WO2021261133A1 - Photocurable composition, cured product thereof, and method for producing cured product - Google Patents

Photocurable composition, cured product thereof, and method for producing cured product Download PDF

Info

Publication number
WO2021261133A1
WO2021261133A1 PCT/JP2021/019266 JP2021019266W WO2021261133A1 WO 2021261133 A1 WO2021261133 A1 WO 2021261133A1 JP 2021019266 W JP2021019266 W JP 2021019266W WO 2021261133 A1 WO2021261133 A1 WO 2021261133A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
cured product
carbon
photocurable composition
carbon atoms
Prior art date
Application number
PCT/JP2021/019266
Other languages
French (fr)
Japanese (ja)
Inventor
賢明 岩瀬
尚正 古田
昭憲 北村
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to JP2022532412A priority Critical patent/JPWO2021261133A1/ja
Publication of WO2021261133A1 publication Critical patent/WO2021261133A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • This disclosure belongs to the technical field of heat-resistant materials, the technical field of insulating materials, the technical field of electronic materials, the technical field of automobiles, etc. with respect to the photocurable composition, the cured product thereof, and the method for producing the cured product. More specifically, the present disclosure relates to a photocurable composition comprising an organosilicon compound having a hydrosilylation-reactive carbon-carbon unsaturated group and a hydrosilylation group and a hydrosilylation catalyst. The cured product of the above photocurable composition is useful as a heat-resistant insulating material.
  • thermosetting and highly heat resistant silsesquioxane derivative in which a carbon-carbon unsaturated bond group and a hydrosilyl group are both bonded to a silicon atom having a T structure in the same molecule. There is.
  • thermosetting, highly heat-resistant silsesquioxane derivative having a carbon-carbon unsaturated bond group and a hydrosilyl group in the same molecule and having a T structure, a D structure and an M structure. Is disclosed.
  • the present invention includes the following aspects [1] to [11].
  • [1] A photocurable composition containing a silsesquioxane derivative represented by the following formula (1) and a hydrosilylation catalyst containing a transition metal.
  • R 1 is an organic group having a carbon-carbon unsaturated bond capable of hydrosilylation reaction and having 2 to 12 carbon atoms.
  • R 2 is at least one selected from the group consisting of an alkyl group, an aralkyl group of aryl and 7 to 10 carbon atoms of 6 to 10 carbon atoms in the 1 to 10 carbon atoms
  • a plurality of R 3 and R 4 are independently capable of hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, and a hydrosilylation reaction. It is at least one selected from the group consisting of organic groups having 2 to 12 carbon atoms having a carbon-carbon unsaturated bond.
  • R 3 There exist a plurality of R 3 may be the same or different from each other,
  • the R 4 presence of a plurality may be the same or different from each other,
  • u, v, w and x are independently 0 or positive numbers, and at least one of them is a positive number.
  • y and z are independently 0 or positive numbers, respectively. 0 ⁇ y / (u + v + w + x) ⁇ 2.0, 0 ⁇ z / (u + v + w + x) ⁇ 2.0,
  • v 0, at least one of a plurality of R 3 and R 4 is a hydrogen atom
  • w 0, at least one of a plurality of R 3 and R 4 is a hydrosilyl.
  • a photocurable composition containing a silsesquioxane derivative which is excellent in curability and can be applied to various substrates, a cured product thereof, and a method for producing the cured product. can.
  • the present disclosure relates to a photocurable composition, a cured product thereof, and a method for producing the cured product.
  • % means “% by weight”
  • parts means “parts by weight”
  • ppm means “ppm by weight”.
  • the description of "lower limit to upper limit” representing the numerical range means “below the lower limit and below the upper limit”
  • the description of "upper limit to lower limit” means “below the upper limit and above the lower limit”. That is, it represents a numerical range including an upper limit and a lower limit.
  • a combination of two or more of the preferred embodiments described below is also a preferred embodiment.
  • the term “process” is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
  • silsesquioxane derivative is a silsesquioxane derivative represented by the following formula (1).
  • the silsesquioxane derivative represented by the following formula (1) has an organic group having a carbon-carbon unsaturated bond capable of hydrosilylation reaction and a hydrosilyl group in the same molecule.
  • each structural unit that can be possessed by the silsesquioxane derivative according to the present disclosure shall be referred to as the structural units (a) to (f) as follows, and will be described below.
  • the structural unit (e) ( R 3 2 SiO 2/2) y
  • the structural unit (f) ( R 4 3 SiO 1/2) z
  • the silsesquioxane derivative according to the present disclosure can contain the above-mentioned structural units (a) to (f).
  • U, v, w and x in the equation (1) are independently 0 or a positive number, at least one of them is a positive number, and y and z are independently 0 or a positive number, respectively.
  • u, v, w, x, y and z are relative molar ratios of each structural unit contained in the silsesquioxane derivative according to the present disclosure represented by the formula (1).
  • the molar ratio is a relative ratio of the total number of each structural unit represented by the formula (1).
  • the molar ratio can be determined from the NMR (nuclear magnetic resonance) analysis value of the silsesquioxane derivative according to the present disclosure. Further, when the reaction rate of each raw material of the present silsesquioxane derivative is clear, or when the yield is 100%, it can be obtained from the charged amount of the raw material.
  • the sequence order in the formula (1) indicates the composition of the structural unit, and does not mean the sequence order. Therefore, the condensed form of the structural unit in the silsesquioxane derivative according to the present disclosure does not necessarily have to be in the sequence order of the formula (1).
  • the structural unit (a) is a so-called Q unit having four O 1/2 (two as oxygen atoms) for one silicon atom.
  • the Q unit means a unit having four O 1/2 for one silicon atom.
  • the proportion of the constituent unit (a) in the silsesquioxane derivative according to the present disclosure is not particularly limited, but in consideration of the viscosity of the photocurable composition of the present disclosure and the flexibility of the cured product, all the constituent units.
  • the molar ratio (u / (u + v + w + x + y + z)) to the above is preferably 0.5 or less, more preferably 0.4 or less, still more preferably 0.3 or less, and further preferably 0.
  • the fact that the molar ratio is 0 means that the constituent unit is not included, and the same applies hereinafter.
  • Structural unit (b) (HSiO 3/2 ) v
  • the structural unit (b) is a so-called T unit having three O 1/ 2s (1.5 as oxygen atoms) for one silicon atom, and has a hydrogen atom bonded to the silicon atom.
  • the T unit means a unit having three O 1/2 for one silicon atom.
  • the structural unit (b) includes a hydrosilylation group capable of carrying out a hydrosilylation reaction.
  • the ratio of the structural unit (b) in the silsesquioxane derivative according to the present disclosure is not particularly limited, but the heat resistance, oxidation resistance, weather resistance and insulation of the photocurable composition and the cured product thereof of the present disclosure are not particularly limited.
  • the molar ratio (v / (u + v + w + x + y + z)) to all the constituent units is preferably 0 to 0.7, and more preferably considering the heat resistance, oxidation resistance and weather resistance of the insulating film. Is 0 to 0.1.
  • the structural unit (c) is a T unit having three O 1/ 2s (1.5 as oxygen atoms) for one silicon atom, and has R 1 bonded to the silicon atom.
  • R 1 represents an organic group having 2 to 12 carbon atoms having a carbon-carbon unsaturated bond capable of hydrosilylation reaction. That is, the organic group R 1 is preferably a functional group having a carbon-carbon double bond or a carbon-carbon triple bond capable of hydrosilylation reaction.
  • organic group R 1 are not particularly limited, but for example, a vinyl group, an orthostyryl group, a metastyryl group, a parastyryl group, an acryloyloxymethyl group, a methacryloyloxymethyl group, and a 2-acryloyloxyethyl group.
  • the R 1, preferably a carbon - a hydrocarbon group having a carbon-carbon double bond, more preferably It is a vinyl group and a 2-propenyl group (allyl group) having a small number of carbon atoms, or an aromatic orthostyryl group, a metastyryl group and a parastyryl group, and more preferably a vinyl group.
  • Silsesquioxane derivative represented by Formula (1) is an organic group R 1 as a whole may comprise two or more, in which case all of the organic radical R 1, may be identical to each other, It may be different. For example, vinyl and parastilyl groups may be present if they are different.
  • the ratio of the constituent unit (c) in the silsesquioxane derivative according to the present disclosure is not particularly limited, but the heat resistance, oxidation resistance, weather resistance and insulation of the photocurable composition and the cured product thereof of the present disclosure are not particularly limited.
  • the molar ratio (w / (u + v + w + x + y + z)) to all the constituent units is preferably 0 to 0.5, and more preferably 0.1 to 0.3.
  • Structural unit (d) (R 2 SiO 3/2 ) x
  • the structural unit (d) is a T unit having three O 1/ 2s (1.5 as oxygen atoms) for one silicon atom, and has R 2 bonded to the silicon atom.
  • R 2 is at least one selected from the group consisting of an alkyl group, an aralkyl group of aryl and 7 to 10 carbon atoms of 6 to 10 carbon atoms having 1 to 10 carbon atoms.
  • the structural unit (d) has a point that does not contain a hydrogen atom as compared with the above-mentioned structural unit (b) and the structural unit (c), and an organic group having a carbon-carbon unsaturated bond capable of hydrosilylation reaction.
  • the structural unit (d) basically forms 3 siloxane bonds per silicon atom in the photocurable composition and its cured product, but does not form crosslinks due to the hydrosilylation reaction, and Since each silicon atom has an organic group having an appropriate number of carbon atoms, the photocurable composition of the present disclosure and the cured product thereof have heat resistance, oxidation resistance, insulating property, and adhesion to a substrate. Contributes to improvement of sex and / or flexibility. In addition, the amount of hydrogen atoms remaining in the cured product of the photocurable composition of the present disclosure can be reduced.
  • the alkyl group having 1 to 10 carbon atoms may be either an aliphatic group or an alicyclic group, or may be linear or branched. Although not particularly limited, examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group and a decyl group. From the viewpoint of heat resistance, a methyl group, an ethyl group and the like are preferable, and a methyl group is more preferable.
  • the aryl group having 6 to 10 carbon atoms is not particularly limited, but for example, a phenyl group or a group in which one or more of the hydrogen atoms of the phenyl group is substituted with an alkyl group having 1 to 4 carbon atoms. , And a naphthyl group and the like. From the viewpoint of heat resistance, it is preferably a phenyl group.
  • the aralkyl group having 7 to 10 carbon atoms is not particularly limited, and examples thereof include a group in which one of the hydrogen atoms of an alkyl group having 1 to 4 carbon atoms is substituted with an aryl group such as a phenyl group. Be done.
  • a benzyl group, a phenethyl group and the like can be mentioned, and from the viewpoint of heat resistance, a benzyl group is preferable.
  • Silsesquioxane derivative represented by Formula (1) is an organic group R 2 as a whole may comprise two or more, in which case all the organic radicals R 2 are to be the same to each other, It may be different.
  • the proportion of the constituent unit (d) in the silsesquioxane derivative according to the present disclosure is not particularly limited, but the molar ratio (x / (u + v + w + x + y + z)) to all the constituent units is the photocurable composition of the present disclosure.
  • the cured product thereof is preferably 0 to 0.7 in consideration of heat resistance, oxidation resistance, weather resistance and insulation resistance, and more in consideration of heat resistance, oxidation resistance and weather resistance as an insulating film. It is preferably 0.3 to 0.6.
  • the structural unit (e) ( R 3 2 SiO 2/2) y
  • the structural unit (e) is a so-called D unit having two O 1/ 2s (one as an oxygen atom) for one silicon atom.
  • the D unit means a unit having two O 1/2 for one silicon atom.
  • R 3 each independently presence of a plurality of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, 6 to 10 carbon atoms an aryl group, an aralkyl group having 7 to 10 carbon atoms and hydrosilylatable carbon - it is at least one selected from the group consisting of organic groups having 2 to 12 carbon atoms having a carbon-carbon unsaturated bond, R 3 may be the same or different from each other more than one.
  • each of these substituents include the same substituents as those exemplified for R 1 of the structural unit (c) and R 2 of the structural unit (d) described above.
  • the structural unit (e) is a D unit, it contributes to lowering the viscosity of the photocurable composition of the present disclosure and improving the flexibility, heat resistance, oxidation resistance and / or insulating property of the cured product. .. Heat resistance, a raw material for ready availability, and from the viewpoint of imparting flexibility to the cured product, it is preferred that the multiple R 3 groups are each independently a methyl group and a phenyl group.
  • the ratio of the constituent unit (e) in the silsesquioxane derivative according to the present disclosure is not particularly limited, but in consideration of lowering the viscosity of the photocurable composition of the present disclosure and the weather resistance and flexibility of the cured product. Then, the molar ratio (y / (u + v + w + x)) to all Q units and T units is preferably 0 ⁇ y / (u + v + w + x) ⁇ 2.0, more preferably 0.1 to 1.0. More preferably, it is 0.1 to 0.5.
  • the structural unit (f) ( R 4 3 SiO 1/2) z
  • the structural unit (f) is a so-called M unit having one O 1/2 (0.5 as an oxygen atom) for one silicon atom.
  • the M unit means a unit having one O 1/2 for one silicon atom.
  • R 4 each independently presence of a plurality of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, 6 to 10 carbon atoms an aryl group, an aralkyl group having 7 to 10 carbon atoms and hydrosilylatable carbon - it is at least one selected from the group consisting of organic groups having 2 to 12 carbon atoms having a carbon-carbon unsaturated bond, R 4 may be the same or different from each other more than one.
  • each of these substituents include the same substituents as those exemplified for R 1 of the structural unit (c) and R 2 of the structural unit (d) described above. Since the structural unit (f) is an M unit, it contributes to lowering the viscosity of the photocurable composition of the present disclosure and improving the flexibility and / or insulating property of the cured product.
  • at least one is a hydrogen atom or a hydrosilylatable carbon - is preferably an organic group having 2 to 12 carbon atoms having a carbon-carbon unsaturated bond .
  • a vinyl group is preferable from the viewpoint of heat resistance and availability of a raw material.
  • the flexibility of the cured product from the viewpoint of improvement in heat resistance and weather resistance, of the three R 4 in the structural unit (f), at least one alkyl group having 1 to 10 carbon atoms, carbon atoms It is preferably at least one selected from the group consisting of an aryl group of 6 to 10 and an aralkyl group having 7 to 10 carbon atoms. From the viewpoint of heat resistance, easy availability of raw materials, and imparting flexibility to the cured product, methyl groups and phenyl groups are preferable.
  • the ratio of the constituent unit (f) in the silsesquioxane derivative according to the present disclosure is not particularly limited, but in consideration of lowering the viscosity of the photocurable composition of the present disclosure and the weather resistance and flexibility of the cured product. Then, the molar ratio (z / (u + v + w + x)) to all Q units and T units is preferably 0 ⁇ z / (u + v + w + x) ⁇ 2.0, more preferably 0.1 to 1.0, and further. It is preferably 0.1 to 0.5.
  • R 3 and R 4 in the above-mentioned structural unit (e) is a hydrogen atom
  • w 0, at least one of R 3 and R 4 is. It is an organic group having 2 to 12 carbon atoms having a carbon-carbon unsaturated bond capable of hydrosilylation reaction.
  • Silsesquioxane derivative according to the present disclosure may further comprise a structural unit containing no Si and (R 5 O 1/2) (hereinafter, referred to as structural unit (g)).
  • R 5 is a hydrogen atom and / or an alkyl group having 1 to 6 carbon atoms may be any of aliphatic groups and alicyclic groups, also may be linear or branched. Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group and the like.
  • This structural unit is an alkoxy group which is a hydrolyzable group contained in a raw material monomer described later, or an alkoxy group generated by substituting an alcohol contained in a reaction solvent with a hydrolyzable group of the raw material monomer. , It is a hydroxyl group that remains in the molecule without hydrolysis / polycondensation, or is a hydroxyl group that remains in the molecule without hydrolysis / polycondensation.
  • Hydrosilylatable carbon present in the silsesquioxane derivative according to functional groups present disclosure hydrosilylation - against one organic group having a carbon-carbon unsaturated bond, the ratio of the number of hydrogen atoms bonded to the silicon atom, although not particularly limited, from the viewpoint of heat resistance, oxidation resistance and weather resistance of the cured product, it is preferably 0.5 to 5.0, more preferably 0.8 to 3.0, and even more preferably. It is 0.9 to 1.5.
  • Mw weight average molecular weight
  • the silsesquioxane derivative according to the present disclosure is not particularly limited, but is preferably in the range of 300 to 30,000.
  • the silsesquioxane derivative itself is a liquid, has a low viscosity suitable for handling, is easily dissolved in an organic solvent, is easy to handle the viscosity of the solution, and is excellent in storage stability.
  • Mw is more preferably 500 to 15,000, still more preferably 700 to 10,000, and particularly preferably 1,000 to 5,000.
  • Mw in this disclosure means the value which converted the molecular weight measured by GPC (gel permeation chromatography) using polystyrene as a standard substance.
  • GPC gel permeation chromatography
  • the state of the silsesquioxane derivative according to the present disclosure is not particularly limited, and examples thereof include liquids, solids, and semi-solids. It is preferably a liquid, and its viscosity is not particularly limited, and the viscosity at 25 ° C. is preferably 1,000,000 mPa ⁇ s or less, more preferably 100,000 mPa ⁇ s or less, and further preferably 80. It is 000 mPa ⁇ s or less, and particularly preferably 50,000 mPa ⁇ s or less.
  • the lower limit of the viscosity is not particularly limited, but is, for example, 1 mPa ⁇ s.
  • the viscosity means a value measured at 25 ° C. using an E-type viscometer (cone plate-type viscometer, for example, TVE22H-type viscometer manufactured by Toki Sangyo Co., Ltd.).
  • the silsesquioxane derivative according to the present disclosure can be produced by a known method.
  • the method for producing the silsesquioxane derivative is described in International Publication No. 2005/01007, International Publication No. 2009/066608, International Publication No. 2013/099909, Japanese Patent Application Laid-Open No. 2011-052170 and Japanese Patent Application Laid-Open No. 2013-1476559. It is disclosed in detail as a method for producing polysiloxane in Japanese Patent Publication No.
  • the silsesquioxane derivative according to the present disclosure can be produced, for example, by the following method. That is, the method for producing a silsesquioxane derivative according to the present disclosure is a condensation step in which a hydrolysis / polycondensation reaction of a raw material monomer giving a structural unit in the above formula (1) is carried out by condensation in an appropriate reaction solvent. Can be provided.
  • a silicon compound having four siloxane bond-forming groups (hereinafter referred to as “Q monomer”) forming the structural unit (a) (Q unit) and the structural units (b) to ( d)
  • a silicon compound having three siloxane bond-forming groups (hereinafter referred to as “T monomer”) that forms (T unit) and a siloxane bond-forming group that forms structural units (e) (D unit).
  • T monomer A silicon compound (hereinafter referred to as “M monomer”) that forms a structural unit (f) (M unit) having two silicon compounds (hereinafter referred to as "D monomer”) and one siloxane bond-forming group. And can be used.
  • a raw material monomer is hydrolyzed and polycondensed in the presence of a reaction solvent, and then the reaction solvent, by-products, residual monomers, water and the like in the reaction solution are used. It is preferable to provide a distilling step for distilling off.
  • the siloxane bond-forming group contained in the raw material Q monomer, T monomer, D monomer and M monomer is a hydroxyl group and / or a hydrolyzable group.
  • the hydrolyzable group include a halogeno group, an alkoxy group and a syroxy group.
  • the hydrolyzable group is preferably an alkoxy group, and more preferably an alkoxy group having 1 to 3 carbon atoms, because the hydrolyzable group is good and no acid is produced as a by-product.
  • a siloxy group is preferable as the hydrolyzable group because of the availability of raw materials, and a disiloxane composed of two structural units (f) can be used.
  • the siloxane bond-forming group of the Q monomer, T monomer and D monomer corresponding to each structural unit is preferably an alkoxy group, and the siloxane bond-forming group contained in the M monomer is an alkoxy group or a syroxy group. Is preferable. Further, the monomer corresponding to each structural unit may be used alone or in combination of two or more.
  • Examples of the Q monomer giving the structural unit (a) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane.
  • Examples of the T monomer giving the structural unit (b) include trimethoxysilane, triethoxysilane, tripropoxysilane, and trichlorosilane.
  • T monomer giving the structural unit (c) examples include trimethoxyvinylsilane, triethoxyvinylsilane, trichlorovinylsilane, allyltrimethoxysilane, (p-styryl) trimethoxysilane, (p-styryl) triethoxysilane, and (3-methacryloyl).
  • Oxypropyl) trimethoxysilane (3-methacryloyloxypropyl) triethoxysilane, (3-acryloyloxypropyl) trimethoxysilane, (3-acryloyloxypropyl) triethoxysilane, (8-methacryloyloxyoctyl) trimethoxysilane And (8-acryloyloxyoctyl) trimethoxysilane and the like.
  • T monomer giving the structural unit (d) examples include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltriisopropoxysilane, methyltrichlorosilane, ethyltrimethoxysilane, ethyltriethoxysilane, and propyltriethoxy.
  • examples thereof include silane, butyltrimethoxysilane, cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane, phenyltrimethoxysilane and phenyltriethoxysilane.
  • Examples of the D monomer giving the structural unit (e) include dimethoxydimethylsilane, dimethoxydiethylsilane, diethoxydimethylsilane, diethoxydiethylsilane, dipropoxydimethylsilane, dipropoxydiethylsilane, dimethoxymethylphenylsilane, and diethoxymethylphenylsilane.
  • 1,3-divinyl-1,1,3,3-tetramethyldisiloxane methoxydimethylsilane, ethoxydimethylsilane, methoxydimethylvinylsilane, ethoxydimethylvinylsilane, methoxytrimethylsilane, ethoxytrimethylsilane, methoxydimethylphenyl
  • examples thereof include silane, ethoxydimethylphenylsilane, chlorodimethylsilane, chlorodimethylvinylsilane, chlorotrimethylsilane, dimethylsilanol, dimethylvinylsilanol, trimethylsilanol, triethylsilanol, tripropylsilanol and tributylsilanol.
  • the compound that reacts with the raw material monomer to give a structural unit (g) include water and alcohols such as methanol, ethanol, 1-propan
  • the charging ratio of the Q monomer, T monomer, D monomer and M monomer which are the raw material monomers may be appropriately set according to the values of u to z of the target formula (1) in the present silsesquioxane derivative.
  • alcohol can be used as the reaction solvent.
  • the alcohol according to the present disclosure is an alcohol in a narrow sense represented by the general formula R-OH, and is a compound having no functional group other than an alcoholic hydroxyl group.
  • the alcohol is not particularly limited, but specific examples thereof include methanol, ethanol, 1-propanol, 2-propanol, 2-butanol, 2-pentanol, 3-pentanol, and 2-methyl-2-butanol.
  • secondary alcohols such as cyclohexanol are preferably used.
  • these alcohols can be used alone or in combination of two or more.
  • a more preferred alcohol is a compound capable of dissolving water at the concentration required in the condensation step.
  • An alcohol having such properties is a compound having a water solubility of 10 g or more in 100 g of alcohol at 20 ° C.
  • the alcohol used in the condensation step is 0.5% by mass or more based on the total amount of all reaction solvents, including the additional charge during the hydrolysis / polycondensation reaction. It is possible to suppress the gelation of the derivative.
  • the amount used is preferably 1% by mass or more and 60% by mass or less, and more preferably 3% by mass or more and 40% by mass or less.
  • the reaction solvent used in the condensation step may be only alcohol, or may be a mixed solvent with at least one kind of auxiliary solvent.
  • the auxiliary solvent may be either a polar solvent or a non-polar solvent, or may be a combination of both.
  • Preferred polar solvents are secondary or tertiary alcohols having 3 or 7 to 10 carbon atoms and diols having 2 to 20 carbon atoms.
  • the non-polar solvent is not particularly limited, and examples thereof include aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, chlorinated hydrocarbons, ethers, amides, ketones, esters, and cellosolves. Among these, aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons are preferable.
  • the non-polar solvent is not particularly limited, but for example, n-hexane, isohexane, cyclohexane, heptane, toluene, xylene, methylene chloride and the like are preferable because they azeotrope with water, and these compounds are used in combination.
  • xylene which is an aromatic hydrocarbon, is particularly preferable because it has a relatively high boiling point.
  • the water to be subjected to the hydrolysis reaction and the hydrolysis / polycondensation reaction in the catalytic condensation step proceed in the presence of water.
  • the amount of water used to hydrolyze the hydrolyzable group contained in the raw material monomer is preferably 0.5 to 5 times mol, more preferably 1 to 1 to the amount of substance (molar) of the hydrolyzable group. It is twice the mole.
  • the hydrolysis / polycondensation reaction of the raw material monomer may be carried out without a catalyst or may be carried out using a catalyst.
  • an acid catalyst exemplified by an inorganic acid such as sulfuric acid, nitric acid, hydrochloric acid and phosphoric acid; and an organic acid such as formic acid, acetic acid, oxalic acid and paratoluenesulfonic acid is preferably used.
  • the amount of the acid catalyst used is preferably an amount corresponding to 0.01 to 20 mol%, and corresponds to 0.1 to 10 mol%, based on the total amount (mol) of silicon atoms contained in the raw material monomer. It is more preferable that the amount is to be used.
  • an auxiliary agent can be added to the reaction system.
  • examples thereof include a defoaming agent that suppresses foaming of the reaction solution, a scale control agent that prevents scale from adhering to the reaction tank and the stirring shaft, a polymerization inhibitor, a hydrosilylation reaction inhibitor, and the like.
  • the amount of these auxiliaries used is arbitrary, but is preferably about 1 to 100% by weight based on the concentration of the silsesquioxane derivative according to the present disclosure in the reaction mixture.
  • the photocurable compositions of the present disclosure include a hydrosilylation catalyst containing a transition metal.
  • a hydrosilylation catalyst containing a transition metal As a result, the silsesquioxane derivative can be photocured.
  • the transition metal contained in the hydrosilylation catalyst is not particularly limited, and is, for example, a simple substance of a group 8 to 10 metal such as iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum, or a metal complex. , Metal salts, metal oxides and the like.
  • the hydrosilylation catalyst preferably contains one or more platinum group metals composed of ruthenium, rhodium, palladium, osmium, iridium and platinum, and is a catalyst containing platinum from the viewpoint of reactivity and availability. Is more preferable, and more preferably a platinum complex.
  • the platinum complex beta-diketonate platinum complexes, (.eta. cyclopentadienyl) trialkyl platinum complexes, ( ⁇ 4 -1,5- cyclooctadiene) diaryl platinum complexes and a dialkyl azodicarboxylate platinum complex It is preferably at least one selected from the group consisting of classes.
  • the platinum complexes are particularly preferably ⁇ -diketonato platinum complexes represented by the following formula (2), ( ⁇ -cyclopentadienyl) trialkyl platinum complexes represented by the following formula (3), and the following formula. comprising represented by (eta 4-1,5-cyclooctadiene) diaryl platinum complexes with (4), and dialkyl azodicarboxylate represented by the following formula (5) as a ligand, the dialkyl azodicarboxylate Lat platinum complexes.
  • R 6 and R 7 are each independently selected from the group consisting of a hydrogen atom, an alkyl group and an aryl group, and may be the same or different from each other, and are R 8 and R. 9 , R 10 and R 11 are each independently selected from the group consisting of an alkyl group, an aryl group and an alkoxy group, and may be the same or different from each other. ]
  • Cp is a cyclopentadienyl group ⁇ -bonded to a platinum atom and may or may not be substituted with a substituent, and R 12 , R 13 and R 14 are independent of each other. It represents an aliphatic group having 1 to 18 carbon atoms bonded to a platinum atom by ⁇ -, and may be the same or different from each other.
  • R 15 is a linear, branched or cyclic alkadiene group ⁇ -bonded to a platinum atom, and may or may not have a substituent, respectively, and R 17 and R 18 are independent of each other. It is an aryl group ⁇ -bonded to a platinum atom and may or may not have a substituent, and may be the same or different from each other.
  • R 16 and R 19 are independently hydrogen atoms, alkyl groups, alkoxy groups and It is at least one selected from the group consisting of halogen atoms, and may be the same or different from each other, may be substituted at any position of the aryl group, and may be substituted with a plurality of substituents, respectively.
  • each of the plurality of R 20s independently represents a hydrocarbon group having 1 to 6 carbon atoms, and may be the same or different from each other.
  • the ligand is described, and the description of the platinum atom is omitted.
  • ⁇ -diketonato platinum complexes represented by the formula (2) include bis (acetylacetonato) platinum (II).
  • Specific examples of the ( ⁇ -cyclopentadienyl) trialkyl platinum complexes represented by the above formula (3) include trimethyl (methylcyclopentadienyl) platinum (IV) and (cyclopentadienyl) trimethyl platinum. (IV) and the like.
  • Represented by the formula (4) Specific examples of (eta 4-1,5-cyclooctadiene) diaryl platinum complexes, (eta 4-1,5-cyclooctadiene) bis (4-methoxyphenyl) Platinum (II) and the like can be mentioned.
  • platinum complexes containing the dialkylazodicarboxylate represented by the formula (5) as a ligand include diethylazodicarboxylate platinum (II).
  • diethylazodicarboxylate platinum (II) bis (acetylacetonato) platinum (II) and trimethyl (methylcyclopentadienyl) platinum (IV) are more preferable.
  • the content ratio of the transition metal is not particularly limited, but is preferably 0.1 to 30,000 ppm by weight, preferably 1.0 to 100 parts by weight, based on 100 parts by weight of the total amount of the silsesquioxane derivatives according to the present disclosure. It is more preferably ⁇ 10,000 ppm by weight, and even more preferably 10 to 2,000 ppm by weight.
  • the photocurable composition of the present disclosure (hereinafter, also referred to as “the composition of the present disclosure”) contains a silsesquioxane derivative and a hydrosilylation catalyst according to the present disclosure.
  • the composition of the present disclosure has excellent fluidity and, as will be described later, excellent heat resistance and insulating properties of the cured product, and thus is a good insulating material for insulating elements that require heat resistance.
  • the composition of the present disclosure can be used as an adhesive composition or a binder composition because it can exhibit good curability and adhesiveness by itself.
  • composition of the present disclosure contains the silsesquioxane derivative and a hydrosilylation catalyst, but may contain various components (hereinafter, referred to as "other components"), if necessary.
  • other components a heat resistance improver, a hydrosilylation reaction inhibitor, a solvent and the like are preferable.
  • other components will be described.
  • the composition of the present disclosure may contain a heat resistance improver.
  • the heat resistance improving agent is not particularly limited, and known ones can be used.
  • iron 2-ethylhexanoate such as iron (III) tris (2-ethylhexanoic acid) and tris (2-ethylhexanoic acid) can be used.
  • Cerium 2-ethylhexanoate such as cerium (III)
  • zirconium 2-ethylhexanate such as tetra (2-ethylhexanoic acid) zirconium (IV) and bis (2-ethylhexanoic acid) zirconium oxide (IV).
  • the proportion of the heat resistance improving agent used is not particularly limited, but is, for example, 0 to 10,000 wt ppm, preferably 1 to 1, with respect to 100 parts by weight of the total amount of the silsesquioxane derivative according to the present disclosure. It is 000 ppm by weight, more preferably 5 to 500 ppm by weight, and even more preferably 10 to 300 ppm by weight.
  • the temperature for reducing the heat weight is improved or suppressed, the relative dielectric constant is suppressed from being lowered, the insulating property is suppressed from being lowered, and the generation of cracks is suppressed during use and storage under heating and at room temperature. , And color suppression and the like can be performed.
  • the composition of the present disclosure can include a hydrosilylation reaction inhibitor. By doing so, the storage stability of the composition of the present disclosure can be improved.
  • the hydrosilylation reaction inhibitor is not particularly limited, and examples thereof include compounds that can coordinate with the hydrosilylation catalytic metal, such as vinylsiloxanes such as methylvinyltetrasiloxane and 2-methyl-3-butin-2-ol. Examples thereof include acetylene alcohols such as acetylene alcohols, siloxane-modified acetylene alcohols, hyperoxides, and known hydrosilylation reaction inhibitors containing a nitrogen atom, a sulfur atom or a phosphorus atom.
  • the group having a carbon-carbon triple bond disclosed in Japanese Patent Application Laid-Open No. 2010-143973 is a group having a carbon-carbon triple bond, which has an appropriate reaction suppressing effect, low volatility, and suppresses odor and coloring.
  • a siloxane compound having a structure bonded to a silicon atom is preferable.
  • the ratio of the hydrosilylation reaction inhibitor to be used is not particularly limited, but is, for example, 0 to 5.0% by weight, preferably 0 to 2% based on 100 parts by weight of the total amount of the silsesquioxane derivatives according to the present disclosure. It is 0.0% by weight, more preferably 0 to 1.0% by weight.
  • the composition of the present disclosure can be applied as it is to the surface of a substrate as long as it is a liquid substance, but it can also be diluted with a solvent and used if necessary.
  • a solvent a solvent that dissolves the silsesquioxane derivative according to the present disclosure is preferable, and for example, an aliphatic hydrocarbon solvent, an aromatic hydrocarbon solvent, a chlorinated hydrocarbon solvent, an alcohol solvent, an ether solvent, etc.
  • Various organic solvents such as amide solvent, ketone solvent, ester solvent and cellosolve solvent can be mentioned.
  • the solvent may be volatilized in the atmosphere or in an atmosphere of an inert gas such as nitrogen. It may be heated because of the volatilization of the solvent, but the heating temperature in that case is preferably less than 100 ° C.
  • compositions of the present disclosure may also contain components other than the above-mentioned components as other components, if necessary.
  • surfactants for example, conductive polymers
  • leveling agents for example, photosensitizers, ultraviolet absorbers, antioxidants, stabilizers, lubricants, etc.
  • It can contain any other auxiliary agents such as pigments, dyes, plastics, suspending agents, nanoparticles, nanofibers, nanosheets and fillers.
  • silane-based reactive diluent such as tetraalkoxysilanes, trialkoxysilanes, dialkoxysilanes, monoalkoxysilanes and disiloxanes.
  • photocurable compounds such as radical curable compounds and cationic curable compounds can be contained, and a photopolymerization initiator for that purpose can also be contained.
  • the cured product of the present disclosure is a cured product obtained by curing the above-mentioned composition of the present disclosure.
  • the cured product of the present disclosure has excellent heat resistance.
  • the index of heat resistance is not particularly limited, and examples thereof include thermal weight reduction temperature, relative permittivity, insulating property, coloring, adhesiveness, adhesiveness, light transmittance, and crack generation.
  • Thermogravimetric reduction temperature The cured product of the present disclosure has excellent heat resistance and a high thermogravimetric reduction temperature.
  • the thermal weight reduction temperature can be determined by thermogravimetric differential thermal analysis (hereinafter referred to as TG / DTA).
  • the measurement atmosphere is not particularly limited, and the measurement can be performed in the atmosphere or in an atmosphere of an inert gas such as nitrogen.
  • the measurement atmosphere is appropriately selected in consideration of the environment in which the cured product of the present disclosure is used, but it is preferable to measure in the atmosphere.
  • the rate of temperature rise at the time of measurement is not particularly limited and may be, for example, 5, 10 or 20 ° C./min. Considering that the measurement can be performed in a short time, 20 ° C./min is preferable.
  • the index of the weight loss temperature is not particularly limited, and may be, for example, the temperature at the time when a certain percentage of the original weight is reduced, such as the weight loss start temperature and the 1, 5 or 10% weight loss temperature. It can also be expressed as a weight loss rate at a certain temperature, for example, a weight loss rate at 400 ° C.
  • the 5% weight loss temperature of the cured product of the present disclosure measured at 20 ° C./min is, for example, 300 ° C. or higher, preferably 370 ° C. or higher, more preferably 400 ° C. or higher, and particularly preferably. It is 500 ° C. or higher.
  • the cured product of the present disclosure has a low relative permittivity and is excellent in insulation in a wide frequency band.
  • the relative permittivity of the cured product of the present disclosure is not particularly limited, but is, for example, 4.0 or less, preferably 3.6 or less, and more preferably 3.5 or less.
  • the frequency band in which the relative permittivity is used is not particularly limited, and is, for example, 1 kHz to 100 GHz, preferably 1 kHz to 1 GHz, and more preferably 1 kHz to 10 MHz.
  • the cured product of the present disclosure has a relative permittivity of 4.0 or less at 1 MHz.
  • the measurement frequency is not particularly limited, but for example, the relative permittivity at 1 kHz, 10 kHz, 100 kHz, 1 MHz, 10 MHz, 1 GHz, etc. is measured and the cured product is used. Insulation properties can be compared. Further, the insulating property can be evaluated by showing that the relative permittivity is equal to or less than a certain value over a certain frequency band.
  • the frequency band is not particularly limited, but for example, the relative permittivity in 1 kHz to 10 MHz can be shown.
  • the relative permittivity in the present disclosure means a value measured at room temperature (23 ° C. ⁇ 2 ° C.).
  • the cured product of the present disclosure has a low relative permittivity and is excellent in insulating properties in a wide frequency band. Therefore, the cured product of the present disclosure can be an insulating film.
  • the cured product (insulating film) of the present disclosure is obtained by curing the composition of the present disclosure, and the curing means is not particularly limited, but for example, it may be cured by irradiating with ultraviolet rays. The details of the curing means will be described in "Method for producing a cured product" described later.
  • the method for producing a cured product (insulating film) of the present disclosure includes a step of irradiating the composition of the present disclosure with ultraviolet rays to cure it.
  • the obtained cured product (insulating film) may be the cured product (insulating film) of the present disclosure described above.
  • the composition of the present disclosure is cured, for example, the composition of the present disclosure is applied to an appropriate substrate and then irradiated with light such as ultraviolet rays to promote the hydrosilylation reaction and cure.
  • the composition of the present disclosure may or may not contain a solvent, and when it contains a solvent, it is preferable to remove the solvent and then subject it to photocuring or the like as described above.
  • the coating method is not particularly limited, and for example, a casting method, a spin coating method, a bar coating method, a dip coating method, a spray coating method, and a roll coating method are used. Ordinary coating methods such as a method, a flow coating method and a gravure coating method can be used.
  • the thickness of the composition of the present disclosure is not particularly limited, and is appropriately set according to the intended purpose.
  • the base material to which the composition of the present disclosure can be applied is not particularly limited and can be applied to various materials, and examples thereof include wood, metal, inorganic materials, plastics, paper, fibers and fabrics. Examples of the metal include copper, silver, iron, aluminum, silicon, silicon steel and stainless steel.
  • the inorganic material examples include metal oxides such as aluminum oxide, silicon oxide, magnesium oxide, zirconium oxide, zinc oxide, indium tin oxide and gallium oxide, metal nitrides such as aluminum nitride, gallium nitride and silicon nitride, silicon carbide and nitrided materials.
  • metal oxides such as aluminum oxide, silicon oxide, magnesium oxide, zirconium oxide, zinc oxide, indium tin oxide and gallium oxide
  • metal nitrides such as aluminum nitride, gallium nitride and silicon nitride, silicon carbide and nitrided materials.
  • ceramics such as boron, mortar, concrete and glass.
  • plastics include acrylic resins such as polymethylmethacrylate, polyester resins such as polyethylene terephthalate, polyvinyl chloride resins, polycarbonate resins, epoxy resins, polyamide resins such as nylon and aramid, polyimide resins, polyamideimide resins, and 4
  • Examples thereof include a fluororesin such as an ethylene resin, a polyolefin resin such as a crosslinked polyethylene resin, a composite resin such as polychloroprene, polyphenylene sulfide, polysulphon, polyether sulfone, polyether ether ketone, polyurethane resin and glass epoxy resin.
  • the fiber include natural fiber, regenerated fiber, semi-synthetic fiber, metal fiber, glass fiber, carbon fiber, ceramic fiber, known chemical fiber and the like.
  • the cloth may be a woven cloth or a non-woven fabric, and can be produced by using, for example, the above-mentioned fibers. These materials may be used alone, or may be used in combination of two or more, mixed, or combined.
  • the shape of the base material is not particularly limited, and examples thereof include plates, sheets, films, rods, spheres, fibers, powders, and structures having complicated shapes.
  • An active energy ray can be irradiated to cure the composition of the present disclosure, and examples of the active energy ray include electron beam, ultraviolet light, visible light, X-ray, and the like, which are preferable. Is light, and ultraviolet light is more preferred because inexpensive equipment can be used.
  • Examples of the ultraviolet irradiation device include a high-pressure mercury lamp, a metal halide lamp, a UV electrodeless lamp, and an LED.
  • the irradiation energy should be appropriately set according to the type of active energy ray and the composition of the compound. For example, when a high-pressure mercury lamp is used, the irradiation energy in the UV-A region (315 nm to 400 nm) is 0. .1 to 30 J / cm 2 is preferable, 0.5 to 20 J / cm 2 is more preferable, and 1.0 to 15 J / cm 2 is further preferable.
  • heat curing can be appropriately combined before and / or after photo-curing.
  • the composition of the present disclosure is impregnated into a substrate having a shaded portion when irradiated with light, and then the composition of the present disclosure of the portion exposed to the light is first cured by irradiating with light. Then, it is also possible to perform two-step curing in which heat is applied to cure the composition of the present disclosure in a portion not exposed to light.
  • a base material is not particularly limited, and examples thereof include a base material having a complicated shape such as a cloth-like shape, a fibrous shape, a powder-like shape, a porous shape, and an uneven shape, and two or more of these shapes are mentioned. May be a combined shape.
  • the cured product of the composition of the present disclosure is excellent in heat resistance, oxidation resistance, weather resistance, hardness, transparency, and flexibility, and the material having the cured film of the composition of the present disclosure has this property. It can be used for various purposes by making the best use of. For example, it can be used in various industrial product fields such as electrical and electronic fields.
  • specific examples of preferable applications include lighting devices such as LED lighting and organic EL lighting, electronic circuit boards such as semiconductor modules, printed wiring boards and flexible wiring boards, and electric rotating devices such as small motors and in-vehicle motors. Examples thereof include power supply devices such as transformers, power storage devices such as lithium batteries, and power generation devices such as solar panels.
  • a composite material having a cured product of the composition of the present disclosure and the above-mentioned base material is useful as a heat-resistant insulating member.
  • the base material the base material described in the above-mentioned "6. Method for producing a cured product" can be used.
  • the Mw (weight average molecular weight) is the GPC columns "TSK gel G4000HX” and “TSK gel G2000HX” linked at 40 ° C. in a toluene solvent by a gel permeation chromatography method (hereinafter referred to as "GPC"). (Model name, manufactured by Toso Co., Ltd.) was used for separation, and the molecular weight was calculated using standard polystyrene from the retention time.
  • GPC gel permeation chromatography
  • the molar ratio of each constituent unit of the obtained silsesquioxane derivative is calculated by dissolving the sample in deuterated chloroform, performing 1 H-NMR analysis, and further performing 29 Si-NMR analysis as necessary. did.
  • the alkoxysilane monomer reacted quantitatively and was introduced into the silsesquioxane derivative, but the M unit derived from the disiloxane monomer was not quantitatively introduced depending on the composition of the silsesquioxane derivative.
  • a solution prepared by separately mixing 1 mol / L hydrochloric acid aqueous solution (0.45 g, 4.4 mmol), pure water (11.4 g) and 2-propanol (4.5 g) was added from a dropping funnel.
  • the solution was added dropwise in about 1 hour, and stirring was continued overnight at room temperature.
  • the solvent and the like were removed from the obtained solution at 60 ° C. under reduced pressure to obtain 119 g of a silsesquioxane derivative as a colorless and transparent liquid.
  • ⁇ Synthesis example 4> The same operation as for silsesquioxane derivative 1 except that triethoxysilane (150 mmol), trimethoxyvinylsilane (50 mmol) and 1,1,3,3-tetramethyldisiloxane (50 mmol) were used as the raw material silane monomer. To obtain silsesquioxane derivative 4 as a colorless and transparent liquid.
  • ⁇ Synthesis example 7> A colorless and transparent liquid by performing the same operation as the silsesquioxane derivative 1 except that triethoxysilane (100 mmol), trimethoxyvinylsilane (100 mmol) and dimethoxymethylsilane (100 mmol) were used as the raw material silane monomer. As a result, a silsesquioxane derivative 7 was obtained.
  • silsesquioxane derivative 10 As raw material silane monomers, tetramethoxysilane (100 mmol), dimethoxydimethylsilane (100 mmol), 1,1,3,3-tetramethyldisiloxane (12.5 mmol) and 1,3-divinyl-1,1,3,3 -By carrying out the same operation as that of the silsesquioxane derivative 1 except that tetramethyldisiloxane (12.5 mmol) was used, the silsesquioxane derivative 10 was obtained as a colorless and transparent liquid.
  • ⁇ Reference example 1> [Synthesis of 3-acryloyloxypropylsilsesquioxane] By performing the same operation as the silsesquioxane derivative 1 except that (3-acryloyloxypropyl) trimethoxysilane was used as the raw material silane monomer and only 2-propanol was used as the reaction solvent, a colorless and transparent liquid was used. As a result, 3-acryloyloxypropylsilsesquioxane was obtained. Mw was 2370.
  • ⁇ Reference example 2> AC-SQ SI-20 (composite derivative of 3-acryloyloxypropylsilsesquioxane and silicone) manufactured by Toagosei Co., Ltd. was used as it was.
  • Example 1 (1) Preparation of Photocurable Composition Weighing 10 g of the silsesquioxane derivative obtained in Synthesis Example 1 and 10 mg of bis (acetylacetonato) platinum (II) (hereinafter referred to as Pt (acac) 2). Then, it was dissolved by stirring with a rotation / revolution mixer. (2) Confirmation of Photohydrosilylation Curability The photocurable composition of (1) described above was applied to a copper plate with a bar coater to form a film having a thickness of about 100 ⁇ m. Then, ultraviolet irradiation was performed under the following conditions, and it was confirmed that the surface tack was eliminated.
  • Pt (acac) 2 bis (acetylacetonato) platinum
  • Example 2 [Preparation of photocurable composition and confirmation of photocurability] Using the silsesquioxane derivative 2 obtained in Synthesis Example 2, a photocurable composition was prepared in the same manner as in Example 1 (1). It was subjected to the same photocuring as in Example 1 (2), and it was confirmed that the photohydrosilylation reaction proceeded to give a cured product.
  • Examples 3 to 11 [Preparation of photocurable composition and confirmation of photocurability] Using the silsesquioxane derivatives 3 to 11 obtained in Synthesis Examples 3 to 11, each photocurable composition was prepared in the same manner as in Example 1 (1). They were subjected to the same photocuring as in Example 1 (2) except that they were subjected to the following ultraviolet irradiation conditions, and it was confirmed that the photohydrosilylation reaction proceeded in each case to give a cured product.
  • Lamp 80W / cm High pressure mercury lamp Lamp height: 10cm Conveyor speed: 10m / min Integrated light intensity per pass: 210 mJ / cm 2 Atmosphere: Atmospheric Pass Count: 30 times
  • Example 12 Heat resistance evaluation of cured product Using the silsesquioxane derivative 1 obtained in Synthesis Example 1, the photocurable composition prepared in Example 1 (1) was used as the substrate of Example 1 (2). Was replaced with a PET film, and a photohydrosilylated cured product was prepared in the same manner as in Example 1 (2). The obtained cured product was peeled off from the PET film and subjected to thermal weight differential thermal analysis (hereinafter referred to as TG / DTA) (TG / DTA6300 manufactured by Seiko Instruments, Inc., in the air, heating rate 20 ° C./min). As a result of determining the 5% weight loss temperature (hereinafter referred to as T d5 ), it was 396 ° C.
  • T d5 thermal weight differential thermal analysis
  • Table 3 summarizes T d5 obtained in Examples 12 to 16.
  • Example 17 Relative permittivity measurement of cured product Using the silsesquioxane derivative 1 obtained in Synthesis Example 1, the photocurable composition prepared in Example 1 (1) was prepared using a silicone rubber sheet having a thickness of 1 mm. A hole having a size of 40 mm ⁇ 40 mm was cut out and poured into a mold, sandwiched between a PET film and white plate glass, and a photohydrosilylated cured product was prepared under the same ultraviolet irradiation conditions as in Example 1 (2). The obtained cured product was subjected to a relative permittivity measurement (impedance analyzer 4294A manufactured by Agilent Technologies), and the relative permittivity was measured at room temperature (23 ° C.). As a result, the relative permittivity at 1 MHz was 3.38. rice field. Table 4 shows the relative permittivity at 1 MHz and the relative permittivity at other frequency bands.
  • a relative permittivity measurement impedance analyzer 4294A manufactured by Agilent Technologies
  • Example 18 Relative permittivity measurement of cured product Using the silsesquioxane 4 obtained in Synthesis Example 4, the photocurable composition prepared in Example 4 was used, and the relative permittivity was measured in the same manner as in Example 17. As a result, the relative permittivity at 1 MHz was 3.28. Table 4 shows the relative permittivity at 1 MHz and the relative permittivity at other frequency bands.
  • ⁇ Comparative Example 1> Add 0.3 g of 2-Hydroxy-2-methylpropiophenone (manufactured by Tokyo Chemical Industry Co., Ltd.) to 10 g of 3-acryloyloxypropylsilsesquioxane obtained in Reference Example 1 and stir to dissolve to prepare a photocurable composition. did. This was applied on a PET film with a bar coater to form a film having a thickness of about 10 ⁇ m. Then, ultraviolet irradiation was performed under the following conditions to prepare a cured product.
  • 2-Hydroxy-2-methylpropiophenone manufactured by Tokyo Chemical Industry Co., Ltd.
  • ⁇ Comparative Example 2> A cured product was prepared in the same manner as in Comparative Example 1 except that AC-SQ SI-20 of Reference Example 2 was used, and the relative permittivity was measured with T d5 (in the atmosphere) of the cured product. T d5 (in the atmosphere) was 340 ° C. and the relative permittivity at 1 MHz was 4.31. Table 4 shows the relative permittivity at 1 MHz and the relative permittivity at other frequency bands.
  • the photohydrosilylation-curable composition of the present disclosure has good photocurability, has a wider range of applicable base materials than known thermohydrosilylation-curable compositions, and can be applied to various applications. It becomes. Further, the T d5 of the photohydrosilylated cured product of the present disclosure is compared with the cured product (Comparative Examples 1 and 2) of the photoradical curable composition, which is a typical example of the conventional photocurable silsesquioxane derivative. Very high and has excellent heat resistance.
  • the relative permittivity of the photohydrosilylated cured product of the present disclosure is much lower than that of the cured product of the photoradical curable composition (Comparative Examples 1 and 2), and the insulating property is excellent at any measured frequency. ing. Further, in the measured wide frequency band of 1 kHz to 10 MHz, the relative permittivity of the photohydrosilylated cured product of the present disclosure is 3.5 or less, and the photohydrosilylated cured product of the present disclosure has high heat resistance and excellent insulation. Has sex.
  • the photocurable composition of the present disclosure is a liquid composition that is useful for forming a heat-resistant film and is easy to apply and fill in any shape. It can be cured at room temperature, and has water resistance and chemical resistance. Since it is possible to form a film having various properties such as stability, electrical insulation, and mechanical strength such as scratch resistance, it is possible to form a film, etc., in the fields of electronics, optical functional materials, mobility, aerospace, and building materials. It can be used as a film or layer for articles or parts in a wide range of fields including fields. It can be used for forming passivation films, resist films, interlayer insulating films, various protective films and the like in semiconductors and the like.
  • the photocurable composition and the cured product thereof disclosed in the present disclosure are useful in various fields in which both high heat resistance and insulating properties are required in the future.

