JP5137295B2 - Silicon-containing curable composition and cured product thereof - Google Patents

Silicon-containing curable composition and cured product thereof Download PDF

Info

Publication number
JP5137295B2
JP5137295B2 JP2005048747A JP2005048747A JP5137295B2 JP 5137295 B2 JP5137295 B2 JP 5137295B2 JP 2005048747 A JP2005048747 A JP 2005048747A JP 2005048747 A JP2005048747 A JP 2005048747A JP 5137295 B2 JP5137295 B2 JP 5137295B2
Authority
JP
Japan
Prior art keywords
component
curable composition
silicon
parts
cured product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005048747A
Other languages
Japanese (ja)
Other versions
JP2006232970A (en
Inventor
仁一 尾見
功一 坂巻
博 森田
雅子 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Adeka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005048747A priority Critical patent/JP5137295B2/en
Application filed by Adeka Corp filed Critical Adeka Corp
Priority to CN2006800039236A priority patent/CN101111567B/en
Priority to EP06713654A priority patent/EP1852469B1/en
Priority to KR1020077017774A priority patent/KR101223545B1/en
Priority to PCT/JP2006/302513 priority patent/WO2006090609A1/en
Priority to US11/815,564 priority patent/US7799887B2/en
Priority to AT06713654T priority patent/ATE534706T1/en
Priority to TW095105984A priority patent/TW200636010A/en
Publication of JP2006232970A publication Critical patent/JP2006232970A/en
Application granted granted Critical
Publication of JP5137295B2 publication Critical patent/JP5137295B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • C08G77/52Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/14Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/70Siloxanes defined by use of the MDTQ nomenclature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Description

本発明は、ケイ素含有硬化性組成物、及びそれを硬化させたに硬化物に関する。詳しくは、電気・電子材料として有用なケイ素含有硬化性組成物及びその硬化物に関する。   The present invention relates to a silicon-containing curable composition and a cured product obtained by curing the composition. Specifically, the present invention relates to a silicon-containing curable composition useful as an electric / electronic material and a cured product thereof.

ケイ素含有化合物は、さまざまな研究がなされており、工業的にもシリコーン樹脂に代表されるようにポリシロキサン化合物が古くから利用されている。しかし、シリコーン樹脂は、耐熱性、可撓性に優れてはいるが、アウトガス成分(揮発成分)が多いため電子部材の製造工程などでは汚染問題から使用が限定されていた。
また近年、電子情報分野の発展に伴い、高度の性能が要求されることから、ケイ素の特長ある性質を生かして耐熱性、透明性、物理的・電気的特性に優れた技術が検討されてきている。その中で、ケイ素化合物のヒドロシリル化反応を応用して有用な化合物を製造する技術が多種、検討されている。また、電子情報分野での部材製造工程では、リソグラフィ工程が多用され、高い耐塩基性・耐溶剤性が要求されるようになってきている。そのため、高い耐塩基性・耐溶剤性を保持しつつ、高度の耐熱性、耐クラック性、透明性を同時に満足する材料が求められるようになってきている。これらの要求に対し、種々のケイ素含有硬化性組成物が提案されている(特許文献1〜3及び非特許文献1参照)。
Various studies have been made on silicon-containing compounds, and polysiloxane compounds have been used for a long time as represented by silicone resins industrially. However, although silicone resin is excellent in heat resistance and flexibility, its use is limited due to contamination problems in the manufacturing process of electronic members and the like due to the large amount of outgas components (volatile components).
In recent years, with the development of the electronic information field, a high level of performance is required, so technologies that excel in heat resistance, transparency, physical and electrical properties have been studied by taking advantage of the unique properties of silicon. Yes. Among them, various techniques for producing useful compounds by applying hydrosilylation reaction of silicon compounds have been studied. In addition, in the member manufacturing process in the field of electronic information, a lithography process is frequently used, and high base resistance and solvent resistance have been demanded. For this reason, there has been a demand for a material that satisfies high heat resistance, crack resistance, and transparency at the same time while maintaining high base resistance and solvent resistance. In response to these requirements, various silicon-containing curable compositions have been proposed (see Patent Documents 1 to 3 and Non-Patent Document 1).

しかしながら、これらに提案された技術は個々の特徴はそれぞれ有するが、最近の電子情報分野での材料に要求される、高度の耐熱性、耐塩基性、耐クラック性及びアウトガス成分が極微という性能を同時に満足するものはなかった。
例えば、特許文献1で提案されている材料では、耐熱性、耐クラック性、特に耐塩基性に関して十分に満足いくものではなく、また特許文献2で提案されている材料でも、特に耐塩基性に関して十分に満足いくものではなく、また特許文献3で提案されている材料も、耐クラック性、特に耐塩基性に関して十分に満足のいくものではなかった。
特開2002−241614号公報 特開2002−241501号公報 特開2002−194215号公報 European Polymer Journal 40 (2004) 615-622
However, although the technologies proposed for these have individual characteristics, they have the high heat resistance, base resistance, crack resistance, and performance of outgas components that are required for materials in the recent electronic information field. There was nothing to satisfy at the same time.
For example, the material proposed in Patent Document 1 is not sufficiently satisfactory with respect to heat resistance, crack resistance, and particularly base resistance, and the material proposed in Patent Document 2 also particularly relates to base resistance. It is not fully satisfactory, and the material proposed in Patent Document 3 is not sufficiently satisfactory with respect to crack resistance, particularly base resistance.
JP 2002-241614 A Japanese Patent Laid-Open No. 2002-241501 JP 2002-194215 A European Polymer Journal 40 (2004) 615-622

従って、本発明の目的は、アウトガス成分が少なく、透明性に優れ、その硬化物が高度の耐熱性を持ち、耐塩基性、耐クラック性に優れ、電気・電子材料等に有用なケイ素含有硬化性組成物を提供することにある。   Accordingly, the object of the present invention is to provide a silicon-containing curing material that has few outgas components, excellent transparency, and has a high heat resistance, excellent base resistance, and crack resistance, and is useful for electrical and electronic materials. It is to provide a sex composition.

本発明者らは、上記課題を解決すべく鋭意検討した結果、特定のケイ素含有化合物の構造とプレポリマーに着目し、本発明を完成するに至った。
すなわち本発明は、(A)成分として、下記の(α)成分及び(β)成分のそれぞれから選ばれる1種以上を、ヒドロシリル化反応して得られる1分子中に2個以上のSi−H基を含有するプレポリマー(A)と、(B)成分として、Si −H基との反応性を有する炭素−炭素二重結合を1分子中に2個以上含有する環状シロキサン化合物(B)と、(C)成分として、ヒドロシリル化触媒(C)を、含有することを特徴とするケイ素含有硬化性組成物を提供するものである。
As a result of intensive studies to solve the above problems, the present inventors have focused on the structure and prepolymer of a specific silicon-containing compound, and have completed the present invention.
That is, in the present invention, as the component (A), one or more selected from each of the following (α) component and (β) component is converted into two or more Si—H in one molecule obtained by hydrosilylation reaction. A prepolymer (A) containing a group, and a cyclic siloxane compound (B) containing, as a component (B), two or more carbon-carbon double bonds having reactivity with Si-H groups in one molecule; A silicon-containing curable composition comprising a hydrosilylation catalyst (C) as the component (C).

(α)成分: 下記の式(1)で示される、1分子中に2個以上のSi−H基を含有する環状シロキサン化合物。   (Α) Component: A cyclic siloxane compound containing two or more Si—H groups in one molecule, represented by the following formula (1).

[式(1)中、R1 、R2 及びR3 は、それぞれ、炭素数1〜6のアルキル基、またはフェニル基を表し、同一であっても異なっていてもよい。aは2〜10の数を表し、bは0〜8の数を表し、a+b≧2である。] [In Formula (1), R < 1 >, R < 2 > and R < 3 > represent a C1-C6 alkyl group or a phenyl group, respectively, and may be same or different. a represents a number of 2 to 10, b represents a number of 0 to 8, and a + b ≧ 2. ]

(β)成分: 下記の式(2)または(4)で示される、Si−H基との反応性を有する炭素−炭素二重結合を1分子中に2個含有する化合物。 Two compounds containing in the molecule a carbon-carbon double bond - of the formula (2) or (4) below, the carbon reactive with the Si-H groups: (beta) components.

[式(3)中、R4 、R5 、R6 及びR7 は、それぞれ、炭素数1〜6のアルキル基、またはフェニル基を表し、同一であっても異なっていてもよい。] [In Formula (3), R 4 , R 5 , R 6 and R 7 each represent an alkyl group having 1 to 6 carbon atoms or a phenyl group, and may be the same or different. ]

[式(4)中、R8 、R9 、R10及びR11は、それぞれ、炭素数1〜6のアルキル基、またはフェニル基を表し、同一であっても異なっていてもよい。] [In Formula (4), R < 8 >, R < 9 >, R < 10 > and R < 11 > represent a C1-C6 alkyl group or a phenyl group, respectively, and may be same or different. ]

また本発明は、上記(B)成分が、下記の式(5)で示される、Si −H基との反応性を有する炭素−炭素二重結合を1分子中に2個以上含有する環状シロキサン化合物である前記ケイ素含有硬化性組成物を提供するものである。   Further, the present invention provides a cyclic siloxane in which the component (B) contains two or more carbon-carbon double bonds having a reactivity with the Si-H group represented by the following formula (5). The silicon-containing curable composition as a compound is provided.

[式(5)中、R12、R13及びR14は、それぞれ、炭素数1〜6のアルキル基、またはフェニル基を表し、同一であっても異なっていてもよい。pは2〜10の数を表し、qは0〜8の数を表し、p+q≧2である。] [In Formula (5), R < 12 >, R < 13 > and R < 14 > represent a C1-C6 alkyl group or a phenyl group, respectively, and may be same or different. p represents a number of 2 to 10, q represents a number of 0 to 8, and p + q ≧ 2. ]

また本発明は、前記ケイ素含有硬化性組成物を硬化させた硬化物を提供するものである。   The present invention also provides a cured product obtained by curing the silicon-containing curable composition.

本発明によれば、アウトガス成分が少なく、透明性に優れ、その硬化物が高度の耐熱性を持ち、耐塩基性、耐クラック性を有し、電気・電子材料の絶縁膜、低誘電率材料、耐熱材料、透明材料等に有用なケイ素含有硬化性組成物が得られる。   According to the present invention, there are few outgas components, excellent transparency, the cured product has high heat resistance, base resistance, crack resistance, insulating film of electric / electronic material, low dielectric constant material Thus, a silicon-containing curable composition useful for a heat resistant material, a transparent material, and the like can be obtained.

以下、本発明を詳細に説明する。
まず本発明の(A)成分であるプレポリマーについて説明する。
本発明の(A)成分のプレポリマーは、下記の(α)成分と(β)成分のそれぞれから選ばれる1種以上を、ヒドロシリル化反応して得られ、その1分子中に2個以上のSi−H基を有するものである。
Hereinafter, the present invention will be described in detail.
First, the prepolymer which is the component (A) of the present invention will be described.
The prepolymer of the component (A) of the present invention is obtained by hydrosilylation reaction of one or more selected from each of the following (α) component and (β) component, and two or more of them are contained in one molecule. It has a Si-H group.

(α)成分は、下記の式(1)で示され、1分子中に2個以上のSi−H基を含有する環状シロキサン化合物である。該式(1)中、R1 、R2 及びR3 は、それぞれ、炭素数1〜6のアルキル基、またはフェニル基を表し、同一であっても異なっていてもよい。R1 は工業的入手性の点からメチル基が好ましく、R2 及びR3 は、アウトガスを低くする点から、メチル基またはフェニル基が好ましい。aは2〜10の数を表し、bは0〜8の数を表し、a+b≧2である。aは製造の容易さの点から4〜6が好ましく、bは硬化反応の架橋密度の点から0〜1が好ましい。 The component (α) is a cyclic siloxane compound represented by the following formula (1) and containing two or more Si—H groups in one molecule. In the formula (1), R 1 , R 2 and R 3 each represent an alkyl group having 1 to 6 carbon atoms or a phenyl group, and may be the same or different. R 1 is preferably a methyl group from the viewpoint of industrial availability, and R 2 and R 3 are preferably a methyl group or a phenyl group from the viewpoint of reducing outgas. a represents a number of 2 to 10, b represents a number of 0 to 8, and a + b ≧ 2. a is preferably 4 to 6 from the viewpoint of ease of production, and b is preferably 0 to 1 from the viewpoint of the crosslinking density of the curing reaction.

