JP2012092172A - Composition for sealing optical semiconductor, and light-emitting element - Google Patents

Composition for sealing optical semiconductor, and light-emitting element Download PDF

Info

Publication number
JP2012092172A
JP2012092172A JP2010238578A JP2010238578A JP2012092172A JP 2012092172 A JP2012092172 A JP 2012092172A JP 2010238578 A JP2010238578 A JP 2010238578A JP 2010238578 A JP2010238578 A JP 2010238578A JP 2012092172 A JP2012092172 A JP 2012092172A
Authority
JP
Japan
Prior art keywords
optical semiconductor
composition
sealing
polysiloxane
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010238578A
Other languages
Japanese (ja)
Inventor
Taichi Tazaki
太一 田崎
Tomoaki Seko
智昭 瀬古
Koichi Hasegawa
公一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2010238578A priority Critical patent/JP2012092172A/en
Publication of JP2012092172A publication Critical patent/JP2012092172A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Abstract

PROBLEM TO BE SOLVED: To provide a composition for sealing an optical semiconductor which can form a sealing material having excellent heat resistance or the like and further having excellent moisture permeability resistance.SOLUTION: The composition for sealing the optical semiconductor comprises 40 to 95 mass% of polysiloxane (A) having an epoxy group and having a repeated structural unit represented by formula (1) (wherein, Ar denotes an aryl group). The light-emitting element obtained by sealing an optical semiconductor with the composition for sealing the optical semiconductor has no deterioration in an optical semiconductor by water vapor passed through a sealing material, and can be stably used over a long period of time.

Description

本発明は、光半導体封止用組成物に関し、さらに詳しくは、耐熱性が高く、さらに耐透質性も高い封止材を得ることのできる光半導体封止用組成物に関する。   The present invention relates to an optical semiconductor sealing composition, and more particularly to an optical semiconductor sealing composition capable of obtaining a sealing material having high heat resistance and high permeability resistance.

発光ダイオード(LED)の性能を支える重要な材料の一つとして、LEDの性能が劣化しないようにLEDを密封および保護する封止材がある。
従来、発光ダイオード(LED)素子の封止材料としては、主としてエポキシ樹脂が用いられていた。しかし、エポキシ樹脂は耐熱性および耐光性が低い。そこで、エポキシ樹脂に替わり、耐熱性、耐光性および透明性に優れたポリシロキサンを主成分とするLED封止材の開発が進められている。
One important material that supports the performance of a light emitting diode (LED) is a sealing material that seals and protects the LED so that the performance of the LED does not deteriorate.
Conventionally, epoxy resin has been mainly used as a sealing material for a light emitting diode (LED) element. However, the epoxy resin has low heat resistance and light resistance. Therefore, in place of the epoxy resin, an LED sealing material mainly composed of polysiloxane having excellent heat resistance, light resistance and transparency is being developed.

特許文献1には、エポキシ基含有アルコキシシランとヒドロキシ末端ポリジメチルシロキサンとを反応させて得られるポリシロキサンを含む組成物が、はんだリフロー工程等の高温条件下でもパッケージ基材からの剥離等が発生しない封止材を与えることが開示されている。   In Patent Document 1, a composition containing a polysiloxane obtained by reacting an epoxy group-containing alkoxysilane with a hydroxy-terminated polydimethylsiloxane causes peeling from a package substrate even under high-temperature conditions such as a solder reflow process. It is disclosed to provide a sealing material that does not.

特許文献2には、特定構造のエポキシ基含有オルガノシロキサン化合物と5員環または6員環の酸無水物を含有する組成物が、耐熱性、耐光性および透明性に優れ、はんだリフロー工程等の高温条件下でもパッケージ基材からの剥離等が発生せず、黄変が生じにくい封止材を与えることが開示されている。   In Patent Document 2, a composition containing an epoxy group-containing organosiloxane compound having a specific structure and a 5-membered or 6-membered acid anhydride is excellent in heat resistance, light resistance, and transparency, such as a solder reflow process. It is disclosed to provide a sealing material that does not peel off from a package base material even under high temperature conditions and is unlikely to cause yellowing.

特許文献3には、分子鎖両末端に脂肪族不飽和基を有する直鎖状のジオルガノポリシロキサン、有機ケイ素化合物およびヒドロシリル化触媒を含む組成物が、透明性および屈折性が高く、強度特性が良好な封止材を与えることが開示されている。   In Patent Document 3, a composition containing a linear diorganopolysiloxane having an aliphatic unsaturated group at both ends of a molecular chain, an organosilicon compound, and a hydrosilylation catalyst has high transparency and refractive properties, and has strength characteristics. Provides a good sealing material.

特許文献4には、高フェニル基含量かつ高水酸基含量である分岐状および/または三次元網状構造のアルケニル基含有オルガノポリシロキサンと、ケイ素原子と結合する水素原子を有するオルガノハイドロジェンポリシロキサンと、付加反応用触媒と、エポキシ基および/またはアルコキシ基を含有するオルガノハイドロジェンポリシロキサンなどとを含有する組成物が、硬度および透明性が高く、耐熱性および耐光性に優れ、さらに温度依存性および熱履歴依存性のない透明性を有する封止材を与えることが開示されている。   Patent Document 4 discloses a branched and / or three-dimensional network structure alkenyl group-containing organopolysiloxane having a high phenyl group content and a high hydroxyl group content, an organohydrogenpolysiloxane having a hydrogen atom bonded to a silicon atom, A composition containing an addition reaction catalyst and an organohydrogenpolysiloxane containing an epoxy group and / or an alkoxy group has high hardness and transparency, excellent heat resistance and light resistance, temperature dependency and It is disclosed to provide a sealing material having transparency without dependence on thermal history.