Abstract

Provided is a photocurable composition comprising a silsesquioxane derivative that is indicated by formula (1) and a hydrosilylation catalyst that contains a transition metal.

Description

光硬化性組成物、その硬化物、及び硬化物の製造方法A photocurable composition, a cured product thereof, and a method for producing the cured product.
 本開示は、光硬化性組成物、その硬化物、及び硬化物の製造方法に関し、耐熱材料の技術分野、絶縁材料の技術分野、電子材料の技術分野及び自動車の技術分野等に属する。更に詳しくは、本開示は、ヒドロシリル化反応可能な炭素-炭素不飽和基及びヒドロシリル基を有する有機ケイ素化合物とヒドロシリル化触媒とを含む光硬化性組成物に関するものである。上記の光硬化性組成物の硬化物は耐熱絶縁材料として有用である。 This disclosure belongs to the technical field of heat-resistant materials, the technical field of insulating materials, the technical field of electronic materials, the technical field of automobiles, etc. with respect to the photocurable composition, the cured product thereof, and the method for producing the cured product. More specifically, the present disclosure relates to a photocurable composition comprising an organosilicon compound having a hydrosilylation-reactive carbon-carbon unsaturated group and a hydrosilylation group and a hydrosilylation catalyst. The cured product of the above photocurable composition is useful as a heat-resistant insulating material.
 近年、電子デバイスや自動車部材の小型化、高集積化及び高性能化等により、それに用いられる各種の保護膜及び絶縁膜等の高耐熱化が益々求められている。
 施工性、光学特性、耐薬品性、耐熱性及び耐候性等の観点から、有機-無機複合材料であるシリコーン等のシロキサン系化合物の利用が行われており、特に高耐熱性と施工性の観点から、付加硬化型のシルセスキオキサン誘導体が注目されている。
In recent years, there has been an increasing demand for higher heat resistance of various protective films and insulating films used for electronic devices and automobile members due to miniaturization, high integration, high performance, and the like.
From the viewpoints of workability, optical properties, chemical resistance, heat resistance, weather resistance, etc., siloxane compounds such as silicone, which is an organic-inorganic composite material, are used, especially from the viewpoint of high heat resistance and workability. Therefore, an addition-curable silsesquioxane derivative has been attracting attention.
 国際公開第2005/010077号では、同一分子内に炭素-炭素不飽和結合基及びヒドロシリル基が共にT構造のケイ素原子に結合した、熱硬化性の高耐熱性シルセスキオキサン誘導体について開示されている。 International Publication No. 2005/010077 discloses a thermosetting and highly heat resistant silsesquioxane derivative in which a carbon-carbon unsaturated bond group and a hydrosilyl group are both bonded to a silicon atom having a T structure in the same molecule. There is.
 国際公開第2009/066608号では、同一分子内に炭素-炭素不飽和結合基及びヒドロシリル基を有し、T構造、D構造及びM構造を有する、熱硬化性の高耐熱性シルセスキオキサン誘導体について開示されている。 In WO 2009/06668, a thermosetting, highly heat-resistant silsesquioxane derivative having a carbon-carbon unsaturated bond group and a hydrosilyl group in the same molecule and having a T structure, a D structure and an M structure. Is disclosed.
 しかしながら、国際公開第2005/010077号及び国際公開第2009/066608号に開示されたシルセスキオキサン誘導体のヒドロシリル化架橋による硬化のためには、加熱処理が必須であるため、それを塗布する基材が加熱温度に耐えられるものに制限されるうえ、硬化するためには長時間の加熱を要し、生産性に問題があった。
 本発明の一実施形態によれば、硬化性に優れ種々の基材に適用可能なシルセスキオキサン誘導体を含む光硬化性組成物、その硬化物、及び硬化物の製造方法を提供することができる。
However, since heat treatment is essential for curing the silsesquioxane derivative disclosed in International Publication No. 2005/010077 and International Publication No. 2009/06660 by hydrosilylation cross-linking, the group to which it is applied is applied. The material is limited to those that can withstand the heating temperature, and it takes a long time to cure, which causes a problem in productivity.
According to one embodiment of the present invention, it is possible to provide a photocurable composition containing a silsesquioxane derivative which is excellent in curability and can be applied to various substrates, a cured product thereof, and a method for producing the cured product. can.
 本発明は、下記[1]~[11]の態様を含む。
[1]
 下記式(1)で表されるシルセスキオキサン誘導体と、遷移金属を含むヒドロシリル化触媒とを含む光硬化性組成物。
Figure JPOXMLDOC01-appb-C000002

〔式(1)中、
 Rはヒドロシリル化反応可能な炭素-炭素不飽和結合を有する炭素原子数2~12の有機基であり、
 Rは炭素原子数1~10のアルキル基、炭素原子数6~10のアリール基及び炭素原子数7~10のアラルキル基からなる群から選択される少なくとも1種であり、
 複数存在するR及びRはそれぞれ独立に水素原子、炭素原子数1~10のアルキル基、炭素原子数6~10のアリール基、炭素原子数7~10のアラルキル基及びヒドロシリル化反応可能な炭素-炭素不飽和結合を有する炭素原子数2~12の有機基からなる群から選択される少なくとも1種であり、
 複数存在するRは互いに同一でも異なっていてもよく、
 複数存在するRは互いに同一でも異なっていてもよく、
 u、v、w及びxはそれぞれ独立に0又は正の数であって、少なくともいずれか1つは正の数であり、
 y及びzはそれぞれ独立に0又は正の数であり、
 0≦y/(u+v+w+x)≦2.0であり、
 0≦z/(u+v+w+x)≦2.0であり、
 但し、v=0のとき、複数存在するR及びRの少なくともいずれか1つは水素原子であり、w=0のとき、複数存在するR及びRの少なくともいずれか1つはヒドロシリル化反応可能な炭素-炭素不飽和結合を有する炭素原子数2~12の有機基である。〕
[2]
 前記シルセスキオキサン誘導体に存在するヒドロシリル化反応可能な炭素-炭素不飽和結合を有する有機基1個に対する、ケイ素原子に結合した水素原子の数の比が0.5~5.0である、[1]に記載の光硬化性組成物。
[3]
 前記遷移金属の含有割合が、前記シルセスキオキサン誘導体100重量部に対して0.1~30,000重量ppmである、[1]又は[2]に記載の光硬化性組成物。
[4]
 前記遷移金属が白金族金属である、[1]~[3]のいずれか1つに記載の光硬化性組成物。
[5]
 前記遷移金属を含むヒドロシリル化触媒が、β-ジケトナト白金錯体類、(η-シクロペンタジエニル)トリアルキル白金錯体類、(η-1,5-シクロオクタジエン)ジアリール白金錯体類及びジアルキルアゾジカルボキシラート白金錯体類からなる群から選択される少なくとも1種である、[1]~[4]のいずれか1つに記載の光硬化性組成物。
[6]
 更に、耐熱性向上剤を含む、[1]~[5]のいずれか1つに記載の光硬化性組成物。
[7]
 [1]~[6]のいずれか1つに記載の光硬化性組成物を、硬化させて得られる硬化物。
[8]
 1MHzにおける比誘電率が4.0以下である、[7]に記載の硬化物。
[9]
 熱重量測定における大気中の5%重量減少温度が300℃以上である、[7]又は[8]に記載の硬化物。
[10]
 絶縁膜である、[7]~[9]のいずれか1つに記載の硬化物。
[11]
 [1]~[6]のいずれか1つに記載の光硬化性組成物に紫外線を照射して硬化させる工程を含む、硬化物の製造方法。
The present invention includes the following aspects [1] to [11].
[1]
A photocurable composition containing a silsesquioxane derivative represented by the following formula (1) and a hydrosilylation catalyst containing a transition metal.
Figure JPOXMLDOC01-appb-C000002

[In equation (1),
R 1 is an organic group having a carbon-carbon unsaturated bond capable of hydrosilylation reaction and having 2 to 12 carbon atoms.
R 2 is at least one selected from the group consisting of an alkyl group, an aralkyl group of aryl and 7 to 10 carbon atoms of 6 to 10 carbon atoms in the 1 to 10 carbon atoms,
A plurality of R 3 and R 4 are independently capable of hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, and a hydrosilylation reaction. It is at least one selected from the group consisting of organic groups having 2 to 12 carbon atoms having a carbon-carbon unsaturated bond.
There exist a plurality of R 3 may be the same or different from each other,
The R 4 presence of a plurality may be the same or different from each other,
u, v, w and x are independently 0 or positive numbers, and at least one of them is a positive number.
y and z are independently 0 or positive numbers, respectively.
0 ≦ y / (u + v + w + x) ≦ 2.0,
0 ≦ z / (u + v + w + x) ≦ 2.0,
However, when v = 0, at least one of a plurality of R 3 and R 4 is a hydrogen atom, and when w = 0, at least one of a plurality of R 3 and R 4 is a hydrosilyl. It is an organic group having 2 to 12 carbon atoms having a carbon-carbon unsaturated bond capable of undergoing a conversion reaction. ]
[2]
The ratio of the number of hydrogen atoms bonded to silicon atoms to one organic group having a hydrosilylation-reactive carbon-carbon unsaturated bond present in the silsesquioxane derivative is 0.5 to 5.0. The photocurable composition according to [1].
[3]
The photocurable composition according to [1] or [2], wherein the content ratio of the transition metal is 0.1 to 30,000 ppm by weight with respect to 100 parts by weight of the silsesquioxane derivative.
[4]
The photocurable composition according to any one of [1] to [3], wherein the transition metal is a platinum group metal.
[5]
Hydrosilylation catalyst containing the transition metal, beta-diketonate platinum complexes, (.eta. cyclopentadienyl) trialkyl platinum complexes, (η 4 -1,5- cyclooctadiene) diaryl platinum complexes and dialkyl azo The photocurable composition according to any one of [1] to [4], which is at least one selected from the group consisting of dicarboxylate platinum complexes.
[6]
The photocurable composition according to any one of [1] to [5], further comprising a heat resistance improver.
[7]
A cured product obtained by curing the photocurable composition according to any one of [1] to [6].
[8]
The cured product according to [7], which has a relative permittivity of 4.0 or less at 1 MHz.
[9]
The cured product according to [7] or [8], wherein the 5% weight loss temperature in the atmosphere in thermogravimetric analysis is 300 ° C. or higher.
[10]
The cured product according to any one of [7] to [9], which is an insulating film.
[11]
A method for producing a cured product, which comprises a step of irradiating the photocurable composition according to any one of [1] to [6] with ultraviolet rays to cure the photocurable composition.
 本発明の一実施形態によれば、硬化性に優れ種々の基材に適用可能なシルセスキオキサン誘導体を含む光硬化性組成物、その硬化物、及び硬化物の製造方法を提供することができる。 According to one embodiment of the present invention, it is possible to provide a photocurable composition containing a silsesquioxane derivative which is excellent in curability and can be applied to various substrates, a cured product thereof, and a method for producing the cured product. can.
 本開示は、光硬化性組成物、その硬化物及び硬化物の製造方法に関する。
 以下、本開示について詳細に説明する。
 尚、「%」は特に明記しない限り「重量%」を意味し、「部」は「重量部」、「ppm」は「重量ppm」を意味する。又、本開示において、数値範囲を表す「下限~上限」の記載は、「下限以上、上限以下」を表し、「上限~下限」の記載は、「上限以下、下限以上」を表す。即ち、上限及び下限を含む数値範囲を表す。更に、本開示においては、後述する好ましい態様の2以上の組み合わせも又、好ましい態様である。
 本開示において、「工程」の語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
The present disclosure relates to a photocurable composition, a cured product thereof, and a method for producing the cured product.
Hereinafter, the present disclosure will be described in detail.
Unless otherwise specified, "%" means "% by weight", "parts" means "parts by weight", and "ppm" means "ppm by weight". Further, in the present disclosure, the description of "lower limit to upper limit" representing the numerical range means "below the lower limit and below the upper limit", and the description of "upper limit to lower limit" means "below the upper limit and above the lower limit". That is, it represents a numerical range including an upper limit and a lower limit. Further, in the present disclosure, a combination of two or more of the preferred embodiments described below is also a preferred embodiment.
In the present disclosure, the term "process" is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
 以下、シルセスキオキサン誘導体、シルセスキオキサン誘導体の製造方法、ヒドロシリル化触媒、光硬化性組成物、その硬化物、硬化物の製造方法、及び用途について説明する。 Hereinafter, a method for producing a silsesquioxane derivative and a silsesquioxane derivative, a hydrosilylation catalyst, a photocurable composition, a cured product thereof, a method for producing a cured product, and an application thereof will be described.
1.シルセスキオキサン誘導体
 本開示に係るシルセスキオキサン誘導体は、下記式(1)で表されるシルセスキオキサン誘導体である。下記式(1)で表されるシルセスキオキサン誘導体は、同一分子内にヒドロシリル化反応可能な炭素-炭素不飽和結合を有する有機基とヒドロシリル基とを有する。
1. 1. Silsesquioxane derivative The silsesquioxane derivative according to the present disclosure is a silsesquioxane derivative represented by the following formula (1). The silsesquioxane derivative represented by the following formula (1) has an organic group having a carbon-carbon unsaturated bond capable of hydrosilylation reaction and a hydrosilyl group in the same molecule.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 本開示に係るシルセスキオキサン誘導体の有することができる各構成単位をそれぞれ以下のとおり構成単位(a)~(f)と称するものとし、以下に説明する。 Each structural unit that can be possessed by the silsesquioxane derivative according to the present disclosure shall be referred to as the structural units (a) to (f) as follows, and will be described below.
構成単位(a):(SiO4/2 Structural unit (a): (SiO 4/2 ) u
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
構成単位(b):(HSiO3/2 Structural unit (b): (HSiO 3/2 ) v
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
構成単位(c):(RSiO3/2 Structural unit (c): (R 1 SiO 3/2 ) w
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
構成単位(d):(RSiO3/2 Structural unit (d): (R 2 SiO 3/2 ) x
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
構成単位(e):(R SiO2/2 The structural unit (e) :( R 3 2 SiO 2/2) y
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
構成単位(f):(R SiO1/2 The structural unit (f) :( R 4 3 SiO 1/2) z
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 本開示に係るシルセスキオキサン誘導体は、上記した構成単位(a)~(f)を含むことができる。
 式(1)におけるu、v、w及びxはそれぞれ独立に0又は正の数であって、少なくともいずれか1つは正の数であり、y及びzはそれぞれ独立に0又は正の数であり、0≦y/(u+v+w+x)≦2.0であり、0≦z/(u+v+w+x)≦2.0である。
 即ち、式(1)におけるu、v、w、x、y及びzは、それぞれの構成単位のモル比を表す。尚、式(1)において、u、v、w、x、y及びzは、式(1)で表される本開示に係るシルセスキオキサン誘導体が含有する各構成単位の相対的なモル比を表す。即ち、モル比は、式(1)で表される各構成単位の総数の相対比である。モル比は、本開示に係るシルセスキオキサン誘導体のNMR(核磁気共鳴)分析値から求めることができる。又、本シルセスキオキサン誘導体の各原料の反応率が明らかなとき、又は、収率が100%のときには、その原料の仕込み量から求めることができる。
The silsesquioxane derivative according to the present disclosure can contain the above-mentioned structural units (a) to (f).
U, v, w and x in the equation (1) are independently 0 or a positive number, at least one of them is a positive number, and y and z are independently 0 or a positive number, respectively. Yes, 0 ≦ y / (u + v + w + x) ≦ 2.0, and 0 ≦ z / (u + v + w + x) ≦ 2.0.
That is, u, v, w, x, y and z in the formula (1) represent the molar ratio of each constituent unit. In the formula (1), u, v, w, x, y and z are relative molar ratios of each structural unit contained in the silsesquioxane derivative according to the present disclosure represented by the formula (1). Represents. That is, the molar ratio is a relative ratio of the total number of each structural unit represented by the formula (1). The molar ratio can be determined from the NMR (nuclear magnetic resonance) analysis value of the silsesquioxane derivative according to the present disclosure. Further, when the reaction rate of each raw material of the present silsesquioxane derivative is clear, or when the yield is 100%, it can be obtained from the charged amount of the raw material.
 式(1)における構成単位(c)、(d)、(e)及び(f)のそれぞれについては、1種のみであってよいし、2種以上であってもよい。又、式(1)における配列順序は、構成単位の組成を示すものであって、その配列順序を意味するものではない。したがって、本開示に係るシルセスキオキサン誘導体における構成単位の縮合形態は、必ずしも式(1)の配列順通りでなくてよい。 For each of the structural units (c), (d), (e) and (f) in the formula (1), only one type may be used, or two or more types may be used. Further, the sequence order in the formula (1) indicates the composition of the structural unit, and does not mean the sequence order. Therefore, the condensed form of the structural unit in the silsesquioxane derivative according to the present disclosure does not necessarily have to be in the sequence order of the formula (1).
1-1.構成単位(a):(SiO 4/2
 構成単位(a)は、ケイ素原子1個に対してO1/2を4個(酸素原子として2個)備える、いわゆるQ単位である。尚、Q単位とは、ケイ素原子1個に対してO1/2を4個有する単位を意味する。
 本開示に係るシルセスキオキサン誘導体における構成単位(a)の割合は特に限定するものではないが、本開示の光硬化性組成物の粘度及びその硬化物の柔軟性を考慮すると、全構成単位に占めるモル比率(u/(u+v+w+x+y+z))は、好ましくは0.5以下であり、より好ましくは0.4以下であり、更により好ましくは0.3以下であり、更に好ましくは0である。ここで、モル比が0であることは、その構成単位を含んでいないことを意味しており、以下、同様のことを意味する。
1-1. Structural unit (a): (SiO 4/2 ) u
The structural unit (a) is a so-called Q unit having four O 1/2 (two as oxygen atoms) for one silicon atom. The Q unit means a unit having four O 1/2 for one silicon atom.
The proportion of the constituent unit (a) in the silsesquioxane derivative according to the present disclosure is not particularly limited, but in consideration of the viscosity of the photocurable composition of the present disclosure and the flexibility of the cured product, all the constituent units. The molar ratio (u / (u + v + w + x + y + z)) to the above is preferably 0.5 or less, more preferably 0.4 or less, still more preferably 0.3 or less, and further preferably 0. Here, the fact that the molar ratio is 0 means that the constituent unit is not included, and the same applies hereinafter.
1-2.構成単位(b):(HSiO 3/2
 構成単位(b)は、ケイ素原子1個に対してO1/2を3個(酸素原子として1.5個)備える、いわゆるT単位であり、ケイ素原子に結合する水素原子を備えている。尚、T単位とは、ケイ素原子1個に対してO1/2を3個有する単位を意味する。
 即ち、構成単位(b)は、ヒドロシリル化反応を行うことができるヒドロシリル基を備えている。
 本開示に係るシルセスキオキサン誘導体における構成単位(b)の割合は特に限定するものではないが、本開示の光硬化性組成物及びその硬化物の耐熱性、耐酸化性、耐候性及び絶縁性を考慮すると、全構成単位に占めるモル比(v/(u+v+w+x+y+z))は、好ましくは0~0.7であり、絶縁膜としての耐熱性、耐酸化性及び耐候性を考慮すると、より好ましくは0~0.1である。
1-2. Structural unit (b): (HSiO 3/2 ) v
The structural unit (b) is a so-called T unit having three O 1/ 2s (1.5 as oxygen atoms) for one silicon atom, and has a hydrogen atom bonded to the silicon atom. The T unit means a unit having three O 1/2 for one silicon atom.
That is, the structural unit (b) includes a hydrosilylation group capable of carrying out a hydrosilylation reaction.
The ratio of the structural unit (b) in the silsesquioxane derivative according to the present disclosure is not particularly limited, but the heat resistance, oxidation resistance, weather resistance and insulation of the photocurable composition and the cured product thereof of the present disclosure are not particularly limited. Considering the properties, the molar ratio (v / (u + v + w + x + y + z)) to all the constituent units is preferably 0 to 0.7, and more preferably considering the heat resistance, oxidation resistance and weather resistance of the insulating film. Is 0 to 0.1.
1-3.構成単位(c):(R SiO 3/2
 構成単位(c)は、ケイ素原子1個に対してO1/2を3個(酸素原子として1.5個)備えるT単位であり、ケイ素原子に結合するRを備えている。
 Rは、ヒドロシリル化反応可能な炭素-炭素不飽和結合を有する炭素原子数2~12の有機基を表す。即ち、この有機基Rは、ヒドロシリル化反応可能な、炭素-炭素二重結合又は炭素-炭素三重結合を持つ官能基が好ましい。
 かかる有機基Rの具体例としては、特に限定するものではないが、例えば、ビニル基、オルトスチリル基、メタスチリル基、パラスチリル基、アクリロイルオキシメチル基、メタクリロイルオキシメチル基、2-アクリロイルオキシエチル基、2-メタクリロイルオキエメチル基、3-アクリロイルオキシプロピル基、3-メタクリロイルオキシプロピル基、8-アクリロイルオキシオクチル基、8-メタクリロイルオキシオクチル基、1-プロペニル基、2-プロペニル基、1-メチルエテニル基、1-ブテニル基、3-ブテニル基、1-ペンテニル基、4-ペンテニル基、3-メチル-1-ブテニル基、1-フェニルエテニル基、2-フェニルエテニル基、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、3-ブチニル基、1-ペンチニル基、4-ペンチニル基、3-メチル-1-ブチニル基及びフェニルブチニル基等が例示される。
 ヒドロシリル化反応性、及び、硬化物の耐熱性、耐酸化性及び/又は耐候性等の観点から、Rとしては、好ましくは炭素-炭素二重結合を持つ炭化水素基であり、より好ましくは炭素原子数が少ないビニル基及び2-プロペニル基(アリル基)、又は、芳香族であるオルトスチリル基、メタスチリル基及びパラスチリル基であり、更に好ましくはビニル基である。
 式(1)で表されるシルセスキオキサン誘導体は、全体として有機基Rを2個以上含むことができるが、その場合、全ての有機基Rは、互いに同一であってよいし、異なってもよい。例えば、異なっている場合、ビニル基及びパラスチリル基が存在していてもよい。
1-3. Structural unit (c): (R 1 SiO 3/2 ) w
The structural unit (c) is a T unit having three O 1/ 2s (1.5 as oxygen atoms) for one silicon atom, and has R 1 bonded to the silicon atom.
R 1 represents an organic group having 2 to 12 carbon atoms having a carbon-carbon unsaturated bond capable of hydrosilylation reaction. That is, the organic group R 1 is preferably a functional group having a carbon-carbon double bond or a carbon-carbon triple bond capable of hydrosilylation reaction.
Specific examples of the organic group R 1 are not particularly limited, but for example, a vinyl group, an orthostyryl group, a metastyryl group, a parastyryl group, an acryloyloxymethyl group, a methacryloyloxymethyl group, and a 2-acryloyloxyethyl group. , 2-methacryloyl oxyemethyl group, 3-acryloyloxypropyl group, 3-methacryloyloxypropyl group, 8-acryloyloxyoctyl group, 8-methacryloyloxyoctyl group, 1-propenyl group, 2-propenyl group, 1-methylethenyl group , 1-butenyl group, 3-butenyl group, 1-pentenyl group, 4-pentenyl group, 3-methyl-1-butenyl group, 1-phenylethenyl group, 2-phenylethenyl group, ethynyl group, 1-propynyl Examples thereof include a group, a 2-propynyl group, a 1-butynyl group, a 3-butynyl group, a 1-pentynyl group, a 4-pentynyl group, a 3-methyl-1-butynyl group and a phenylbutynyl group.
Hydrosilylation reactivity, and heat resistance of the cured product, from the viewpoint of oxidation resistance and / or weather resistance, the R 1, preferably a carbon - a hydrocarbon group having a carbon-carbon double bond, more preferably It is a vinyl group and a 2-propenyl group (allyl group) having a small number of carbon atoms, or an aromatic orthostyryl group, a metastyryl group and a parastyryl group, and more preferably a vinyl group.
Silsesquioxane derivative represented by Formula (1) is an organic group R 1 as a whole may comprise two or more, in which case all of the organic radical R 1, may be identical to each other, It may be different. For example, vinyl and parastilyl groups may be present if they are different.
 本開示に係るシルセスキオキサン誘導体における構成単位(c)の割合は特に限定するものではないが、本開示の光硬化性組成物及びその硬化物の耐熱性、耐酸化性、耐候性及び絶縁性を考慮すると、全構成単位に占めるモル比(w/(u+v+w+x+y+z))は、好ましくは0~0.5であり、より好ましくは0.1~0.3である。 The ratio of the constituent unit (c) in the silsesquioxane derivative according to the present disclosure is not particularly limited, but the heat resistance, oxidation resistance, weather resistance and insulation of the photocurable composition and the cured product thereof of the present disclosure are not particularly limited. Considering the sex, the molar ratio (w / (u + v + w + x + y + z)) to all the constituent units is preferably 0 to 0.5, and more preferably 0.1 to 0.3.
1-4.構成単位(d):(R SiO 3/2
 構成単位(d)は、ケイ素原子1個に対してO1/2を3個(酸素原子として1.5個)備えるT単位であり、ケイ素原子に結合するRを備えている。
 Rは、炭素原子数1~10のアルキル基、炭素原子数6~10のアリール基及び炭素原子数7~10のアラルキル基からなる群から選択される少なくとも1種である。構成単位(d)は、前述の構成単位(b)及び構成単位(c)と比較して、水素原子を含まない点、及び、ヒドロシリル化反応可能な炭素-炭素不飽和結合を有する有機基を含まない点において相違する。
 構成単位(d)は、光硬化性組成物及びその硬化物において、基本的にケイ素原子1個当たり3個のシロキサン結合を形成している一方、ヒドロシリル化反応による架橋は形成しないこと、及び、ケイ素原子1個当たり1個の適度な炭素原子数の有機基を有することから、本開示の光硬化性組成物及びその硬化物の、耐熱性、耐酸化性、絶縁性、基材への密着性及び/又は柔軟性の向上に貢献する。又、本開示の光硬化性組成物の硬化物において残存する水素原子量を低減することができる。
1-4. Structural unit (d): (R 2 SiO 3/2 ) x
The structural unit (d) is a T unit having three O 1/ 2s (1.5 as oxygen atoms) for one silicon atom, and has R 2 bonded to the silicon atom.
R 2 is at least one selected from the group consisting of an alkyl group, an aralkyl group of aryl and 7 to 10 carbon atoms of 6 to 10 carbon atoms having 1 to 10 carbon atoms. The structural unit (d) has a point that does not contain a hydrogen atom as compared with the above-mentioned structural unit (b) and the structural unit (c), and an organic group having a carbon-carbon unsaturated bond capable of hydrosilylation reaction. It differs in that it does not include it.
The structural unit (d) basically forms 3 siloxane bonds per silicon atom in the photocurable composition and its cured product, but does not form crosslinks due to the hydrosilylation reaction, and Since each silicon atom has an organic group having an appropriate number of carbon atoms, the photocurable composition of the present disclosure and the cured product thereof have heat resistance, oxidation resistance, insulating property, and adhesion to a substrate. Contributes to improvement of sex and / or flexibility. In addition, the amount of hydrogen atoms remaining in the cured product of the photocurable composition of the present disclosure can be reduced.
 炭素原子数1~10のアルキル基は、脂肪族基及び脂環族基のいずれでもよく、又、直鎖状及び分岐状のいずれでもよい。特に限定されるものではないが、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基及びデシル基等が挙げられる。耐熱性の観点からは、好ましくはメチル基及びエチル基等が挙げられ、より好ましくはメチル基である。 The alkyl group having 1 to 10 carbon atoms may be either an aliphatic group or an alicyclic group, or may be linear or branched. Although not particularly limited, examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group and a decyl group. From the viewpoint of heat resistance, a methyl group, an ethyl group and the like are preferable, and a methyl group is more preferable.
 炭素原子数6~10のアリール基としては、特に限定されるものではないが、例えば、フェニル基、フェニル基の水素原子の1つ以上が炭素原子数1~4のアルキル基で置換された基、及びナフチル基等が挙げられる。耐熱性の観点からは、好ましくはフェニル基である。 The aryl group having 6 to 10 carbon atoms is not particularly limited, but for example, a phenyl group or a group in which one or more of the hydrogen atoms of the phenyl group is substituted with an alkyl group having 1 to 4 carbon atoms. , And a naphthyl group and the like. From the viewpoint of heat resistance, it is preferably a phenyl group.
 炭素原子数7~10のアラルキル基としては、特に限定されるものではないが、炭素原子数1~4のアルキル基の水素原子の1つがフェニル基などのアリール基で置換された基等が挙げられる。例えば、ベンジル基及びフェネチル基等が挙げられ、耐熱性の観点からは、好ましくはベンジル基である。 The aralkyl group having 7 to 10 carbon atoms is not particularly limited, and examples thereof include a group in which one of the hydrogen atoms of an alkyl group having 1 to 4 carbon atoms is substituted with an aryl group such as a phenyl group. Be done. For example, a benzyl group, a phenethyl group and the like can be mentioned, and from the viewpoint of heat resistance, a benzyl group is preferable.
 式(1)で表されるシルセスキオキサン誘導体は、全体として有機基Rを2個以上含むことができるが、その場合、全ての有機基Rは、互いに同一であってよいし、異なってもよい。 Silsesquioxane derivative represented by Formula (1) is an organic group R 2 as a whole may comprise two or more, in which case all the organic radicals R 2 are to be the same to each other, It may be different.
 本開示に係るシルセスキオキサン誘導体における構成単位(d)の割合は特に限定するものではないが、全構成単位に占めるモル比(x/(u+v+w+x+y+z))は、本開示の光硬化性組成物及びその硬化物の耐熱性、耐酸化性、耐候性及び絶縁性を考慮すると、好ましくは、0~0.7であり、絶縁膜としての耐熱性、耐酸化性及び耐候性を考慮すると、より好ましくは0.3~0.6である。 The proportion of the constituent unit (d) in the silsesquioxane derivative according to the present disclosure is not particularly limited, but the molar ratio (x / (u + v + w + x + y + z)) to all the constituent units is the photocurable composition of the present disclosure. And the cured product thereof is preferably 0 to 0.7 in consideration of heat resistance, oxidation resistance, weather resistance and insulation resistance, and more in consideration of heat resistance, oxidation resistance and weather resistance as an insulating film. It is preferably 0.3 to 0.6.
1-5.構成単位(e):(R SiO 2/2
 構成単位(e)は、ケイ素原子1個に対してO1/2を2個(酸素原子として1個)備える、いわゆるD単位である。尚、D単位とは、ケイ素原子1個に対してO1/2を2個有する単位を意味する。
 複数存在するRはそれぞれ独立に、水素原子、炭素原子数1~10のアルキル基、炭素原子数6~10のアリール基、炭素原子数7~10のアラルキル基及びヒドロシリル化反応可能な炭素-炭素不飽和結合を有する炭素原子数2~12の有機基からなる群から選択される少なくとも1種であり、複数存在するRは互いに同一でも異なっていてもよい。これらの各置換基は、前述の構成単位(c)のR及び構成単位(d)のRについて例示したものと同様の置換基が挙げられる。
 構成単位(e)は、D単位であることから、本開示の光硬化性組成物の低粘度化及びその硬化物の柔軟性、耐熱性、耐酸化性及び/又は絶縁性の向上に貢献する。
 耐熱性、原料の入手し易さ、及び硬化物への柔軟性付与の観点からは、複数存在するRはそれぞれ独立にメチル基及びフェニル基であることが好ましい。
1-5. The structural unit (e) :( R 3 2 SiO 2/2) y
The structural unit (e) is a so-called D unit having two O 1/ 2s (one as an oxygen atom) for one silicon atom. The D unit means a unit having two O 1/2 for one silicon atom.
To R 3 each independently presence of a plurality of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, 6 to 10 carbon atoms an aryl group, an aralkyl group having 7 to 10 carbon atoms and hydrosilylatable carbon - it is at least one selected from the group consisting of organic groups having 2 to 12 carbon atoms having a carbon-carbon unsaturated bond, R 3 may be the same or different from each other more than one. Examples of each of these substituents include the same substituents as those exemplified for R 1 of the structural unit (c) and R 2 of the structural unit (d) described above.
Since the structural unit (e) is a D unit, it contributes to lowering the viscosity of the photocurable composition of the present disclosure and improving the flexibility, heat resistance, oxidation resistance and / or insulating property of the cured product. ..
Heat resistance, a raw material for ready availability, and from the viewpoint of imparting flexibility to the cured product, it is preferred that the multiple R 3 groups are each independently a methyl group and a phenyl group.
 本開示に係るシルセスキオキサン誘導体における構成単位(e)の割合は特に限定するものではないが、本開示の光硬化性組成物の低粘度化及びその硬化物の耐候性及び柔軟性を考慮すると、全Q単位及びT単位に対するモル比(y/(u+v+w+x))は、好ましくは、0≦y/(u+v+w+x)≦2.0であり、より好ましくは0.1~1.0であり、更に好ましくは0.1~0.5ある。但し、v=0のとき、複数存在するR及び後述の構成単位(f)における複数存在するRの少なくともいずれか1つは水素原子であり、w=0のとき、複数存在するR及びRの少なくともいずれか1つはヒドロシリル化反応可能な炭素-炭素不飽和結合を有する炭素原子数2~12の有機基である。 The ratio of the constituent unit (e) in the silsesquioxane derivative according to the present disclosure is not particularly limited, but in consideration of lowering the viscosity of the photocurable composition of the present disclosure and the weather resistance and flexibility of the cured product. Then, the molar ratio (y / (u + v + w + x)) to all Q units and T units is preferably 0 ≦ y / (u + v + w + x) ≦ 2.0, more preferably 0.1 to 1.0. More preferably, it is 0.1 to 0.5. However, when v = 0, at least one of the plurality of to R 4 in plurality of R 3 s and below the structural unit (f) is a hydrogen atom, when w = 0, R 3 there are a plurality of and at least one of R 4 is hydrosilylatable carbon - is an organic group having 2 to 12 carbon atoms having a carbon-carbon unsaturated bond.
1-6.構成単位(f):(R SiO 1/2
 構成単位(f)は、ケイ素原子1個に対してO1/2を1個(酸素原子として0.5個)備える、いわゆるM単位である。尚、M単位とは、ケイ素原子1個に対してO1/2を1個有する単位を意味する。
 複数存在するRはそれぞれ独立に、水素原子、炭素原子数1~10のアルキル基、炭素原子数6~10のアリール基、炭素原子数7~10のアラルキル基及びヒドロシリル化反応可能な炭素-炭素不飽和結合を有する炭素原子数2~12の有機基からなる群から選択される少なくとも1種であり、複数存在するRは互いに同一でも異なっていてもよい。これらの各置換基は、前述の構成単位(c)のR及び構成単位(d)のRについて例示したものと同様の置換基が挙げられる。
 構成単位(f)は、M単位であることから、本開示の光硬化性組成物の低粘度化及びその硬化物の柔軟性及び/又は絶縁性の向上に貢献する。
1-6. The structural unit (f) :( R 4 3 SiO 1/2) z
The structural unit (f) is a so-called M unit having one O 1/2 (0.5 as an oxygen atom) for one silicon atom. The M unit means a unit having one O 1/2 for one silicon atom.
To R 4 each independently presence of a plurality of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, 6 to 10 carbon atoms an aryl group, an aralkyl group having 7 to 10 carbon atoms and hydrosilylatable carbon - it is at least one selected from the group consisting of organic groups having 2 to 12 carbon atoms having a carbon-carbon unsaturated bond, R 4 may be the same or different from each other more than one. Examples of each of these substituents include the same substituents as those exemplified for R 1 of the structural unit (c) and R 2 of the structural unit (d) described above.
Since the structural unit (f) is an M unit, it contributes to lowering the viscosity of the photocurable composition of the present disclosure and improving the flexibility and / or insulating property of the cured product.
 本開示に係るシルセスキオキサン誘導体におけるM単位は、ケイ素原子に結合したシロキサン結合が1個であることから、そのフレキシビリティが高いため、複数存在するRがそれぞれ独立に水素原子又はヒドロシリル化反応可能な炭素-炭素不飽和結合を有する有機基である場合には、それらの基がT単位及びD単位に結合した場合よりも、一般にヒドロシリル化反応性が高く、硬化反応が良好に進行する。又、複数存在するRがそれぞれ独立に水素原子又はヒドロシリル化反応可能な炭素-炭素不飽和結合を有する炭素原子数2~12の有機基である場合には、硬化物中のM単位はシロキサン結合とヒドロシリル化架橋の2個の結合を介して硬化物の骨格中に取り込まれることとなるため、Rがそのような基を有さない場合よりも、硬化物の耐熱性及び耐候性等が向上する。
 このため構成単位(f)における3個のRのうち、少なくとも1個は水素原子又はヒドロシリル化反応可能な炭素-炭素不飽和結合を有する炭素原子数2~12の有機基であることが好ましい。ヒドロシリル化反応可能な炭素-炭素不飽和結合を有する炭素原子数2~12の有機基としては、耐熱性及び原料の入手し易さの観点から、ビニル基が好ましい。
M units in the silsesquioxane derivative according to the present disclosure, since the siloxane bond attached to a silicon atom is one, therefore flexibility is high, hydrogen atom or a hydrosilylation R 4 a plurality exists independently In the case of an organic group having a reactive carbon-carbon unsaturated bond, the hydrosilylation reactivity is generally higher and the curing reaction proceeds better than in the case where those groups are bonded to T units and D units. .. Further, R 4 in which there are a plurality each independently a hydrogen atom or a hydrosilylatable carbon - when an organic group having 2 to 12 carbon atoms having a carbon unsaturated bond, M units in the cured product of the siloxane since binding and via two bonding hydrosilylation crosslinking and thus incorporated into the backbone of the cured product, than when R 4 does not have such a group, the heat resistance and weather resistance of the cured product Is improved.
Of the three R 4 in this order structural unit (f), at least one is a hydrogen atom or a hydrosilylatable carbon - is preferably an organic group having 2 to 12 carbon atoms having a carbon-carbon unsaturated bond .. As the organic group having a carbon-carbon unsaturated bond capable of hydrosilylation reaction and having 2 to 12 carbon atoms, a vinyl group is preferable from the viewpoint of heat resistance and availability of a raw material.
 又、硬化物の柔軟性、耐熱性及び耐候性の向上の観点から、構成単位(f)における3個のRのうち、少なくとも1個は炭素原子数1~10のアルキル基、炭素原子数6~10のアリール基及び炭素原子数7~10のアラルキル基からなる群から選択される少なくとも1種であることが好ましい。耐熱性、原料の入手し易さ、及び、硬化物への柔軟性付与の観点から、好ましくはメチル基及びフェニル基である。 Further, the flexibility of the cured product, from the viewpoint of improvement in heat resistance and weather resistance, of the three R 4 in the structural unit (f), at least one alkyl group having 1 to 10 carbon atoms, carbon atoms It is preferably at least one selected from the group consisting of an aryl group of 6 to 10 and an aralkyl group having 7 to 10 carbon atoms. From the viewpoint of heat resistance, easy availability of raw materials, and imparting flexibility to the cured product, methyl groups and phenyl groups are preferable.
 本開示に係るシルセスキオキサン誘導体における構成単位(f)の割合は特に限定するものではないが、本開示の光硬化性組成物の低粘度化及びその硬化物の耐候性及び柔軟性を考慮すると、全Q単位及びT単位に対するモル比(z/(u+v+w+x))は、好ましくは0≦z/(u+v+w+x)≦2.0であり、より好ましくは0.1~1.0であり、更に好ましくは0.1~0.5ある。
 但し、v=0のとき前述の構成単位(e)におけるR及びRの少なくともいずれか1つは水素原子であり、w=0のとき、R及びRの少なくともいずれか1つはヒドロシリル化反応可能な炭素-炭素不飽和結合を有する炭素原子数2~12の有機基である。
The ratio of the constituent unit (f) in the silsesquioxane derivative according to the present disclosure is not particularly limited, but in consideration of lowering the viscosity of the photocurable composition of the present disclosure and the weather resistance and flexibility of the cured product. Then, the molar ratio (z / (u + v + w + x)) to all Q units and T units is preferably 0 ≦ z / (u + v + w + x) ≦ 2.0, more preferably 0.1 to 1.0, and further. It is preferably 0.1 to 0.5.
However, when v = 0, at least one of R 3 and R 4 in the above-mentioned structural unit (e) is a hydrogen atom, and when w = 0, at least one of R 3 and R 4 is. It is an organic group having 2 to 12 carbon atoms having a carbon-carbon unsaturated bond capable of hydrosilylation reaction.
1-7.その他の構成単位(g)
 本開示に係るシルセスキオキサン誘導体は、更に、Siを含まない構成単位として(R1/2)を備えることができる(以下、構成単位(g)と称する)。
 ここで、Rは水素原子及び/又は炭素原子数1~6のアルキル基であり、脂肪族基及び脂環族基のいずれでもよく、又、直鎖状及び分岐状のいずれでもよい。アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、及びヘキシル基等が挙げられる。
1-7. Other structural units (g)
Silsesquioxane derivative according to the present disclosure may further comprise a structural unit containing no Si and (R 5 O 1/2) (hereinafter, referred to as structural unit (g)).
Wherein, R 5 is a hydrogen atom and / or an alkyl group having 1 to 6 carbon atoms may be any of aliphatic groups and alicyclic groups, also may be linear or branched. Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group and the like.
 この構成単位は、後述する原料モノマーに含まれる加水分解性基であるアルコキシ基、又は、反応溶媒に含まれたアルコールが、原料モノマーの加水分解性基と置換して生成したアルコキシ基であって、加水分解・重縮合せずに分子内に残存したものであるか、あるいは、加水分解後、重縮合せずに分子内に残存した水酸基である。 This structural unit is an alkoxy group which is a hydrolyzable group contained in a raw material monomer described later, or an alkoxy group generated by substituting an alcohol contained in a reaction solvent with a hydrolyzable group of the raw material monomer. , It is a hydroxyl group that remains in the molecule without hydrolysis / polycondensation, or is a hydroxyl group that remains in the molecule without hydrolysis / polycondensation.
1-8.ヒドロシリル化反応の官能基
 本開示に係るシルセスキオキサン誘導体に存在するヒドロシリル化反応可能な炭素-炭素不飽和結合を有する有機基1個に対する、ケイ素原子に結合した水素原子の数の比は、特に制限はないが、硬化物の耐熱性、耐酸化性及び耐候性の観点から、好ましくは0.5~5.0であり、より好ましくは0.8~3.0であり、更に好ましくは0.9~1.5である。
1-8. Hydrosilylatable carbon present in the silsesquioxane derivative according to functional groups present disclosure hydrosilylation - against one organic group having a carbon-carbon unsaturated bond, the ratio of the number of hydrogen atoms bonded to the silicon atom, Although not particularly limited, from the viewpoint of heat resistance, oxidation resistance and weather resistance of the cured product, it is preferably 0.5 to 5.0, more preferably 0.8 to 3.0, and even more preferably. It is 0.9 to 1.5.
1-9.分子量等
 本開示に係るシルセスキオキサン誘導体の重量平均分子量(以下、「Mw」という。)に特に制限はないが、300~30,000の範囲にあることが好ましい。かかるシルセスキオキサン誘導体は、それ自体が液体で、取り扱いに適した低粘性であり、有機溶剤に溶け易く、その溶液の粘度も扱い易く、保存安定性に優れる。Mwは、より好ましくは500~15,000であり、更に好ましくは700~10,000であり、特に好ましくは1,000~5,000である。
 尚、本開示におけるMwは、GPC(ゲル浸透クロマトグラフィー)により測定した分子量を、標準物質としてポリスチレンを使用して換算した値を意味する。Mwの測定条件としては、例えば、後述の〔実施例〕における測定条件を用いることができる。
1-9. Molecular weight and the like The weight average molecular weight (hereinafter referred to as “Mw”) of the silsesquioxane derivative according to the present disclosure is not particularly limited, but is preferably in the range of 300 to 30,000. The silsesquioxane derivative itself is a liquid, has a low viscosity suitable for handling, is easily dissolved in an organic solvent, is easy to handle the viscosity of the solution, and is excellent in storage stability. Mw is more preferably 500 to 15,000, still more preferably 700 to 10,000, and particularly preferably 1,000 to 5,000.
In addition, Mw in this disclosure means the value which converted the molecular weight measured by GPC (gel permeation chromatography) using polystyrene as a standard substance. As the measurement condition of Mw, for example, the measurement condition in [Example] described later can be used.
 本開示に係るシルセスキオキサン誘導体の状態に特に制限はなく、例えば、液体、固体及び半固体等が挙げられる。好ましくは液体であり、その粘度に特に制限はなく、25℃における粘度が、好ましくは、1,000,000mPa・s以下であり、より好ましくは100,000mPa・s以下であり、更に好ましくは80,000mPa・s以下であり、特に好ましくは50,000mPa・s以下である。上記粘度の下限値は特に制限はないが、例えば1mPa・sである。
 尚、本開示において粘度とは、E型粘度計(コーンプレート型粘度計。例えば、東機産業(株)TVE22H形粘度計)を使用し、25℃で測定した値を意味する。
The state of the silsesquioxane derivative according to the present disclosure is not particularly limited, and examples thereof include liquids, solids, and semi-solids. It is preferably a liquid, and its viscosity is not particularly limited, and the viscosity at 25 ° C. is preferably 1,000,000 mPa · s or less, more preferably 100,000 mPa · s or less, and further preferably 80. It is 000 mPa · s or less, and particularly preferably 50,000 mPa · s or less. The lower limit of the viscosity is not particularly limited, but is, for example, 1 mPa · s.
In the present disclosure, the viscosity means a value measured at 25 ° C. using an E-type viscometer (cone plate-type viscometer, for example, TVE22H-type viscometer manufactured by Toki Sangyo Co., Ltd.).
2.シルセスキオキサン誘導体の製造方法
 本開示に係るシルセスキオキサン誘導体は、公知の方法で製造することができる。シルセスキオキサン誘導体の製造方法は、国際公開第2005/01007号パンフレット、国際公開第2009/066608号パンフレット、国際公開第2013/099909号パンフレット、特開2011-052170号公報及び特開2013-147659号公報等においてポリシロキサンの製造方法として詳細に開示されている。
2. 2. Method for Producing Sylsesquioxane Derivative The silsesquioxane derivative according to the present disclosure can be produced by a known method. The method for producing the silsesquioxane derivative is described in International Publication No. 2005/01007, International Publication No. 2009/066608, International Publication No. 2013/099909, Japanese Patent Application Laid-Open No. 2011-052170 and Japanese Patent Application Laid-Open No. 2013-1476559. It is disclosed in detail as a method for producing polysiloxane in Japanese Patent Publication No.
 本開示に係るシルセスキオキサン誘導体は、例えば、以下の方法で製造することができる。
 即ち、本開示に係るシルセスキオキサン誘導体の製造方法は、適当な反応溶媒中で、縮合により、上記式(1)中の構成単位を与える原料モノマーの加水分解・重縮合反応を行う縮合工程を備えることができる。この縮合工程においては、例えば、構成単位(a)(Q単位)を形成する、シロキサン結合生成基を4個有するケイ素化合物(以下、「Qモノマー」という。)と、構成単位(b)~(d)(T単位)を形成する、シロキサン結合生成基を3個有するケイ素化合物(以下、「Tモノマー」という。)と、構成単位(e)(D単位)を形成する、シロキサン結合生成基を2個有するケイ素化合物(以下、「Dモノマー」という。)と、シロキサン結合生成基を1個有する構成単位(f)(M単位)を形成する、ケイ素化合物(以下、「Mモノマー」という。)とを用いることができる。
The silsesquioxane derivative according to the present disclosure can be produced, for example, by the following method.
That is, the method for producing a silsesquioxane derivative according to the present disclosure is a condensation step in which a hydrolysis / polycondensation reaction of a raw material monomer giving a structural unit in the above formula (1) is carried out by condensation in an appropriate reaction solvent. Can be provided. In this condensation step, for example, a silicon compound having four siloxane bond-forming groups (hereinafter referred to as “Q monomer”) forming the structural unit (a) (Q unit) and the structural units (b) to ( d) A silicon compound having three siloxane bond-forming groups (hereinafter referred to as “T monomer”) that forms (T unit) and a siloxane bond-forming group that forms structural units (e) (D unit). A silicon compound (hereinafter referred to as "M monomer") that forms a structural unit (f) (M unit) having two silicon compounds (hereinafter referred to as "D monomer") and one siloxane bond-forming group. And can be used.
 本開示に係るシルセスキオキサン誘導体の製造方法は、原料モノマーを、反応溶媒の存在下に、加水分解・重縮合反応させた後に、反応液中の反応溶媒、副生物、残留モノマー及び水等を留去させる留去工程を備えることが好ましい。 In the method for producing a silsesquioxane derivative according to the present disclosure, a raw material monomer is hydrolyzed and polycondensed in the presence of a reaction solvent, and then the reaction solvent, by-products, residual monomers, water and the like in the reaction solution are used. It is preferable to provide a distilling step for distilling off.
2-1.原料モノマー
 原料モノマーであるQモノマー、Tモノマー、Dモノマー及びMモノマーに含まれるシロキサン結合生成基は、水酸基及び/又は加水分解性基である。このうち、加水分解性基としては、ハロゲノ基、アルコキシ基及びシロキシ基等が挙げられる。縮合工程において、加水分解性が良好であり、酸を副生しないことから、加水分解性基としては、アルコキシ基が好ましく、炭素原子数1~3のアルコキシ基がより好ましい。又、Mモノマーでは、原料の入手のし易さから、加水分解性基としてシロキシ基が好ましく、構成単位(f)2個からなるジシロキサンを用いることができる。
2-1. Raw Material Monomer The siloxane bond-forming group contained in the raw material Q monomer, T monomer, D monomer and M monomer is a hydroxyl group and / or a hydrolyzable group. Among these, examples of the hydrolyzable group include a halogeno group, an alkoxy group and a syroxy group. In the condensation step, the hydrolyzable group is preferably an alkoxy group, and more preferably an alkoxy group having 1 to 3 carbon atoms, because the hydrolyzable group is good and no acid is produced as a by-product. Further, in the M monomer, a siloxy group is preferable as the hydrolyzable group because of the availability of raw materials, and a disiloxane composed of two structural units (f) can be used.
 縮合工程において、各々の構成単位に対応するQモノマー、Tモノマー及びDモノマーのシロキサン結合生成基はアルコキシ基であることが好ましく、Mモノマーに含まれるシロキサン結合生成基はアルコキシ基又はシロキシ基であることが好ましい。又、各々の構成単位に対応するモノマーは、単独で用いてよいし、2種以上を組み合わせて用いることもできる。 In the condensation step, the siloxane bond-forming group of the Q monomer, T monomer and D monomer corresponding to each structural unit is preferably an alkoxy group, and the siloxane bond-forming group contained in the M monomer is an alkoxy group or a syroxy group. Is preferable. Further, the monomer corresponding to each structural unit may be used alone or in combination of two or more.
 構成単位(a)を与えるQモノマーとしては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン及びテトラブトキシシラン等が挙げられる。
 構成単位(b)を与えるTモノマーとしては、トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン及びトリクロロシラン等が挙げられる。
 構成単位(c)を与えるTモノマーとしては、トリメトキシビニルシラン、トリエトキシビニルシラン、トリクロロビニルシラン、アリルトリメトキシシラン、(p-スチリル)トリメトキシシラン、(p-スチリル)トリエトキシシラン、(3-メタクリロイルオキシプロピル)トリメトキシシラン、(3-メタクリロイルオキシプロピル)トリエトキシシラン、(3-アクリロイルオキシプロピル)トリメトキシシラン、(3-アクリロイルオキシプロピル)トリエトキシシラン、(8-メタクリロイルオキシオクチル)トリメトキシシラン及び(8-アクリロイルオキシオクチル)トリメトキシシラン等が挙げられる。
 構成単位(d)を与えるTモノマーとしては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、メチルトリクロロシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリエトキシシラン、ブチルトリメトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、フェニルトリメトキシシラン及びフェニルトリエトキシシラン等が挙げられる。
 構成単位(e)を与えるDモノマーとしては、ジメトキシジメチルシラン、ジメトキシジエチルシラン、ジエトキシジメチルシラン、ジエトキシジエチルシラン、ジプロポキシジメチルシラン、ジプロポキシジエチルシラン、ジメトキシメチルフェニルシラン、ジエトキシメチルフェニルシラン、ジメトキシジフェニルシラン、ジエトキシジフェニルシラン、ジメトキシベンジルメチルシラン、ジエトキシベンジルメチルシラン、ジクロロジメチルシラン、ジメトキシメチルシラン、ジメトキシフェニルシラン、ジメトキシメチルビニルシラン、ジエトキシメチルシラン、ジエトキシフェニルシラン及びジエトキシメチルビニルシラン等が挙げられる。
 構成単位(f)を与えるMモノマーとしては、加水分解により2つの構成単位(f)を与えるヘキサメチルジシロキサン、ヘキサエチルジシロキサン、ヘキサプロピルジシロキサン、1,1,3,3-テトラメチルジシロキサン、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンの他、メトキシジメチルシラン、エトキシジメチルシラン、メトキシジメチルビニルシラン、エトキシジメチルビニルシラン、メトキシトリメチルシラン、エトキシトリメチルシラン、メトキシジメチルフェニルシラン、エトキシジメチルフェニルシラン、クロロジメチルシラン、クロロジメチルビニルシラン、クロロトリメチルシラン、ジメチルシラノール、ジメチルビニルシラノール、トリメチルシラノール、トリエチルシラノール、トリプロピルシラノール及びトリブチルシラノール等が挙げられる。
 原料モノマーと反応して構成単位(g)を与える化合物としては、水及びメタノール、エタノール、1-プロパノール、2-プロパノール並びに2-ブタノール等のアルコールが挙げられる。
Examples of the Q monomer giving the structural unit (a) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane.
Examples of the T monomer giving the structural unit (b) include trimethoxysilane, triethoxysilane, tripropoxysilane, and trichlorosilane.
Examples of the T monomer giving the structural unit (c) include trimethoxyvinylsilane, triethoxyvinylsilane, trichlorovinylsilane, allyltrimethoxysilane, (p-styryl) trimethoxysilane, (p-styryl) triethoxysilane, and (3-methacryloyl). Oxypropyl) trimethoxysilane, (3-methacryloyloxypropyl) triethoxysilane, (3-acryloyloxypropyl) trimethoxysilane, (3-acryloyloxypropyl) triethoxysilane, (8-methacryloyloxyoctyl) trimethoxysilane And (8-acryloyloxyoctyl) trimethoxysilane and the like.
Examples of the T monomer giving the structural unit (d) include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltriisopropoxysilane, methyltrichlorosilane, ethyltrimethoxysilane, ethyltriethoxysilane, and propyltriethoxy. Examples thereof include silane, butyltrimethoxysilane, cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane, phenyltrimethoxysilane and phenyltriethoxysilane.
Examples of the D monomer giving the structural unit (e) include dimethoxydimethylsilane, dimethoxydiethylsilane, diethoxydimethylsilane, diethoxydiethylsilane, dipropoxydimethylsilane, dipropoxydiethylsilane, dimethoxymethylphenylsilane, and diethoxymethylphenylsilane. , Dimethoxydiphenylsilane, Diethoxydiphenylsilane, Dimethoxybenzylmethylsilane, Diethoxybenzylmethylsilane, Dichlorodimethylsilane, Dimethoxymethylsilane, Dimethoxyphenylsilane, Dimethoxymethylvinylsilane, Diethoxymethylsilane, Diethoxyphenylsilane and Diethoxymethyl Examples include vinylsilane.
As the M monomer giving the structural unit (f), hexamethyldisiloxane, hexaethyldisiloxane, hexapropyldisiloxane, 1,1,3,3-tetramethyldi, which give two structural units (f) by hydrolysis, are used. In addition to siloxane, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, methoxydimethylsilane, ethoxydimethylsilane, methoxydimethylvinylsilane, ethoxydimethylvinylsilane, methoxytrimethylsilane, ethoxytrimethylsilane, methoxydimethylphenyl Examples thereof include silane, ethoxydimethylphenylsilane, chlorodimethylsilane, chlorodimethylvinylsilane, chlorotrimethylsilane, dimethylsilanol, dimethylvinylsilanol, trimethylsilanol, triethylsilanol, tripropylsilanol and tributylsilanol.
Examples of the compound that reacts with the raw material monomer to give a structural unit (g) include water and alcohols such as methanol, ethanol, 1-propanol, 2-propanol and 2-butanol.
 原料モノマーであるQモノマー、Tモノマー、Dモノマー及びMモノマーの仕込み割合は、本シルセスキオキサン誘導体における目的とする式(1)のu~zの値に応じて適宜設定すれば良い。 The charging ratio of the Q monomer, T monomer, D monomer and M monomer which are the raw material monomers may be appropriately set according to the values of u to z of the target formula (1) in the present silsesquioxane derivative.
2-2.反応溶媒
 縮合工程においては、反応溶媒としてアルコールを用いることができる。本開示に係るアルコールは、一般式R-OHで表される、狭義のアルコールであり、アルコール性水酸基の他には官能基を有さない化合物である。
 アルコールとしては特に限定するものではないが、かかる具体例としては、メタノール、エタノール、1-プロパノール、2-プロパノール、2-ブタノール、2-ペンタノール、3-ペンタノール、2-メチル-2-ブタノール、3-メチル-2-ブタノール、シクロペンタノール、2-ヘキサノール、3-ヘキサノール、2-メチル-2-ペンタノール、3-メチル-2-ペンタノール、2-メチル-3-ペンタノール、3-メチル-3-ペンタノール、2-エチル-2-ブタノール、2,3-ジメチル-2-ブタノール及びシクロヘキサノール等が例示できる。これらの中でも、2-プロパノール、2-ブタノール、2-ペンタノール、3-ペンタノール、3-メチル-2-ブタノール、シクロペンタノール、2-ヘキサノール、3-ヘキサノール、3-メチル-2-ペンタノール及びシクロヘキサノール等の第2級アルコールが好ましく用いられる。
 縮合工程においては、これらのアルコールを1種又は2種以上組み合わせて用いることができる。より好ましいアルコールは、縮合工程で必要な濃度の水を溶解できる化合物である。このような性質のアルコールは、20℃におけるアルコールの100gに対する水の溶解度が10g以上の化合物である。
2-2. In the reaction solvent condensation step, alcohol can be used as the reaction solvent. The alcohol according to the present disclosure is an alcohol in a narrow sense represented by the general formula R-OH, and is a compound having no functional group other than an alcoholic hydroxyl group.
The alcohol is not particularly limited, but specific examples thereof include methanol, ethanol, 1-propanol, 2-propanol, 2-butanol, 2-pentanol, 3-pentanol, and 2-methyl-2-butanol. , 3-Methyl-2-butanol, cyclopentanol, 2-hexanol, 3-hexanol, 2-methyl-2-pentanol, 3-methyl-2-pentanol, 2-methyl-3-pentanol, 3- Examples thereof include methyl-3-pentanol, 2-ethyl-2-butanol, 2,3-dimethyl-2-butanol, cyclohexanol and the like. Among these, 2-propanol, 2-butanol, 2-pentanol, 3-pentanol, 3-methyl-2-butanol, cyclopentanol, 2-hexanol, 3-hexanol, 3-methyl-2-pentanol And secondary alcohols such as cyclohexanol are preferably used.
In the condensation step, these alcohols can be used alone or in combination of two or more. A more preferred alcohol is a compound capable of dissolving water at the concentration required in the condensation step. An alcohol having such properties is a compound having a water solubility of 10 g or more in 100 g of alcohol at 20 ° C.
 縮合工程で用いるアルコールは、加水分解・重縮合反応の途中における追加投入分も含めて、全ての反応溶媒の合計量に対して0.5質量%以上用いることで、生成する本シルセスキオキサン誘導体のゲル化を抑制することができる。好ましい使用量は1質量%以上60質量%以下であり、更に好ましくは3質量%以上40質量%以下である。 The alcohol used in the condensation step is 0.5% by mass or more based on the total amount of all reaction solvents, including the additional charge during the hydrolysis / polycondensation reaction. It is possible to suppress the gelation of the derivative. The amount used is preferably 1% by mass or more and 60% by mass or less, and more preferably 3% by mass or more and 40% by mass or less.
 縮合工程で用いる反応溶媒は、アルコールのみであってよいし、更に、少なくとも1種類の副溶媒との混合溶媒としても良い。副溶媒は、極性溶剤及び非極性溶剤のいずれでもよいし、両者の組み合わせでもよい。極性溶剤として好ましいものは炭素原子数3もしくは7~10の第2級又は第3級アルコール及び炭素原子数2~20のジオール等である。 The reaction solvent used in the condensation step may be only alcohol, or may be a mixed solvent with at least one kind of auxiliary solvent. The auxiliary solvent may be either a polar solvent or a non-polar solvent, or may be a combination of both. Preferred polar solvents are secondary or tertiary alcohols having 3 or 7 to 10 carbon atoms and diols having 2 to 20 carbon atoms.
 非極性溶剤としては、特に限定するものではないが、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、塩素化炭化水素、エーテル、アミド、ケトン、エステル及びセロソルブ等が挙げられる。これらの中では、脂肪族炭化水素、脂環式炭化水素及び芳香族炭化水素が好ましい。こうした非極性溶媒としては、特に限定するものではないが、例えば、n-ヘキサン、イソヘキサン、シクロヘキサン、ヘプタン、トルエン、キシレン及び塩化メチレン等が、水と共沸するので好ましく、これらの化合物を併用すると、縮合工程後、シルセスキオキサン誘導体を含む反応混合物から、蒸留によって反応溶媒を除く際に、水分を効率よく留去することができる。非極性溶剤としては、比較的沸点が高いことから、芳香族炭化水素であるキシレンが特に好ましい。 The non-polar solvent is not particularly limited, and examples thereof include aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, chlorinated hydrocarbons, ethers, amides, ketones, esters, and cellosolves. Among these, aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons are preferable. The non-polar solvent is not particularly limited, but for example, n-hexane, isohexane, cyclohexane, heptane, toluene, xylene, methylene chloride and the like are preferable because they azeotrope with water, and these compounds are used in combination. After the condensation step, water can be efficiently distilled off from the reaction mixture containing the silsesquioxane derivative when the reaction solvent is removed by distillation. As the non-polar solvent, xylene, which is an aromatic hydrocarbon, is particularly preferable because it has a relatively high boiling point.
2-3.加水分解反応に供する水及び触媒
 縮合工程における加水分解・重縮合反応は、水の存在下に進められる。
 原料モノマーに含まれる加水分解性基を加水分解させるために用いられる水の量は、加水分解性基の物質量(モル)に対して好ましくは0.5~5倍モル、より好ましくは1~2倍モルである。
 又、原料モノマーの加水分解・重縮合反応は、無触媒で行ってもよいし、触媒を使用して行ってもよい。触媒を用いる場合は、硫酸、硝酸、塩酸及びリン酸等の無機酸;ギ酸、酢酸、シュウ酸及びパラトルエンスルホン酸等の有機酸に例示される酸触媒が好ましく用いられる。
 酸触媒の使用量は、原料モノマーに含まれるケイ素原子の合計量(モル)に対して、0.01~20モル%に相当する量であることが好ましく、0.1~10モル%に相当する量であることがより好ましい。
2-3. The water to be subjected to the hydrolysis reaction and the hydrolysis / polycondensation reaction in the catalytic condensation step proceed in the presence of water.
The amount of water used to hydrolyze the hydrolyzable group contained in the raw material monomer is preferably 0.5 to 5 times mol, more preferably 1 to 1 to the amount of substance (molar) of the hydrolyzable group. It is twice the mole.
Further, the hydrolysis / polycondensation reaction of the raw material monomer may be carried out without a catalyst or may be carried out using a catalyst. When a catalyst is used, an acid catalyst exemplified by an inorganic acid such as sulfuric acid, nitric acid, hydrochloric acid and phosphoric acid; and an organic acid such as formic acid, acetic acid, oxalic acid and paratoluenesulfonic acid is preferably used.
The amount of the acid catalyst used is preferably an amount corresponding to 0.01 to 20 mol%, and corresponds to 0.1 to 10 mol%, based on the total amount (mol) of silicon atoms contained in the raw material monomer. It is more preferable that the amount is to be used.
2-4.その他の添加剤
 縮合工程における加水分解・重縮合反応の終了は、各種公報等に記載される方法で適宜検出することができる。尚、本開示に係るシルセスキオキサン誘導体の製造の縮合工程においては、反応系に助剤を添加することができる。
 例えば、反応液の泡立ちを抑える消泡剤、反応罐や撹拌軸へのスケール付着を防ぐスケールコントロール剤、重合防止剤及びヒドロシリル化反応抑制剤等が挙げられる。これらの助剤の使用量は、任意であるが、好ましくは反応混合物中の本開示に係るシルセスキオキサン誘導体濃度に対して1~100重量%程度である。
2-4. The end of the hydrolysis / polycondensation reaction in the other additive condensation steps can be appropriately detected by the methods described in various publications and the like. In the condensation step of the production of the silsesquioxane derivative according to the present disclosure, an auxiliary agent can be added to the reaction system.
Examples thereof include a defoaming agent that suppresses foaming of the reaction solution, a scale control agent that prevents scale from adhering to the reaction tank and the stirring shaft, a polymerization inhibitor, a hydrosilylation reaction inhibitor, and the like. The amount of these auxiliaries used is arbitrary, but is preferably about 1 to 100% by weight based on the concentration of the silsesquioxane derivative according to the present disclosure in the reaction mixture.
2-5.反応溶媒等の留去
 本開示に係るシルセスキオキサン誘導体の製造における縮合工程後、縮合工程より得られた反応液に含まれる反応溶媒及び副生物、残留モノマー、水及び触媒等を留去させる留去工程を備えることにより、生成した本開示に係るシルセスキオキサン誘導体の安定性を向上させることができる。留去は、常圧又は減圧下で行うことができ、常温下又は加熱下で行うことができ、冷却下で行うこともできる。
2-5. Distillation of reaction solvent, etc. After the condensation step in the production of the silsesquioxane derivative according to the present disclosure, the reaction solvent and by-products, residual monomers, water, catalyst and the like contained in the reaction solution obtained by the condensation step are distilled off. By providing the distillation step, the stability of the produced silsesquioxane derivative according to the present disclosure can be improved. Distillation can be carried out under normal pressure or reduced pressure, at room temperature or under heating, and can also be carried out under cooling.
3.ヒドロシリル化触媒
 本開示の光硬化性組成物は、遷移金属を含むヒドロシリル化触媒含む。これにより、シルセスキオキサン誘導体を光硬化させることができる。
 ヒドロシリル化触媒に含まれる遷移金属は、特に制限はないが、例えば、鉄、コバルト、ニッケル、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金等の第8族から第10族金属の単体、金属錯体、金属塩及び金属酸化物等が挙げられる。
 ヒドロシリル化触媒としては、これらの中でもルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金からなる白金族金属の1種以上を含むものが好ましく、反応性及び入手し易さの観点から、白金を含む触媒がより好ましく、更に好ましくは白金錯体である。
 白金錯体としては、β-ジケトナト白金錯体類、(η-シクロペンタジエニル)トリアルキル白金錯体類、(η-1,5-シクロオクタジエン)ジアリール白金錯体類及びジアルキルアゾジカルボキシラート白金錯体類からなる群から選択される少なくとも1種であることが好ましい。白金錯体としては、特に好ましくは、下記式(2)で表されるβ-ジケトナト白金錯体類、下記式(3)で表される(η-シクロペンタジエニル)トリアルキル白金錯体類、下記式(4)で表される(η-1,5-シクロオクタジエン)ジアリール白金錯体類、及び下記式(5)で表されるジアルキルアゾジカルボキシラートを配位子として含む、ジアルキルアゾジカルボキシラート白金錯体類である。
3. 3. Hydrosilylation Catalyst The photocurable compositions of the present disclosure include a hydrosilylation catalyst containing a transition metal. As a result, the silsesquioxane derivative can be photocured.
The transition metal contained in the hydrosilylation catalyst is not particularly limited, and is, for example, a simple substance of a group 8 to 10 metal such as iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum, or a metal complex. , Metal salts, metal oxides and the like.
The hydrosilylation catalyst preferably contains one or more platinum group metals composed of ruthenium, rhodium, palladium, osmium, iridium and platinum, and is a catalyst containing platinum from the viewpoint of reactivity and availability. Is more preferable, and more preferably a platinum complex.
The platinum complex, beta-diketonate platinum complexes, (.eta. cyclopentadienyl) trialkyl platinum complexes, (η 4 -1,5- cyclooctadiene) diaryl platinum complexes and a dialkyl azodicarboxylate platinum complex It is preferably at least one selected from the group consisting of classes. The platinum complexes are particularly preferably β-diketonato platinum complexes represented by the following formula (2), (η-cyclopentadienyl) trialkyl platinum complexes represented by the following formula (3), and the following formula. comprising represented by (eta 4-1,5-cyclooctadiene) diaryl platinum complexes with (4), and dialkyl azodicarboxylate represented by the following formula (5) as a ligand, the dialkyl azodicarboxylate Lat platinum complexes.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
〔式(2)中、R及びRはそれぞれ独立に、水素原子、アルキル基及びアリール基からなる群から選択される少なくとも1種であり、互いに同一でも異なっても良く、R、R、R10及びR11はそれぞれ独立に、アルキル基、アリール基及びアルコキシ基からなる群から選択される少なくとも1種であり、互いに同一でも異なっても良い。〕 [In the formula (2), R 6 and R 7 are each independently selected from the group consisting of a hydrogen atom, an alkyl group and an aryl group, and may be the same or different from each other, and are R 8 and R. 9 , R 10 and R 11 are each independently selected from the group consisting of an alkyl group, an aryl group and an alkoxy group, and may be the same or different from each other. ]
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式(3)中、Cpは白金原子にη-結合したシクロペンタジエニル基であり、置換基で置換されていてもいなくてもよく、R12、R13及びR14はそれぞれ独立に、白金原子にσ-結合した炭素原子数1~18の脂肪族基を表し、互いに同一でも異なっても良い。〕 (In formula (3), Cp is a cyclopentadienyl group η-bonded to a platinum atom and may or may not be substituted with a substituent, and R 12 , R 13 and R 14 are independent of each other. It represents an aliphatic group having 1 to 18 carbon atoms bonded to a platinum atom by σ-, and may be the same or different from each other.]
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
〔式(4)中、R15は白金原子にπ-結合した直鎖、分岐又は環状のアルカジエン基であり、それぞれ置換基があってもなくても良く、R17及びR18はそれぞれ独立に白金原子にσ-結合したアリール基であり、置換基があってもなくてもよく、互いに同一でも異なっても良く、R16及びR19はそれぞれ独立に、水素原子、アルキル基、アルコキシ基及びハロゲン原子からなる群から選択される少なくとも1種であり、互いに同一でも異なっても良く、アリール基のいずれの位置で置換していても良く、それぞれ複数の置換基で置換されていても良い。〕 [In formula (4), R 15 is a linear, branched or cyclic alkadiene group π-bonded to a platinum atom, and may or may not have a substituent, respectively, and R 17 and R 18 are independent of each other. It is an aryl group σ-bonded to a platinum atom and may or may not have a substituent, and may be the same or different from each other. R 16 and R 19 are independently hydrogen atoms, alkyl groups, alkoxy groups and It is at least one selected from the group consisting of halogen atoms, and may be the same or different from each other, may be substituted at any position of the aryl group, and may be substituted with a plurality of substituents, respectively. ]
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
〔式(5)中、複数存在するR20はそれぞれ独立に炭素原子数1~6の炭化水素基を表し、互いに同一でも異なっても良い。〕
 尚、式(5)においては、配位子のみを記載し、白金原子の記載を省略している。
[In the formula (5), each of the plurality of R 20s independently represents a hydrocarbon group having 1 to 6 carbon atoms, and may be the same or different from each other. ]
In the formula (5), only the ligand is described, and the description of the platinum atom is omitted.
 前記式(2)で表されるβ-ジケトナト白金錯体類の具体例としては、ビス(アセチルアセトナト)白金(II)等が挙げられる。
 前記式(3)で表される、(η-シクロペンタジエニル)トリアルキル白金錯体類の具体例としては、トリメチル(メチルシクロペンタジエニル)白金(IV)及び(シクロペンタジエニル)トリメチル白金(IV)等が挙げられる。
 前記式(4)で表される(η-1,5-シクロオクタジエン)ジアリール白金錯体類の具体例としては、(η-1,5-シクロオクタジエン)ビス(4-メトキシフェニル)白金(II)等が挙げられる。
 前記式(5)で表されるジアルキルアゾジカルボキシラートを配位子として含む白金錯体類の具体例としては、ジエチルアゾジカルボキシラート白金(II)等が挙げられる。
 これら化合物の中でも、より好ましくは、ビス(アセチルアセトナト)白金(II)及びトリメチル(メチルシクロペンタジエニル)白金(IV)である。
Specific examples of the β-diketonato platinum complexes represented by the formula (2) include bis (acetylacetonato) platinum (II).
Specific examples of the (η-cyclopentadienyl) trialkyl platinum complexes represented by the above formula (3) include trimethyl (methylcyclopentadienyl) platinum (IV) and (cyclopentadienyl) trimethyl platinum. (IV) and the like.
Represented by the formula (4) Specific examples of (eta 4-1,5-cyclooctadiene) diaryl platinum complexes, (eta 4-1,5-cyclooctadiene) bis (4-methoxyphenyl) Platinum (II) and the like can be mentioned.
Specific examples of the platinum complexes containing the dialkylazodicarboxylate represented by the formula (5) as a ligand include diethylazodicarboxylate platinum (II).
Among these compounds, bis (acetylacetonato) platinum (II) and trimethyl (methylcyclopentadienyl) platinum (IV) are more preferable.
 遷移金属の含有割合は、特に制限はないが、本開示に係るシルセスキオキサン誘導体の合計量100重量部に対して、0.1~30,000重量ppmであることが好ましく、1.0~10,000重量ppmであることがより好ましく、10~2,000重量ppmであることが更に好ましい。 The content ratio of the transition metal is not particularly limited, but is preferably 0.1 to 30,000 ppm by weight, preferably 1.0 to 100 parts by weight, based on 100 parts by weight of the total amount of the silsesquioxane derivatives according to the present disclosure. It is more preferably ~ 10,000 ppm by weight, and even more preferably 10 to 2,000 ppm by weight.
4.光硬化性組成物
 本開示の光硬化性組成物(以下、「本開示の組成物」ともいう。)は、本開示に係るシルセスキオキサン誘導体及びヒドロシリル化触媒を含んでいる。
 本開示の組成物は、流動性に優れるとともに、後述するように硬化物の耐熱性及び絶縁性に優れるため、耐熱性が求められる絶縁要素のための良好な絶縁材料となる。又、本開示の組成物は、それ自体は、良好な硬化性及び接着性を発揮できるため、接着剤組成物やバインダー組成物として用いることができる。
 本開示の組成物は、前記シルセスキオキサン誘導体及びヒドロシリル化触媒を含むものであるが、必要に応じて種々の成分(以下、「その他の成分」という。)を含むことができる。
 その他の成分としては、耐熱性向上剤、ヒドロシリル化反応抑制剤、及び溶剤等が好ましい。
 以下、その他の成分について説明する。
4. Photocurable Composition The photocurable composition of the present disclosure (hereinafter, also referred to as “the composition of the present disclosure”) contains a silsesquioxane derivative and a hydrosilylation catalyst according to the present disclosure.
The composition of the present disclosure has excellent fluidity and, as will be described later, excellent heat resistance and insulating properties of the cured product, and thus is a good insulating material for insulating elements that require heat resistance. In addition, the composition of the present disclosure can be used as an adhesive composition or a binder composition because it can exhibit good curability and adhesiveness by itself.
The composition of the present disclosure contains the silsesquioxane derivative and a hydrosilylation catalyst, but may contain various components (hereinafter, referred to as "other components"), if necessary.
As other components, a heat resistance improver, a hydrosilylation reaction inhibitor, a solvent and the like are preferable.
Hereinafter, other components will be described.
4-1.耐熱性向上剤
 本開示の組成物は、耐熱性向上剤を含むことができる。
 耐熱性向上剤としては、特に制限はなく、公知のものが使用できるが、例えば、トリス(2-エチルヘキサン酸)鉄(III)等の2-エチルヘキサン酸鉄、トリス(2-エチルヘキサン酸)セリウム(III)等の2-エチルヘキサン酸セリウム、並びにテトラ(2-エチルヘキサン酸)ジルコニウム(IV)及びビス(2-エチルヘキサン酸)酸化ジルコニウム(IV)等の2-エチルヘキサン酸ジルコニウム、等の有機カルボン酸金属塩、及び、酸化鉄、酸化セリウム並びに酸化ジルコニウム等の金属酸化物等が挙げられる。 
 耐熱性向上剤の使用割合に特に制限はないが、本開示に係るシルセスキオキサン誘導体の合計量100重量部に対して、例えば0~10,000重量ppmであり、好ましくは1~1,000重量ppmであり、より好ましくは5~500重量ppmであり、更により好ましくは10~300重量ppmである。
 耐熱性向上剤を添加することにより、熱重量減少温度の向上又は低下抑制、加熱下及び常温での使用並びに保管下での、比誘電率の低下抑制、絶縁性の低下抑制、クラックの発生抑制、及び着色抑制等を行うことができる。
4-1. Heat resistance improver The composition of the present disclosure may contain a heat resistance improver.
The heat resistance improving agent is not particularly limited, and known ones can be used. For example, iron 2-ethylhexanoate such as iron (III) tris (2-ethylhexanoic acid) and tris (2-ethylhexanoic acid) can be used. ) Cerium 2-ethylhexanoate such as cerium (III), and zirconium 2-ethylhexanate such as tetra (2-ethylhexanoic acid) zirconium (IV) and bis (2-ethylhexanoic acid) zirconium oxide (IV). Examples thereof include organic carboxylic acid metal salts such as, and metal oxides such as iron oxide, cerium oxide and zirconium oxide.
The proportion of the heat resistance improving agent used is not particularly limited, but is, for example, 0 to 10,000 wt ppm, preferably 1 to 1, with respect to 100 parts by weight of the total amount of the silsesquioxane derivative according to the present disclosure. It is 000 ppm by weight, more preferably 5 to 500 ppm by weight, and even more preferably 10 to 300 ppm by weight.
By adding a heat resistance improving agent, the temperature for reducing the heat weight is improved or suppressed, the relative dielectric constant is suppressed from being lowered, the insulating property is suppressed from being lowered, and the generation of cracks is suppressed during use and storage under heating and at room temperature. , And color suppression and the like can be performed.
4-2.ヒドロシリル化反応抑制剤
 本開示の組成物は、ヒドロシリル化反応抑制剤を含むことができる。
 そうすることで、本開示の組成物の保存安定性を向上させることができる。ヒドロシリル化反応抑制剤に特に制限はなく、ヒドロシリル化触媒金属に配位することができる化合物が挙げられ、例えば、メチルビニルテトラシロキサン等のビニルシロキサン類、2-メチル-3-ブチン-2-オール等のアセチレンアルコール類、シロキサン変性アセチレンアルコール類、ハイパーオキサイド類、及び窒素原子、イオウ原子又はリン原子を含有する公知のヒドロシリル化反応抑制剤が挙げられる。これらの中でも、反応抑制効果が適切で、且つ、揮発性が低く、臭気や着色等が抑制される点で、特開2010-143973号公報に開示された、炭素-炭素三重結合を有する基がケイ素原子に結合した構造を持つシロキサン化合物が好ましい。
 ヒドロシリル化反応抑制剤の使用割合に特に制限はないが、本開示に係るシルセスキオキサン誘導体の合計量100重量部に対して、例えば0~5.0重量%であり、好ましくは0~2.0重量%であり、より好ましくは0~1.0重量%である。
4-2. Hydrosilylation Reaction Inhibitor The composition of the present disclosure can include a hydrosilylation reaction inhibitor.
By doing so, the storage stability of the composition of the present disclosure can be improved. The hydrosilylation reaction inhibitor is not particularly limited, and examples thereof include compounds that can coordinate with the hydrosilylation catalytic metal, such as vinylsiloxanes such as methylvinyltetrasiloxane and 2-methyl-3-butin-2-ol. Examples thereof include acetylene alcohols such as acetylene alcohols, siloxane-modified acetylene alcohols, hyperoxides, and known hydrosilylation reaction inhibitors containing a nitrogen atom, a sulfur atom or a phosphorus atom. Among these, the group having a carbon-carbon triple bond disclosed in Japanese Patent Application Laid-Open No. 2010-143973 is a group having a carbon-carbon triple bond, which has an appropriate reaction suppressing effect, low volatility, and suppresses odor and coloring. A siloxane compound having a structure bonded to a silicon atom is preferable.
The ratio of the hydrosilylation reaction inhibitor to be used is not particularly limited, but is, for example, 0 to 5.0% by weight, preferably 0 to 2% based on 100 parts by weight of the total amount of the silsesquioxane derivatives according to the present disclosure. It is 0.0% by weight, more preferably 0 to 1.0% by weight.
4-3.溶媒
 本開示の組成物は、液状物質であれば、基材表面にそのまま塗布することができるが、必要に応じて溶剤で希釈して使用することもできる。溶剤を使用する場合、本開示に係るシルセスキオキサン誘導体を溶解する溶剤が好ましく、例えば、脂肪族系炭化水素溶剤、芳香族系炭化水素溶剤、塩素化炭化水素溶剤、アルコール溶剤、エーテル溶剤、アミド溶剤、ケトン溶剤、エステル溶剤及びセロソルブ溶剤等の各種有機溶剤を挙げることができる。
 溶剤が使用された場合は、本開示の組成物の硬化に先立って、塗布された膜に含まれる溶剤を揮発させることが好ましい。溶剤の揮発は大気中でなされてもよく、窒素等の不活性ガス雰囲気中でなされてもよい。溶剤の揮発のため加熱してもよいが、その場合の加熱温度は、100℃未満が好ましい。
4-3. Solvent The composition of the present disclosure can be applied as it is to the surface of a substrate as long as it is a liquid substance, but it can also be diluted with a solvent and used if necessary. When a solvent is used, a solvent that dissolves the silsesquioxane derivative according to the present disclosure is preferable, and for example, an aliphatic hydrocarbon solvent, an aromatic hydrocarbon solvent, a chlorinated hydrocarbon solvent, an alcohol solvent, an ether solvent, etc. Various organic solvents such as amide solvent, ketone solvent, ester solvent and cellosolve solvent can be mentioned.
When a solvent is used, it is preferable to volatilize the solvent contained in the applied film prior to curing the composition of the present disclosure. The solvent may be volatilized in the atmosphere or in an atmosphere of an inert gas such as nitrogen. It may be heated because of the volatilization of the solvent, but the heating temperature in that case is preferably less than 100 ° C.
4-4.前記以外のその他の成分
 本開示の組成物は、その他の成分として、前記した成分以外の成分も必要に応じて含むことができる。
 具体的には、界面活性剤類、帯電防止剤類(例えば導電性ポリマー類)、レベリング剤類、光増感剤類、紫外線吸収剤類、酸化防止剤類、安定剤類、潤滑剤類、顔料類、染料類、可塑剤類、懸濁剤類、ナノ粒子、ナノファイバー、ナノシート及びフィラー等の任意の他の補助剤を含有することができる。又、テトラアルコキシシラン類、トリアルコキシシラン類、ジアルコキシシラン類、モノアルコキシシラン類及びジシロキサン類等のシラン系反応性希釈剤等を含有することもできる。
 更に、ラジカル硬化性化合物及びカチオン硬化性化合物等の、他の光硬化性化合物を含有することもでき、そのための光重合開始剤を含有することもできる。
4-4. Other Ingredients Other Ingredients The compositions of the present disclosure may also contain components other than the above-mentioned components as other components, if necessary.
Specifically, surfactants, antistatic agents (for example, conductive polymers), leveling agents, photosensitizers, ultraviolet absorbers, antioxidants, stabilizers, lubricants, etc. It can contain any other auxiliary agents such as pigments, dyes, plastics, suspending agents, nanoparticles, nanofibers, nanosheets and fillers. Further, it can also contain a silane-based reactive diluent such as tetraalkoxysilanes, trialkoxysilanes, dialkoxysilanes, monoalkoxysilanes and disiloxanes.
Further, other photocurable compounds such as radical curable compounds and cationic curable compounds can be contained, and a photopolymerization initiator for that purpose can also be contained.
5.硬化物
 本開示の硬化物は、上述の本開示の組成物を、硬化させて得られる硬化物である。
5. Cured product The cured product of the present disclosure is a cured product obtained by curing the above-mentioned composition of the present disclosure.
5-1,硬化物物性
 本開示の硬化物は、耐熱性に優れる。耐熱性の指標に特に制限はないが、例えば、熱重量減少温度、比誘電率、絶縁性、着色、接着性、粘着性、光透過性及びクラック発生等が挙げられる。
5-1. Physical characteristics of the cured product The cured product of the present disclosure has excellent heat resistance. The index of heat resistance is not particularly limited, and examples thereof include thermal weight reduction temperature, relative permittivity, insulating property, coloring, adhesiveness, adhesiveness, light transmittance, and crack generation.
5-1-1.熱重量減少温度
 本開示の硬化物は耐熱性に優れ、熱重量減少温度が高い。熱重量減少温度は、熱重量示差熱分析(以下、TG/DTAと称する。)により求めることができる。測定雰囲気に特に制限はなく、大気中又は窒素等の不活性ガス雰囲気下等で測定することができる。本開示の硬化物が使用される環境を考慮して測定雰囲気は適宜選択されるが、大気中で測定することが好ましい。測定時の昇温速度に特に制限はなく、例えば、5、10又は20℃/min等とすることができる。短時間で測定できることを考慮すると、20℃/minが好ましい。重量減少温度の指標に特に制限はなく、例えば、重量減少開始温度及び1、5又は10%重量減少温度等の、元の重量の一定割合が減少した時点の温度等とすることができる。又、例えば、400℃における重量減少率のように、ある温度での重量減少率として表すこともできる。
5-1-1. Thermogravimetric reduction temperature The cured product of the present disclosure has excellent heat resistance and a high thermogravimetric reduction temperature. The thermal weight reduction temperature can be determined by thermogravimetric differential thermal analysis (hereinafter referred to as TG / DTA). The measurement atmosphere is not particularly limited, and the measurement can be performed in the atmosphere or in an atmosphere of an inert gas such as nitrogen. The measurement atmosphere is appropriately selected in consideration of the environment in which the cured product of the present disclosure is used, but it is preferable to measure in the atmosphere. The rate of temperature rise at the time of measurement is not particularly limited and may be, for example, 5, 10 or 20 ° C./min. Considering that the measurement can be performed in a short time, 20 ° C./min is preferable. The index of the weight loss temperature is not particularly limited, and may be, for example, the temperature at the time when a certain percentage of the original weight is reduced, such as the weight loss start temperature and the 1, 5 or 10% weight loss temperature. It can also be expressed as a weight loss rate at a certain temperature, for example, a weight loss rate at 400 ° C.
 本開示の硬化物の大気中、20℃/minで測定した5%重量減少温度は、例えば300℃以上であり、好ましくは370℃以上であり、更に好ましくは400℃以上であり、特に好ましくは500℃以上である。 The 5% weight loss temperature of the cured product of the present disclosure measured at 20 ° C./min is, for example, 300 ° C. or higher, preferably 370 ° C. or higher, more preferably 400 ° C. or higher, and particularly preferably. It is 500 ° C. or higher.
5-1-2.比誘電率
 本開示の硬化物は、比誘電率が低く、広い周波数帯域で絶縁性に優れる。本開示の硬化物の比誘電率に特に制限はないが、例えば、4.0以下であり、好ましくは3.6以下であり、更に好ましくは3.5以下である。比誘電率を使用する周波数帯域に特に制限はなく、例えば、1kHz~100GHzであり、好ましくは、1kHz~1GHzであり、更に好ましくは1kHz~10MHzである。例えば、本開示の硬化物は、1MHzにおける比誘電率が4.0以下である。
 比誘電率の値を硬化物間で比較する場合に、その測定周波数に特に制限はないが、例えば、1kHz,10kHz,100kHz,1MHz、10MHz及び1GHz等における比誘電率を測定して、硬化物の絶縁性を比較することができる。又、ある範囲の周波数帯に亘って比誘電率がある一定の値以下となることを示すことにより、その絶縁性を評価することもできる。周波数帯に特に制限はないが、例えば、1kHz~10MHzにおける比誘電率を示すことができる。
 尚、本開示における比誘電率とは、室温(23℃±2℃)で測定した値を意味する。
5-1-2. Relative Permittivity The cured product of the present disclosure has a low relative permittivity and is excellent in insulation in a wide frequency band. The relative permittivity of the cured product of the present disclosure is not particularly limited, but is, for example, 4.0 or less, preferably 3.6 or less, and more preferably 3.5 or less. The frequency band in which the relative permittivity is used is not particularly limited, and is, for example, 1 kHz to 100 GHz, preferably 1 kHz to 1 GHz, and more preferably 1 kHz to 10 MHz. For example, the cured product of the present disclosure has a relative permittivity of 4.0 or less at 1 MHz.
When the value of the relative permittivity is compared between the cured products, the measurement frequency is not particularly limited, but for example, the relative permittivity at 1 kHz, 10 kHz, 100 kHz, 1 MHz, 10 MHz, 1 GHz, etc. is measured and the cured product is used. Insulation properties can be compared. Further, the insulating property can be evaluated by showing that the relative permittivity is equal to or less than a certain value over a certain frequency band. The frequency band is not particularly limited, but for example, the relative permittivity in 1 kHz to 10 MHz can be shown.
The relative permittivity in the present disclosure means a value measured at room temperature (23 ° C. ± 2 ° C.).
 本開示の硬化物は、上述の通り、比誘電率が低く、広い周波数帯域で絶縁性に優れる。従って、本開示の硬化物は、絶縁膜であり得る。
 本開示の硬化物(絶縁膜)は本開示の組成物を硬化させて得られるものであり、硬化手段に特に制限はないが、例えば、紫外線を照射して硬化させてもよい。硬化手段の詳細については、後述の「硬化物の製造方法」にて説明する。
As described above, the cured product of the present disclosure has a low relative permittivity and is excellent in insulating properties in a wide frequency band. Therefore, the cured product of the present disclosure can be an insulating film.
The cured product (insulating film) of the present disclosure is obtained by curing the composition of the present disclosure, and the curing means is not particularly limited, but for example, it may be cured by irradiating with ultraviolet rays. The details of the curing means will be described in "Method for producing a cured product" described later.
6.硬化物の製造方法
 本開示の硬化物(絶縁膜)の製造方法は、本開示の組成物に紫外線を照射して硬化させる工程を含む。得られる硬化物(絶縁膜)は、上述の本開示の硬化物(絶縁膜)であってもよい。
 本開示の組成物を硬化する場合には、例えば本開示の組成物を適切な基材に塗布するなどした後、紫外線等の光等を照射してヒドロシリル化反応を進行させて硬化する。
 本開示の組成物は溶剤を含んでも、含まなくても良く、溶剤を含む場合には、前述のとおり、溶剤を除去してから光硬化等に供することが好ましい。
6. Method for Producing Cured Product The method for producing a cured product (insulating film) of the present disclosure includes a step of irradiating the composition of the present disclosure with ultraviolet rays to cure it. The obtained cured product (insulating film) may be the cured product (insulating film) of the present disclosure described above.
When the composition of the present disclosure is cured, for example, the composition of the present disclosure is applied to an appropriate substrate and then irradiated with light such as ultraviolet rays to promote the hydrosilylation reaction and cure.
The composition of the present disclosure may or may not contain a solvent, and when it contains a solvent, it is preferable to remove the solvent and then subject it to photocuring or the like as described above.
6-1.塗布方法
 本開示の組成物を基材に塗布して用いる場合には、塗布方法に特に制限はなく、例えば、キャスト法、スピンコート法、バーコート法、ディップコート法、スプレーコート法、ロールコート法、フローコート法及びグラビアコート法等の通常の塗工方法を用いることができる。
 本開示の組成物を塗布する厚さに特に制限はなく、目的に応じて適切に設定される。
 本開示の組成物が適用できる基材としては、特に制限はなく、種々の材料に適用でき、木材、金属、無機材料、プラスチック、紙、繊維及び布帛等が挙げられる。
 金属としては、銅、銀、鉄、アルミニウム、シリコン、ケイ素鋼及びステンレス等が挙げられる。無機材料としては、酸化アルミニウム、酸化ケイ素、酸化マグネシウム、酸化ジルコニウム、酸化亜鉛、酸化インジウムスズ、酸化ガリウム等の金属酸化物、窒化アルミニウム、窒化ガリウム、窒化ケイ素等の金属窒化物、炭化ケイ素及び窒化ホウ素等のセラミックス、モルタル、コンクリート及びガラス等が挙げられる。プラスチックの具体例としては、ポリメチルメタクリレート等のアクリル樹脂、ポリエチレンテレフタレート等のポリエステル樹脂、ポリ塩化ビニル樹脂、ポリカーボネート樹脂、エポキシ樹脂、ナイロンやアラミド等のポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、4フッ化エチレン樹脂等のフッ素樹脂、架橋ポリエチレン樹脂等のポリオレフィン樹脂、ポリクロロプレン、ポリフェニレンスルフィド、ポリスルフォン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリウレタン樹脂及びガラスエポキシ樹脂等の複合樹脂等が挙げられる。繊維としては、天然繊維、再生繊維、半合成繊維、金属繊維、ガラス繊維、カーボン繊維、セラミック繊維及び公知の化学繊維等が挙げられる。布帛は織布であっても不織布であってもよく、例えば前述の繊維を用いて作製することができる。
 これらの材料は単独で用いてもよく、2種以上を組み合わせたり、混合したり、複合化して用いても良い。
 基材の形状に特に制限はなく、例えば、板、シート、フィルム、棒、球、繊維、粉末及び複雑な形状の構造物等が挙げられる。
6-1. Coating Method When the composition of the present disclosure is coated on a substrate and used, the coating method is not particularly limited, and for example, a casting method, a spin coating method, a bar coating method, a dip coating method, a spray coating method, and a roll coating method are used. Ordinary coating methods such as a method, a flow coating method and a gravure coating method can be used.
The thickness of the composition of the present disclosure is not particularly limited, and is appropriately set according to the intended purpose.
The base material to which the composition of the present disclosure can be applied is not particularly limited and can be applied to various materials, and examples thereof include wood, metal, inorganic materials, plastics, paper, fibers and fabrics.
Examples of the metal include copper, silver, iron, aluminum, silicon, silicon steel and stainless steel. Examples of the inorganic material include metal oxides such as aluminum oxide, silicon oxide, magnesium oxide, zirconium oxide, zinc oxide, indium tin oxide and gallium oxide, metal nitrides such as aluminum nitride, gallium nitride and silicon nitride, silicon carbide and nitrided materials. Examples thereof include ceramics such as boron, mortar, concrete and glass. Specific examples of plastics include acrylic resins such as polymethylmethacrylate, polyester resins such as polyethylene terephthalate, polyvinyl chloride resins, polycarbonate resins, epoxy resins, polyamide resins such as nylon and aramid, polyimide resins, polyamideimide resins, and 4 hooks. Examples thereof include a fluororesin such as an ethylene resin, a polyolefin resin such as a crosslinked polyethylene resin, a composite resin such as polychloroprene, polyphenylene sulfide, polysulphon, polyether sulfone, polyether ether ketone, polyurethane resin and glass epoxy resin. Examples of the fiber include natural fiber, regenerated fiber, semi-synthetic fiber, metal fiber, glass fiber, carbon fiber, ceramic fiber, known chemical fiber and the like. The cloth may be a woven cloth or a non-woven fabric, and can be produced by using, for example, the above-mentioned fibers.
These materials may be used alone, or may be used in combination of two or more, mixed, or combined.
The shape of the base material is not particularly limited, and examples thereof include plates, sheets, films, rods, spheres, fibers, powders, and structures having complicated shapes.
6-2.硬化方法
 本開示の組成物を硬化させるために活性エネルギー線を照射することができ、活性エネルギー線としては、電子線、及び、紫外線、可視光線並びにX線等の光等が挙げられるが、好ましくは光であり、安価な装置を使用することができるため、紫外線がより好ましい。
 紫外線照射装置としては、高圧水銀ランプ、メタルハライドランプ、UV無電極ランプ及びLED等が挙げられる。
 照射エネルギーは、活性エネルギー線の種類や配合組成に応じて適宜設定すべきものであるが、一例として高圧水銀ランプを使用する場合を挙げると、UV-A領域(315nm~400nm)の照射エネルギーで0.1~30J/cmが好ましく、0.5~20J/cmがより好ましく、1.0~15J/cmが更に好ましい。
