汚泥により廃水を処理する生物反応槽に設置された溶存酸素計と、
    前記生物反応槽にエアレーションされたガスを回収するための排ガス回収手段と、
    前記排ガス回収手段に設けられた制御弁を開閉制御する制御手段を備え、
    前記制御手段は前記溶存酸素計の計測値の少なくとも6時間以上の平均値を、前記溶存酸素計の計測値の現状値が超えた場合に、前記制御弁を開閉制御してエアレーションされたガスを回収して、前記生物反応槽から発生するN 2 Oを削減することを特徴とする下水処理方法。
  2. 請求項1に記載の下水処理方法において、
    前記排ガス回収手段から回収された排気ガスを流入下水に注入して処理することを特徴とする下水処理方法。
  3. 請求項1に記載の下水処理方法において、
    前記排ガス回収手段から回収された排ガスを処理水に注入して処理することを特徴とする下水処理方法。
  4. 請求項1に記載の下水処理方法において、
    前記排ガス回収手段から回収された排ガスを熱分解して処理することを特徴とする下水処理方法。
JP2009123682A 2009-05-22 2009-05-22 下水処理方法 Expired - Fee Related JP5150560B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009123682A JP5150560B2 (ja) 2009-05-22 2009-05-22 下水処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009123682A JP5150560B2 (ja) 2009-05-22 2009-05-22 下水処理方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012261839A Division JP2013039577A (ja) 2012-11-30 2012-11-30 下水処理方法

Publications (2)

Publication Number Publication Date
JP2010269255A JP2010269255A (ja) 2010-12-02
JP5150560B2 true JP5150560B2 (ja) 2013-02-20

Family

ID=43417731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009123682A Expired - Fee Related JP5150560B2 (ja) 2009-05-22 2009-05-22 下水処理方法

Country Status (1)

Country Link
JP (1) JP5150560B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8586771B1 (en) 2012-06-18 2013-11-19 Biosynthetic Technologies, Llc Processes of preparing estolide compounds that include removing sulfonate residues
CN105384259A (zh) * 2015-12-21 2016-03-09 南京领先环保技术股份有限公司 一种高容积负荷脱氮的污水处理设备
US9403752B2 (en) 2011-12-19 2016-08-02 Biosynthetic Technologies, Llc Processes for preparing estolide base oils and oligomeric compounds that include cross metathesis

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5075907B2 (ja) * 2009-11-27 2012-11-21 株式会社日立製作所 水処理設備
JP5075926B2 (ja) * 2010-01-20 2012-11-21 株式会社日立製作所 下水処理装置及び下水処理方法
JP5665502B2 (ja) * 2010-11-22 2015-02-04 メタウォーター株式会社 下水処理システム
JP5238830B2 (ja) * 2011-01-17 2013-07-17 株式会社東芝 廃水処理装置
JP5802426B2 (ja) * 2011-04-26 2015-10-28 株式会社日立製作所 生物学的水処理装置
JP5992807B2 (ja) * 2011-12-28 2016-09-14 メタウォーター株式会社 排水処理装置および排水処理方法
WO2014112640A1 (ja) * 2013-01-21 2014-07-24 昭和電工株式会社 含窒素水処理システムおよび含窒素水処理方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122099A (ja) * 1983-12-01 1985-06-29 Fuji Electric Corp Res & Dev Ltd 生物学的硝化プロセスの制御方法
JPH0365297A (ja) * 1989-08-04 1991-03-20 Toshiba Corp エアレーションタンクの制御装置
JP3015426B2 (ja) * 1990-08-24 2000-03-06 ユニチカ株式会社 排水の管理処理方法
JP2002219481A (ja) * 1996-07-23 2002-08-06 Mitsubishi Chemicals Corp 曝気槽の溶存酸素濃度の制御装置
JPH1043787A (ja) * 1996-07-31 1998-02-17 Meidensha Corp 活性汚泥法の亜酸化窒素発生量シミュレーション装置
JPH10128389A (ja) * 1996-11-01 1998-05-19 Hitachi Plant Eng & Constr Co Ltd 排水処理方法及び装置
JP4128833B2 (ja) * 2002-09-17 2008-07-30 三菱マテリアル資源開発株式会社 汚染水及び有機排ガスの処理方法とその処理システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9403752B2 (en) 2011-12-19 2016-08-02 Biosynthetic Technologies, Llc Processes for preparing estolide base oils and oligomeric compounds that include cross metathesis
US10011556B2 (en) 2011-12-19 2018-07-03 Biosynthetic Technologies, Llc Processes for preparing estolide base oils and oligomeric compounds that include cross metathesis
US8586771B1 (en) 2012-06-18 2013-11-19 Biosynthetic Technologies, Llc Processes of preparing estolide compounds that include removing sulfonate residues
US9346900B2 (en) 2012-06-18 2016-05-24 Biosynthetic Technologies, Llc Processes of preparing estolide compounds that include removing sulfonate residues
US9783484B2 (en) 2012-06-18 2017-10-10 Biosynthetic Technologies, Llc Processes of preparing estolide compounds that include removing sulfonate residues
CN105384259A (zh) * 2015-12-21 2016-03-09 南京领先环保技术股份有限公司 一种高容积负荷脱氮的污水处理设备

Also Published As

Publication number Publication date
JP2010269255A (ja) 2010-12-02

Similar Documents

Publication Publication Date Title
JP5150560B2 (ja) 下水処理方法
Desloover et al. Floc-based sequential partial nitritation and anammox at full scale with contrasting N2O emissions
KR101325659B1 (ko) 연속 회분식 반응조에서 질산화 반응과 연계한 포기 동력 제어 장치
JP4334317B2 (ja) 下水処理システム
JP3961835B2 (ja) 下水処理場水質制御装置
JP5075926B2 (ja) 下水処理装置及び下水処理方法
JP5733785B2 (ja) 排水処理方法及び排水処理装置
Lu et al. Automatic control and optimal operation for greenhouse gas mitigation in sustainable wastewater treatment plants: A review
KR102041326B1 (ko) 하모니서치 알고리즘을 이용한 활성슬러지 공정의 산소공급량 제어 시스템
JP4327770B2 (ja) アンモニア性窒素含有廃水の生物学的硝化処理方法及び硝化処理装置
KR102203751B1 (ko) 슬러지 감량화 및 그 부산물을 활용한 하수처리 시스템
JP3772882B2 (ja) メタン発酵処理方法
JP2013039577A (ja) 下水処理方法
JP4576845B2 (ja) 窒素含有廃液処理方法
KR102169383B1 (ko) 슬러지 감량화 및 그 부산물을 활용한 하수처리 방법
JP5300898B2 (ja) 有機性排水処理装置
JP6062328B2 (ja) 排水の処理方法および排水の処理装置、並びに制御方法、制御装置、およびプログラム
Flores-Alsina et al. Modelling the impacts of operational conditions on the performance of a full-scale membrane aerated biofilm reactor
JP2011245359A (ja) 下水処理装置
JP5656656B2 (ja) 水処理装置
CN113998782A (zh) 一种通过气体收集与循环实现自养反硝化强化脱氮的装置与方法
JP4904738B2 (ja) 窒素含有廃液の処理方法
JP6396238B2 (ja) 有機排水処理システム、有機排水の処理方法及び有機排水処理システムの制御プログラム
CN205472940U (zh) 一种通过监测n2o自动控制的污水处理装置
Li et al. Integrated anaerobic and aerobic treatment of dairy wastewater with sequencing batch reactors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

R151 Written notification of patent or utility model registration

Ref document number: 5150560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees