JP5146198B2 - 大入熱溶接部の靭性および脆性き裂伝播停止特性に優れた高強度厚鋼板およびその製造方法 - Google Patents

大入熱溶接部の靭性および脆性き裂伝播停止特性に優れた高強度厚鋼板およびその製造方法 Download PDF

Info

Publication number
JP5146198B2
JP5146198B2 JP2008213498A JP2008213498A JP5146198B2 JP 5146198 B2 JP5146198 B2 JP 5146198B2 JP 2008213498 A JP2008213498 A JP 2008213498A JP 2008213498 A JP2008213498 A JP 2008213498A JP 5146198 B2 JP5146198 B2 JP 5146198B2
Authority
JP
Japan
Prior art keywords
toughness
crack propagation
brittle crack
steel
heat input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008213498A
Other languages
English (en)
Other versions
JP2010047805A (ja
Inventor
佳子 梶田
公宏 西村
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008213498A priority Critical patent/JP5146198B2/ja
Publication of JP2010047805A publication Critical patent/JP2010047805A/ja
Application granted granted Critical
Publication of JP5146198B2 publication Critical patent/JP5146198B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、船舶、海洋構造物、低温貯蔵タンク、建築・土木構造物等の大型構造物に、板厚50mmを超える厚鋼板として使用して好適な、大入熱溶接部の靭性および脆性き裂伝播停止特性に優れた高強度厚鋼板およびその製造方法に関する。
船舶、海洋構造物、低温貯蔵タンク、建築・土木構造物等の大型構造物においては、脆性破壊に伴う事故が経済や環境に及ぼす影響が大きいため、使用される鋼材に対して、不慮の事故等で構造物にき裂が発生した場合においても破壊に至ることを防止する観点から、低温における脆性き裂伝播停止特性が要求されている。
例えば、コンテナ船やバルクキャリアーなどの船舶で、船体外板に使用される高強度の厚肉材には、船舶の安全性確保の観点から優れた脆性き裂伝播停止特性が要求されるが、これらの船舶の大型化に伴い、高強度化、厚肉化が一層進展し、その要求も一段と高度化している。
脆性き裂伝播停止特性を向上させるため、従来からNi含有量を増加させる方法が知られており、液化天然ガス(LNG)の貯槽タンクにおいては、9%Ni鋼が商業規模で使用されている。しかし、Ni量の増加はコストの大幅な上昇を余儀なくさせるため、LNG貯槽タンク以外の用途には適用が難しい。
一方、LNGのような極低温まで至らない、船舶やラインパイプに使用される鋼板のように板厚が50mm未満の比較的薄手の鋼材に対しては、TMCP法により細粒化を図り、低温靭性を向上させて、優れた脆性き裂伝播停止特性を付与することができる。
また、近年、合金コストを上昇させることなく、鋼材の表層部の組織を超微細化する技術が、脆性き裂伝播停止特性を向上させる手段として提案されている。
例えば、特許文献1には、脆性き裂が伝播する際に、鋼材表層部に発生するシアリップ(塑性変形領域)が脆性き裂伝播停止特性の向上に効果があることに着目し、シアリップ部分の結晶粒を微細化させて、伝播する脆性き裂が有する伝播エネルギーを吸収させる方法が開示されている。
熱間圧延後の制御冷却により表層部分をAr変態点以下に冷却し、その後制御冷却を停止して表層部分を変態点以上に復熱させる工程を1回以上繰り返して行い、この間に鋼材に圧下を加えることにより、繰り返し変態させ又は加工再結晶させて、表層部分に超微細なフェライト組織又はベイナイト組織を生成させるものである。
さらに、特許文献2では、フェライト−パーライトを主体のミクロ組織とする鋼材において脆性き裂伝播停止特性を向上させる場合、鋼材の表裏面の表面部を円相当粒径:5μm以下、アスペクト比:2以上のフェライト粒を有するフェライト組織を50%以上有する層で構成し、仕上げ圧延中の1パス当りの最大圧下率を12%以下として局所的な再結晶現象を抑制し、フェライト粒径のバラツキを抑えることが重要であることが開示されている。
しかし、特許文献1、2記載の製造方法は、鋼材表層部のみを一旦冷却した後に復熱させ、かつ復熱中に加工を加えることによって、脆性き裂伝播停止特性に効果のある組織を得るものであり、実生産規模では制御が容易ではないものと考えられるプロセスである。