6-2. Curing method An active energy ray can be irradiated to cure the composition of the present disclosure, and examples of the active energy ray include electron beam, ultraviolet light, visible light, X-ray, and the like, which are preferable. Is light, and ultraviolet light is more preferred because inexpensive equipment can be used.
Examples of the ultraviolet irradiation device include a high-pressure mercury lamp, a metal halide lamp, a UV electrodeless lamp, and an LED.
The irradiation energy should be appropriately set according to the type of active energy ray and the composition of the compound. For example, when a high-pressure mercury lamp is used, the irradiation energy in the UV-A region (315 nm to 400 nm) is 0. .1 to 30 J / cm 2 is preferable, 0.5 to 20 J / cm 2 is more preferable, and 1.0 to 15 J / cm 2 is further preferable.
 又、光硬化の前及び/又は後に、適宜、加熱硬化を組み合わせることもできる。
 例えば、光を照射した際に、陰となる部位を持つ基材に、本開示の組成物を染み込ませる等した後に、光を照射して、光が当たる部位の本開示の組成物をまず硬化し、その後、熱を加えて光の当たらない部位の本開示の組成物を硬化させる、二段階硬化を行うこともできる。このような基材に特に制限はなく、例えば、布帛状、繊維状、粉末状、多孔質状及び凹凸状等の複雑な形状である基材が挙げられ、これらの形状のうちの2つ以上が組み合わせられた形状であってもよい。
Further, heat curing can be appropriately combined before and / or after photo-curing.
For example, the composition of the present disclosure is impregnated into a substrate having a shaded portion when irradiated with light, and then the composition of the present disclosure of the portion exposed to the light is first cured by irradiating with light. Then, it is also possible to perform two-step curing in which heat is applied to cure the composition of the present disclosure in a portion not exposed to light. Such a base material is not particularly limited, and examples thereof include a base material having a complicated shape such as a cloth-like shape, a fibrous shape, a powder-like shape, a porous shape, and an uneven shape, and two or more of these shapes are mentioned. May be a combined shape.
7.用途
 本開示の組成物の硬化物は、耐熱性、耐酸化性、耐候性、硬度、透明性、及び柔軟性に優れるものであり、本開示の組成物の硬化膜を有する材料は、この特性を生かして種々の用途に使用することができる。
 例えば、電気・電子分野等の様々な工業用製品分野において使用することができる。特に、好ましい用途の具体例としては、LED照明及び有機EL照明等の照明装置、半導体モジュール、プリント配線基板及びフレキシルブル配線基板等の電子回路基板、小型モーター及び車載用モーター等の電動回転機器、変圧器等の電源機器、リチウム電池等の蓄電機器、並びに、太陽光パネル等の発電装置等が挙げられる。
 例えば、本開示の組成物の硬化物と前記の基材とを有する複合材料は、耐熱性絶縁部材として有用である。基材としては、上述の「6.硬化物の製造方法」の項目に記載の基材を用いることができる。
7. Applications The cured product of the composition of the present disclosure is excellent in heat resistance, oxidation resistance, weather resistance, hardness, transparency, and flexibility, and the material having the cured film of the composition of the present disclosure has this property. It can be used for various purposes by making the best use of.
For example, it can be used in various industrial product fields such as electrical and electronic fields. In particular, specific examples of preferable applications include lighting devices such as LED lighting and organic EL lighting, electronic circuit boards such as semiconductor modules, printed wiring boards and flexible wiring boards, and electric rotating devices such as small motors and in-vehicle motors. Examples thereof include power supply devices such as transformers, power storage devices such as lithium batteries, and power generation devices such as solar panels.
For example, a composite material having a cured product of the composition of the present disclosure and the above-mentioned base material is useful as a heat-resistant insulating member. As the base material, the base material described in the above-mentioned "6. Method for producing a cured product" can be used.
 次に、本開示を実施例及び比較例に基づいて具体的に説明するが、本開示は、以下の実施例に限定されるものではない。
 尚、Mw(重量平均分子量)は、ゲル浸透クロマトグラフィー法(以下、「GPC」と称す。)により、トルエン溶媒中、40℃において、連結したGPCカラム「TSK gel G4000HX」及び「TSK gel G2000HX」(型式名、東ソー社製)を用いて分離し、リテンションタイムから標準ポリスチレンを用いて分子量を算出した。
 又、得られたシルセスキオキサン誘導体の各構成単位のモル比は、試料を重クロロホルムに溶解し、H-NMR分析を行い、必要に応じて更に29Si-NMR分析も行うことにより算出した。アルコキシシランモノマーは定量的に反応し、シルセスキオキサン誘導体に導入されたが、ジシロキサンモノマーに由来するM単位は、シルセスキオキサン誘導体の組成によっては定量的には導入されなかった。
Next, the present disclosure will be specifically described based on Examples and Comparative Examples, but the present disclosure is not limited to the following Examples.
The Mw (weight average molecular weight) is the GPC columns "TSK gel G4000HX" and "TSK gel G2000HX" linked at 40 ° C. in a toluene solvent by a gel permeation chromatography method (hereinafter referred to as "GPC"). (Model name, manufactured by Toso Co., Ltd.) was used for separation, and the molecular weight was calculated using standard polystyrene from the retention time.
The molar ratio of each constituent unit of the obtained silsesquioxane derivative is calculated by dissolving the sample in deuterated chloroform, performing 1 H-NMR analysis, and further performing 29 Si-NMR analysis as necessary. did. The alkoxysilane monomer reacted quantitatively and was introduced into the silsesquioxane derivative, but the M unit derived from the disiloxane monomer was not quantitatively introduced depending on the composition of the silsesquioxane derivative.
〔シルセスキオキサン誘導体の合成〕
<合成例1>
 温度計、滴下漏斗及び攪拌翼を取り付けた200mLの4つ口丸底フラスコに、トリメトキシビニルシラン(7.4g、50mmol)、メチルトリエトキシシラン(26.7g、150mmol)、ジメトキシジメチルシラン(3.0g、25mmol)、1,1,3,3-テトラメチルジシロキサン(3.4g、25mmol)、キシレン(15g)及び2-プロパノール(15g)を量り取り、水浴中20℃程度でよく攪拌した。ここに、別途1mol/L塩酸水溶液(0.45g、4.4mmol)、純水(11.4g)及び2-プロパノール(4.5g)を混合して調製しておいた溶液を、滴下漏斗から1時間程度で滴下し、更に一晩室温で攪拌を続けた。得られた溶液から減圧下60℃で溶媒等を除去し、無色透明の液体としてシルセスキオキサン誘導体1 19gを得た。
[Synthesis of silsesquioxane derivative]
<Synthesis example 1>
Trimethoxyvinylsilane (7.4 g, 50 mmol), methyltriethoxysilane (26.7 g, 150 mmol), dimethoxydimethylsilane (3.) in a 200 mL four-necked round-bottom flask equipped with a thermometer, dropping funnel and stirring blade. 0 g, 25 mmol), 1,1,3,3-tetramethyldisiloxane (3.4 g, 25 mmol), xylene (15 g) and 2-propanol (15 g) were weighed and stirred well in a water bath at about 20 ° C. Here, a solution prepared by separately mixing 1 mol / L hydrochloric acid aqueous solution (0.45 g, 4.4 mmol), pure water (11.4 g) and 2-propanol (4.5 g) was added from a dropping funnel. The solution was added dropwise in about 1 hour, and stirring was continued overnight at room temperature. The solvent and the like were removed from the obtained solution at 60 ° C. under reduced pressure to obtain 119 g of a silsesquioxane derivative as a colorless and transparent liquid.
<合成例2>
 原料シランモノマーとして、アリルトリメトキシシラン(50mmol)、フェニルトリメトキシシラン(150mmol)、ジメトキシジフェニルシラン(25mmol)及び1,1,3,3-テトラメチルジシロキサン(25mmol)を使用した以外は、シルセスキオキサン誘導体1と同様な操作を行うことで、無色透明の液体としてシルセスキオキサン誘導体2を得た。
<Synthesis example 2>
Syl except that allyltrimethoxysilane (50 mmol), phenyltrimethoxysilane (150 mmol), dimethoxydiphenylsilane (25 mmol) and 1,1,3,3-tetramethyldisiloxane (25 mmol) were used as raw material silane monomers. By performing the same operation as that of the sesquioxane derivative 1, the silanesquioxane derivative 2 was obtained as a colorless and transparent liquid.
<合成例3>
 原料シランモノマーとして、トリエトキシシラン(150mmol)、トリメトキシビニルシラン(50mmol)、ジメトキシジメチルシラン(25mmol)及び1,1,3,3-テトラメチルジシロキサン(50mmol)を使用した以外は、シルセスキオキサン誘導体1と同様な操作を行うことで、無色透明の液体としてシルセスキオキサン誘導体3を得た。
<Synthesis example 3>
Sylsesquioki, except that triethoxysilane (150 mmol), trimethoxyvinylsilane (50 mmol), dimethoxydimethylsilane (25 mmol) and 1,1,3,3-tetramethyldisiloxane (50 mmol) were used as raw material silane monomers. By performing the same operation as the sun derivative 1, silsesquioxane derivative 3 was obtained as a colorless and transparent liquid.
<合成例4>
 原料シランモノマーとして、トリエトキシシラン(150mmol)、トリメトキシビニルシラン(50mmol)及び1,1,3,3-テトラメチルジシロキサン(50mmol)を使用した以外は、シルセスキオキサン誘導体1と同様な操作を行うことで、無色透明の液体としてシルセスキオキサン誘導体4を得た。
<Synthesis example 4>
The same operation as for silsesquioxane derivative 1 except that triethoxysilane (150 mmol), trimethoxyvinylsilane (50 mmol) and 1,1,3,3-tetramethyldisiloxane (50 mmol) were used as the raw material silane monomer. To obtain silsesquioxane derivative 4 as a colorless and transparent liquid.
<合成例5>
 原料シランモノマーとして、トリエトキシシラン(150mmol)、トリメトキシビニルシラン(25mmol)、(p-スチリル)トリメトキシシラン(25mmol)及び1,1,3,3-テトラメチルジシロキサン(50mmol)を使用した以外は、シルセスキオキサン誘導体1と同様な操作を行うことで、無色透明の液体としてシルセスキオキサン誘導体5を得た。
<Synthesis Example 5>
Other than using triethoxysilane (150 mmol), trimethoxyvinylsilane (25 mmol), (p-styryl) trimethoxysilane (25 mmol) and 1,1,3,3-tetramethyldisiloxane (50 mmol) as raw material silane monomers. Obtained the silanesquioxane derivative 5 as a colorless and transparent liquid by performing the same operation as that of the sylsesquioxane derivative 1.
<合成例6>
 原料シランモノマーとして、トリエトキシシラン(200mmol)、ジメトキシメチルシラン(75mmol)及び1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン(50mmol)を使用した以外は、シルセスキオキサン誘導体1と同様な操作を行うことで、無色透明の液体としてシルセスキオキサン誘導体6を得た。
<Synthesis example 6>
Sylsesquioxane except that triethoxysilane (200 mmol), dimethoxymethylsilane (75 mmol) and 1,3-divinyl-1,1,3,3-tetramethyldisiloxane (50 mmol) were used as raw material silane monomers. By performing the same operation as that of the derivative 1, the silsesquioxane derivative 6 was obtained as a colorless and transparent liquid.
<合成例7>
 原料シランモノマーとして、トリエトキシシラン(100mmol)、トリメトキシビニルシラン(100mmol)及びジメトキシメチルシラン(100mmol)を使用した以外は、シルセスキオキサン誘導体1と同様な操作を行うことで、無色透明の液体としてシルセスキオキサン誘導体7を得た。
<Synthesis example 7>
A colorless and transparent liquid by performing the same operation as the silsesquioxane derivative 1 except that triethoxysilane (100 mmol), trimethoxyvinylsilane (100 mmol) and dimethoxymethylsilane (100 mmol) were used as the raw material silane monomer. As a result, a silsesquioxane derivative 7 was obtained.
<合成例8>
 原料シランモノマーとして、トリエトキシシラン(150mmol)及びトリメトキシビニルシラン(120mmol)を使用した以外は、シルセスキオキサン誘導体1と同様な操作を行うことで、無色透明の液体としてシルセスキオキサン誘導体8を得た。
<Synthesis Example 8>
By performing the same operation as the silsesquioxane derivative 1 except that triethoxysilane (150 mmol) and trimethoxyvinylsilane (120 mmol) were used as the raw material silane monomer, the silsesquioxane derivative 8 was used as a colorless and transparent liquid. Got
<合成例9>
 原料シランモノマーとして、トリエトキシシラン(150mmol)、トリメトキシビニルシラン(50mmol)、フェニルジメトキシシラン(25mmol)及び1,1,3,3-テトラメチルジシロキサン(50mmol)を使用した以外は、シルセスキオキサン誘導体1と同様な操作を行うことで、無色透明の液体としてシルセスキオキサン誘導体9を得た。
<Synthesis example 9>
Silsesquioki, except that triethoxysilane (150 mmol), trimethoxyvinylsilane (50 mmol), phenyldimethoxysilane (25 mmol) and 1,1,3,3-tetramethyldisiloxane (50 mmol) were used as raw material silane monomers. By performing the same operation as the sun derivative 1, silsesquioxane derivative 9 was obtained as a colorless and transparent liquid.
<合成例10>
 原料シランモノマーとして、テトラメトキシシラン(100mmol)、ジメトキシジメチルシラン(100mmol)、1,1,3,3-テトラメチルジシロキサン(12.5mmol)及び1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン(12.5mmol)を使用した以外は、シルセスキオキサン誘導体1と同様な操作を行うことで、無色透明の液体としてシルセスキオキサン誘導体10を得た。
<Synthesis Example 10>
As raw material silane monomers, tetramethoxysilane (100 mmol), dimethoxydimethylsilane (100 mmol), 1,1,3,3-tetramethyldisiloxane (12.5 mmol) and 1,3-divinyl-1,1,3,3 -By carrying out the same operation as that of the silsesquioxane derivative 1 except that tetramethyldisiloxane (12.5 mmol) was used, the silsesquioxane derivative 10 was obtained as a colorless and transparent liquid.
<合成例11>
 原料シランモノマーとして、テトラメトキシシラン(90mmol)、トリエトキシシラン(36mmol)、トリメトキシビニルシラン(30mmol)、ジメトキシジメチルシラン(36mmol)、1,1,3,3-テトラメチルジシロキサン(7.5mmol)及び1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン(22.5mmol)を使用した以外は、シルセスキオキサン誘導体1と同様な操作を行うことで、無色の半固体としてシルセスキオキサン誘導体11を得た。
<Synthesis Example 11>
As the raw material silane monomer, tetramethoxysilane (90 mmol), triethoxysilane (36 mmol), trimethoxyvinylsilane (30 mmol), dimethoxydimethylsilane (36 mmol), 1,1,3,3-tetramethyldisiloxane (7.5 mmol) And 1,3-divinyl-1,1,3,3-tetramethyldisiloxane (22.5 mmol) was used, but the same operation as that of silsesquioxane derivative 1 was carried out to obtain a colorless semi-solid. A silsesquioxane derivative 11 was obtained.
 合成例1~11の組成、Mw及び導入された各構成単位のモル比を表1及び2にまとめた。 The compositions of Synthesis Examples 1 to 11, Mw, and the molar ratio of each introduced constituent unit are summarized in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
<参考例1>
[3-アクリロイルオキシプロピルシルセスキオキサンの合成]
 原料シランモノマーとして、(3-アクリロイルオキシプロピル)トリメトキシシランを用い、反応溶媒として2-プロパノールのみを用いた以外は、シルセスキオキサン誘導体1と同様な操作を行うことで、無色透明の液体として3-アクリロルオキシプロピルシルセスキオキサンを得た。Mwは2370であった。
<参考例2>
 東亞合成社製AC-SQ SI-20(3-アクリロイルオキシプロピルシルセスキオキサンとシリコーンの複合誘導体)をそのまま使用した
<Reference example 1>
[Synthesis of 3-acryloyloxypropylsilsesquioxane]
By performing the same operation as the silsesquioxane derivative 1 except that (3-acryloyloxypropyl) trimethoxysilane was used as the raw material silane monomer and only 2-propanol was used as the reaction solvent, a colorless and transparent liquid was used. As a result, 3-acryloyloxypropylsilsesquioxane was obtained. Mw was 2370.
<Reference example 2>
AC-SQ SI-20 (composite derivative of 3-acryloyloxypropylsilsesquioxane and silicone) manufactured by Toagosei Co., Ltd. was used as it was.
<実施例1>
(1)光硬化性組成物の調製
 合成例1で得られたシルセスキオキサン誘導体10g及びビス(アセチルアセトナト)白金(II)(以後、Pt(acac)と称す。)10mgを秤取し、自転・公転ミキサーでかき混ぜて溶解した。
(2)光ヒドロシリル化硬化性の確認
 銅板にバーコーターで上述(1)の光硬化性組成物を塗布し、約100μmの厚さの被膜を形成させた。そして、下記の条件により紫外線照射を行い、表面のタックがなくなったことを確認した。更に、銅板より形成された皮膜を剥離し、FT-IR(フーリエ変換赤外分光)分析(Perkin Elmer社製Spectrum100)により、ヒドロシリル基とビニル基が減少し、ヒドロシリル化反応が進行したことを確認した。
[紫外線照射条件]
ランプ:80W/cm高圧水銀ランプ
ランプ高さ:10cm
コンベアスピード:4.5m/min
1パスあたりの積算光量:990 mJ/cm
雰囲気:大気中
パス回数:10回 
<Example 1>
(1) Preparation of Photocurable Composition Weighing 10 g of the silsesquioxane derivative obtained in Synthesis Example 1 and 10 mg of bis (acetylacetonato) platinum (II) (hereinafter referred to as Pt (acac) 2). Then, it was dissolved by stirring with a rotation / revolution mixer.
(2) Confirmation of Photohydrosilylation Curability The photocurable composition of (1) described above was applied to a copper plate with a bar coater to form a film having a thickness of about 100 μm. Then, ultraviolet irradiation was performed under the following conditions, and it was confirmed that the surface tack was eliminated. Furthermore, the film formed from the copper plate was peeled off, and FT-IR (Fourier transform infrared spectroscopy) analysis (Spectrum 100 manufactured by PerkinElmer) confirmed that the hydrosilylation group and vinyl group were reduced and the hydrosilylation reaction proceeded. did.
[Ultraviolet irradiation conditions]
Lamp: 80W / cm High pressure mercury lamp Lamp height: 10cm
Conveyor speed: 4.5m / min
Integrated light intensity per pass: 990 mJ / cm 2
Atmosphere: Atmospheric Pass Count: 10 times
<実施例2>
〔光硬化性組成物の調製と光硬化性の確認〕
 合成例2で得られたシルセスキオキサン誘導体2を用いて、実施例1(1)と同様にして、光硬化性組成物を調製した。それを、実施例1(2)と同様の光硬化に供し、光ヒドロシリル化反応が進行して、硬化物を与えることを確認した。
<Example 2>
[Preparation of photocurable composition and confirmation of photocurability]
Using the silsesquioxane derivative 2 obtained in Synthesis Example 2, a photocurable composition was prepared in the same manner as in Example 1 (1). It was subjected to the same photocuring as in Example 1 (2), and it was confirmed that the photohydrosilylation reaction proceeded to give a cured product.
<実施例3~11>
〔光硬化性組成物の調製と光硬化性の確認〕
 合成例3~11で得られたシルセスキオキサン誘導体3~11を用いて、実施例1(1)と同様にして、各光硬化性組成物を調製した。それらを、以下の紫外線照射条件とした以外は実施例1(2)と同様の光硬化に供し、いずれも光ヒドロシリル化反応が進行して、硬化物を与えることを確認した。
[紫外線照射条件]
ランプ:80W/cm高圧水銀ランプ
ランプ高さ:10cm
コンベアスピード:10m/min
1パスあたりの積算光量:210 mJ/cm
雰囲気:大気中
パス回数:30回
<Examples 3 to 11>
[Preparation of photocurable composition and confirmation of photocurability]
Using the silsesquioxane derivatives 3 to 11 obtained in Synthesis Examples 3 to 11, each photocurable composition was prepared in the same manner as in Example 1 (1). They were subjected to the same photocuring as in Example 1 (2) except that they were subjected to the following ultraviolet irradiation conditions, and it was confirmed that the photohydrosilylation reaction proceeded in each case to give a cured product.
[Ultraviolet irradiation conditions]
Lamp: 80W / cm High pressure mercury lamp Lamp height: 10cm
Conveyor speed: 10m / min
Integrated light intensity per pass: 210 mJ / cm 2
Atmosphere: Atmospheric Pass Count: 30 times
<実施例12>
硬化物の耐熱性評価
 合成例1で得たシルセスキオキサン誘導体1を使用して、実施例1(1)で調製した光硬化性組成物を用いて、実施例1(2)の基材をPETフィルムに代えた以外は、実施例1(2)と同様にして光ヒドロシリル化硬化物を作製した。得られた硬化物をPETフィルムから剥がして、熱重量示差熱分析(以後、TG/DTAと称す。)に供し(セイコーインスツルメンツ社製TG/DTA6300、大気中、昇温速度20℃/min)、5%重量減少温度(以後、Td5と称す。)を求めた結果、396℃であった。
<Example 12>
Heat resistance evaluation of cured product Using the silsesquioxane derivative 1 obtained in Synthesis Example 1, the photocurable composition prepared in Example 1 (1) was used as the substrate of Example 1 (2). Was replaced with a PET film, and a photohydrosilylated cured product was prepared in the same manner as in Example 1 (2). The obtained cured product was peeled off from the PET film and subjected to thermal weight differential thermal analysis (hereinafter referred to as TG / DTA) (TG / DTA6300 manufactured by Seiko Instruments, Inc., in the air, heating rate 20 ° C./min). As a result of determining the 5% weight loss temperature (hereinafter referred to as T d5 ), it was 396 ° C.
<実施例13~16>
〔硬化物の耐熱性評価〕
 合成例3、4、7及び10で得たシルセスキオキサン誘導体3、4、7及び10を使用して、実施例3、4、7及び10で調製した光硬化性組成物を用いて、実施例12と同様にしてその硬化物のTG/DTAを測定し、各Td5を求めた。
<Examples 13 to 16>
[Evaluation of heat resistance of cured product]
Using the silsesquioxane derivatives 3, 4, 7 and 10 obtained in Synthesis Examples 3, 4, 7 and 10, the photocurable compositions prepared in Examples 3, 4, 7 and 10 were used. The TG / DTA of the cured product was measured in the same manner as in Example 12, and each T d5 was determined.
 実施例12~16で求めたTd5を表3にまとめた。 Table 3 summarizes T d5 obtained in Examples 12 to 16.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
<実施例17>
硬化物の比誘電率測定
 合成例1で得たシルセスキオキサン誘導体1を使用して、実施例1(1)で調製した光硬化性組成物を、厚さ1mmのシリコーンゴムシートを用いて40mm×40mmの大きさの穴を切り抜いて作成した型枠に流し込み、PETフィルムと白板ガラスで挟んで、実施例1(2)と同様の紫外線照射条件で光ヒドロシリル化硬化物を作製した。
 得られた硬化物を比誘電率測定に供し(アジレント・テクノロジー社製インピーダンス・アナライザ4294A)、室温(23℃)において比誘電率を測定した結果、1MHzでの比誘電率は3.38であった。1MHzでの比誘電率及びその他の周波数帯での比誘電率を表4に示す。
<Example 17>
Relative permittivity measurement of cured product Using the silsesquioxane derivative 1 obtained in Synthesis Example 1, the photocurable composition prepared in Example 1 (1) was prepared using a silicone rubber sheet having a thickness of 1 mm. A hole having a size of 40 mm × 40 mm was cut out and poured into a mold, sandwiched between a PET film and white plate glass, and a photohydrosilylated cured product was prepared under the same ultraviolet irradiation conditions as in Example 1 (2).
The obtained cured product was subjected to a relative permittivity measurement (impedance analyzer 4294A manufactured by Agilent Technologies), and the relative permittivity was measured at room temperature (23 ° C.). As a result, the relative permittivity at 1 MHz was 3.38. rice field. Table 4 shows the relative permittivity at 1 MHz and the relative permittivity at other frequency bands.
<実施例18>
硬化物の比誘電率測定
 合成例4で得たシルセスキオキサン4を使用して、実施例4で調製した光硬化性組成物を用いて、実施例17と同様にして比誘電率を測定した結果、1MHzでの比誘電率は3.28であった。1MHzでの比誘電率及びその他の周波数帯での比誘電率を表4に示す。
<Example 18>
Relative permittivity measurement of cured product Using the silsesquioxane 4 obtained in Synthesis Example 4, the photocurable composition prepared in Example 4 was used, and the relative permittivity was measured in the same manner as in Example 17. As a result, the relative permittivity at 1 MHz was 3.28. Table 4 shows the relative permittivity at 1 MHz and the relative permittivity at other frequency bands.
<比較例1>
 参考例1で得られた3-アクリロイルオキシプロピルシルセスキオキサン10gに2-Hydroxy-2-methylpropiophenone(東京化成工業社製)0.3gを加えてかき混ぜて溶解し、光硬化性組成物を調製した。これをPETフィルム上にバーコーターで塗布し、約10μmの厚さの被膜を形成させた。そして、下記の条件により紫外線照射を行い、硬化物を作製した。
[紫外線照射条件]
ランプ:80W/cm高圧水銀ランプ
ランプ高さ:10cm
コンベアスピード:10m/min照射
1パスあたりの積算光量:210 mJ/cm
雰囲気:大気中
パス回数:30回
 実施例12と同様にして求めたTd5(大気中)は、360℃であった。
 又、実施例17と同様にして求めた1MHzでの比誘電率は4.24であった。1MHzでの比誘電率及びその他の周波数帯での比誘電率を表4に示す。
<Comparative Example 1>
Add 0.3 g of 2-Hydroxy-2-methylpropiophenone (manufactured by Tokyo Chemical Industry Co., Ltd.) to 10 g of 3-acryloyloxypropylsilsesquioxane obtained in Reference Example 1 and stir to dissolve to prepare a photocurable composition. did. This was applied on a PET film with a bar coater to form a film having a thickness of about 10 μm. Then, ultraviolet irradiation was performed under the following conditions to prepare a cured product.
[Ultraviolet irradiation conditions]
Lamp: 80W / cm High pressure mercury lamp Lamp height: 10cm
Conveyor speed: 10 m / min Cumulative light intensity per pass of irradiation: 210 mJ / cm 2
Atmosphere: Number of passes in the atmosphere: 30 times T d5 (in the atmosphere) determined in the same manner as in Example 12 was 360 ° C.
Further, the relative permittivity at 1 MHz obtained in the same manner as in Example 17 was 4.24. Table 4 shows the relative permittivity at 1 MHz and the relative permittivity at other frequency bands.
<比較例2>
 参考例2のAC-SQ SI-20を用いた以外は、比較例1と同様にして硬化物を作製し、硬化物のTd5(大気中)と比誘電率を測定した。Td5(大気中)は340℃あり、1MHzでの比誘電率は4.31であった。1MHzでの比誘電率及びその他の周波数帯での比誘電率を表4に示す。
<Comparative Example 2>
A cured product was prepared in the same manner as in Comparative Example 1 except that AC-SQ SI-20 of Reference Example 2 was used, and the relative permittivity was measured with T d5 (in the atmosphere) of the cured product. T d5 (in the atmosphere) was 340 ° C. and the relative permittivity at 1 MHz was 4.31. Table 4 shows the relative permittivity at 1 MHz and the relative permittivity at other frequency bands.
 本開示の光ヒドロシリル化硬化性組成物は、良好な光硬化性を有し、公知の熱ヒドロシリル化硬化性組成物よりも、適用できる基材の範囲が広く、様々な用途への応用が可能となる。
 又、本開示の光ヒドロシリル化硬化物のTd5は、従来の光硬化性シルセスキオキサン誘導体の代表例である、光ラジカル硬化性組成物の硬化物(比較例1及び2)に比べ、非常に高く、耐熱性に優れている。
 更に、本開示の光ヒドロシリル化硬化物の比誘電率は、光ラジカル硬化性組成物の硬化物(比較例1及び2)に比べ、非常に低く、測定したいずれの周波数においても絶縁性に優れている。又、測定した1kHz~10MHzの広い周波数帯において、本開示の光ヒドロシリル化硬化物の比誘電率は、3.5以下であり、本開示の光ヒドロシリル化硬化物は高い耐熱性と優れた絶縁性を備えている。
The photohydrosilylation-curable composition of the present disclosure has good photocurability, has a wider range of applicable base materials than known thermohydrosilylation-curable compositions, and can be applied to various applications. It becomes.
Further, the T d5 of the photohydrosilylated cured product of the present disclosure is compared with the cured product (Comparative Examples 1 and 2) of the photoradical curable composition, which is a typical example of the conventional photocurable silsesquioxane derivative. Very high and has excellent heat resistance.
Further, the relative permittivity of the photohydrosilylated cured product of the present disclosure is much lower than that of the cured product of the photoradical curable composition (Comparative Examples 1 and 2), and the insulating property is excellent at any measured frequency. ing. Further, in the measured wide frequency band of 1 kHz to 10 MHz, the relative permittivity of the photohydrosilylated cured product of the present disclosure is 3.5 or less, and the photohydrosilylated cured product of the present disclosure has high heat resistance and excellent insulation. Has sex.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 本開示の光硬化性組成物は耐熱性皮膜の形成に有用であり、自由な形状に塗布、充填のし易い液状の組成物であり、常温で硬化ができて、耐水性、耐薬品性、安定性、電気絶縁性及び耐擦傷性等の機械的強度等においても良好な諸特性を有する皮膜等を形成することができることから、エレクトロニクス分野、光機能材料分野、モビリティ分野、航空宇宙分野、建材分野をはじめとする広範な分野における物品あるいは部品等の皮膜や層として用いることができる。半導体等におけるパッシベーション膜、レジスト膜、層間絶縁膜及び各種の保護膜等の形成に使用できるものである。本開示の光硬化性組成物及びその硬化物は、今後ますます高耐熱化と絶縁性の両立が求められる様々な分野で有用である。 The photocurable composition of the present disclosure is a liquid composition that is useful for forming a heat-resistant film and is easy to apply and fill in any shape. It can be cured at room temperature, and has water resistance and chemical resistance. Since it is possible to form a film having various properties such as stability, electrical insulation, and mechanical strength such as scratch resistance, it is possible to form a film, etc., in the fields of electronics, optical functional materials, mobility, aerospace, and building materials. It can be used as a film or layer for articles or parts in a wide range of fields including fields. It can be used for forming passivation films, resist films, interlayer insulating films, various protective films and the like in semiconductors and the like. The photocurable composition and the cured product thereof disclosed in the present disclosure are useful in various fields in which both high heat resistance and insulating properties are required in the future.
 2020年6月22日に出願された日本国特許出願2020-106880号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2020-106880 filed June 22, 2020 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated by reference herein.