(α)成分の具体例としては、1,3,5,7−テトラメチルシクロテトラシロキサン、1,3,5,7,9−ペンタメチルシクロペンタシロキサン、1,3,5,7,9,11−ヘキサメチルシクロヘキサシロキサン等が挙げられ、工業的に入手が容易な点と適度のSi−H官能基数の点から1,3,5,7−テトラメチルシクロテトラシロキサンが好ましい。(α)成分は単独で使用しても2種以上組み合わせて使用してもよい。   Specific examples of the component (α) include 1,3,5,7-tetramethylcyclotetrasiloxane, 1,3,5,7,9-pentamethylcyclopentasiloxane, 1,3,5,7,9, Examples include 11-hexamethylcyclohexasiloxane, and 1,3,5,7-tetramethylcyclotetrasiloxane is preferable from the viewpoint of industrial availability and the appropriate number of Si-H functional groups. The component (α) may be used alone or in combination of two or more.

(β)成分は、Si−H基との反応性を有する炭素−炭素二重結合を1分子中に2個以上含有する化合物であり、特に好ましい例として、耐熱性、耐クラック性の点から、下記の式(2)〜(4)のいずれかで示される化合物が挙げられる。   The component (β) is a compound containing two or more carbon-carbon double bonds having reactivity with the Si—H group in one molecule, and as a particularly preferred example, from the viewpoint of heat resistance and crack resistance. And compounds represented by any one of the following formulas (2) to (4).

(β)成分である上記の式(2)で示される化合物は、ジビニルベンゼンを示し、o−ジビニルベンゼン、m−ジビニルベンゼン、p−ジビニルベンゼンのいずれでもよく、ビニル基以外の官能基(例えばメチル基等のアルキル基)がベンゼン環に結合しているものでもよく、これらの混合物でもよい。   The compound represented by the above formula (2) as the component (β) represents divinylbenzene, and may be any of o-divinylbenzene, m-divinylbenzene, and p-divinylbenzene, and a functional group other than the vinyl group (for example, An alkyl group such as a methyl group) may be bonded to a benzene ring, or a mixture thereof.

上記の式(3)中、R4 、R5 、R6 及びR7 は、それぞれ、炭素数1〜6のアルキル基、またはフェニル基を表し、同一であっても異なっていてもよく、製造の容易さ及び工業的入手の容易さの点から、メチル基、エチル基が好ましい。上記の式(3)で示される化合物の好ましい具体例としては、下記の式(6)で示される化合物が挙げられる。 In the above formula (3), R 4, R 5, R 6 and R 7 each represent an alkyl group or a phenyl group, having 1 to 6 carbon atoms, which may be the same or different and manufacturing From the viewpoint of ease of production and industrial availability, a methyl group and an ethyl group are preferred. Preferable specific examples of the compound represented by the above formula (3) include a compound represented by the following formula (6).

上記の式(4)中、R8 、R9 、R10及びR11は、それぞれ、炭素数1〜6のアルキル基、またはフェニル基を表し、同一であっても異なっていてもよく、工業的入手性の点から、メチル基、エチル基が好ましい。上記の式(4)で示される化合物の好ましい具体例としては、下記の式(7)で示される化合物が挙げられる。 In said formula (4), R < 8 >, R <9> , R < 10 > and R < 11 > represent a C1-C6 alkyl group or a phenyl group, respectively, and may be the same or different, industrial. From the viewpoint of general availability, a methyl group and an ethyl group are preferable. Preferable specific examples of the compound represented by the above formula (4) include a compound represented by the following formula (7).

(β)成分は、上記で挙げたもの以外でも、Si−H基との反応性を有する炭素−炭素二重結合を1分子中に2個以上含有する化合物であればよく、具体的な例としては、ブタジエン、イソプレン、ビニルシクロヘキセン、シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、デカジエン、ジアリルフタレート、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールトリアリルエーテル、ジビニルベンゼン類(純度50〜100%のもの、好ましくは純度80〜100%のもの)、ジビニルビフェニル類(純度50〜100%のもの、好ましくは純度80〜100%のもの)、1,3−ジイソプロペニルベンゼン、1,4−ジイソプロペニルベンゼン、トリアリルイソシアヌレート、トリビニルシクロヘキサン及びそれらのオリゴマー、1,2−ポリブタジエン(1,2比率10〜100%のもの、好ましくは1,2比率50〜100%のもの)、スピロ骨格に炭素−炭素二重結合を2個含有する化合物(例えば、3,9−ジビニル−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン)等が挙げられる。(β)成分は単独で使用しても2種以上組み合わせて使用してもよい。   The (β) component may be a compound containing two or more carbon-carbon double bonds having reactivity with the Si—H group in one molecule, other than those listed above. As butadiene, isoprene, vinylcyclohexene, cyclopentadiene, dicyclopentadiene, cyclohexadiene, decadiene, diallyl phthalate, trimethylolpropane diallyl ether, pentaerythritol triallyl ether, divinylbenzenes (thickness of 50 to 100%, preferably Is 80-100% pure), divinylbiphenyls (50-100% pure, preferably 80-100% pure), 1,3-diisopropenylbenzene, 1,4-diisopropenylbenzene , Triallyl isocyanurate, trivinylcyclohexane and Those oligomers, 1,2-polybutadiene (1,2 ratio of 10 to 100%, preferably 1,2 ratio of 50 to 100%), compounds containing two carbon-carbon double bonds in the spiro skeleton (For example, 3,9-divinyl-2,4,8,10-tetraoxaspiro [5,5] undecane) and the like. The (β) component may be used alone or in combination of two or more.

(β)成分のSi−H基との反応性を有する炭素−炭素二重結合の数は、平均して1分子当たり少なくとも2個以上あればよいが、架橋密度の点から、2〜3個が好ましい。   The number of carbon-carbon double bonds having reactivity with the Si—H group of the component (β) may be at least 2 on average per molecule, but from the point of crosslinking density, 2 to 3 Is preferred.

本発明の(A)成分のプレポリマーは、上記の(α)成分と(β)成分をヒドロシリル化反応すればよく、(α)成分と(β)成分の配合比率は、特に限定されないが、(A)成分のプレポリマー1分子中に、2個以上のSi−H基を含有するようにすればよい。好ましくは、プレポリマーの粘度の点から、(α)成分中のSi−H基の数(X)と、(β)成分中のSi−H基との反応性を有する炭素―炭素二重結合の数(Y)との比が、X:Y=10:1〜2:1であり、より好ましくはX:Y=4:1〜2:1である。   The prepolymer of the component (A) of the present invention may be a hydrosilylation reaction between the component (α) and the component (β), and the blending ratio of the component (α) and the component (β) is not particularly limited. What is necessary is just to make it contain 2 or more Si-H group in 1 molecule of prepolymers of (A) component. Preferably, from the viewpoint of the viscosity of the prepolymer, a carbon-carbon double bond having reactivity between the number (X) of Si-H groups in the component (α) and the Si-H groups in the component (β). The ratio with respect to the number (Y) is X: Y = 10: 1 to 2: 1, more preferably X: Y = 4: 1 to 2: 1.

また本発明の(A)成分のプレポリマーが有するSi−H基の濃度は、硬化性及び保存安定性の点から、0.0001mmol/g〜100mmol/gが好ましく、更には、0.01mmol/g〜20mmol/gが好ましい。   In addition, the concentration of the Si—H group contained in the prepolymer of the component (A) of the present invention is preferably 0.0001 mmol / g to 100 mmol / g, more preferably 0.01 mmol / g from the viewpoint of curability and storage stability. g-20 mmol / g is preferable.

本発明の(A)成分のプレポリマーは、重量平均分子量が500〜50万が好ましく、耐熱性及びハンドリング性の点から、1000〜30万がより好ましい。本プレポリマーの重量平均分子量の測定はGPCを使用すればよく、ポリスチレン換算により求めればよい。   The prepolymer of the component (A) of the present invention preferably has a weight average molecular weight of 500 to 500,000, more preferably 1000 to 300,000 from the viewpoint of heat resistance and handling properties. The measurement of the weight average molecular weight of the present prepolymer may use GPC, and may be obtained by polystyrene conversion.

(α)成分と(β)成分とのヒドロシリル化反応は、白金系触媒を用いて行うとよく、該白金系触媒としてはヒドロシリル化反応を促進する白金、パラジウム及びロジウムの一種以上の金属を含有する公知の触媒であればよい。これらのヒドロシリル化反応用の触媒として用いられる白金系触媒としては、白金−カルボニルビニルメチル錯体、白金−ジビニルテトラメチルジシロキサン錯体、白金−シクロビニルメチルシロキサン錯体、白金−オクチルアルデヒド錯体等の白金系触媒をはじめ、白金の代わりに同じく白金系金属であるパラジウム、ロジウム等を含有する化合物が挙げられ、これらの1種または2種以上を併用してもよい。特に硬化性の点から、白金を含有するものが好ましく、具体的には、白金−ジビニルテトラメチルジシロキサン錯体(Karstedt触媒)、白金−カルボニルビニルメチル錯体(Ossko 触媒)が好ましい。また、クロロトリストリフェニルホスフィンロジウム(I)等の、上記白金系の金属を含有するいわゆるWilkinson触媒も、本発明では白金系触媒に含まれる。白金系触媒の使用量は、反応性の点から、(α)成分と(β)成分の合計量の5質量%以下が好ましく、0.0001〜1.0質量%がより好ましい。(α)成分と(β)成分のヒドロシリル化反応条件は特に限定されず、上記触媒を使用して従来公知の条件で行なえばよいが、硬化速度の点から、室温〜130℃で行なうのが好ましく、反応時にトルエン、ヘキサン、MIBK(メチルイソブチルケトン)、シクロペンタノン、PGMEA(プロピレングリコールモノメチルエーテルアセテート) 等の従来公知の溶媒を使用してもよい。   The hydrosilylation reaction between the (α) component and the (β) component is preferably performed using a platinum-based catalyst, and the platinum-based catalyst contains one or more metals of platinum, palladium, and rhodium that promote the hydrosilylation reaction. Any known catalyst may be used. Platinum-based catalysts used as catalysts for these hydrosilylation reactions include platinum-carbonyl vinylmethyl complexes, platinum-divinyltetramethyldisiloxane complexes, platinum-cyclovinylmethylsiloxane complexes, platinum-octylaldehyde complexes, etc. In addition to the catalyst, compounds containing palladium, rhodium, etc., which are also platinum-based metals, may be used instead of platinum, and one or more of these may be used in combination. In particular, from the viewpoint of curability, those containing platinum are preferable, and specifically, platinum-divinyltetramethyldisiloxane complex (Karstedt catalyst) and platinum-carbonylvinylmethyl complex (Ossko catalyst) are preferable. In addition, a so-called Wilkinson catalyst containing the above platinum-based metal such as chlorotristriphenylphosphine rhodium (I) is also included in the platinum-based catalyst in the present invention. The amount of the platinum-based catalyst used is preferably 5% by mass or less, more preferably 0.0001 to 1.0% by mass of the total amount of the (α) component and the (β) component from the viewpoint of reactivity. The hydrosilylation reaction conditions for the (α) component and the (β) component are not particularly limited, and may be carried out under the conventionally known conditions using the above catalyst, but from the point of curing speed, it is carried out at room temperature to 130 ° C. Preferably, a conventionally known solvent such as toluene, hexane, MIBK (methyl isobutyl ketone), cyclopentanone, or PGMEA (propylene glycol monomethyl ether acetate) may be used during the reaction.

本発明の(A)成分のプレポリマーは、環状シロキサン化合物である(α)成分と、Si −H基との反応性を有する炭素−炭素二重結合を1分子中に2個以上含有する化合物である(β)成分とをヒドロシリル化反応して得られるプレポリマーであり、本発明は、(α)成分が環状であること、また、まずプレポリマーとしてから、これを硬化性組成物の配合成分とすることに大きな特徴がある。環状構造であるので硬化収縮性が小さく、そのため耐クラック性に優れる硬化物が得られる。また、プレポリマー化することで低沸点物を除去できるので、アウトガス成分を含まない硬化組成物が得られる。さらに低粘度でありながらケイ素含有量を多くできるので、耐熱性に優れた硬化性組成物を得ることができる。   The prepolymer of the component (A) of the present invention is a compound containing two or more carbon-carbon double bonds having reactivity with the component (α), which is a cyclic siloxane compound, and a Si—H group. The (β) component is a prepolymer obtained by a hydrosilylation reaction. The present invention is based on the fact that the (α) component is cyclic, and is first converted into a prepolymer, which is then added to the curable composition. There is a big feature in using as an ingredient. Since it has an annular structure, the curing shrinkage is small, and therefore a cured product having excellent crack resistance can be obtained. Moreover, since a low boiling point thing can be removed by prepolymerizing, the hardening composition which does not contain an outgas component is obtained. Furthermore, since the silicon content can be increased while the viscosity is low, a curable composition having excellent heat resistance can be obtained.

次に本発明の(B)成分について説明する。本発明の(B)成分は、Si −H基との反応性を有する炭素−炭素二重結合を1分子中に2個以上含有する環状シロキサン化合物である。この二重結合の数は2〜10個が好ましく、硬化物の架橋密度の点から2〜6個がより好ましい。また、このSi−H基と反応性を有する炭素−炭素二重結合は、アルケニル基、ビニル基等が挙げられるが、特に反応性の点から、ケイ素原子に結合したビニル基(Si−CH=CH2 基)であることが好ましい。
また、硬化物の物性の点から特に好ましい(B)成分は、下記の式(5)で示される環状シロキサン化合物が挙げられる。
Next, (B) component of this invention is demonstrated. The component (B) of the present invention is a cyclic siloxane compound containing two or more carbon-carbon double bonds having reactivity with Si-H groups in one molecule. The number of double bonds is preferably 2 to 10, and more preferably 2 to 6 from the viewpoint of the crosslink density of the cured product. Further, examples of the carbon-carbon double bond having reactivity with the Si-H group include an alkenyl group and a vinyl group. From the viewpoint of reactivity, a vinyl group bonded to a silicon atom (Si-CH = CH 2 group) is preferred.
Moreover, the cyclic siloxane compound shown by following formula (5) is mentioned as a (B) component especially preferable from the point of the physical property of hardened | cured material.

上記の式(5)中、R12、R13及びR14は、それぞれ、炭素数1〜6のアルキル基、またはフェニル基を表し、同一であっても異なっていてもよく、工業的入手性の点から、R12、R13及びR14は、メチル基またはフェニル基が好ましい。pは2〜10の数を表し、架橋密度の点から2〜4が好ましく、qは0〜8の数を表し、アウトガス低減化及び粘度の点から1〜3が好ましい。p+q≧2である。アウトガス低減化の点から、好ましい(B)成分の具体例としては、下記の式(8)〜(11)で示される環状シロキサン化合物が挙げられる。 In said formula (5), R <12> , R <13> and R < 14 > respectively represent a C1-C6 alkyl group or a phenyl group, and may be the same or different, industrial availability. From this point, R 12 , R 13 and R 14 are preferably a methyl group or a phenyl group. p represents a number of 2 to 10, preferably 2 to 4 from the viewpoint of crosslinking density, q represents a number of 0 to 8, and 1 to 3 are preferable from the viewpoint of outgas reduction and viscosity. p + q ≧ 2. From the viewpoint of reducing the outgas, specific examples of the preferred component (B) include cyclic siloxane compounds represented by the following formulas (8) to (11).

本発明の(B)成分は、Si −H基との反応性を有する炭素−炭素二重結合を1分子中に2個以上含有する環状シロキサン化合物であり、この(B)成分が環状シロキサン化合物であることに本発明の大きな特徴がある。(B)成分が、シロキサン化合物であることにより、シロキサン化合物でないものに比べて、耐熱性、透明性等が優れ、且つ環状化合物であることにより、鎖状化合物に比べて、硬化物の物理的強度(剛直性)、耐塩基性、耐クラック性等が優れている。
本発明の(B)成分がSi −H基との反応性を有する炭素−炭素二重結合を1分子中に2個以上含有する環状シロキサン化合物であることで、特に優れていることをさらに詳しく列挙すると、以下のようになる。
The component (B) of the present invention is a cyclic siloxane compound containing two or more carbon-carbon double bonds having reactivity with Si-H groups in one molecule, and the component (B) is a cyclic siloxane compound. This is a major feature of the present invention. When the component (B) is a siloxane compound, it is superior in heat resistance, transparency, etc. compared to a non-siloxane compound, and is a cyclic compound, so that it is a physical product of a cured product compared to a chain compound. Excellent strength (rigidity), base resistance, crack resistance, etc.
The component (B) of the present invention is a cyclic siloxane compound containing two or more carbon-carbon double bonds having reactivity with Si-H groups in one molecule, and it is more particularly excellent in detail. The enumeration is as follows.

(1)環状構造であるために、硬化収縮が小さくなり、そのため高温での耐クラック性に優れたものとなる。
(2)Si濃度を高くすることができ、耐熱性を向上させ易い。
(3)Si化合物の本来有している透明性、耐熱性等の特長はそのまま発現する。
(1) Since it has an annular structure, curing shrinkage is reduced, and therefore it is excellent in crack resistance at high temperatures.
(2) The Si concentration can be increased, and the heat resistance is easily improved.
(3) The characteristics inherent in the Si compound such as transparency and heat resistance are expressed as they are.

本発明のケイ素含有硬化性組成物中、(A)成分と(B)成分の含有量は、Si−H基と、Si−H基と反応性を有する炭素−炭素二重結合の比を考慮して適宜決めればよいが、Si−H基と、Si−H基と反応性を有する炭素−炭素二重結合の当量比が、0.9〜10が好ましく、1.0〜5.0が特に好ましい。質量%でいうと、(A)成分の含有量は、1〜99質量%が好ましく、10〜90質量%が特に好ましい。(B)成分の含有量は、1〜99質量%が好ましく、10〜90質量%が特に好ましい。   In the silicon-containing curable composition of the present invention, the content of the component (A) and the component (B) considers the ratio of Si—H groups and carbon-carbon double bonds that are reactive with Si—H groups. The equivalent ratio of the Si-H group and the carbon-carbon double bond having reactivity with the Si-H group is preferably 0.9 to 10, and preferably 1.0 to 5.0. Particularly preferred. In terms of mass%, the content of the component (A) is preferably 1 to 99 mass%, particularly preferably 10 to 90 mass%. 1-99 mass% is preferable, and, as for content of (B) component, 10-90 mass% is especially preferable.

次に本発明の(C)成分であるヒドロシリル化触媒について説明する。
(C)成分のヒドロシリル化触媒としては、白金系触媒が挙げられ、これはヒドロシリル化反応を促進する白金、パラジウム及びロジウムの一種以上の金属を含有する公知の触媒であればよい。これらのヒドロシリル化反応用の触媒として用いられる白金系触媒としては、白金−カルボニルビニルメチル錯体、白金−ジビニルテトラメチルジシロキサン錯体、白金−シクロビニルメチルシロキサン錯体、白金−オクチルアルデヒド錯体等の白金系触媒をはじめ、白金の代わりに同じく白金系金属であるパラジウム、ロジウム等を含有する化合物が挙げられ、これらの1種または2種以上を併用してもよい。特に硬化性の点から、白金を含有するものが好ましく、具体的には、白金−ジビニルテトラメチルジシロキサン錯体(Karstedt触媒)、白金−カルボニルビニルメチル錯体(Ossko 触媒)が好ましい。また、クロロトリストリフェニルホスフィンロジウム(I)等の、上記白金系の金属を含有するいわゆるWilkinson触媒も、本発明では白金系触媒に含まれる。
Next, the hydrosilylation catalyst which is the component (C) of the present invention will be described.
Examples of the component (C) hydrosilylation catalyst include platinum-based catalysts, which may be known catalysts containing one or more metals of platinum, palladium, and rhodium that promote the hydrosilylation reaction. Platinum-based catalysts used as catalysts for these hydrosilylation reactions include platinum-carbonyl vinylmethyl complexes, platinum-divinyltetramethyldisiloxane complexes, platinum-cyclovinylmethylsiloxane complexes, platinum-octylaldehyde complexes, etc. In addition to the catalyst, compounds containing palladium, rhodium, etc., which are also platinum-based metals, may be used instead of platinum, and one or more of these may be used in combination. In particular, from the viewpoint of curability, those containing platinum are preferable, and specifically, platinum-divinyltetramethyldisiloxane complex (Karstedt catalyst) and platinum-carbonylvinylmethyl complex (Ossko catalyst) are preferable. In addition, a so-called Wilkinson catalyst containing the above platinum-based metal such as chlorotristriphenylphosphine rhodium (I) is also included in the platinum-based catalyst in the present invention.

本発明のケイ素含有硬化性組成物中、(C)成分の含有量は、硬化性及び保存安定性の点から、5質量%以下が好ましく、0.0001〜1.0質量%がより好ましい。含有量が5質量%よりも多いと、ケイ素含有硬化性組成物の安定性が乏しくなる傾向があり、0.0001質量%よりも少ないと、充分な硬化性が得られない場合がある。   In the silicon-containing curable composition of the present invention, the content of the component (C) is preferably 5% by mass or less, more preferably 0.0001 to 1.0% by mass from the viewpoints of curability and storage stability. When the content is more than 5% by mass, the stability of the silicon-containing curable composition tends to be poor, and when it is less than 0.0001% by mass, sufficient curability may not be obtained.

本発明のケイ素含有硬化性組成物は、上記の(A)〜(C)成分以外に、任意成分として金属酸化物微粉末(金属酸化物微粒子ともいう)を含有することも好ましい。本発明の任意成分の金属酸化物微粉末とは、いわゆる充填剤、鉱物等の無機材料やこれを有機変性したものを指す。例えば、コロイダルシリカ、シリカフィラー、シリカゲル、マイカやモンモリロナイト等の鉱物、酸化アルミニウムや酸化亜鉛、酸化ベリリウム等の金属酸化物等であり、これらを有機変性処理等によって改質したものでもよい。これらの金属酸化物微粉末を加えることで好適な諸物性を得ることができる。特に好ましいものとしては、二酸化ケイ素微粉末が挙げられる。これら金属酸化物微粒子の粒径は、耐熱性の点から100μm以下が好ましく、50μm以下がより好ましい。本発明のケイ素含有硬化性組成物中の、金属酸化物微粉末の含有量は、耐熱性及びハンドリングの点から、90質量%以下が好ましく、50質量%以下がより好ましい。   The silicon-containing curable composition of the present invention preferably contains metal oxide fine powder (also referred to as metal oxide fine particles) as an optional component in addition to the components (A) to (C). The metal oxide fine powder as an optional component of the present invention refers to so-called fillers, inorganic materials such as minerals, and organically modified ones thereof. Examples thereof include colloidal silica, silica filler, silica gel, minerals such as mica and montmorillonite, metal oxides such as aluminum oxide, zinc oxide, and beryllium oxide, and these may be modified by organic modification treatment or the like. Various physical properties can be obtained by adding these metal oxide fine powders. Particularly preferred is silicon dioxide fine powder. The particle diameter of these metal oxide fine particles is preferably 100 μm or less, and more preferably 50 μm or less from the viewpoint of heat resistance. The content of the metal oxide fine powder in the silicon-containing curable composition of the present invention is preferably 90% by mass or less and more preferably 50% by mass or less from the viewpoint of heat resistance and handling.

本発明のケイ素含有硬化性組成物には、更に任意の成分として、フリーラジカルスカベンジャーを配合してもよい。この場合のフリーラジカルスカベンジャーは、酸化防止剤、安定剤等の抗酸化性物質であればよく、例えば、トリエチレングリコール−ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、ジブチルヒドロキシトルエン(BHT)、2,6−ジ−t−ブチル−パラクレゾール(DBPC)等が挙げられる。本発明のケイ素含有硬化性組成物中の、フリーラジカルスカベンジャーの含有量は、耐熱性、電気特性、硬化性、力学特性、保存安定性及びハンドリングの点から、0.1〜50質量%が好ましく、1〜30質量%がより好ましい。   The silicon-containing curable composition of the present invention may further contain a free radical scavenger as an optional component. The free radical scavenger in this case may be any antioxidant substance such as an antioxidant or a stabilizer, such as triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl). ) Propionate], dibutylhydroxytoluene (BHT), 2,6-di-t-butyl-paracresol (DBPC) and the like. The content of the free radical scavenger in the silicon-containing curable composition of the present invention is preferably 0.1 to 50% by mass from the viewpoints of heat resistance, electrical properties, curability, mechanical properties, storage stability and handling. 1-30 mass% is more preferable.

次に本発明の硬化物について述べる。
本発明のケイ素含有硬化性組成物は、加熱することにより硬化させることができ、硬化物とすることができる。この硬化反応は、本発明のケイ素含有硬化性組成物の配合成分を使用直前に混合する方法、あらかじめ全部を混合しておき硬化反応を行うときに加熱等により硬化する方法等、いずれの方法で行ってもよい。
硬化させる場合の加熱温度は35〜350℃が好ましく、50〜250℃がより好ましい。硬化時間は0.01〜10時間が好ましく、0.05〜6時間がより好ましい。これらの硬化反応条件下に硬化反応を行うことにより、本発明のケイ素含有硬化性組成物から、耐熱性、耐クラック性、耐塩基性、低誘電率、アウトガス成分が少ない等の優れた性能を有する硬化物を得ることができる。特に、本発明の硬化物は電気特性に優れ、その比誘電率は、好ましくは2.5〜3.2の範囲である。
Next, the cured product of the present invention will be described.
The silicon-containing curable composition of the present invention can be cured by heating and can be a cured product. This curing reaction may be performed by any method, such as a method of mixing the compounding components of the silicon-containing curable composition of the present invention immediately before use, a method of mixing all in advance and curing by heating or the like when performing the curing reaction. You may go.
The heating temperature for curing is preferably 35 to 350 ° C, more preferably 50 to 250 ° C. The curing time is preferably from 0.01 to 10 hours, more preferably from 0.05 to 6 hours. By performing a curing reaction under these curing reaction conditions, the silicon-containing curable composition of the present invention has excellent performance such as heat resistance, crack resistance, base resistance, low dielectric constant, and low outgas component. A cured product can be obtained. In particular, the cured product of the present invention is excellent in electrical characteristics, and its relative dielectric constant is preferably in the range of 2.5 to 3.2.

本発明のケイ素含有硬化性組成物は、室温(25℃)で良好な流動性があり、ハンドリング性に優れ、また、この硬化物の性能に関しては、特に耐熱性、耐クラック性に優れている。詳しくは、硬化物の5質量%の重量減少を来たす温度が400℃以上、より好ましくは500℃以上の硬化物が好適に得られる。また、クラック発生の少ない硬化物が好適に得られる。流動性に関しては、室温(25℃)で、E型粘度計で測定した粘度が1Pa・S以下であるのが好ましく、0.1Pa・S以下であるのがより好ましい。   The silicon-containing curable composition of the present invention has good fluidity at room temperature (25 ° C.), excellent handling properties, and the cured product has particularly excellent heat resistance and crack resistance. . Specifically, a cured product having a temperature causing a weight loss of 5% by mass of the cured product is preferably 400 ° C. or higher, more preferably 500 ° C. or higher. Moreover, the hardened | cured material with few crack generations is obtained suitably. Regarding the fluidity, the viscosity measured with an E-type viscometer at room temperature (25 ° C.) is preferably 1 Pa · S or less, and more preferably 0.1 Pa · S or less.

本発明のケイ素含有硬化性組成物は、(C)成分のヒドロシリル化触媒(例えば白金系触媒)である硬化反応触媒の効果により、(A)成分のSi−H基と、(B)成分のSi−H基と反応性を有する炭素−炭素二重結合(例えばSi−CH=CH2 基)の反応による硬化反応が速やかに進行する。さらに、本発明のケイ素含有硬化性組成物は、均一で透明なため、紫外線等の光の透過性もよく、光反応性の触媒を添加することで、光硬化も可能である。もちろん光反応性のモノマーや樹脂を更に配合してもよく、ケイ素含有硬化性組成物中の各成分のいずれか一種以上が光反応性基を有していてもよい。更にまた、耐候性、硬度、耐汚染性、難燃性、耐湿性、ガスバリヤ性、可撓性、伸びや強度、電気絶縁性、低誘電率性等の力学特性、光学特性、電気特性等に優れた材料を得ることができる。 The silicon-containing curable composition of the present invention has an effect of a curing reaction catalyst that is a hydrosilylation catalyst (for example, platinum-based catalyst) of the component (C), and the Si-H group of the component (A) and the component (B). The curing reaction by the reaction of a carbon-carbon double bond (for example, Si—CH═CH 2 group) having reactivity with the Si—H group proceeds rapidly. Furthermore, since the silicon-containing curable composition of the present invention is uniform and transparent, it has good light transmittance such as ultraviolet rays, and can be photocured by adding a photoreactive catalyst. Of course, a photoreactive monomer or resin may be further blended, and any one or more of each component in the silicon-containing curable composition may have a photoreactive group. Furthermore, for weather resistance, hardness, stain resistance, flame resistance, moisture resistance, gas barrier properties, flexibility, elongation and strength, electrical insulation, low dielectric constant, and other mechanical properties, optical properties, electrical properties, etc. An excellent material can be obtained.

また、本発明のケイ素含有硬化性組成物には、前記した以外の任意成分として、本発明の目的とする性能を損なわない範囲で、その他の公知の各種樹脂、充填剤、添加剤等をも配合することができる。さらに、(A)成分、(B)成分及び(C)成分のいずれか一種以上に、各種の有機官能基を結合させ、更なる機能を付与することができる。また、本発明のケイ素含有硬化性組成物またはその硬化物をマトリックスとし、この中に他の有用な化合物を分散させた高機能複合材料を作製することもできる。
任意に配合できる各種樹脂の例としては、ポリイミド樹脂、ポリエチレングリコールやポリプロピレングリコール等のポリエーテル樹脂、ポリウレタン樹脂、エポキシ樹脂、フェノール樹脂、ポリエステル樹脂、メラミン樹脂、ポリアミド樹脂、ポリフェニレンスルフィド樹脂等が挙げられる。
任意に配合できる添加剤の例としては、紫外線吸収剤、帯電防止剤、酸化防止剤等が挙げられる。
任意に配合できる充填剤の例としては、窒化ケイ素、窒化アルミニウム、窒化ホウ素、炭化ケイ素等のセラミックス等が挙げられ、これらを有機変性処理等により改質したものでもよい。
In addition, the silicon-containing curable composition of the present invention includes other known resins, fillers, additives, and the like as optional components other than those described above, as long as the target performance of the present invention is not impaired. Can be blended. Further, various organic functional groups can be bonded to any one or more of the component (A), the component (B), and the component (C) to give further functions. In addition, a highly functional composite material in which the silicon-containing curable composition of the present invention or a cured product thereof is used as a matrix and other useful compounds are dispersed therein can also be produced.
Examples of various resins that can be arbitrarily blended include polyimide resins, polyether resins such as polyethylene glycol and polypropylene glycol, polyurethane resins, epoxy resins, phenol resins, polyester resins, melamine resins, polyamide resins, polyphenylene sulfide resins, and the like. .
Examples of additives that can be optionally added include ultraviolet absorbers, antistatic agents, and antioxidants.
Examples of the filler that can be arbitrarily blended include ceramics such as silicon nitride, aluminum nitride, boron nitride, and silicon carbide. These may be modified by organic modification treatment or the like.

以下、実施例により本発明を更に説明するが、本発明はこれらの実施例によって限定されるものではない。尚、実施例中の「部」や「%」は質量基準によるものである。下記の実施例1、4、5、6及び10は参考例である。 EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited by these Examples. In the examples, “parts” and “%” are based on mass. The following Examples 1, 4, 5, 6 and 10 are reference examples.

[合成例1](A)成分:プレポリマー−1の合成
1,3,5,7−テトラメチルシクロテトラシロキサン100部、1,4−ビス(ジメチルビニルシリル)ベンゼン100部、トルエン60部及び白金−カルボニルビニルメチル錯体(Ossko 触媒)0.0005部を加えて攪拌しながら、5時間環流処理した。反応液を70℃で溶媒を減圧留去し、(A)成分であるプレポリマー−1を得た。
GPCによる分析の結果、プレポリマー−1の分子量はMw=3000であり、ヒドロシリル基(Si−H基)の含有量は 1H−NMRから5.3mmol/gであった。
Synthesis Example 1 Component (A): Synthesis of Prepolymer-1 100 parts of 1,3,5,7-tetramethylcyclotetrasiloxane, 100 parts of 1,4-bis (dimethylvinylsilyl) benzene, 60 parts of toluene and 0.0005 part of platinum-carbonylvinylmethyl complex (Ossko catalyst) was added and refluxed for 5 hours while stirring. The solvent of the reaction solution was distilled off at 70 ° C. under reduced pressure to obtain Prepolymer-1 as component (A).
As a result of analysis by GPC, the molecular weight of Prepolymer-1 was Mw = 3000, and the content of hydrosilyl group (Si—H group) was 5.3 mmol / g from 1 H-NMR.

[合成例2](A)成分:プレポリマー−2の合成
〔前駆体〕1,5−ジビニル−1,1,5,5−テトラメチル−3,3−ジフェニルト
リシロキサンの合成
まず、プレポリマー−2の前駆体として、1,5−ジビニル−1,1,5,5−テトラメチル−3,3−ジフェニルトリシロキサンを合成した。すなわち、ジフェニルシランジオール100部をトルエン450部中に分散させ、ピリジン120部を加えて攪拌した。
この懸濁液にビニルジメチルクロロシラン170部を加えて50℃で2時間反応した後、イオン交換水を加えて反応を停止した。
この反応液から水層を取り除き溶媒を留去して、ケイ素含有ジビニル化合物(1,5−ジビニル−1,1,5,5−テトラメチル−3,3−ジフェニルトリシロキサン)を得た。
GC−MSによる分析の結果、上記ケイ素含有ジビニル化合物の分子量はMw=384であり、ビニル基の含有量は 1H−NMRから4.99mmol/gであった。
GC−MSカラム:HEWLETT PACKARD 社製HP-1、30m X 300mm
次に、1,3,5,7−テトラメチルシクロテトラシロキサン100部、1,5−ジビニル−1,1,5,5−テトラメチル−3,3−ジフェニルトリシロキサン130部、ヘキサン500部及び白金−ジビニルテトラメチルジシロキサン錯体(Karstedt触媒)0.0005部を加えて攪拌しながら、2時間環流処理した。反応液を70℃で溶媒を減圧留去し、ケイ素含有ヒドロシリル型プレポリマー−2を得た。
GPCによる分析の結果、ケイ素含有ヒドロシリル型プレポリマー−2の分子量はMw=2500であり、ヒドロシリル基の含有量は 1H−NMRから4.9mmol/gであった。
[Synthesis Example 2] Component (A): Synthesis of Prepolymer-2 [Precursor] 1,5-divinyl-1,1,5,5-tetramethyl-3,3-diphenylto
First, 1,5-divinyl-1,1,5,5-tetramethyl-3,3-diphenyltrisiloxane was synthesized as a precursor of prepolymer-2. That is, 100 parts of diphenylsilanediol was dispersed in 450 parts of toluene, and 120 parts of pyridine was added and stirred.
After adding 170 parts of vinyldimethylchlorosilane to this suspension and reacting at 50 ° C. for 2 hours, ion-exchanged water was added to stop the reaction.
The aqueous layer was removed from the reaction solution, and the solvent was distilled off to obtain a silicon-containing divinyl compound (1,5-divinyl-1,1,5,5-tetramethyl-3,3-diphenyltrisiloxane).
As a result of analysis by GC-MS, the silicon-containing divinyl compound had a molecular weight of Mw = 384 and a vinyl group content of 4.99 mmol / g from 1 H-NMR.
GC-MS column: HP-1, HEWLETT PACKARD, 30m x 300mm
Next, 100 parts 1,3,5,7-tetramethylcyclotetrasiloxane, 130 parts 1,5-divinyl-1,1,5,5-tetramethyl-3,3-diphenyltrisiloxane, 500 parts hexane, 0.0005 part of platinum-divinyltetramethyldisiloxane complex (Karstedt catalyst) was added and refluxed for 2 hours while stirring. The solvent was distilled off under reduced pressure at 70 ° C. to obtain a silicon-containing hydrosilyl type prepolymer-2.
As a result of analysis by GPC, the molecular weight of the silicon-containing hydrosilyl type prepolymer-2 was Mw = 2500, and the content of hydrosilyl group was 4.9 mmol / g from 1 H-NMR.

[合成例3](A)成分:プレポリマー−3の合成
1,3,5,7−テトラメチルシクロテトラシロキサン100部、ジビニルベンゼン50部、1−メトキシ−2−プロパノールアセテート70部及び白金−カルボニルビニルメチル錯体(Ossko 触媒)0.0001部を加えて攪拌しながら、6時間環流処理した。反応液を50℃で溶媒を減圧留去し、(A)成分であるプレポリマー−3を得た。
GPCによる分析の結果、プレポリマー−3の分子量はMw=140000であり、ヒドロシリル基(Si−H基)の含有量は 1H−NMRから5.2mmol/gであった。
[Synthesis Example 3] Component (A): Synthesis of Prepolymer-3 1,3,5,7-tetramethylcyclotetrasiloxane 100 parts, divinylbenzene 50 parts, 1-methoxy-2-propanol acetate 70 parts and platinum- 0.0001 part of carbonylvinylmethyl complex (Ossko catalyst) was added and refluxed for 6 hours while stirring. The solvent of the reaction solution was distilled off at 50 ° C. under reduced pressure to obtain Prepolymer-3 as component (A).
As a result of analysis by GPC, the molecular weight of Prepolymer-3 was Mw = 14,000, and the content of hydrosilyl group (Si—H group) was 5.2 mmol / g from 1 H-NMR.

[合成例4](B)成分:環状シロキサン化合物−1の合成
1,4−ジオキサン300部及び塩酸300部を加えて撹拌した混合液中に、メチルビニルジクロロシラン210部とフェニルメチルジクロロシラン90部の混合物を滴下した。加水分解反応により発生した塩酸を回収しつつ室温下で30分反応の後、70℃で3時間反応させた。反応後、2層に分離した液層の内、上層について真空ポンプによる減圧下120〜140℃の条件で蒸留精製し、下記の式(12)で示される、(B)成分である環状シロキサン化合物−1を得た。
GC−MSによる分析の結果、環状シロキサン化合物−1には分子量=395のものが面積比で85%以上含まれており、FT−IRによる分析の結果、環状シロキサン化合物−1には3200〜3600cm-1の吸収域に帰属する水酸基の吸収が見られなかった。また 1H−NMRによる分析の結果、ビニル基とフェニル基のモル比が3.3:1.0の割合で認められた。
[Synthesis Example 4] Component (B): Synthesis of Cyclic Siloxane Compound-1 Into a mixed solution in which 300 parts of 1,4-dioxane and 300 parts of hydrochloric acid were added and stirred, 210 parts of methylvinyldichlorosilane and 90 parts of phenylmethyldichlorosilane were synthesized. Part of the mixture was added dropwise. While recovering hydrochloric acid generated by the hydrolysis reaction, the reaction was carried out at room temperature for 30 minutes and then at 70 ° C. for 3 hours. After the reaction, among the liquid layers separated into two layers, the upper layer is purified by distillation under reduced pressure of 120 to 140 ° C. with a vacuum pump, and the cyclic siloxane compound as component (B) represented by the following formula (12) -1 was obtained.
As a result of analysis by GC-MS, the cyclic siloxane compound-1 contains 85% or more of a molecular weight of 395 by area ratio. As a result of analysis by FT-IR, the cyclic siloxane compound-1 has 3200-3600 cm. Absorption of hydroxyl groups belonging to the absorption region of -1 was not observed. As a result of analysis by 1 H-NMR, a molar ratio of vinyl group to phenyl group was found to be 3.3: 1.0.

[合成例5](B)成分:環状シロキサン化合物−2の合成
1,4−ジオキサン300部及び塩酸300部を加えて撹拌した混合液中に、メチルビニルジクロロシラン140部とフェニルメチルジクロロシラン180部の混合物を滴下した。加水分解反応により発生した塩酸を回収しつつ室温下で30分反応の後、70℃で3時間反応させた。反応後、2層に分離した液層の内、上層について真空ポンプによる減圧下135〜150℃の条件で蒸留精製し、下記の式(13)で示される、(B)成分である環状シロキサン化合物−2を得た。
GC−MSによる分析の結果、環状シロキサン化合物−2には分子量Mw=445のものが面積比で85%以上含まれており、FT−IRによる分析の結果、環状シロキサン化合物−2には3200〜3600cm-1の吸収域に帰属する水酸基の吸収が見られなかった。また 1H−NMRによる分析の結果、ビニル基とフェニル基のモル比が1.2:1.0の割合で認められた。
[Synthesis Example 5] Component (B): Synthesis of Cyclic Siloxane Compound-2 In a mixed liquid in which 300 parts of 1,4-dioxane and 300 parts of hydrochloric acid were added and stirred, 140 parts of methylvinyldichlorosilane and 180 parts of phenylmethyldichlorosilane were added. Part of the mixture was added dropwise. While recovering hydrochloric acid generated by the hydrolysis reaction, the reaction was carried out at room temperature for 30 minutes and then at 70 ° C. for 3 hours. After the reaction, among the liquid layers separated into two layers, the upper layer is purified by distillation under reduced pressure by a vacuum pump at 135 to 150 ° C., and is represented by the following formula (13), which is a cyclic siloxane compound as component (B) -2 was obtained.
As a result of analysis by GC-MS, the cyclic siloxane compound-2 contains those having a molecular weight of Mw = 445 in an area ratio of 85% or more. As a result of analysis by FT-IR, the cyclic siloxane compound-2 has 3200 to 3200. Absorption of hydroxyl groups belonging to the absorption region of 3600 cm −1 was not observed. As a result of analysis by 1 H-NMR, a molar ratio of vinyl group to phenyl group was found to be 1.2: 1.0.

[合成例6](B)成分:環状シロキサン化合物−3の合成
合成例4で得られた環状シロキサン化合物−1を50部と、合成例5で得られた環状シロキサン化合物−2の50部を混合し、(B)成分である環状シロキサン化合物−3を得た。
[Synthesis Example 6] Component (B): Synthesis of Cyclic Siloxane Compound-3 50 parts of the cyclic siloxane compound-1 obtained in Synthesis Example 4 and 50 parts of the cyclic siloxane compound-2 obtained in Synthesis Example 5 By mixing, cyclic siloxane compound-3 as component (B) was obtained.

[合成例7](B)成分:環状シロキサン化合物−4の合成
1,4−ジオキサン300部及び塩酸300部を加えて撹拌した混合液中に、メチルビニルジクロロシラン280部を滴下した。加水分解反応により発生した塩酸を回収しつつ室温下で30分反応の後、70℃で3時間反応させた。反応後、2層に分離した液層の内、上層について真空ポンプによる減圧下120℃以下の条件で蒸留精製し、下記の式(14)で示される、(B)成分である環状シロキサン化合物−4を得た。
GC−MSによる分析の結果、環状シロキサン化合物−4の分子量はMw=345であり、FT−IRによる分析の結果、環状シロキサン化合物−4には3200〜3600cm-1の吸収域に帰属する水酸基の吸収が見られなかった。また、ビニル基の含有量は 1H−NMRから11.6mmol/gであった。
[Synthesis Example 7] Component (B): Synthesis of Cyclic Siloxane Compound-4 280 parts of methylvinyldichlorosilane were added dropwise to a mixed liquid in which 300 parts of 1,4-dioxane and 300 parts of hydrochloric acid were added and stirred. While recovering hydrochloric acid generated by the hydrolysis reaction, the reaction was carried out at room temperature for 30 minutes and then at 70 ° C. for 3 hours. After the reaction, among the liquid layers separated into two layers, the upper layer was distilled and purified under reduced pressure by a vacuum pump at 120 ° C. or lower, and the cyclic siloxane compound as component (B) represented by the following formula (14): 4 was obtained.
As a result of analysis by GC-MS, the molecular weight of the cyclic siloxane compound-4 is Mw = 345. As a result of analysis by FT-IR, the cyclic siloxane compound-4 has a hydroxyl group attributed to an absorption region of 3200 to 3600 cm −1 . Absorption was not seen. The vinyl group content was 11.6 mmol / g from 1 H-NMR.

[実施例1]ケイ素含有硬化性組成物−1
合成例1で得た(A)成分であるプレポリマー−1を100部、合成例4で得た(B)成分である環状シロキサン化合物−1を67部及び(C)成分として白金−カルボニルビニルメチル錯体0.0001部を配合して、本発明のケイ素含有硬化性組成物−1を得た。
得られたケイ素含有硬化性組成物−1を下記の硬化方法で硬化して硬化物−1を得た。硬化中はなんらの発煙もなく、無色透明の硬い硬化物が得られた。
[Example 1] Silicon-containing curable composition-1
Platinum-carbonylvinyl as 100 parts of prepolymer-1 as component (A) obtained in Synthesis Example 1, 67 parts of cyclic siloxane compound-1 as component (B) obtained in Synthesis Example 4 and as component (C) The silicon-containing curable composition-1 of this invention was obtained by mix | blending 0.0001 part of methyl complexes.
The obtained silicon-containing curable composition-1 was cured by the following curing method to obtain a cured product-1. A colorless and transparent hard cured product was obtained without any smoke during curing.

<硬化方法>
1)硬化性確認及び耐熱性試験とアウトガス試験に供試する試験片作成用の硬化方法
硬化性組成物をテフロン(登録商標)樹脂製の型枠に均一に流し込み、130℃に調整したホットプレート上で30分間の予備加熱の後、さらに200℃に調整したホットプレート上で1時間加熱して硬化物を得た。
2)耐クラック性試験及び耐塩基性試験に供試する試験片作成の硬化方法
硬化性組成物を洗浄乾燥したガラス板上にスピンキャストして均一の薄膜(SOG 膜)を作成し、130℃に調整したホットプレート上で30分間の予備加熱の後、さらに200℃に調整したホットプレート上で1時間加熱して硬化物を得た。
3)比誘電率試験に供試する試験片用の硬化方法
硬化性組成物を透明電極のついたガラス基板上に均一に塗布し、130℃に調整したホットプレート上で30分間の予備加熱の後、さらに200℃に調整したホットプレート上で1時間加熱して硬化物を得た。
<Curing method>
1) Curing method for preparing specimens for curable confirmation, heat resistance test and outgas test Hot plate adjusted to 130 ° C by pouring the curable composition uniformly into a mold made of Teflon (registered trademark) resin After preheating for 30 minutes above, it was further heated for 1 hour on a hot plate adjusted to 200 ° C. to obtain a cured product.
2) Curing method for preparing test pieces to be used for crack resistance test and base resistance test A uniform thin film (SOG film) is prepared by spin-casting on a glass plate that has been washed and dried. After 30 minutes of preheating on the hot plate adjusted to 1 hour, it was further heated on a hot plate adjusted to 200 ° C. for 1 hour to obtain a cured product.
3) Curing method for test piece to be used for relative dielectric constant test A curable composition was uniformly applied on a glass substrate with a transparent electrode, and pre-heated for 30 minutes on a hot plate adjusted to 130 ° C. Then, it further heated for 1 hour on the hotplate adjusted to 200 degreeC, and hardened | cured material was obtained.

[実施例2]ケイ素含有硬化性組成物−2
合成例2で得た(A)成分であるプレポリマー−2を100部、合成例4で得た(B)成分である環状シロキサン化合物−1を62部及び(C)成分として白金−カルボニルビニルメチル錯体0.0001部を配合して、本発明のケイ素含有硬化性組成物−2を得た。
得られたケイ素含有硬化性組成物−2を、実施例1と同様の硬化方法で硬化して硬化物−2を得た。硬化中はなんらの発煙もなく、無色透明の硬い硬化物が得られた。
[Example 2] Silicon-containing curable composition-2
Platinum-carbonylvinyl as 100 parts of prepolymer-2 as component (A) obtained in Synthesis Example 2 and 62 parts of cyclic siloxane compound-1 as component (B) obtained in Synthesis Example 4 and as component (C) 0.0001 part of a methyl complex was blended to obtain a silicon-containing curable composition-2 of the present invention.
The obtained silicon-containing curable composition-2 was cured by the same curing method as in Example 1 to obtain a cured product-2. A colorless and transparent hard cured product was obtained without any smoke during curing.

[実施例3]ケイ素含有硬化性組成物−3
合成例3で得た(A)成分であるプレポリマー−3を100部、合成例4で得た(B)成分である環状シロキサン化合物−1を66部及び(C)成分として白金−カルボニルビニルメチル錯体0.0001部を配合して、本発明のケイ素含有硬化性組成物−3を得た。
得られたケイ素含有硬化性組成物−3を、実施例1と同様の硬化方法で硬化して硬化物−3を得た。硬化中はなんらの発煙もなく、無色透明の硬い硬化物が得られた。
[Example 3] Silicon-containing curable composition-3
Platinum-carbonylvinyl as 100 parts of prepolymer-3 as component (A) obtained in Synthesis Example 3, 66 parts of cyclic siloxane compound-1 as component (B) obtained in Synthesis Example 4 and as component (C) The silicon complex curable composition-3 of this invention was obtained by mix | blending 0.0001 part of methyl complexes.
The obtained silicon-containing curable composition-3 was cured by the same curing method as in Example 1 to obtain a cured product-3. A colorless and transparent hard cured product was obtained without any smoke during curing.

[実施例4]ケイ素含有硬化性組成物−4
合成例1で得た(A)成分であるプレポリマー−1を100部、合成例5で得た(B)成分である環状シロキサン化合物−2を110部及び(C)成分として白金−カルボニルビニルメチル錯体0.0001部を配合して、本発明のケイ素含有硬化性組成物−4を得た。
得られたケイ素含有硬化性組成物−4を、実施例1と同様の硬化方法で硬化して硬化物−4を得た。硬化中はなんらの発煙もなく、無色透明の硬い硬化物が得られた。
[Example 4] Silicon-containing curable composition-4
100 parts of prepolymer-1 as component (A) obtained in Synthesis Example 1, 110 parts of cyclic siloxane compound-2 as component (B) obtained in Synthesis Example 5, and platinum-carbonylvinyl as component (C) 0.0001 part of a methyl complex was blended to obtain a silicon-containing curable composition-4 of the present invention.
The obtained silicon-containing curable composition-4 was cured by the same curing method as in Example 1 to obtain a cured product-4. A colorless and transparent hard cured product was obtained without any smoke during curing.

[実施例5]ケイ素含有硬化性組成物−5
合成例1で得た(A)成分であるプレポリマー−1を100部、合成例6で得た(B)成分である環状シロキサン化合物−3を83. 5部及び(C)成分として白金−カルボニルビニルメチル錯体0.0001部を配合して、本発明のケイ素含有硬化性組成物−5を得た。
得られたケイ素含有硬化性組成物−5を、実施例1と同様の硬化方法で硬化して硬化物−5を得た。硬化中はなんらの発煙もなく、無色透明の硬い硬化物が得られた。
[Example 5] Curable composition containing silicon-5
100 parts of prepolymer-1 as component (A) obtained in Synthesis Example 1 and 83.5 parts of cyclic siloxane compound-3 as component (B) obtained in Synthesis Example 6 and platinum as component (C) The silicon-containing curable composition-5 of the present invention was obtained by blending 0.0001 part of a carbonylvinylmethyl complex.
The obtained silicon-containing curable composition-5 was cured by the same curing method as in Example 1 to obtain a cured product-5. A colorless and transparent hard cured product was obtained without any smoke during curing.

[実施例6]ケイ素含有硬化性組成物−6
合成例1で得た(A)成分であるプレポリマー−1を100部、合成例7で得た(B)成分である環状シロキサン化合物−4を46部及び(C)成分として白金−ジビニルテトラメチルジシロキサン錯体(Karstedt触媒)0.0005部を配合して、本発明のケイ素含有硬化性組成物−6を得た。
得られたケイ素含有硬化性組成物−6を、実施例1と同様の硬化方法で硬化して硬化物−6を得た。硬化中はなんらの発煙もなく、無色透明の硬い硬化物が得られた。
[Example 6] Silicon-containing curable composition-6
100 parts of prepolymer-1 as component (A) obtained in Synthesis Example 1, 46 parts of cyclic siloxane compound-4 as component (B) obtained in Synthesis Example 7 and platinum-divinyltetra as (C) component 0.0005 part of methyldisiloxane complex (Karstedt catalyst) was blended to obtain a silicon-containing curable composition-6 of the present invention.
The obtained silicon-containing curable composition-6 was cured by the same curing method as in Example 1 to obtain a cured product-6. A colorless and transparent hard cured product was obtained without any smoke during curing.

[実施例7]ケイ素含有硬化性組成物−7
合成例3で得た(A)成分であるプレポリマー−3を100部、合成例5で得た(B)成分である環状シロキサン化合物−2を108部及び(C)成分として白金−カルボニルビニルメチル錯体0.0001部を配合して、本発明のケイ素含有硬化性組成物−7を得た。
得られたケイ素含有硬化性組成物−7を、実施例1と同様の硬化方法で硬化して硬化物−7を得た。硬化中はなんらの発煙もなく、無色透明の硬い硬化物が得られた。
[Example 7] Silicon-containing curable composition-7
100 parts of prepolymer-3 as component (A) obtained in Synthesis Example 3 and 108 parts of cyclic siloxane compound-2 as component (B) obtained in Synthesis Example 5 and platinum-carbonylvinyl as component (C) The silicon complex curable composition-7 of this invention was obtained by mix | blending 0.0001 part of methyl complexes.
The obtained silicon-containing curable composition-7 was cured by the same curing method as in Example 1 to obtain a cured product-7. A colorless and transparent hard cured product was obtained without any smoke during curing.

[実施例8]ケイ素含有硬化性組成物−8
合成例3で得た(A)成分であるプレポリマー−3を100部、合成例6で得た(B)成分である環状シロキサン化合物−3を82部及び(C)成分として白金−カルボニルビニルメチル錯体0.0001部を配合して、本発明のケイ素含有硬化性組成物−8を得た。
得られたケイ素含有硬化性組成物−8を、実施例1と同様の硬化方法で硬化して硬化物−8を得た。硬化中はなんらの発煙もなく、無色透明の硬い硬化物が得られた。
[Example 8] Silicon-containing curable composition-8
100 parts of prepolymer-3 as component (A) obtained in Synthesis Example 3, 82 parts of cyclic siloxane compound-3 as component (B) obtained in Synthesis Example 6 and platinum-carbonylvinyl as component (C) The silicon complex curable composition-8 of this invention was obtained by mix | blending 0.0001 part of methyl complexes.
The obtained silicon-containing curable composition-8 was cured by the same curing method as in Example 1 to obtain a cured product-8. A colorless and transparent hard cured product was obtained without any smoke during curing.

[実施例9]ケイ素含有硬化性組成物−9
合成例3で得た(A)成分であるプレポリマー−3を100部、合成例7で得た(B)成分である環状シロキサン化合物−4を45部及び(C)成分として白金−ジビニルテトラメチルジシロキサン錯体(Karstedt触媒)0.0005部を配合して、本発明のケイ素含有硬化性組成物−9を得た。
得られたケイ素含有硬化性組成物−9を、実施例1と同様の硬化方法で硬化して硬化物−9を得た。硬化中はなんらの発煙もなく、無色透明の硬い硬化物が得られた。
[Example 9] Silicon-containing curable composition-9
100 parts of prepolymer-3 as component (A) obtained in Synthesis Example 3, 45 parts of cyclic siloxane compound-4 as component (B) obtained in Synthesis Example 7 and platinum-divinyltetra as component (C) 0.0005 part of methyldisiloxane complex (Karstedt catalyst) was blended to obtain a silicon-containing curable composition-9 of the present invention.
The obtained silicon-containing curable composition-9 was cured by the same curing method as in Example 1 to obtain a cured product-9. A colorless and transparent hard cured product was obtained without any smoke during curing.

[実施例10]ケイ素含有硬化性組成物−10
合成例1で得た(A)成分であるプレポリマー−1を100部、合成例4で得た(B)成分である環状シロキサン化合物−1を67部、(C)成分として白金−カルボニルビニルメチル錯体0.0001部、及び任意成分として二酸化微粉末19部を配合して、本発明のケイ素含有硬化性組成物−10を得た。
得られたケイ素含有硬化性組成物−10を、実施例1と同様の硬化方法で硬化して硬化物−10を得た。硬化中はなんらの発煙もなく、無色透明の硬い硬化物が得られた。
[Example 10] Silicon-containing curable composition-10
100 parts of prepolymer-1 as component (A) obtained in Synthesis Example 1, 67 parts of cyclic siloxane compound-1 as component (B) obtained in Synthesis Example 4, and platinum-carbonylvinyl as component (C) 0.0001 part of a methyl complex and 19 parts of fine powder of dioxide as an optional component were blended to obtain a silicon-containing curable composition-10 of the present invention.
The obtained silicon-containing curable composition-10 was cured by the same curing method as in Example 1 to obtain a cured product-10. A colorless and transparent hard cured product was obtained without any smoke during curing.

[比較例1]
1,3,5,7−テトラメチルシクロテトラシロキサンを100部、1,4−ビス(ジメチルビニルシリル)ベンゼンを205部及び白金−ジビニルテトラメチルジシロキサン錯体(Karstedt触媒)0.0005部を配合して、硬化性組成物比較品−1を得た。得られた硬化性組成物比較品−1を、実施例1と同様の硬化方法で硬化して硬化物比較品−1を得た。硬化反応中に白煙が発生し、揮発成分が飛散していることが認められた。
[Comparative Example 1]
100 parts 1,3,5,7-tetramethylcyclotetrasiloxane, 205 parts 1,4-bis (dimethylvinylsilyl) benzene and 0.0005 parts platinum-divinyltetramethyldisiloxane complex (Karstedt catalyst) Then, a curable composition comparative product-1 was obtained. The obtained curable composition comparative product-1 was cured by the same curing method as in Example 1 to obtain a cured product comparative product-1. It was recognized that white smoke was generated during the curing reaction and volatile components were scattered.

[比較例2]
1,3,5,7−テトラメチルシクロテトラシロキサンを100部、ジビニルベンゼンを108部及び白金−ジビニルテトラメチルジシロキサン錯体0.0005部を配合して、硬化性組成物比較品−2を得た。得られた硬化性組成物比較品−2を、実施例1と同様の硬化方法で硬化して硬化物比較品−2を得た。硬化反応中に白煙が発生し、揮発成分が飛散していることが認められた。
[Comparative Example 2]
100 parts of 1,3,5,7-tetramethylcyclotetrasiloxane, 108 parts of divinylbenzene and 0.0005 part of a platinum-divinyltetramethyldisiloxane complex were blended to obtain a curable composition comparative product-2. It was. The obtained curable composition comparative product-2 was cured by the same curing method as in Example 1 to obtain a cured product comparative product-2. It was recognized that white smoke was generated during the curing reaction and volatile components were scattered.

[比較例3]
合成例1で得たプレポリマー−1を100部、1,4−ビス(ジメチルビニルシリル)ベンゼンを65部及び白金−カルボニルビニルメチル錯体0.0005部を配合して、硬化性組成物比較品−3を得た。得られた硬化性組成物比較品−3を、実施例1と同様の硬化方法で硬化して硬化物比較品−3を得た。硬化反応中に白煙が発生し、揮発成分が飛散していることが認められた。
[Comparative Example 3]
Combining 100 parts of Prepolymer-1 obtained in Synthesis Example 1, 65 parts of 1,4-bis (dimethylvinylsilyl) benzene and 0.0005 part of a platinum-carbonylvinylmethyl complex, a comparative curable composition -3 was obtained. The obtained curable composition comparative product-3 was cured by the same curing method as in Example 1 to obtain a cured product comparative product-3. It was recognized that white smoke was generated during the curing reaction and volatile components were scattered.

[比較例4]
合成例2で得たプレポリマー−2を100部、1,4−ビス(ジメチルビニルシリル)ベンゼンを60部及び白金−ジビニルテトラメチルジシロキサン錯体0.0005部を配合して、硬化性組成物比較品−4を得た。得られた硬化性組成物比較品−4を、実施例1と同様の硬化方法で硬化して硬化物比較品−4を得た。硬化反応中に白煙が発生し、揮発成分が飛散していることが認められた。
[Comparative Example 4]
100 parts of prepolymer-2 obtained in Synthesis Example 2, 60 parts of 1,4-bis (dimethylvinylsilyl) benzene, and 0.0005 part of a platinum-divinyltetramethyldisiloxane complex are blended to obtain a curable composition. Comparative product-4 was obtained. The obtained curable composition comparative product-4 was cured by the same curing method as in Example 1 to obtain a cured product comparative product-4. It was recognized that white smoke was generated during the curing reaction and volatile components were scattered.

[比較例5]
合成例3で得たプレポリマー−3を100部、1,4−ビス(ジメチルビニルシリル)ベンゼンを64部及び白金−カルボニルビニルメチル錯体0.0005部を配合して、硬化性組成物比較品−5を得た。得られた硬化性組成物比較品−5を、実施例1と同様の硬化方法で硬化して硬化物比較品−5を得た。硬化反応中に白煙が発生し、揮発成分が飛散していることが認められた。
[Comparative Example 5]
Combining 100 parts of Prepolymer-3 obtained in Synthesis Example 3, 64 parts of 1,4-bis (dimethylvinylsilyl) benzene and 0.0005 part of a platinum-carbonylvinylmethyl complex, a comparative curable composition -5 was obtained. The obtained curable composition comparative product-5 was cured by the same curing method as in Example 1 to obtain a cured product comparative product-5. It was recognized that white smoke was generated during the curing reaction and volatile components were scattered.

[比較例6]
合成例3で得たプレポリマー−3を100部、ジビニルベンゼンを34部及び白金−ジビニルテトラメチルジシロキサン錯体0.0005部を配合して、硬化性組成物比較品−6を得た。得られた硬化性組成物比較品−6を、実施例1と同様の硬化方法で硬化して硬化物比較品−6を得た。硬化反応中に白煙が発生し、揮発成分が飛散していることが認められた。
[Comparative Example 6]
100 parts of Prepolymer-3 obtained in Synthesis Example 3, 34 parts of divinylbenzene and 0.0005 part of a platinum-divinyltetramethyldisiloxane complex were blended to obtain a curable composition comparative product-6. The obtained curable composition comparative product-6 was cured by the same curing method as in Example 1 to obtain a cured product comparative product-6. It was recognized that white smoke was generated during the curing reaction and volatile components were scattered.

[比較例7]
合成例3で得たプレポリマー−3を100部及びトリアリルイソシアヌレートを43部を配合して、硬化性組成物比較品−7を得た。得られた硬化性組成物比較品−7を、実施例1と同様の硬化方法で硬化して硬化物比較品−7を得た。硬化反応中に白煙が発生し、揮発成分が飛散していることが認められた。
[Comparative Example 7]
100 parts of prepolymer-3 obtained in Synthesis Example 3 and 43 parts of triallyl isocyanurate were blended to obtain a curable composition comparative product-7. The obtained curable composition comparative product-7 was cured by the same curing method as in Example 1 to obtain a cured product comparative product-7. It was recognized that white smoke was generated during the curing reaction and volatile components were scattered.

[比較例8]
1,3,5,7−テトラメチルシクロテトラシロキサンを100部、合成例4で得られた環状シロキサン化合物−1を211部及び白金−ジビニルテトラメチルジシロキサン錯体0.0005部を配合して、硬化性組成物比較品−8を得た。得られた硬化性組成物比較品−8を、実施例1と同様の硬化方法で硬化して硬化物比較品−8を得た。硬化反応中に白煙が発生し、揮発成分が飛散していることが認められた。
[Comparative Example 8]
100 parts of 1,3,5,7-tetramethylcyclotetrasiloxane, 211 parts of cyclic siloxane compound-1 obtained in Synthesis Example 4 and 0.0005 part of a platinum-divinyltetramethyldisiloxane complex were blended, A curable composition comparative product-8 was obtained. The obtained curable composition comparative product-8 was cured by the same curing method as in Example 1 to obtain a cured product comparative product-8. It was recognized that white smoke was generated during the curing reaction and volatile components were scattered.