特許文献5には、一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン、一分子中に少なくとも2個の水素原子結合水素原子を有するオルガノハイドロジェンポリシロキサン、およびヒドロシリル化反応用触媒を含む組成物が、長時間使用しても変色や光半導体素子との剥離による輝度の低下等が少ない封止材を与えることが開示されている。   Patent Document 5 discloses an organopolysiloxane having at least two alkenyl groups in one molecule, an organohydrogenpolysiloxane having at least two hydrogen atom-bonded hydrogen atoms in one molecule, and a catalyst for hydrosilylation reaction. It has been disclosed that the composition containing the composition provides a sealing material with little discoloration or lowering of luminance due to peeling from the optical semiconductor element even when used for a long time.

しかし、これらのポリシロキサンを主成分とする封止材は、耐熱性および耐光性等には優れるが、封止する際の収縮によりクラックや空隙が生じやすいなどの理由により、耐透湿性に劣る。このため、これらのポリシロキサンを主成分とする封止材を使用した発光素子においては、封止材を透過した水蒸気により光半導体が劣化するという問題があった。   However, these polysiloxane-based encapsulants are excellent in heat resistance and light resistance, but are inferior in moisture permeability due to the fact that cracks and voids are likely to occur due to shrinkage during sealing. . For this reason, in the light emitting element using the sealing material which has these polysiloxanes as a main component, there existed a problem that an optical semiconductor deteriorated with the water vapor which permeate | transmitted the sealing material.

特開2010−13619号公報JP 2010-13619 A 特開2010−111811号公報JP 2010-111181 A 特開2010−132795号公報JP 2010-132895 A 特開2007−246894号公報JP 2007-246894 A 特開2006−093354号公報JP 2006-093354 A

本発明は、耐熱性等に優れるとともに、耐透湿性に優れた封止材を形成しうる光半導体封止用組成物を提供することを目的とする。   An object of this invention is to provide the composition for optical semiconductor sealing which is excellent in heat resistance etc. and can form the sealing material excellent in moisture permeability.

本発明者は、前記目的を達成するため鋭意研究した結果、エポキシ基を有し、さらにシロキサン骨格中の1つのケイ素原子が2つのアリール基と結合した構造を有するポリシロキサンを含有する組成物を用いると、耐熱性等に優れるとともに、耐透湿性に優れた封止材が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventor has found a composition containing a polysiloxane having an epoxy group and a structure in which one silicon atom in the siloxane skeleton is bonded to two aryl groups. When used, it was found that a sealing material having excellent heat resistance and moisture permeability was obtained, and the present invention was completed.

すなわち、本発明は、エポキシ基を有し、下記式(1)に示す繰り返し構造単位を有するポリシロキサン(A)を40〜95質量%含有することを特徴とする光半導体封止用組成物である。   That is, this invention is an optical semiconductor sealing composition characterized by containing 40-95 mass% of polysiloxane (A) which has an epoxy group and has a repeating structural unit shown to following formula (1). is there.

Figure 2012092172
(式(1)中、Arはアリール基を示す。)
前記光半導体封止用組成物においては、
前記ポリシロキサン(A)中に含まれる前記式(1)に示す繰り返し構造単位の含有割合が、20〜80質量%であることが好ましく、
前記ポリシロキサン(A)のエポキシ当量が100〜10000g/eq.であることが好ましい。
Figure 2012092172
(In the formula (1), Ar represents an aryl group.)
In the optical semiconductor sealing composition,
The content ratio of the repeating structural unit represented by the formula (1) contained in the polysiloxane (A) is preferably 20 to 80% by mass,
The epoxy equivalent of the polysiloxane (A) is 100 to 10,000 g / eq. It is preferable that

また、光半導体封止用組成物は、さらに、前記エポキシ樹脂用硬化剤(B)を含有することが好ましく、
前記エポキシ樹脂用硬化剤(B)が酸無水物であることが好ましい。
Moreover, it is preferable that the composition for optical semiconductor sealing contains the said hardening | curing agent for epoxy resins (B) further,
The epoxy resin curing agent (B) is preferably an acid anhydride.

他の発明は、前記光半導体封止用組成物を用いて光半導体を封止してなる発光素子である。   Another invention is a light emitting device formed by sealing an optical semiconductor using the optical semiconductor sealing composition.

本発明の光半導体封止用組成物を硬化して得られる封止材は、耐熱性等に優れるとともに、耐透湿性に優れる。このため、本発明の光半導体封止用組成物により光半導体を封止して得られる発光素子は、封止材を透過する水蒸気により光半導体が劣化することがなく、長期にわたり安定的に使用することができる。   The encapsulant obtained by curing the composition for optical semiconductor encapsulation of the present invention is excellent in heat resistance and the like, and is excellent in moisture permeability resistance. For this reason, the light-emitting element obtained by encapsulating the optical semiconductor with the composition for encapsulating an optical semiconductor of the present invention can be used stably over a long period without deterioration of the optical semiconductor due to water vapor that passes through the encapsulant. can do.

図1は、LEDを本発明の光半導体封止用組成物で封止してなる発光素子の一具体例を示す模式図である。FIG. 1 is a schematic view showing a specific example of a light-emitting element obtained by encapsulating an LED with the composition for encapsulating an optical semiconductor of the present invention.