Claims (11)

  1.  下記式(1)で表されるシルセスキオキサン誘導体と、遷移金属を含むヒドロシリル化触媒とを含む光硬化性組成物。
    Figure JPOXMLDOC01-appb-C000001

    〔式(1)中、
     Rはヒドロシリル化反応可能な炭素-炭素不飽和結合を有する炭素原子数2~12の有機基であり、
     Rは炭素原子数1~10のアルキル基、炭素原子数6~10のアリール基及び炭素原子数7~10のアラルキル基からなる群から選択される少なくとも1種であり、
     複数存在するR及びRはそれぞれ独立に水素原子、炭素原子数1~10のアルキル基、炭素原子数6~10のアリール基、炭素原子数7~10のアラルキル基及びヒドロシリル化反応可能な炭素-炭素不飽和結合を有する炭素原子数2~12の有機基からなる群から選択される少なくとも1種であり、
     複数存在するRは互いに同一でも異なっていてもよく、
     複数存在するRは互いに同一でも異なっていてもよく、
     u、v、w及びxはそれぞれ独立に0又は正の数であって、少なくともいずれか1つは正の数であり、
     y及びzはそれぞれ独立に0又は正の数であり、
     0≦y/(u+v+w+x)≦2.0であり、
     0≦z/(u+v+w+x)≦2.0であり、
     但し、v=0のとき、複数存在するR及びRの少なくともいずれか1つは水素原子であり、w=0のとき、複数存在するR及びRの少なくともいずれか1つはヒドロシリル化反応可能な炭素-炭素不飽和結合を有する炭素原子数2~12の有機基である。〕
    A photocurable composition containing a silsesquioxane derivative represented by the following formula (1) and a hydrosilylation catalyst containing a transition metal.
    Figure JPOXMLDOC01-appb-C000001