特許文献3には、フェライト結晶粒の微細化のみならずフェライト結晶粒内に形成されるサブグレインを利用して脆性き裂伝播停止特性を向上させるTMCP法の延長技術が記載されている。
具体的には、板厚30〜40mmの鋼板を対象とし、鋼板表層の冷却および復熱などの複雑な温度制御を必要とせずに、(a)微細なフェライト結晶粒を確保する圧延条件、(b)鋼材板厚の5%以上の部分に微細フェライト組織を生成する圧延条件、(c)微細フェライトに集合組織を発達させるとともに加工(圧延)により導入した転位を熱的エネルギーにより再配置しサブグレインを形成させる圧延条件、(d)形成した微細なフェライト結晶粒と微細なサブグレイン粒の粗大化を抑制する冷却条件、によって脆性き裂伝播停止特性を向上させることが記載されている。
また、制御圧延において、変態したフェライトに圧下を加えて集合組織を発達させることにより、脆性き裂伝播停止特性を向上させる方法も知られている。鋼材の破壊面上にセパレーションを板厚方向と平行な方向に生ぜしめ、脆性き裂先端の応力を緩和させることにより、脆性破壊に対する抵抗を高めるものである。
例えば、特許文献4には、制御圧延により(110)面X線強度比を2以上とし、かつ円相当径20μm以上の粗大粒の面積率を10%以下とすることにより、耐脆性破壊特性を向上させた鋼板が記載されている。
特許文献5には、継手部の脆性き裂伝播停止性能の優れた溶接構造用鋼として、集合組織発達により応力負荷方向とき裂伝播方向をずらすため、板厚内部の圧延面での(100)面のX線面強度比を1.5以上とした鋼板が開示されている。
特許文献6には、板厚の50%以上の領域において板面と平行な面での(211)面のX線回折強度比が1.5以上とすることにより、靭性および脆性亀裂伝播停止特性に優れた薄肉厚鋼板が記載されている。
特許文献7には、鋼板の表面及び裏面から板厚の25%までの表裏層部とそれ以外の板厚中心部とについて、それぞれ、圧延面と平行な(100)X線面強度比、及び、圧延面と平行な(111)又は/及び(211)X線面強度比を規定した集合組織を有する脆性き裂伝播停止性能に優れた高強度厚鋼板が記載されている。
特許文献8には、鋼板の板厚方向の中心を中央として板厚の10%以上、50%未満の中心部領域において圧延面と平行な(111)又は/及び(211)X線面強度比を規定し、さらに、前記中心部領域より表裏面側の表裏面領域において圧延面と平行な(111)又は/及び(211)X線面強度比を規定した集合組織を有する脆性き裂伝播停止性能に優れた高強度厚鋼板が記載されている。
特許文献9〜12には、板厚中央部および板厚1/4部における各種X線面強度比を規定した集合組織を有する構造用高強度厚鋼板が記載されている。
上述したように、脆性き裂伝播停止性能に優れた鋼板やその製造方法に関して種々の提案がなされているが、大型構造物に使用される鋼材には安全性の観点から、優れた溶接熱影響部の靭性、特にボンド部の靭性に優れることも同時に要求される。
ボンド部は、大入熱溶接時の融点直下の高温にさらされて、オーステナイト結晶粒が最も粗大化しやすく、その後の冷却によって脆弱な上部ベイナイト組織に変態し、更に、ウィドマンステッテン組織や島状マルテンサイトが生成して靭性が低下する。
ボンド部の靭性向上に関しては種々の研究がなされ、例えば、TiNの微細分散によるオーステナイトの粗大化抑制やフェライト変態核としての利用のほか、希土類元素(REM)をTiと複合添加することにより、鋼中に微細粒子を分散させてオーステナイトの粒成長を防止し、溶接部の靭性向上を図る方法が提案されている(特許文献13、14)。
また、Ti酸化物やMg酸化物を利用したり(特許文献15、16)、BNによりフェライト核を生成したり、CaやREMを添加することで硫化物の形態を制御して、靭性を向上させることが提案されている。
また、Ca、O、S量を制御し、CaおよびMnの複合硫化物をフェライト核とし微細に分散させることによって、靭性を向上させる方法が提案されている(特許文献17)。
特公平7−100814号公報 特開2002−256375号公報 特許第3467767号公報 特許第3548349号公報 特許第2659661号公報 特開2008−174809号公報 特開2008−169467号公報 特開2008−169468号公報 特開2008−45174号公報 特開2008−69380号公報 特開2008−111165号公報 特開2008−111166号公報 特公平03−53367号公報 特開昭60−184663号公報 特開昭60−245768号公報 特開2000−234139号公報 特開2003−166017号公報
ところで、近年、建造される大型のコンテナ船やバルクキャリアーの強力甲板部構造においてハッチサイドコーミングに接合される甲板部材では、開口部の周辺に板厚50mmを超える厚鋼板を用いる設計が採用されるようになっている。
最近、このような厚肉材の脆性き裂伝播停止性能に問題があることが指摘され、例えば、板厚65mmの鋼板の脆性き裂伝播停止性能を評価すると、母材の大型脆性き裂伝播停止試験で脆性き裂が停止しない結果が報告されている(井上ら:厚手造船用鋼における長大脆性き裂伝播挙動,日本船舶海洋工学会講演論文集 第3号, 2006, pp359−362)。
このような試験結果により、50mmを超える板厚の鋼板を適用した船体構造の安全確保が大きな問題となり、(財)日本海事協会が中心となって「超大型コンテナ船の安全性評価に関する研究(脆性き裂アレスト設計関係)」(2007〜2008年度)が実施されている。
上述した特許文献1〜6には、板厚50mmを超える厚肉材に関する記載がなく、特許文献5記載の発明に係る鋼板は、最大板厚が50mmで、50mmを超える厚肉材への適用は生産性などの観点から困難が予想される。
特許文献7および8には、温度勾配型の標準ESSO試験によりアレスト性が評価されているが、溶接部靭性の評価はなされておらず、入熱量が300kJ/cmを超える大入熱溶接の適用可否についても不明である。
特許文献9〜12に開示された技術は、Ar点未満の温度域、すなわち、フェライト−オーステナイト二相域での圧延を必須としている。このため、高精度の圧延技術を必要とするだけでなく、通常よりも低温域での圧延であるため、生産能率が低下し、また、鋼板形状を平坦にするにも特段の配慮が必要とされる。このため、生産性を犠牲にしない製造条件にて、優れた脆性き裂伝播停止特性を確保する技術が望まれる。
一方、溶接施工において、板厚50mm以上の厚鋼板を溶接する場合、入熱300kJ/cmを超える大入熱溶接の適用が検討され、さらなる大入熱化が予想される。
しかしながら、特許文献13、14記載の、TiNを主体に利用する技術においてはTiNが溶解する温度域に加熱される溶接部でその作用が消失し、また固溶TiおよびNにより組織が脆化して著しく靭性が低下するので、300kJ/cmを越える大入熱溶接部では十分な靭性が得られないことが予想される。
さらに、特許文献15、16記載の技術のように、Ti酸化物やMg酸化物を利用してHAZ靭性を改善する場合、これらの酸化物を十分均質に微細分散することは容易でなく、またCaやREMを添加する技術においても300kJ/cmを超える大入熱溶接では溶接熱影響部の高靭性を確保することは困難であった。
また、特許文献17においては、CaおよびMnの複合硫化物を利用することで400kJ/cmを超える溶接熱影響部靭性を確保しているが、脆性き裂伝播停止性能に関する検討はなされていない。
そこで、本発明では板厚50mmを超える厚鋼板においても、脆性き裂伝播停止特性に優れ、かつ、大入熱溶接熱影響部のボンド部において高靭性を有する鋼板、及びその製造方法として、工業的に極めて簡易なプロセスで安定して製造し得るその製造方法を提供することを目的とする。
本発明者らは、上記課題の達成に向けて鋭意研究を重ね、厚肉鋼板でも優れたき裂伝播停止特性を有し、かつ大入熱溶接部の靭性に優れる高強度厚鋼板および当該鋼板を安定して得る製造方法について以下の知見を得た。
1.板厚50mmを超える厚鋼板において脆性き裂伝播停止特性に及ぼす集合組織の影響を詳細に調べた結果、板厚中央部における圧延面での(211)面X線強度比が1.3以上で、かつ板厚1/4部における圧延面での(110)面X線強度比を0.8以上の集合組織とすることにより、優れた脆性き裂伝播停止特性が得られる。
2.さらに、上記集合組織は、特定の化学成分と板厚中央部を特定の温度域で累積圧下率を40%以上とする熱間圧延条件の組み合わせに得られる。
3.上記特定の化学成分の鋼板の溶接ボンド部の靭性は脆化組織に影響され、この脆化組織の靭性は冷却時にフェライト変態を促進させる変態核の微細化を行う事で大きく向上する。変態核を微細に分散させるためには、添加量を下記の(1)式を満足するようにCa、S、O量を調節する。
0<(Ca−(0.18+130×Ca)×O)/1.25/S<1 (1)
すなわち、鋼を溶製する際の凝固段階でCaSを晶出させるにあたり、(1)式を満足するようにCa、Sの添加量および添加時の溶鋼中の溶存酸素量を制御することによって、CaSの晶出後の固溶S量を確保すれば、CaSの表面上にMnSが析出する。
MnSはフェライト核生成能を有し、その周囲にMnの希薄帯が形成されるとフェライト変態が促進され、溶接熱影響部靭性を向上させる。MnS上にTiN、BN、AlN等のフェライト生成核が析出することによって、より一層、フェライト変態が促進される。
本発明は得られた知見に更に検討を加えてなされたもので、すなわち、本発明は、
1.鋼の化学成分が、質量%で、C:0.03〜0.20%、Si:1.0%以下、Mn:1.0〜2.0%、Al:0.005〜0.06%、P:0.015%以下、S:0.0050%以下、Nb:0.005〜0.017%、Ti:0.005〜0.02%、N:0.0035〜0.0075%、Ca:0.0005〜0.0030%、B:0.0005〜0.0020%、かつ、Ca、O、Sが、下記(1)式を満たし、残部がFeおよび不可避的不純物からなり、
板厚中央部における圧延面での(211)面X線強度比が1.3以上、板厚1/4部の圧延面での(110)面X線強度比が0.8以上の集合組織を有し、かつ板厚1/4部におけるシャルピー破面遷移温度が−40℃以下であることを特徴とする大入熱溶接部の靭性および脆性き裂伝播停止特性に優れた高強度厚鋼板。
0<(Ca−(0.18+130×Ca)×O)/1.25/S<1 (1)
ただし、Ca、O、Sは各成分の含有量(質量%)をあらわす。
2.鋼の化学成分が、さらに、質量%で、Cu:0.01〜0.5%、Ni:0.01〜1.0%、Cr:0.01〜0.5%、Mo:0.01〜0.5%、V:0.001〜0.1%の1種または2種以上を含有することを特徴とする1記載の大入熱溶接部の靭性および脆性き裂伝播停止特性に優れた高強度厚鋼板。
3.1または2に記載の化学成分を有する鋼素材を、1000〜1200℃の温度に加熱し、熱間圧延における板厚中央部の温度が(Ar点+50)℃以下、(Ar点+10)℃以上の温度域で累積圧下率40%以上の圧延を行った後、3℃/s以上の冷却速度にて400℃以下まで冷却することを特徴とする大入熱溶接部の靭性および脆性き裂伝播停止特性に優れた高強度厚鋼板の製造方法。
本発明に係る厚鋼板は板厚50mm超えであっても、板厚位置に応じて集合組織が適切に制御されて、脆性き裂伝播停止特性に優れ、且つ大入熱溶接を施した場合、溶接熱影響部に、高温でも溶解しないフェライト変態生成核が微細分散して、微細溶接熱影響部組織が得られる、大入熱溶接熱影響部の靭性に優れる高性能鋼で、産業上極めて有用である。
例えば、造船分野ではコンテナ船、バルクキャリアーの強力甲板部構造においてハッチサイドコーミングに接合される甲板部材へ本鋼板を適用することにより船舶の安全性向上に寄与するところ大である。
本発明では、1.鋼の化学成分、2.板内部の集合組織を規定する。
1.化学成分
説明において%は質量%とする。
C:0.03〜0.20%
Cは鋼の強度を向上する元素であり、本発明では、所望の強度を確保するためには0.03%以上の含有を必要とするが、0.20%を超えると、溶接性が劣化するばかりか靭性にも悪影響がある。このため、Cは、0.03〜0.20%の範囲に規定した。なお、好ましくは0.05〜0.15%である。
Si:1.0%以下
Siは脱酸元素として、また鋼の強化元素として有効であるが1.0%を超えると鋼の表面性状を損なうばかりか靭性が極端に劣化するため、1.0%以下とする。
Mn:1.0〜2.0%
Mnは、強化元素として添加する。1.0%より少ないとその効果が十分でなく、2.0%を超えると溶接性が劣化し、鋼材コストも上昇するため、1.0%以上、2.0%以下とする。
Al:0.005〜0.06%
Alは、脱酸剤として作用し、このためには0.005%以上の含有を必要とするが、0.06%を超えて含有すると、母材靭性を低下させるとともに、溶接した場合に、溶接金属部の靭性を低下させる。このため、Alは、0.005〜0.06%の範囲に規定した。なお、好ましくは、0.02〜0.04%である。
P:0.015%以下
Pは、0.015%を超えて添加すると、溶接部の靭性を劣化させる。
S:0.0050%以下
Sは、0.0050%を超えて添加すると、母材および溶接部の靭性を劣化させる。
Nb:0.005〜0.017%
Nbは再結晶温度域に影響を与える、制御圧延に不可欠な元素であり、鋼の強化に有効に作用する。この効果を得るためには、0.005%以上の添加が必要である。しかし、0.017%を超える含有は溶接部靭性を劣化させる。
Ti:0.005〜0.02%
Tiは凝固時にTiNとなって析出し、溶接部でのオーステナイトの粗大化抑制やフェライト変態核となって高靭性化に寄与する。0.005%未満ではその効果が少なく、一方、0.02%を超えるとTiN粒子の粗大化によってその効果が得られなくなるため、0.005〜0.02%とする。
N:0.0035〜0.0075%
Nは、TiNの必要量を確保するために必要な元素で、0.0035%未満では十分なTiN量が得られず、0.0075%を超えると溶接熱サイクルによってTiNが溶解する領域において固溶N量が増加して靭性を著しく低下させるため、0.0035〜0.0075%とする。
Ca:0.0005%〜0.0030%
Caは、Sの固定による靭性改善効果を有する元素である。このような効果を発揮させるには少なくとも0.0005%は含有することが必要であるが、0.0030%を超えて含有しても効果が飽和するため、0.0005%〜0.0030%とする。
B:0.0005〜0.0020%
Bは溶接熱影響部でTiNの溶解によるNをBNとして固定し、溶接部靭性の劣化を抑制する。また、焼入性を向上させ母材の強度確保に有効に寄与する。このような効果は0.0005%以上の添加で発揮され、また、0.0020%よりも多く添加してもその効果は飽和するため、0.0005〜0.0020%とする。
0<(Ca−(0.18+130×Ca)×O)/1.25/S<1 (1)
但し、Ca、O、Sは各成分の含有量(質量%)
本パラメータ式は複合硫化物をCaS上にMnSが析出した形態とするため、鋼中のCa、S、Oの含有量を規定するものである。
本パラメータ式の値が、0超え、1未満の場合、鋼を溶製する際の凝固段階でCaSが晶出し、CaSの晶出後に固溶S量が確保されて、CaSの表面上にMnSが析出する。
MnSはフェライト核生成能を有し、その周囲にMnの希薄帯を形成してフェライト変態を促進し、溶接熱影響部靭性を向上させる。MnS上にTiN、BN、AlN等のフェライト生成核が析出することによって、より一層、フェライト変態が促進される。
本パラメータ式の値が、0以下の場合には、CaSが晶出せず、SはMnS単独の形態で析出し、溶接熱影響部において複合硫化物を微細分散させることができない。
一方、本パラメータ式の値が1以上の場合には、SがCaによって完全に固定され、フェライト生成核として作用するMnSが、CaS上に析出しないため、溶接熱影響部において複合硫化物を微細分散させることができない。
なお、Oは不可避的不純物として鋼中に含有され、清浄度を低下させる。このため本発明ではできるだけ低減することが望ましい。特に、O含有量が0.0030%を超えるとCaO系介在物が粗大化して母材靭性を低下させてしまうため、好ましくは0.0030%以下とする。
また、本発明では、CaをCaSとして晶出させるために、Caと結合力の強いO量をCa添加前に低減させておくことが必要であり、Ca添加前の残存酸素量は、0.0030%以下であることが好ましい。残存酸素量の低減方法としては、脱ガスを強化する、あるいは、脱酸剤を投入する、などの方法をとることができる。
以上が本発明の基本成分組成であるが、更に特性を向上させるため、Cu、Ni、Cr、Mo、Vの一種または二種以上を含有することが可能である。
Cu、Ni、Cr、Mo、V
Cu、Ni、Cr、Mo、Vはいずれも鋼の焼入れ性を高める元素で、圧延後の強度アップに直接寄与するとともに、所望する、靭性、高温強度、あるいは耐候性などの機能向上のために一種または二種以上を添加する。
Cu、Ni、Cr、Moを添加する場合は、所望する特性が得られるように、それぞれの元素の添加量を、0.01%以上とし、Cuは0.5%を超えて添加すると、靭性や溶接性が劣化するようになるので上限を0.5%とする。
Niは1.0%を超えて添加すると靭性や溶接性を劣化するようになるので上限を1.0%とし、Cr、Moは0.5%を超えて添加すると、靭性や溶接性を劣化するようになるのでそれぞれ上限を0.5%とする。
Vは、V(CN)として析出強化によっても、鋼の強度を向上する元素であり、その効果を得るため、0.001%以上含有させる。一方、0.1%を超えて含有すると、靭性を低下させる。このため、Vを添加する場合は、0.001〜0.1%の範囲で添加する。
2.板内部の集合組織
本発明では、圧延方向または圧延直角方向など水平方向に進展するき裂に対してき裂伝播停止特性を向上させるため、その板厚中央部に圧延面に平行に(211)面を、板厚1/4部に、圧延面に平行に(110)面を発達させ、板厚中央部の(211)面X線強度比を1.3以上、板厚1/4部の(110)面X線強度比を0.8以上とする。
なお、板厚1/4部とは、鋼板の表(裏)面から板厚方向に全板厚の1/4の深さとなる位置を指す。
板厚中央部で圧延面に平行に(211)面を発達させ、(211)面X線強度比を1.3以上とすると、き裂進展に先立ち微視的なクラックが発生し、き裂進展の抵抗となる。板厚の1/4の位置で圧延面に平行に(110)面を発達させ、(110)面X線強度比を0.8以上とすると、き裂伝播停止特性が向上する理由は、き裂突入直後のき裂伝播エネルギーの吸収能力が高くなり、き裂進展が抑制されるためと考えられるが、詳細は不明である。上述のように、(211)面と(110)面とは、き裂の停止に対してそれぞれ独立に作用するものである。そして、このように、き裂の停止に対して互いに独立した有効な作用を有する組織を素材全体の断面内で複数種類有することが、本発明の大きな特徴である。
ここで、(211)面X線強度比とは、対象材の(211)結晶面の集積度を表す数値で、対象材の(211)反射のX線回折強度(I(211))と、集合組織のないランダムな標準試料の(211)反射のX線回折強度(I0(211))との比(I(211)/I0(211))を指す。
(110)面X線強度比とは、対象材の(110)結晶面の集積度を表す数値で、対象材の(110)反射のX線回折強度(I(110))と、集合組織のないランダムな標準試料の(110)反射のX線回折強度(I0(110))との比(I(110)/I0(110))を指す。
母材靭性が良好であることが、き裂の進展を抑制するための前提となるので、本発明に係る鋼板では板厚1/4部におけるシャルピー破面遷移温度は−40℃以下と規定する。以下、本発明における好ましい製造条件について説明する。
3.製造条件
まず、上記化学成分の溶鋼を、転炉等で溶製後、連続鋳造等で鋼素材(スラブ)とし、
ついで、1000〜1200℃の温度に加熱して熱間圧延を行う。
スラブ加熱温度が1000℃以下では、圧延能率が低下し、加熱温度が1200℃以上ではオーステナイト粒が粗大化し、靭性の低下を招くばかりか、酸化ロスが顕著となり、歩留が低下するので、スラブ加熱温度は1000〜1200℃とする。
靭性の観点から好ましいスラブ加熱温度の範囲は1050〜1150℃であり、より好ましくは1050〜1100℃である。
熱間圧延は、板厚中央部の温度が(Ar点+50)℃以下、(Ar点+10)℃以上の温度域において累積圧下率40%以上の圧延を行い、後述の冷却条件との組み合わせで、板厚中央部における圧延面での(211)面X線強度比が1.3以上の集合組織を得る。
Ar点は、例えば、Ar(℃)=910−273×C−74×Mn−57×Ni−16×Cr−9×Mo−5×Cu(各元素は含有量(質量%))で求めることが可能である。
なお、本発明は規定した温度域以外での圧延を制限するものではなく、通常、スラブ加熱後の高温で実施する粗圧延を行うことが可能である。また、圧延終了温度は、規定した温度範囲内であってもよいし、それよりも低温でもかまわない。ただし、Ar点未満の温度域において過度の圧延を実施すると、所望の集合組織が得られにくくなる。このため、好ましくは、Ar点以上の温度域で圧延を終了する。
圧延が終了した鋼板は3℃/s以上の冷却速度にて400℃以下まで冷却する。冷却速度が3℃/未満では、仮に圧延時に目的の集合組織が得られた場合においても、冷却過程を経た後には板厚中央部および板厚1/4部において前記の本発明で規定する集合組織は消滅する。また、冷却停止温度が400℃超えでは板厚1/4部での(110)面が発達しない。
上述の製造条件により、所望の集合組織が得られるだけでなく、シャルピー試験における破面単位が微細化され、板厚1/4部におけるシャルピー衝撃試験でシャルピー破面遷移温度−40℃以下が得られる。
以上の説明において、板厚中央部の温度は、放射温度計で測定した板表面温度から、伝熱計算により求める。圧延後の冷却条件における温度条件も板厚中央部温度とする。
表1に示す各組成の溶鋼を、転炉で溶製し、連続鋳造法で鋼素材(スラブ)とした(鋼記号A〜S)。これらスラブ(鋼素材:280mm厚)を用いて、表2に示す圧延条件にて板厚30〜70mmに熱間圧延を行った。同じく表2に示す条件で、冷却を行いNo.1〜29の供試鋼を得た。
Figure 0005146198
Figure 0005146198
得られた厚鋼板について、板厚1/4部よりΦ14のJIS14A号試験片を試験片の長手方向が圧延方向と直角となるように採取し、引張試験を行い、降伏強度(YS)、引張強さ(TS)を測定した。
また、板厚1/4部よりJIS4号衝撃試験片を試験片の長手軸方向が圧延方向と平行となるように採取して、シャルピー衝撃試験を行い、破面遷移温度(vTrs)を求めた。板厚1/4部におけるシャルピー破面遷移温度が−40℃以下のものを本発明範囲内とした。
また、鋼板の集合組織を評価するため、板厚中央部における圧延面での(211)面X線強度比と、板厚1/4部における圧延面での(110)面X線強度比を測定した。
次に、板厚方向の脆性き裂伝播停止特性を評価するため、大型混成ESSO試験を行った。試験体1の形状を図1に示す。図1(a)は正面図、図1(b)は側面図を示す。
試験は応力235MPa、温度−10℃の条件にて実施した。大入熱溶接部5のボンドに設けた窓枠型の機械ノッチ6に打撃を与えて脆性き裂を発生させ、溶接金属2を貫通した脆性き裂が評価する母材3で停止するか否かを調査した。
さらに、各鋼板から採取した継手用試験板に、V開先を施し、エレクトロガスアーク溶接により大入熱溶接継手を作製した。得られた溶接継手から切欠位置をボンド部とするJIS4号衝撃試験片を採取し、試験温度―40℃でシャルピー衝撃試験を実施し、同一条件で実施した試験片3本の吸収エネルギーの平均値を吸収エネルギーvE−40(J)として求めた。
表3に強度、母材靱性、X線強度比、大型混成ESSO試験の結果とシャルピー衝撃試験結果を併せて示す。これらの鋼板は、いずれも、目標強度(降伏強度:390MPa以上、引張強さ:510MPa以上)を満足した。板厚中央部、板厚1/4部における集合組織が本発明範囲を満足し、且つ板厚1/4部におけるシャルピー破面遷移温度が−40℃以下となる供試鋼板(No.1〜16)の場合、脆性き裂は停止した。
一方、鋼板の集合組織が本発明の規定を満たさない、および/または板厚1/4部におけるシャルピー破面遷移温度が−40℃を超えて本発明の規定を満たさない鋼板(No.17〜29)は、脆性き裂は停止せず、貫通した。
また、供試鋼板(No.1〜14)は溶接継手ボンド部のvE−40が70J以上と優れた熱影響部の靭性を示した。一方、供試鋼板(No.15、16)は鋼板の集合組織および/または板厚1/4部におけるシャルピー破面遷移温度が本発明範囲内で脆性き裂は停止したが、化学成分範囲が本発明範囲外のため溶接継手ボンド部の靭性が劣る。
Figure 0005146198
大型混成ESSO試験片を説明する図で、(a)は正面図、(b)は側面図を示す。
符号の説明
1 試験体
2 溶接金属
3 母材
5 大入熱溶接部
6 機械ノッチ