本発明の光半導体封止用組成物は、ポリシロキサンなどの樹脂成分を主成分として含み、通常、樹脂成分を硬化させるための硬化剤成分を含有した状態で使用される。
光半導体封止用組成物は、封止するための熱処理による封止材の変色を抑制するため、また、蛍光体を用いる場合には熱処理による蛍光体の析出を抑制するために、通常、できるだけ穏和な条件で熱処理する工夫、たとえば、熱処理時間をできるだけ短くする工夫がなされる。その工夫の一つとして、通常、反応性の高い硬化剤が用いられる。
The composition for optical semiconductor encapsulation of the present invention contains a resin component such as polysiloxane as a main component, and is usually used in a state containing a curing agent component for curing the resin component.
In order to suppress discoloration of the sealing material due to the heat treatment for sealing, and to suppress the precipitation of the phosphor due to the heat treatment when the phosphor is used, the optical semiconductor sealing composition is usually as much as possible. A device for heat treatment under mild conditions, for example, a device for shortening the heat treatment time as much as possible is made. As one of the devices, a highly reactive curing agent is usually used.

このような反応性の高い硬化剤と樹脂成分とが含有される組成物は、貯蔵安定性が良くないことは容易に想到される。
このため、通常、樹脂成分を含む組成物と硬化剤とは別々に準備しておき、封止する直前にこれらを混ぜて使用する。
It is easily conceived that such a composition containing a highly reactive curing agent and a resin component has poor storage stability.
For this reason, a composition containing a resin component and a curing agent are usually prepared separately, and these are mixed and used immediately before sealing.

したがって、本発明の光半導体封止用組成物においても、硬化剤が含有された樹脂組成物として調製されていてもよいが、硬化剤を含まない樹脂組成物として調製しておき、使用時に硬化剤を該組成物に混合することが好ましい。   Therefore, in the composition for optical semiconductor encapsulation of the present invention, it may be prepared as a resin composition containing a curing agent, but it is prepared as a resin composition not containing a curing agent and cured at the time of use. It is preferable to mix an agent into the composition.

<光半導体封止用組成物>
本発明の光半導体封止用組成物は、エポキシ基を有し、下記式(1)に示す繰り返し構造単位を有するポリシロキサン(A)を40〜95質量%含有する。
<Composition for optical semiconductor sealing>
The composition for optical semiconductor sealing of this invention contains 40-95 mass% of polysiloxane (A) which has an epoxy group and has a repeating structural unit shown to following formula (1).

Figure 2012092172
(式(1)中、Arはアリール基を示す。)
Figure 2012092172
(In the formula (1), Ar represents an aryl group.)

ポリシロキサン(A)
ポリシロキサン(A)は、上記式(1)に示す繰り返し構造単位(以下、特定構造単位ともいう)を有する。式(1)中、Arはアリール基を示す。
Polysiloxane (A)
The polysiloxane (A) has a repeating structural unit (hereinafter also referred to as a specific structural unit) represented by the above formula (1). In formula (1), Ar represents an aryl group.

ポリシロキサン(A)が、上記式(1)に示す繰り返し構造単位を有することにより、本発明の光半導体封止用組成物を硬化して得られる封止材は耐透湿性に優れる。
ポリシロキサン(A)が上記式(1)に示す繰り返し構造単位を有すると耐透湿性に優れた封止材が得られる理由は明らかではないが、封止材中に存在するポリシロキサン(A)が有するアリール基同士がスタッキング(stacking)する構造をとりやすいために、封止材中の水蒸気の透過をアリール基により効率的に阻止できるからであると考えられる。
When the polysiloxane (A) has the repeating structural unit represented by the above formula (1), the sealing material obtained by curing the composition for optical semiconductor sealing of the present invention is excellent in moisture permeability resistance.
The reason why a sealing material excellent in moisture permeability can be obtained when the polysiloxane (A) has the repeating structural unit represented by the above formula (1) is not clear, but the polysiloxane (A) present in the sealing material This is considered to be because the aryl group can easily block the permeation of water vapor in the encapsulant because the aryl group in the structure easily stacks.

式(1)中のArが表すアリール基としては、フェニル基、ナフチル基等の芳香族炭化水素基、およびイソシアヌル基等のヘテロ原子(O,S,N)を含む基等を挙げることができる。これらの中で、可視光領域で着色なく高い耐熱性を有する点で、フェニル基、ナフチル基等の芳香族炭化水素基が好ましい。式(1)中の2つのArは、相互に同じアリール基であっても、異なるアリール基であってもよい。   Examples of the aryl group represented by Ar in the formula (1) include aromatic hydrocarbon groups such as phenyl groups and naphthyl groups, and groups containing heteroatoms (O, S, N) such as isocyanur groups. . Among these, an aromatic hydrocarbon group such as a phenyl group or a naphthyl group is preferable in that it has high heat resistance without being colored in the visible light region. Two Ar in the formula (1) may be the same or different aryl groups.

ポリシロキサン(A)中に含まれる前記式(1)に示す繰り返し構造単位の含有割合は、好ましくは20〜80質量%、より好ましくは25〜70質量%、さらに好ましくは30〜60質量%である。前記含有割合が、20質量%より小さいと、耐透湿性が悪化するおそれがあり、80質量%より大きいと、十分な機械的強度を有する膜が形成できないおそれがある。   The content ratio of the repeating structural unit represented by the formula (1) contained in the polysiloxane (A) is preferably 20 to 80% by mass, more preferably 25 to 70% by mass, and further preferably 30 to 60% by mass. is there. If the content is less than 20% by mass, moisture permeability may be deteriorated. If the content is more than 80% by mass, a film having sufficient mechanical strength may not be formed.