    [In equation (1),
    R 1 is an organic group having a carbon-carbon unsaturated bond capable of hydrosilylation reaction and having 2 to 12 carbon atoms.
    R 2 is at least one selected from the group consisting of an alkyl group, an aralkyl group of aryl and 7 to 10 carbon atoms of 6 to 10 carbon atoms in the 1 to 10 carbon atoms,
    A plurality of R 3 and R 4 are independently capable of hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, and a hydrosilylation reaction. It is at least one selected from the group consisting of organic groups having 2 to 12 carbon atoms having a carbon-carbon unsaturated bond.
    There exist a plurality of R 3 may be the same or different from each other,
    The R 4 presence of a plurality may be the same or different from each other,
    u, v, w and x are independently 0 or positive numbers, and at least one of them is a positive number.
    y and z are independently 0 or positive numbers, respectively.
    0 ≦ y / (u + v + w + x) ≦ 2.0,
    0 ≦ z / (u + v + w + x) ≦ 2.0,
    However, when v = 0, at least one of a plurality of R 3 and R 4 is a hydrogen atom, and when w = 0, at least one of a plurality of R 3 and R 4 is a hydrosilyl. It is an organic group having 2 to 12 carbon atoms having a carbon-carbon unsaturated bond capable of undergoing a conversion reaction. ]
  2.  前記シルセスキオキサン誘導体に存在するヒドロシリル化反応可能な炭素-炭素不飽和結合を有する有機基1個に対する、ケイ素原子に結合した水素原子の数の比が0.5~5.0である、請求項1に記載の光硬化性組成物。 The ratio of the number of hydrogen atoms bonded to silicon atoms to one organic group having a hydrosilylation-reactive carbon-carbon unsaturated bond present in the silsesquioxane derivative is 0.5 to 5.0. The photocurable composition according to claim 1.
  3.  前記遷移金属の含有割合が、前記シルセスキオキサン誘導体100重量部に対して0.1~30,000重量ppmである、請求項1又は2に記載の光硬化性組成物。 The photocurable composition according to claim 1 or 2, wherein the content ratio of the transition metal is 0.1 to 30,000 ppm by weight with respect to 100 parts by weight of the silsesquioxane derivative.
  4.  前記遷移金属が白金族金属である、請求項1~3のいずれか1項に記載の光硬化性組成物。 The photocurable composition according to any one of claims 1 to 3, wherein the transition metal is a platinum group metal.
  5.  前記遷移金属を含むヒドロシリル化触媒が、β-ジケトナト白金錯体類、(η-シクロペンタジエニル)トリアルキル白金錯体類、(η-1,5-シクロオクタジエン)ジアリール白金錯体類及びジアルキルアゾジカルボキシラート白金錯体類からなる群から選択される少なくとも1種である、請求項1~4のいずれか1項に記載の光硬化性組成物。 Hydrosilylation catalyst containing the transition metal, beta-diketonate platinum complexes, (.eta. cyclopentadienyl) trialkyl platinum complexes, (η 4 -1,5- cyclooctadiene) diaryl platinum complexes and dialkyl azo The photocurable composition according to any one of claims 1 to 4, which is at least one selected from the group consisting of dicarboxylate platinum complexes.
  6.  更に、耐熱性向上剤を含む、請求項1~5のいずれか1項に記載の光硬化性組成物。 The photocurable composition according to any one of claims 1 to 5, further comprising a heat resistance improver.
  7.  請求項1~6のいずれか1項に記載の光硬化性組成物を、硬化させて得られる硬化物。 A cured product obtained by curing the photocurable composition according to any one of claims 1 to 6.
  8.  1MHzにおける比誘電率が4.0以下である、請求項7に記載の硬化物。 The cured product according to claim 7, wherein the relative permittivity at 1 MHz is 4.0 or less.
  9.  熱重量測定における大気中の5%重量減少温度が300℃以上である、請求項7又は8に記載の硬化物。 The cured product according to claim 7 or 8, wherein the 5% weight loss temperature in the atmosphere in thermogravimetric analysis is 300 ° C. or higher.
  10.  絶縁膜である、請求項7~9のいずれか1項に記載の硬化物。 The cured product according to any one of claims 7 to 9, which is an insulating film.
  11.  請求項1~6のいずれか1項に記載の光硬化性組成物に紫外線を照射して硬化させる工程を含む、硬化物の製造方法。 A method for producing a cured product, which comprises a step of irradiating the photocurable composition according to any one of claims 1 to 6 with ultraviolet rays to cure the photocurable composition.
PCT/JP2021/019266 2020-06-22 2021-05-20 Photocurable composition, cured product thereof, and method for producing cured product WO2021261133A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022532412A JPWO2021261133A1 (en) 2020-06-22 2021-05-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-106880 2020-06-22
JP2020106880 2020-06-22

Publications (1)

Publication Number Publication Date
WO2021261133A1 true WO2021261133A1 (en) 2021-12-30

Family

ID=79282503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019266 WO2021261133A1 (en) 2020-06-22 2021-05-20 Photocurable composition, cured product thereof, and method for producing cured product

Country Status (2)

Country Link
JP (1) JPWO2021261133A1 (en)
WO (1) WO2021261133A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005010077A1 (en) * 2003-07-29 2005-02-03 Toagosei Co., Ltd. Silicon-containing polymer, process for rpoducing the same, heat-resistant resin composition, and heat-resistant film
JP2009079163A (en) * 2007-09-27 2009-04-16 Ube Ind Ltd Curable composition, cured silsesquioxane, and method for producing cured silsesquioxane
WO2009066608A1 (en) * 2007-11-19 2009-05-28 Toagosei Co., Ltd. Polysiloxane, method for producing the same, and method for producing cured product of the same
JP2009155442A (en) * 2007-12-26 2009-07-16 Nippon Steel Chem Co Ltd Resin composition for lens and its cured material
JP2020070432A (en) * 2018-10-30 2020-05-07 ダウ・東レ株式会社 Curable silicone composition and use therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005010077A1 (en) * 2003-07-29 2005-02-03 Toagosei Co., Ltd. Silicon-containing polymer, process for rpoducing the same, heat-resistant resin composition, and heat-resistant film
JP2009079163A (en) * 2007-09-27 2009-04-16 Ube Ind Ltd Curable composition, cured silsesquioxane, and method for producing cured silsesquioxane
WO2009066608A1 (en) * 2007-11-19 2009-05-28 Toagosei Co., Ltd. Polysiloxane, method for producing the same, and method for producing cured product of the same
JP2009155442A (en) * 2007-12-26 2009-07-16 Nippon Steel Chem Co Ltd Resin composition for lens and its cured material
JP2020070432A (en) * 2018-10-30 2020-05-07 ダウ・東レ株式会社 Curable silicone composition and use therefor

Also Published As

Publication number Publication date
JPWO2021261133A1 (en) 2021-12-30

Similar Documents

Publication Publication Date Title
KR101512529B1 (en) Polysiloxane, method for producing the same, and method for producing cured product of the same
JP5137295B2 (en) Silicon-containing curable composition and cured product thereof
US7939614B2 (en) Silicon-containing curing composition and heat cured product thereof
US8378004B2 (en) Process for the production of silicone coatings and silicone moldings from photocrosslinkable silicone mixtures
JP5610379B2 (en) Siloxane polymer, siloxane-based crosslinkable composition, and silicone film
JP3604450B2 (en) Curable organosiloxane compositions containing low-temperature reactive adhesive additives
JP5625210B2 (en) Curable composition
JP6624460B2 (en) Laminate
CN106831845B (en) Boron-containing organosilicon compounds, method for the production and use thereof
KR20120101245A (en) Photo curable transparent resin composition
US20230128852A1 (en) Silsesquioxane derivative and use thereof
JP3886556B2 (en) Adhesive property organosiloxane compound
JP6930242B2 (en) Semiconductor devices and their manufacturing methods
JP5821971B2 (en) Method for producing polysiloxane
US20200299462A1 (en) Method for preparing ultraviolet (uv) curing polymethyl siloxane containing acrylate structure
JP6930354B2 (en) Curable composition and its use
WO2021261133A1 (en) Photocurable composition, cured product thereof, and method for producing cured product
CN112480862B (en) Trapezoidal silicone resin reinforced organic silicon pressure-sensitive adhesive and preparation method thereof
JP7397558B2 (en) Water- and oil-repellent film composition and its use
JP5163470B2 (en) Curable composition with improved stability and method for producing the same
JPH02124936A (en) Silylated polyether

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829405

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022532412

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829405

Country of ref document: EP

Kind code of ref document: A1