[比較例9]
1,4−ビス(ジメチルシリル)ベンゼンを100部、合成例4で得られた環状シロキサン化合物−1を130部及び白金−ジビニルテトラメチルジシロキサン錯体0.0005部を配合して、硬化性組成物比較品−9を得た。得られた硬化性組成物比較品−9を、実施例1と同様の硬化方法で硬化して硬化物比較品−9を得た。硬化反応中に白煙が発生し、揮発成分が飛散していることが認められた。
[Comparative Example 9]
100 parts of 1,4-bis (dimethylsilyl) benzene, 130 parts of the cyclic siloxane compound-1 obtained in Synthesis Example 4 and 0.0005 part of a platinum-divinyltetramethyldisiloxane complex are blended to form a curable composition. A comparative product-9 was obtained. The obtained curable composition comparative product-9 was cured by the same curing method as in Example 1 to obtain a cured product comparative product-9. It was recognized that white smoke was generated during the curing reaction and volatile components were scattered.

[耐熱性試験]
実施例1〜10で得られた硬化物−1〜10及び比較例1〜9の硬化物比較品1〜9を、次に示す測定方法で耐熱試験を実施した。試験結果を表1に示した。1%減量温度は上段に、5%減量温度は下段に示した。本発明の硬化物−1〜10は高い耐熱温度を有していることが分かった。それに対し、硬化物比較品1〜9は揮発成分が飛散したため、ビニル基とSi−H基の当量比バランスが崩れ、低い耐熱温度しか発現しなかったと予想される。
<耐熱試験の測定方法>
各硬化物を熱分析装置(TG-DTA)で、1%減量温度及び5%減量温度を測定した。
測定機器:セイコーインスツルメンツ(株)社製 SSC/5200
測定条件:温度範囲100-550 ℃、昇温速度10℃/ 分
[Heat resistance test]
The heat-resistant test was implemented with the measuring method shown next to the hardened | cured material -1-10 obtained in Examples 1-10 and the hardened | cured material comparative products 1-9 of Comparative Examples 1-9. The test results are shown in Table 1. The 1% weight loss temperature is shown in the upper part, and the 5% weight loss temperature is shown in the lower part. It turned out that the hardened | cured material -1-10 of this invention has a high heat-resistant temperature. On the other hand, in the cured product comparative products 1 to 9, since the volatile component was scattered, the equivalence ratio balance between the vinyl group and the Si—H group was lost, and it was expected that only a low heat-resistant temperature was expressed.
<Measurement method for heat resistance test>
Each cured product was measured for 1% weight loss temperature and 5% weight loss temperature with a thermal analyzer (TG-DTA).
Measuring instrument: SSC / 5200 manufactured by Seiko Instruments Inc.
Measurement conditions: Temperature range 100-550 ℃, temperature increase rate 10 ℃ / min

[耐クラック性試験]
実施例1〜10で得られた硬化物−1〜10及び比較例1〜9の硬化物比較品1〜9を、次に示す測定方法で耐クラック性試験を実施した。試験結果を表1に示した。
これより、本発明の硬化物−1〜10は高温での耐クラック性を有していることが分かった。
<耐クラック性試験の測定方法>
ガラス上薄膜(SOG膜)硬化物をホットプレート上のガラス容器内に設置して窒素ガスを流しながら350℃まで加熱し、1時間保持した。そのまま窒素雰囲気下で加熱を停止して室温まで冷却して薄膜の表面を目視観察した。
評価は、クラックが入らなかったものを○、クラックが入ったものを×と判定した。
[Crack resistance test]
A crack resistance test was performed on the cured products 1 to 10 obtained in Examples 1 to 10 and the cured product comparative products 1 to 9 of Comparative Examples 1 to 9 by the following measurement method. The test results are shown in Table 1.
From this, it turned out that the hardened | cured material -1-10 of this invention has the crack resistance in high temperature.
<Measurement method for crack resistance test>
A thin film on glass (SOG film) cured product was placed in a glass container on a hot plate, heated to 350 ° C. while flowing nitrogen gas, and held for 1 hour. The heating was stopped in a nitrogen atmosphere as it was, and the film was cooled to room temperature, and the surface of the thin film was visually observed.
In the evaluation, a case where no crack was generated was evaluated as “◯”, and a case where a crack was generated was determined as “×”.

[耐塩基性試験]
実施例1〜10で得られたガラス板上の硬化物−1〜10(SOG 薄膜)及び比較例1〜9の硬化物比較品1〜9(SOG 薄膜)を、次に示す測定方法で耐塩基性試験を実施した。試験結果を表1に示した。
これより、本発明の硬化物−1〜10は耐塩基性を有していることが分かった。
<耐塩基性試験の測定方法>
ガラス板上薄膜(SOG膜)硬化物をアミン試験液に浸漬した。浸漬終了後、試験片をイオン交換水で洗浄し、風乾して顕微鏡でクラックの有無を判定した。
評価は、クラックが入らなかったものを○、クラックが入ったものを×と判定した。
アミン試験液:テトラメチルアンモニウムハイドロオキサイド26%水溶液
浸漬条件:80℃×1時間
[Base resistance test]
The cured products-1 to 10 (SOG thin film) on the glass plates obtained in Examples 1 to 10 and the cured product comparative products 1 to 9 (SOG thin film) of Comparative Examples 1 to 9 were resistant to the following measurement methods. A basic test was performed. The test results are shown in Table 1.
From this, it turned out that hardened | cured material -1-10 of this invention has base resistance.
<Measurement method of base resistance test>
A cured film on glass plate (SOG film) was immersed in an amine test solution. After the immersion, the test piece was washed with ion exchange water, air-dried, and the presence or absence of cracks was determined with a microscope.
In the evaluation, a case where no crack was generated was evaluated as “◯”, and a case where a crack was generated was determined as “×”.
Amine test solution: tetramethylammonium hydroxide 26% aqueous solution Immersion conditions: 80 ° C. × 1 hour

[比誘電率試験]
実施例1〜10で得られた透明電極のついたガラス基板上で硬化した硬化物−1〜10、及び同様に透明電極のついたガラス基板上で硬化した比較例1〜9の硬化物比較品1〜9を、次に示す測定方法で比誘電率試験を実施した。試験結果を表1に示した。1kHzでの誘電率を上段に、10kHzでの誘電率を下段に示した。
これにより、本発明の硬化物−1〜10は比誘電率2.7〜2.9の値を持ち、低誘電率の化合物であることが分かった。
<比誘電率試験の測定方法>
透明電極のついたガラス基板上に塗布、硬化した各硬化物を、真空蒸着装置内に設置し、10-3Pa以下の減圧下で高純度アルミニウムを200nmの厚さに蒸着し、対電極とした。蒸着装置から取り出した後、横河ヒューレットパッカード 社製LCR メータ 4262A で1kHz, 10kHz での電荷量を測定して膜厚とアルミニウムの面積から比誘電率を算出した。
[Relative permittivity test]
Cured product comparison of cured products -1 to 10 cured on a glass substrate with transparent electrodes obtained in Examples 1 to 10 and Comparative Examples 1 to 9 cured on a glass substrate with transparent electrodes similarly Products 1 to 9 were subjected to a relative dielectric constant test by the following measurement method. The test results are shown in Table 1. The dielectric constant at 1 kHz is shown in the upper stage, and the dielectric constant at 10 kHz is shown in the lower stage.
Thereby, it turned out that the hardened | cured material -1-10 of this invention has the value of relative dielectric constant 2.7-2.9, and is a low dielectric constant compound.
<Measurement method of relative permittivity test>
Each cured product coated and cured on a glass substrate with a transparent electrode is placed in a vacuum deposition apparatus, and high-purity aluminum is deposited to a thickness of 200 nm under a reduced pressure of 10 −3 Pa or less. did. After taking out from the vapor deposition system, the electric charge at 1 kHz and 10 kHz was measured with an LCR meter 4262A manufactured by Yokogawa Hewlett-Packard, and the relative dielectric constant was calculated from the film thickness and the area of aluminum.

[アウトガス量試験]
実施例1〜10で得られた硬化物−1〜10及び比較例1〜9の硬化物比較品1〜9を、次に示す測定方法でアウトガス量の試験を実施した。試験結果を表1に示した。
これにより、本発明の硬化物−1〜10はアウトガス量が少ないことが分かった。これに対し、硬化物比較品1〜9は、揮発成分の残留が多いため、アウトガス量が多かった。
<アウトガス量試験の測定方法>
各硬化物を耐熱性測定と同じ装置(TG/DTA)を用い、350℃で1時間の連続運転をして質量変化を調べた。質量の減量分がアウトガス量に相当すると判定した。単位:質量% 測定機器:セイコーインスツルメンツ(株)社製 SSC/5200
[Outgas amount test]
The outgas amount test was carried out on the cured products 1 to 10 obtained in Examples 1 to 10 and the cured product comparative products 1 to 9 of Comparative Examples 1 to 9 by the following measuring method. The test results are shown in Table 1.
Thereby, it turned out that hardened | cured material -1-10 of this invention has few outgas amounts. On the other hand, the cured product comparative products 1 to 9 had a large amount of outgas due to a large amount of residual volatile components.
<Measurement method for outgas amount test>
Each cured product was continuously operated at 350 ° C. for 1 hour using the same apparatus (TG / DTA) as in the heat resistance measurement, and the mass change was examined. It was determined that the weight loss corresponds to the outgas amount. Unit:% by mass Measuring instrument: SSC / 5200 manufactured by Seiko Instruments Inc.

尚、表1中の数値及び記号の意味は次のとおりである。
耐熱性試験 : 上段=1%減量温度、下段=5%減量温度
耐クラック性試験 : ○クラック発生なし、×クラック発生あり
耐アミン性試験 : ○クラック発生なし、×クラック発生あり
比誘電率 : 上段=1KHz での比誘電率、下段=10KHz での比誘電率
アウトガス量試験 : 単位=質量%
In addition, the meaning of the numerical value and symbol in Table 1 is as follows.
Heat resistance test: Upper stage = 1% weight loss temperature, Lower stage = 5% weight loss temperature Crack resistance test: ○ No crack occurrence, x crack occurred Amine resistance test: ○ No crack occurrence, x crack occurred Relative permittivity: Upper stage = Dielectric constant at 1 KHz, lower = dielectric constant at 10 KHz Outgas amount test: Unit = mass%

本発明のケイ素含有硬化性組成物は、保存安定性、透明性、ハンドリング性、硬化性等に優れ、更にその硬化物が、耐熱性、耐クラック性、耐塩基性、光学特性、電気特性、低アウトガス性等の諸物性に優れた、 硬化性組成物として利用することができる。また、電気・電子材料分野における表示材料・光材料・記録材料・半導体等の封止材料、高電圧絶縁材料、絶縁・防振・防水・防湿を目的として、スピンキャスト、ポッティング、ディッピング等の成膜方法により、プラスチック部品の試作母型、コーティング材料、層間絶縁膜、絶縁用パッキング、熱収縮ゴムチューブ、O−リング、表示デバイス用シール剤・保護材、光導波路、光ファイバー保護材、光学レンズ、光学機器用接着剤、高耐熱性接着剤、高放熱性材料、高耐熱シール材、太陽電池・燃料電池用部材、電池用固体電解質、絶縁被覆材、複写機用感光ドラム、ガス分離膜にも応用できる。また、土木・建材分野におけるコンクリート保護材、ライニング、土壌注入剤、シーリング剤、蓄冷熱材、ガラスコーティング等への応用、さらに医療用材料分野においても、チューブ、シール材、コーティング材料、滅菌処理装置用シール材、コンタクトレンズ、酸素富化膜等に応用することが可能である。
The silicon-containing curable composition of the present invention is excellent in storage stability, transparency, handling properties, curability, etc., and further, the cured product has heat resistance, crack resistance, base resistance, optical properties, electrical properties, It can be used as a curable composition having excellent physical properties such as low outgassing. Also, in the fields of electrical and electronic materials, sealing materials such as display materials, optical materials, recording materials, and semiconductors, high-voltage insulating materials, spin casting, potting, dipping, etc. for the purpose of insulation, vibration proofing, waterproofing, and moisture proofing. Depending on the film method, prototype mold for plastic parts, coating material, interlayer insulation film, insulation packing, heat shrink rubber tube, O-ring, sealant / protective material for display device, optical waveguide, optical fiber protective material, optical lens, Adhesives for optical equipment, high heat resistant adhesives, high heat dissipation materials, high heat resistant sealing materials, solar cell / fuel cell components, solid electrolytes for batteries, insulation coating materials, photosensitive drums for copying machines, gas separation membranes Can be applied. Also applied to concrete protection materials, linings, soil injecting agents, sealing agents, regenerator materials, glass coatings, etc. in the civil engineering and building materials field, and in the medical materials field, tubes, sealing materials, coating materials, sterilization equipment It can be applied to sealing materials, contact lenses, oxygen-enriched films and the like.