ポリシロキサン(A)はエポキシ基を有する。本発明の光半導体封止用組成物においては、ポリシロキサン(A)が有するエポキシ基の開環重合により分子間の架橋が生じ、光半導体封止用組成物が硬化する。   Polysiloxane (A) has an epoxy group. In the composition for optical semiconductor encapsulation of the present invention, cross-linking between molecules occurs by ring-opening polymerization of the epoxy group of polysiloxane (A), and the composition for optical semiconductor encapsulation is cured.

ポリシロキサン(A)のエポキシ当量は、好ましくは100〜5000g/eq.より好ましくは300〜3000g/eq.である。前記エポキシ当量が100g/eq.未満であると得られる硬化膜の透明性の低下を招き、5000g/eq.を超えると硬化不良が発生する傾向がある。   The epoxy equivalent of polysiloxane (A) is preferably 100 to 5000 g / eq. More preferably, 300 to 3000 g / eq. It is. The epoxy equivalent is 100 g / eq. Less than 5000 g / eq., Resulting in a decrease in the transparency of the cured film. If it exceeds, curing failure tends to occur.

ポリシロキサン(A)は、エポキシ基を含む基として下記一般式(2)〜(5)で表される基の少なくとも1つを有することが好ましい。ポリシロキサン(A)がこのような基を有すると、硬化物のmmオーダーでの厚膜成形が可能になる。   The polysiloxane (A) preferably has at least one group represented by the following general formulas (2) to (5) as a group containing an epoxy group. When the polysiloxane (A) has such a group, a thick film can be formed on the mm order of the cured product.

Figure 2012092172
〔一般式(2)中R5はメチレン基または2価の炭素数2〜10の直鎖状アルキレン基または炭素数3〜10の分岐鎖状アルキレン基を示す。〕
Figure 2012092172
[In General Formula (2), R 5 represents a methylene group, a divalent linear alkylene group having 2 to 10 carbon atoms, or a branched alkylene group having 3 to 10 carbon atoms. ]

Figure 2012092172
〔一般式(3)中R6はメチレン基または2価の炭素数2〜10の直鎖状アルキレン基または炭素数3〜10の分岐鎖状アルキレン基を示す。〕
Figure 2012092172
[In the general formula (3), R 6 represents a methylene group, a divalent linear alkylene group having 2 to 10 carbon atoms or a branched alkylene group having 3 to 10 carbon atoms. ]

Figure 2012092172
〔一般式(4)中R7はメチレン基または2価の炭素数2〜10の直鎖状アルキレン基または炭素数3〜10の分岐鎖状アルキレン基を示す。〕
Figure 2012092172
[In the general formula (4), R 7 represents a methylene group, a divalent linear alkylene group having 2 to 10 carbon atoms, or a branched alkylene group having 3 to 10 carbon atoms. ]

Figure 2012092172
〔一般式(5)中R8はメチレン基または2価の炭素数2〜10の直鎖状アルキレン基または炭素数3〜10の分岐鎖状アルキレン基を示す。〕
Figure 2012092172
[In General Formula (5), R 8 represents a methylene group, a divalent linear alkylene group having 2 to 10 carbon atoms, or a branched alkylene group having 3 to 10 carbon atoms. ]

一般式(2)で表される基としては、具体的には、2−(3'、4'―エポキシシクロヘキシル)エチル基等が挙げられる。
一般式(3)で表される基としては、具体的には、3−グリシドキシ基等が挙げられる。
Specific examples of the group represented by the general formula (2) include a 2- (3 ′, 4′-epoxycyclohexyl) ethyl group.
Specific examples of the group represented by the general formula (3) include a 3-glycidoxy group.

一般式(4)で表される基としては、具体的には、3−グリシドキシプロピル基等が挙げられる。
一般式(5)で表される基としては、具体的には、2−(4'−メチル−3'、4'−エポキシシクロへキシル)エチル基等が挙げられる。
Specific examples of the group represented by the general formula (4) include a 3-glycidoxypropyl group.
Specific examples of the group represented by the general formula (5) include a 2- (4′-methyl-3 ′, 4′-epoxycyclohexyl) ethyl group and the like.

ポリシロキサン(A)は、ゲルパーミエーションクロマトグラフィーにより測定したポリスチレン換算の重量平均分子量が100〜10000の範囲にあることが好ましく、500〜5000の範囲にあることがより好ましい。ポリシロキサン(A)の重量平均分子量が前記範囲内にあると、本組成物を用いて光半導体封止用材料を製造する際に取扱いやすく、また本組成物から得られる硬化物は光半導体封止材として十分な材料強度および特性を有する。   The polysiloxane (A) preferably has a polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography in the range of 100 to 10000, and more preferably in the range of 500 to 5000. When the weight average molecular weight of the polysiloxane (A) is within the above range, it is easy to handle when producing an optical semiconductor encapsulating material using the composition, and the cured product obtained from the composition is an optical semiconductor encapsulating material. It has sufficient material strength and properties as a stopper.

ポリシロキサン(A)は、組成物全体の質量に対し40〜95質量%、好ましくは50〜90質量%、より好ましくは55〜85質量%含有される。ポリシロキサン(A)の含有量が前記範囲内にあるとそれを用いた封止材は、特に優れた耐透湿性を有する。   The polysiloxane (A) is contained in an amount of 40 to 95% by mass, preferably 50 to 90% by mass, and more preferably 55 to 85% by mass with respect to the total mass of the composition. When the content of the polysiloxane (A) is within the above range, the sealing material using the polysiloxane (A) has particularly excellent moisture resistance.