Claims (3)

  1. 鋼の化学成分が、質量%で、C:0.03〜0.20%、Si:1.0%以下、Mn:1.0〜2.0%、Al:0.005〜0.06%、P:0.015%以下、S:0.0050%以下、Nb:0.005〜0.017%、Ti:0.005〜0.02%、N:0.0035〜0.0075%、Ca:0.0005〜0.0030%、B:0.0005〜0.0020%、かつ、Ca、O、Sが、下記(1)式を満たし、残部がFeおよび不可避的不純物からなり、
    板厚中央部における圧延面での(211)面X線強度比が1.3以上、板厚1/4部の圧延面での(110)面X線強度比が0.8以上の集合組織を有し、かつ板厚1/4部におけるシャルピー破面遷移温度が−40℃以下であることを特徴とする大入熱溶接部の靭性および脆性き裂伝播停止特性に優れた高強度厚鋼板。
    0<(Ca−(0.18+130×Ca)×O)/1.25/S<1 (1)
    ただし、Ca、O、Sは各成分の含有量(質量%)をあらわす。
  2. 鋼の化学成分が、さらに、質量%で、Cu:0.01〜0.5%、Ni:0.01〜1.0%、Cr:0.01〜0.5%、Mo:0.01〜0.5%、V:0.001〜0.1%の1種または2種以上を含有することを特徴とする、請求項1記載の大入熱溶接部の靭性および脆性き裂伝播停止特性に優れた高強度厚鋼板。
  3. 請求項1または2に記載の化学成分を有する鋼素材を、1000〜1200℃の温度に加熱し、熱間圧延における板厚中央部の温度が(Ar点+50)℃以下、(Ar点+10)℃以上の温度域で累積圧下率40%以上の圧延を行った後、3℃/s以上の冷却速度にて400℃以下まで冷却することを特徴とする大入熱溶接部の靭性および脆性き裂伝播停止特性に優れた高強度厚鋼板の製造方法。
JP2008213498A 2008-08-22 2008-08-22 大入熱溶接部の靭性および脆性き裂伝播停止特性に優れた高強度厚鋼板およびその製造方法 Active JP5146198B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008213498A JP5146198B2 (ja) 2008-08-22 2008-08-22 大入熱溶接部の靭性および脆性き裂伝播停止特性に優れた高強度厚鋼板およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008213498A JP5146198B2 (ja) 2008-08-22 2008-08-22 大入熱溶接部の靭性および脆性き裂伝播停止特性に優れた高強度厚鋼板およびその製造方法