Claims (3)

(A)成分として、下記の(α)成分及び(β)成分のそれぞれから選ばれる1種以上を、ヒドロシリル化反応して得られる1分子中に2個以上のSi−H基を含有するプレポリマー(A)と、
(B)成分として、Si−H基との反応性を有する炭素−炭素二重結合を1分子中に2個以上含有する環状シロキサン化合物(B)と、
(C)成分として、ヒドロシリル化触媒(C)を、
含有することを特徴とするケイ素含有硬化性組成物。
(α)成分: 下記の式(1)で示される、1分子中に2個以上のSi−H基を含有する環状シロキサン化合物。
[式(1)中、R1 、R2 及びR3 は、それぞれ、炭素数1〜6のアルキル基、またはフェニル基を表し、同一であっても異なっていてもよい。aは2〜10の数を表し、bは0〜8の数を表し、a+b≧2である。]
(β)成分: 下記の式(2)または(4)で示される、Si−H基との反応性を有する炭素−炭素二重結合を1分子中に2個含有する化合物。
[式(4)中、R8 、R9 、R10及びR11は、それぞれ、炭素数1〜6のアルキル基、またはフェニル基を表し、同一であっても異なっていてもよい。]
As a component (A), a prepolymer containing two or more Si-H groups in one molecule obtained by hydrosilylation reaction of at least one selected from the following (α) component and (β) component: Polymer (A);
As the component (B), a cyclic siloxane compound (B) containing two or more carbon-carbon double bonds having reactivity with Si-H groups in one molecule;
As component (C), hydrosilylation catalyst (C)
A silicon-containing curable composition characterized by containing.
(Α) Component: A cyclic siloxane compound containing two or more Si—H groups in one molecule, represented by the following formula (1).
[In Formula (1), R < 1 >, R < 2 > and R < 3 > represent a C1-C6 alkyl group or a phenyl group, respectively, and may be same or different. a represents a number of 2 to 10, b represents a number of 0 to 8, and a + b ≧ 2. ]
Two compounds containing in the molecule a carbon-carbon double bond - of the formula (2) or (4) below, the carbon reactive with the Si-H groups: (beta) components.
[In Formula (4), R < 8 >, R < 9 >, R < 10 > and R < 11 > represent a C1-C6 alkyl group or a phenyl group, respectively, and may be same or different. ]
上記(B)成分が、下記の式(5)で示される、Si−H基との反応性を有する炭素−炭素二重結合を1分子中に2個以上含有する環状シロキサン化合物である請求項1記載のケイ素含有硬化性組成物。
[式(5)中、R12、R13及びR14は、それぞれ、炭素数1〜6のアルキル基、またはフェニル基を表し、同一であっても異なっていてもよい。pは2〜10の数を表し、qは0〜8の数を表し、p+q≧2である。]
The component (B) is a cyclic siloxane compound represented by the following formula (5), which contains two or more carbon-carbon double bonds having reactivity with Si-H groups in one molecule. 2. The silicon-containing curable composition according to 1.
[In Formula (5), R < 12 >, R < 13 > and R < 14 > respectively represent a C1-C6 alkyl group or a phenyl group, and may be the same or different. p represents a number of 2 to 10, q represents a number of 0 to 8, and p + q ≧ 2. ]
請求項1または2記載のケイ素含有硬化性組成物を硬化させた硬化物。   A cured product obtained by curing the silicon-containing curable composition according to claim 1.
JP2005048747A 2005-02-24 2005-02-24 Silicon-containing curable composition and cured product thereof Active JP5137295B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2005048747A JP5137295B2 (en) 2005-02-24 2005-02-24 Silicon-containing curable composition and cured product thereof
EP06713654A EP1852469B1 (en) 2005-02-24 2006-02-14 Silicon-containing curable composition and its cured product
KR1020077017774A KR101223545B1 (en) 2005-02-24 2006-02-14 Silicon-containing curable composition and its cured product
PCT/JP2006/302513 WO2006090609A1 (en) 2005-02-24 2006-02-14 Silicon-containing curable composition and its cured product
CN2006800039236A CN101111567B (en) 2005-02-24 2006-02-14 Silicon-containing curable composition and its cured product
US11/815,564 US7799887B2 (en) 2005-02-24 2006-02-14 Silicon-containing curable composition and its cured product
AT06713654T ATE534706T1 (en) 2005-02-24 2006-02-14 CURABLE COMPOSITION WITH SILICON AND HARDENED PRODUCT THEREOF
TW095105984A TW200636010A (en) 2005-02-24 2006-02-22 Silicon-containing curable composition and its cured product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005048747A JP5137295B2 (en) 2005-02-24 2005-02-24 Silicon-containing curable composition and cured product thereof

Publications (2)

Publication Number Publication Date
JP2006232970A JP2006232970A (en) 2006-09-07
JP5137295B2 true JP5137295B2 (en) 2013-02-06

Family

ID=36927249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005048747A Active JP5137295B2 (en) 2005-02-24 2005-02-24 Silicon-containing curable composition and cured product thereof

Country Status (7)

Country Link
US (1) US7799887B2 (en)
EP (1) EP1852469B1 (en)
JP (1) JP5137295B2 (en)
KR (1) KR101223545B1 (en)
CN (1) CN101111567B (en)
TW (1) TW200636010A (en)
WO (1) WO2006090609A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8048977B2 (en) * 2006-04-28 2011-11-01 E. I. Du Pont De Nemours And Company Organosilicon polymers
JP5062820B2 (en) * 2007-03-23 2012-10-31 株式会社Adeka Cyclic siloxane compound and positive resist composition using the same
WO2008123103A1 (en) * 2007-03-30 2008-10-16 Kimoto Co., Ltd. Film for insert molding and resin molded article using the same
JP5248032B2 (en) * 2007-04-23 2013-07-31 株式会社Adeka Silicon-containing compound, curable composition, and cured product
JP5248033B2 (en) 2007-04-23 2013-07-31 株式会社Adeka Silicon-containing compound, curable composition, and cured product
EP2216336B1 (en) 2007-11-09 2015-11-04 Kaneka Corporation Process for production of cyclic polyorganosiloxane, curing agent, curable composition, and cured product of the curable composition
KR101558442B1 (en) * 2007-11-13 2015-10-07 가부시키가이샤 아데카 Positive photosensitive composition, positive permanent resist, and method for producing positive permanent resist
JP5403930B2 (en) * 2008-03-31 2014-01-29 株式会社きもと Resin molded product using hard coat film
JP2009270067A (en) * 2008-05-09 2009-11-19 Tohoku Univ Photocurable composition, cured product and photocurable resin film
JP5188928B2 (en) * 2008-10-24 2013-04-24 株式会社Adeka Silicon-containing curable composition
JP5155244B2 (en) * 2009-04-21 2013-03-06 株式会社Adeka Cell culture substrate
JP5801028B2 (en) * 2009-10-21 2015-10-28 株式会社Adeka Silicon-containing curable composition and cured product thereof
US8309649B2 (en) * 2010-02-16 2012-11-13 Basf Se Silylated amino resins
CN102971383B (en) * 2010-06-11 2014-11-12 株式会社艾迪科 Silicon-containing curable composition, cured product of the silicon-containing curable composition and lead frame substrate formed of the silicon-containing curable composition
KR20140038950A (en) * 2011-03-28 2014-03-31 헨켈 차이나 컴퍼니 리미티드 Curable silicone resins for led encapsulation
FI127433B (en) 2011-06-14 2018-05-31 Pibond Oy Method of synthesizing siloxane monomers and use thereof
US9464191B2 (en) 2011-08-10 2016-10-11 Adeka Corporation Silicon-containing curing composition and cured product thereof
JP2013159776A (en) * 2012-02-09 2013-08-19 Adeka Corp Silicon-containing curable white resin composition, cured product thereof, and optical semiconductor package and reflecting material using the cured product
JP5985867B2 (en) * 2012-04-18 2016-09-06 株式会社Adeka Silicon-containing curable composition and cured product thereof
JP5848215B2 (en) * 2012-08-31 2016-01-27 株式会社Adeka Method for producing divinylsiloxane compound
US20150267052A1 (en) 2012-09-28 2015-09-24 Osram Sylvania Inc. Polycyclic polysiloxane composition and led containing same
JP6116953B2 (en) * 2013-03-21 2017-04-19 日新製鋼株式会社 Heat resistant coated steel sheet
CN104995260B (en) * 2013-07-24 2018-09-11 株式会社艾迪科 Hardening resin composition
JP6060876B2 (en) * 2013-11-11 2017-01-18 信越化学工業株式会社 Low temperature curable coating composition and cured article thereof
KR101767085B1 (en) * 2014-09-30 2017-08-10 삼성에스디아이 주식회사 Curable organo polysiloxane composition, encapsulant, and electronic device
WO2017183259A1 (en) 2016-04-22 2017-10-26 株式会社Adeka Silicon-containing curable composition and cured object obtained therefrom
CN110156826B (en) * 2019-06-20 2021-08-31 威海新元化工有限公司 Diphenyl cyclotrisiloxane and preparation method and application thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1125619B (en) * 1960-07-08
US3438936A (en) * 1967-10-06 1969-04-15 Gen Electric Modified cyclotetrasiloxane polymers
JPH08157603A (en) * 1994-12-01 1996-06-18 Kanegafuchi Chem Ind Co Ltd Curable composition using silicon compound
JPH11199677A (en) * 1997-11-12 1999-07-27 Kanegafuchi Chem Ind Co Ltd Curable composition and preparation of molded product using the same
JP4782279B2 (en) 2000-12-26 2011-09-28 株式会社カネカ Sealant, method for sealing semiconductor, semiconductor device manufacturing method, and semiconductor device
JP2002241614A (en) 2001-02-15 2002-08-28 Kanegafuchi Chem Ind Co Ltd Curing composition and cured product
JP2002241501A (en) 2001-02-15 2002-08-28 Kanegafuchi Chem Ind Co Ltd Curing agent, curable composition and cured product
JP5676068B2 (en) * 2001-09-06 2015-02-25 株式会社カネカ Curable composition, cured product, method for producing the same, and light-emitting diode sealed with the cured product
TW200502372A (en) * 2003-02-25 2005-01-16 Kaneka Corp Curing composition and method for preparing same, light-shielding paste, light-shielding resin and method for producing same, package for light-emitting diode, and semiconductor device
JP4338554B2 (en) * 2003-04-23 2009-10-07 信越化学工業株式会社 Curable silicone resin composition
US7019100B2 (en) 2003-04-23 2006-03-28 Shin-Etsu Chemical Co., Ltd. Curable silicone resin composition
JP5036125B2 (en) * 2003-08-14 2012-09-26 信越化学工業株式会社 Curable silicone resin composition
DE102004039111A1 (en) * 2003-08-14 2005-04-14 Shin-Etsu Chemical Co., Ltd. Curable silicone resin composition
JP4219843B2 (en) * 2004-04-08 2009-02-04 信越化学工業株式会社 Curable siloxane-based composition

Also Published As

Publication number Publication date
KR20070108512A (en) 2007-11-12
US7799887B2 (en) 2010-09-21
EP1852469A1 (en) 2007-11-07
TWI378975B (en) 2012-12-11
EP1852469A4 (en) 2010-08-11
US20090012256A1 (en) 2009-01-08
CN101111567B (en) 2010-05-19
JP2006232970A (en) 2006-09-07
WO2006090609A1 (en) 2006-08-31
TW200636010A (en) 2006-10-16
KR101223545B1 (en) 2013-01-18
CN101111567A (en) 2008-01-23
EP1852469B1 (en) 2011-11-23

Similar Documents

Publication Publication Date Title
JP5137295B2 (en) Silicon-containing curable composition and cured product thereof
TWI487746B (en) A silicon-containing hardened composition and a hardened product thereof
KR101526862B1 (en) Silicon-containing compound, curable composition and cured product
KR101437664B1 (en) Silicon-containing compound, curable composition and cured product
TWI425031B (en) A compound containing silicon, a hardened composition and a hardened product
JP5793824B2 (en) Organosilicon compound, thermosetting composition containing the organosilicon compound, and sealing material for optical semiconductor
TWI582167B (en) Containing silicon hardened composition and hardened material
US20230128852A1 (en) Silsesquioxane derivative and use thereof
JP2012092172A (en) Composition for sealing optical semiconductor, and light-emitting element
TW201807072A (en) Silicon-containing curable composition and cured object obtained therefrom
WO2021261133A1 (en) Photocurable composition, cured product thereof, and method for producing cured product
TWI526467B (en) And a silicon-containing hardening resin composition
JP2013035880A (en) Curing agent for epoxy resin, and epoxy resin composition containing the curing agent for epoxy resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121113

R151 Written notification of patent or utility model registration

Ref document number: 5137295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3