ポリシロキサン(A)の製造方法としては、特開平6−9659号公報、特開2007−106798号公報、特開2007−169427号公報および特開2010−059359号公報等に記載された公知の方法、たとえば、シラン化合物を、酸性化合物、塩基性化合物およびチタンアルコキサイドなどの反応性金属触媒の存在下、必要に応じて水を用いて加水分解縮合する方法が挙げられる。   As a method for producing the polysiloxane (A), known methods described in JP-A-6-9659, JP-A-2007-106798, JP-A-2007-169427, JP-A-2010-059359, and the like. For example, a method of hydrolyzing and condensing a silane compound with water as necessary in the presence of a reactive metal catalyst such as an acidic compound, a basic compound and titanium alkoxide can be mentioned.

その他の成分
本発明の光半導体封止用組成物は、前述のとおり、樹脂成分を硬化させるためのエポキシ樹脂用硬化剤(B)を含有していてもよいし、含有していなくてもよい。その他、本発明の光半導体封止用組成物は、本発明の目的が達成できる限り種々の成分を含有することができ、たとえば硬化促進剤、無機粒子、密着助剤、老化防止剤などを含有することができる。また、本発明の光半導体封止用組成物は、さらに蛍光体を含有することができる。蛍光体を含有した光半導体封止用組成物は、波長帯域の広いLEDのLED封止材として使用することができる。
Other components The composition for optical semiconductor encapsulation of the present invention may or may not contain the epoxy resin curing agent (B) for curing the resin component as described above. . In addition, the composition for optical semiconductor encapsulation of the present invention can contain various components as long as the object of the present invention can be achieved, and includes, for example, a curing accelerator, inorganic particles, an adhesion aid, an antiaging agent, and the like. can do. Moreover, the composition for optical semiconductor sealing of this invention can contain a fluorescent substance further. The composition for sealing an optical semiconductor containing a phosphor can be used as an LED sealing material for an LED having a wide wavelength band.

〔エポキシ樹脂用硬化剤(B)〕
エポキシ樹脂用硬化剤(B)は、ポリシロキサン(A)を硬化させる物質である。
エポキシ樹脂用硬化剤(B)としては、酸無水物、2級および3級アミン、金属キレート化合物等を挙げることができる。これら中で、着色なく、優れた耐熱性を有する封止材を得られる点で、特に酸無水物が好ましい。
[Curing agent for epoxy resin (B)]
The epoxy resin curing agent (B) is a substance that cures the polysiloxane (A).
Examples of the epoxy resin curing agent (B) include acid anhydrides, secondary and tertiary amines, and metal chelate compounds. Among these, acid anhydrides are particularly preferable in that a sealing material having excellent heat resistance can be obtained without being colored.

(酸無水物)
酸無水物としては、特に限定されないが、脂環式カルボン酸無水物などの脂環式酸無水物が好ましい。
前記脂環式酸無水物としては、例えば、下記式(6)〜(16)で表される化合物
(Acid anhydride)
The acid anhydride is not particularly limited, but alicyclic acid anhydrides such as alicyclic carboxylic acid anhydrides are preferred.
Examples of the alicyclic acid anhydride include compounds represented by the following formulas (6) to (16).

Figure 2012092172
や、4−メチルテトラヒドロフタル酸無水物、メチルナジック酸無水物、ドデセニルコハク酸無水物のほか、α−テルピネン、アロオシメン等の共役二重結合を有する脂環式化合物と無水マレイン酸とのディールス・アルダー反応生成物やこれらの水素添加物等を挙げることができる。なお、前記ディールス・アルダー反応生成物やこれらの水素添加物としては、任意の構造異性体および任意の幾何異性体を使用することができる。
Figure 2012092172
And Diels-Alder of maleic anhydride and alicyclic compounds having conjugated double bonds such as α-terpinene and alloocimene in addition to 4-methyltetrahydrophthalic anhydride, methylnadic acid anhydride, dodecenyl succinic anhydride Reaction products and hydrogenated products thereof can be exemplified. In addition, arbitrary structural isomers and arbitrary geometric isomers can be used as the Diels-Alder reaction product and hydrogenated products thereof.

また、シロキサン変性した酸無水物を使用することもできる。このような酸無水物は、例えば、5−ノルボルネン−2,3−ジカルボン酸無水物等の一分子中に酸無水物と二重結合を含有する化合物とヒドリド基を含有するポリシロキサンとのヒドロシリレーションにより得られる。なお、前記ヒドロシリレーション反応生成物としては、任意の構造異性体および任意の幾何異性体を使用することができる。   Siloxane-modified acid anhydrides can also be used. Such an acid anhydride is, for example, a hydrolyzate of a compound containing an acid anhydride and a double bond in one molecule such as 5-norbornene-2,3-dicarboxylic acid anhydride and a polysiloxane containing a hydride group. Obtained by silylation. As the hydrosilylation reaction product, any structural isomer and any geometric isomer can be used.

また、前記脂環式酸無水物は、硬化反応を実質的に妨げない限り、適宜に化学的に変性させて使用することもできる。
これらの脂環式酸無水物のうち、組成物の流動性や透明性の点から、式(6)、式(8)、式(10)、式(11)、式(12)および式(16)で表される化合物等が好ましい。特に好ましくは式(6)、式(8)、式(11)および式(16)で表される化合物である。
Moreover, the said alicyclic acid anhydride can also be chemically modified | denatured and used suitably, unless the hardening reaction is prevented substantially.
Among these alicyclic acid anhydrides, from the viewpoint of fluidity and transparency of the composition, the formula (6), the formula (8), the formula (10), the formula (11), the formula (12) and the formula ( The compound represented by 16) is preferred. Particularly preferred are compounds represented by formula (6), formula (8), formula (11) and formula (16).