Publications (2)

Publication Number Publication Date
JP2010047805A JP2010047805A (ja) 2010-03-04
JP5146198B2 true JP5146198B2 (ja) 2013-02-20

Family

ID=42065118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008213498A Active JP5146198B2 (ja) 2008-08-22 2008-08-22 大入熱溶接部の靭性および脆性き裂伝播停止特性に優れた高強度厚鋼板およびその製造方法

Country Status (1)

Country Link
JP (1) JP5146198B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5966907B2 (ja) * 2011-12-19 2016-08-10 Jfeスチール株式会社 大入熱溶接用鋼材
CN104011247B (zh) 2011-12-27 2016-11-02 杰富意钢铁株式会社 脆性裂纹传播停止特性优良的高强度厚钢板及其制造方法
JP5910219B2 (ja) * 2012-03-23 2016-04-27 Jfeスチール株式会社 鋼板内の材質均一性に優れた大入熱溶接用高強度鋼板及びその製造方法
CN103060715B (zh) * 2013-01-22 2015-08-26 宝山钢铁股份有限公司 一种具有低屈服比的超高强韧钢板及其制造方法
JP5713135B1 (ja) 2013-11-19 2015-05-07 新日鐵住金株式会社 鋼板
JP6459556B2 (ja) * 2015-01-27 2019-01-30 新日鐵住金株式会社 建築用低降伏比鋼板およびその製造方法
CN107208238B (zh) * 2015-03-12 2018-11-23 杰富意钢铁株式会社 高强度极厚钢板及其制造方法
JP6308151B2 (ja) * 2015-03-17 2018-04-11 Jfeスチール株式会社 超大入熱溶接部靭性に優れた建築構造物用低降伏比高強度厚鋼板およびその製造方法
JP6624208B2 (ja) * 2016-02-03 2019-12-25 Jfeスチール株式会社 大入熱溶接用鋼材
JP6504131B2 (ja) * 2016-08-09 2019-04-24 Jfeスチール株式会社 高強度厚鋼板およびその製造方法
CN109219670B (zh) * 2016-08-09 2020-09-04 杰富意钢铁株式会社 高强度厚钢板及其制造方法
JP6274375B1 (ja) * 2016-08-09 2018-02-07 Jfeスチール株式会社 高強度厚鋼板およびその製造方法
CN112195400A (zh) * 2020-09-25 2021-01-08 南京钢铁股份有限公司 一种e460-w200超高强船板钢及其制造方法
CN112210717A (zh) * 2020-09-25 2021-01-12 南京钢铁股份有限公司 一种e420-w300超高强船板钢及其制造方法

Also Published As

Publication number Publication date
JP2010047805A (ja) 2010-03-04

Similar Documents

Publication Publication Date Title
JP5146198B2 (ja) 大入熱溶接部の靭性および脆性き裂伝播停止特性に優れた高強度厚鋼板およびその製造方法
JP5900312B2 (ja) 大入熱溶接部の靭性および脆性き裂伝播停止特性に優れた高強度厚鋼板およびその製造方法
JP5733425B2 (ja) 脆性き裂伝播停止特性に優れた高強度厚鋼板およびその製造方法
JP5434145B2 (ja) 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
JP5598617B1 (ja) 脆性亀裂伝播停止特性に優れた大入熱溶接用高強度厚鋼板およびその製造方法
JP5304925B2 (ja) 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
JP5146033B2 (ja) 大入熱溶接部の靭性および脆性き裂伝播停止特性に優れた高強度厚鋼板およびその製造方法
JP5598618B1 (ja) 脆性亀裂伝播停止特性に優れた大入熱溶接用高強度厚鋼板およびその製造方法
JP6536514B2 (ja) 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
JP4946512B2 (ja) 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
JP5076939B2 (ja) 大入熱溶接部の靭性および脆性き裂伝播停止特性に優れた高強度厚鋼板およびその製造方法
JP5181496B2 (ja) 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
JP5146043B2 (ja) 大入熱溶接部の靭性および脆性き裂伝播停止特性に優れた高強度厚鋼板およびその製造方法
JP2009132995A (ja) 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
JP5733424B2 (ja) 脆性き裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
JP5920542B2 (ja) 溶接継手
JP6477743B2 (ja) 脆性き裂伝播停止特性および溶接熱影響部靭性に優れた高強度極厚鋼板およびその製造方法
JP5838801B2 (ja) 厚鋼板及び厚鋼板の製造方法
KR102193527B1 (ko) 고강도 후강판 및 그의 제조 방법
JP6504131B2 (ja) 高強度厚鋼板およびその製造方法
JP6274375B1 (ja) 高強度厚鋼板およびその製造方法
JP2013256699A (ja) 溶接性、溶接熱影響部靭性に優れた厚手高強度鋼板およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

R150 Certificate of patent or registration of utility model

Ref document number: 5146198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250