本発明において、脂環式酸無水物は、単独でまたは2種以上を混合して使用することができる。
また、酸無水物として、脂肪族酸無水物や芳香族酸無水物を1種以上使用することもできる。これらは脂環式酸無水物と併用することが好ましい。
In this invention, an alicyclic acid anhydride can be used individually or in mixture of 2 or more types.
In addition, one or more aliphatic acid anhydrides or aromatic acid anhydrides can be used as the acid anhydride. These are preferably used in combination with an alicyclic acid anhydride.

前記脂肪族酸無水物および芳香族酸無水物も、硬化反応を実質的に妨げない限り、適宜に化学的に変性させて使用することができる。
脂肪族酸無水物および芳香族酸無水物の合計使用割合は、これらと脂環式酸無水物との合計量に対して、好ましくは50質量%以下、さらに好ましくは30質量%以下である。
The aliphatic acid anhydride and aromatic acid anhydride can also be used after being appropriately chemically modified as long as the curing reaction is not substantially hindered.
The total use ratio of the aliphatic acid anhydride and the aromatic acid anhydride is preferably 50% by mass or less, more preferably 30% by mass or less, based on the total amount of these and the alicyclic acid anhydride.

エポキシ樹脂用硬化剤(B)の含有量は、組成物全体の質量に対して、通常0.01〜10質量%、好ましくは0.05〜5質量%、さらに好ましくは0.1〜1質量%である。   Content of the hardening | curing agent for epoxy resins (B) is 0.01-10 mass% normally with respect to the mass of the whole composition, Preferably it is 0.05-5 mass%, More preferably, it is 0.1-1 mass. %.

エポキシ樹脂用硬化剤(B)として酸無水物を使用する場合、その使用量は、ポリシロキサン(A)中のエポキシ基1モルに対する酸無水物基の当量比(酸無水物当量/エポキシ当量)として0.2〜1.7、好ましくは0.3〜1.5、さらに好ましくは0.5〜1.3、もっとも好ましくは0.6〜0.8である。この場合、該当量比が0.2未満でも1.7を超えても、得られる硬化物のガラス転移点(Tg)の低下や着色等の不都合を生じるおそれがある。   When an acid anhydride is used as the epoxy resin curing agent (B), the amount used is equivalent ratio of acid anhydride group to 1 mol of epoxy group in polysiloxane (A) (acid anhydride equivalent / epoxy equivalent). 0.2 to 1.7, preferably 0.3 to 1.5, more preferably 0.5 to 1.3, and most preferably 0.6 to 0.8. In this case, even if the corresponding amount ratio is less than 0.2 or exceeds 1.7, there is a possibility that problems such as a decrease in the glass transition point (Tg) and coloring of the obtained cured product may occur.

〔硬化促進剤〕
硬化促進剤は、ポリシロキサン(A)とエポキシ樹脂用硬化剤(B)との硬化反応を促進する成分である。
[Curing accelerator]
The curing accelerator is a component that accelerates the curing reaction between the polysiloxane (A) and the epoxy resin curing agent (B).

このような硬化促進剤としては、特開2010−13619号公報に記載の化合物などを用いることができる。例えば、
ベンジルジメチルアミン、2,4,6−トリス(ジメチルアミノメチル)フェノール、シクロヘキシルジメチルアミン、トリエタノールアミンの如き3級アミン;UCAT410(サンアプロ株式会社)の如き特殊アミン;
2−メチルイミダゾール、2−n−ヘプチルイミダゾールの如きイミダゾール類;
ジフェニルフォスフィン、トリフェニルフォスフィン、亜リン酸トリフェニルの如き有機リン化合物;
ベンジルトリフェニルフォスフォニウムクロライド、テトラ−n−ブチルフォスフォニウムブロマイド、テトラ−n−ブチルホスフォニウムテトラフルオロボレートの如き4級フォスフォニウム塩;
1,8−ジアザビシクロ[5.4.0]ウンデセン−7やその有機酸塩の如きジアザビシクロアルケン;
オクチル酸亜鉛、オクチル酸錫、アルミニウムアセチルアセトン錯体の如き有機金属化合物;
テトラエチルアンモニウムブロマイド、テトラ−n−ブチルアンモニウムブロマイド、UCAT18X(サンアプロ株式会社)の如き4級アンモニウム塩;
三フッ化ホウ素、ホウ酸トリフェニルの如きホウ素化合物;塩化亜鉛、塩化第二錫の如き金属ハロゲン化合物、
ジシアンジアミドやアミンとエポキシ樹脂との付加物等のアミン付加型促進剤等の高融点分散型潜在性硬化促進剤;
前記イミダゾール類、有機リン化合物や4級フォスフォニウム塩等の硬化促進剤の表面をポリマーで被覆したマイクロカプセル型潜在性硬化促進剤;
アミン塩型潜在性硬化剤促進剤;
ルイス酸塩、ブレンステッド酸塩等の高温解離型の熱カチオン重合型潜在性硬化促進剤等の潜在性硬化促進剤;
特開2008−192774号公報に記載の感放射線性酸発生剤;
等を挙げることができる。
As such a curing accelerator, compounds described in JP 2010-13619 A and the like can be used. For example,
Tertiary amines such as benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, cyclohexyldimethylamine, triethanolamine; special amines such as UCAT410 (San Apro Corporation);
Imidazoles such as 2-methylimidazole and 2-n-heptylimidazole;
Organophosphorus compounds such as diphenylphosphine, triphenylphosphine, triphenyl phosphite;
Quaternary phosphonium salts such as benzyltriphenylphosphonium chloride, tetra-n-butylphosphonium bromide, tetra-n-butylphosphonium tetrafluoroborate;
Diazabicycloalkenes such as 1,8-diazabicyclo [5.4.0] undecene-7 and organic acid salts thereof;
Organometallic compounds such as zinc octylate, tin octylate, aluminum acetylacetone complex;
Quaternary ammonium salts such as tetraethylammonium bromide, tetra-n-butylammonium bromide, UCAT18X (San Apro Co., Ltd.);
Boron compounds such as boron trifluoride and triphenyl borate; metal halides such as zinc chloride and stannic chloride,
High melting point dispersion type latent curing accelerators such as amine addition accelerators such as dicyandiamide and adducts of amine and epoxy resin;
A microcapsule type latent curing accelerator in which the surface of a curing accelerator such as imidazoles, organophosphorus compounds and quaternary phosphonium salts is coated with a polymer;
An amine salt type latent curing agent accelerator;
Latent curing accelerators such as high temperature dissociation type thermal cationic polymerization type latent curing accelerators such as Lewis acid salts and Bronsted acid salts;
A radiation-sensitive acid generator described in JP-A-2008-192774;
Etc.

これらの硬化促進剤のうち、イミダゾール類、4級フォスフォニウム塩、ジアザビシクロアルケン、有機金属化合物および4級アンモニウム塩が、無色透明で長時間加熱しても変色し難い硬化物が得られる点で好ましい。   Of these curing accelerators, imidazoles, quaternary phosphonium salts, diazabicycloalkenes, organometallic compounds, and quaternary ammonium salts are colorless and transparent, and a cured product that is difficult to discolor even when heated for a long time is obtained. This is preferable.

前記硬化促進剤は、単独でまたは2種以上を混合して使用することができる。
本発明の光半導体封止用組成物において、硬化促進剤の使用量は、ポリシロキサン(A)100質量部に対して0.005〜6質量部、好ましくは0.01〜5質量部、さらに好ましくは0.05〜4質量部である。硬化促進剤の使用量が0.005質量部未満であると、硬化反応の促進効果が低下する傾向があり、一方6質量部を超えると、得られる硬化物に着色などの不都合を生じるおそれがある。
The said hardening accelerator can be used individually or in mixture of 2 or more types.
In the composition for optical semiconductor encapsulation of the present invention, the use amount of the curing accelerator is 0.005 to 6 parts by mass, preferably 0.01 to 5 parts by mass, further based on 100 parts by mass of the polysiloxane (A). Preferably it is 0.05-4 mass parts. When the amount of the curing accelerator used is less than 0.005 parts by mass, the effect of promoting the curing reaction tends to be reduced. On the other hand, when the amount exceeds 6 parts by mass, the resulting cured product may be inconvenient such as coloring. is there.

[無機粒子]
無機粒子としては、特開2010−13619号公報に記載のシリカ粒子等が挙げられる。本発明の光半導体封止用組成物が無機粒子としてシリカ粒子を含有すると、硬化膜の強度および硬度の向上の点で好ましい。
[Inorganic particles]
Examples of the inorganic particles include silica particles described in JP2010-13619A. When the composition for optical semiconductor encapsulation of the present invention contains silica particles as inorganic particles, it is preferable in terms of improving the strength and hardness of the cured film.

無機粒子としてシリカ粒子を配合する場合は、粉体、またはイソプロピルアルコールなどの極性溶媒やトルエンなどの非極性溶媒に分散した溶媒系のゾルもしくはコロイドなどの形態で使用することもできる。溶媒系のゾルもしくはコロイドの場合、配合後に溶媒溜去すればよい。シリカ粒子の分散性を向上させるために表面処理して用いてもよい。   When silica particles are blended as inorganic particles, they can also be used in the form of powder or a solvent-based sol or colloid dispersed in a polar solvent such as isopropyl alcohol or a nonpolar solvent such as toluene. In the case of a solvent-based sol or colloid, the solvent may be removed after compounding. In order to improve the dispersibility of the silica particles, a surface treatment may be performed.

無機粒子の使用量は、ポリシロキサン(A)100質量部に対して、通常0質量部を超えて80質量部以下、好ましくは0.1質量部以上50質量部以下である。   The usage-amount of an inorganic particle is normally 80 mass parts or less exceeding 0 mass part with respect to 100 mass parts of polysiloxane (A), Preferably it is 0.1 to 50 mass parts.

[密着助剤]
本発明の光半導体封止用組成物は、密着助剤を、特に、封止材と発光素子のリフレクターや電極との密着性を向上させる目的で含有する。
[Adhesion aid]
The composition for optical semiconductor encapsulation of the present invention contains an adhesion assistant, particularly for the purpose of improving the adhesion between the encapsulant and the reflector or electrode of the light emitting device.

密着助剤としては、特開2010−13619号公報に記載の化合物などを用いることができる。たとえば、次のような物質を挙げることができる。
分子中にエポキシ基を少なくとも2個含有する分子量100以上1500以下の有機化合物、たとえばエポキシシクロアルキル基等の脂環式エポキシ基含有化合物またはグリシドキシアルキル基を有する化合物の如きエポキシ基含有有機化合物;
下記式(17)で表されるエポキシ基含有アルコキシシランと、下記式(18)
As the adhesion assistant, compounds described in JP 2010-13619 A and the like can be used. For example, the following substances can be mentioned.
An organic compound containing at least two epoxy groups in the molecule and having a molecular weight of 100 to 1500, such as an alicyclic epoxy group-containing compound such as an epoxycycloalkyl group or a compound having a glycidoxyalkyl group ;
An epoxy group-containing alkoxysilane represented by the following formula (17) and the following formula (18)

Figure 2012092172
〔式(17)中、REはエポキシ基を含有する有機基、R1およびR3はそれぞれ独立に非置換または置換の1価の炭化水素基を示し、mは1または2、nは2または3、かつm+n≦4である。〕
Figure 2012092172
[In formula (17), R E represents an organic group containing an epoxy group, R 1 and R 3 each independently represents an unsubstituted or substituted monovalent hydrocarbon group, m is 1 or 2, and n is 2 Or 3 and m + n ≦ 4. ]

Figure 2012092172
(式(18)中、R5およびR6はそれぞれ独立に非置換または置換の1価の炭化水素基を示し、pは0〜2の整数である。)
で表されるアルコキシシランとの加水分解縮合物や、シラノール基を含有しないエポキシ基含有ポリジメチルシロキサンの如き、ポリシロキサン(A)以外のエポキシ基含有ポリシロキサン; 1,4−ビス{[(3−エチルオキセタン−3−イル)メトキシ]メチル}ベンゼン(商品名「OXT−121」、東亜合成社製)、3−エチル−3−{[(3−エチルオキセタン−3−イル)メトキシ]メチル}オキセタン(商品名「OXT−221」、東亜合成社製)、ビス〔(3−エチル−3−オキセタニルメトキシ)メチル−フェニル〕エーテル、ビス〔(3−エチル−3−オキセタニルメトキシ)メチル−フェニル〕プロパンの如きオキセタン化合物;
3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシランの如きチオール化合物;
イソシアヌル酸トリス(3−トリメトキシシリル−n−プロピル)、イソシアヌル酸トリス(2−ヒドロキシエチル)、イソシアヌル酸トリグリシジルの如きイソシアヌル環構造を有する化合物;
上述した式(18)で表されるアルコキシシランやその加水分解物、またはその縮合物の如きアルコキシシランやその加水分解物または縮合物;が挙げられる。
Figure 2012092172
(In formula (18), R 5 and R 6 each independently represents an unsubstituted or substituted monovalent hydrocarbon group, and p is an integer of 0 to 2.)
An epoxy group-containing polysiloxane other than polysiloxane (A), such as a hydrolysis-condensation product with an alkoxysilane represented by formula (1) or an epoxy group-containing polydimethylsiloxane not containing a silanol group; 1,4-bis {[(3 -Ethyloxetane-3-yl) methoxy] methyl} benzene (trade name “OXT-121”, manufactured by Toa Gosei Co., Ltd.), 3-ethyl-3-{[((3-ethyloxetane-3-yl) methoxy] methyl} Oxetane (trade name “OXT-221”, manufactured by Toa Gosei Co., Ltd.), bis [(3-ethyl-3-oxetanylmethoxy) methyl-phenyl] ether, bis [(3-ethyl-3-oxetanylmethoxy) methyl-phenyl] Oxetane compounds such as propane;
Thiol compounds such as 3-mercaptopropyltrimethoxysilane and 3-mercaptopropyltriethoxysilane;
Compounds having an isocyanuric ring structure such as isocyanuric acid tris (3-trimethoxysilyl-n-propyl), isocyanuric acid tris (2-hydroxyethyl), isocyanuric acid triglycidyl;
And alkoxysilanes and hydrolysates or condensates thereof, such as alkoxysilanes represented by the formula (18) and hydrolysates or condensates thereof.

密着助剤は、ポリシロキサン(A)の合成時に添加しても良いし、硬化体を形成する際に添加しても良い。   The adhesion assistant may be added at the time of synthesizing the polysiloxane (A) or may be added at the time of forming the cured body.

[その他添加剤]
その他添加剤としては、酸化防止剤および光安定剤等を挙げることができる。
[Other additives]
Other additives include antioxidants and light stabilizers.

前記酸化防止剤は、封止材の耐熱性向上の点から用いられる。酸化防止剤としては、好ましくはヒンダードフェノール系酸化防止剤を、(A)成分100質量部に対して、0.1〜5質量部で配合することができる。酸化防止剤としては、特開2010−13619号公報に記載の化合物などを用いることができる。   The said antioxidant is used from the point of the heat resistance improvement of a sealing material. As an antioxidant, Preferably a hindered phenolic antioxidant can be mix | blended with 0.1-5 mass parts with respect to 100 mass parts of (A) component. As the antioxidant, compounds described in JP 2010-13619 A and the like can be used.

前記光安定剤は、封止材の耐光性向上の点で用いられる。光安定剤はポリシロキサン(A)100質量部に対して、0.1〜5質量部含むことができる。光安定剤としては、特開2010−13619号公報に記載の化合物などを用いることができる。   The light stabilizer is used in terms of improving the light resistance of the sealing material. The light stabilizer can be contained in an amount of 0.1 to 5 parts by mass with respect to 100 parts by mass of the polysiloxane (A). As the light stabilizer, compounds described in JP 2010-13619 A and the like can be used.

<封止材>
本発明の光半導体封止用組成物を硬化させることにより封止材が得られる。光半導体封止用組成物を硬化させる方法は、例えば、光半導体封止用組成物を基板上に塗布した後、100〜180℃で3〜13時間加熱する方法などが挙げられる。なお、上述のとおり、光半導体封止用組成物に硬化剤(B)を用いる場合、硬化させる直前に光半導体封止用組成物を調製し、その後、光半導体封止用組成物を基板上に塗布、加熱処理することにより硬化することができる。
<Encapsulant>
A sealing material is obtained by curing the composition for optical semiconductor encapsulation of the present invention. Examples of the method for curing the composition for optical semiconductor encapsulation include a method in which the composition for optical semiconductor encapsulation is applied on a substrate and then heated at 100 to 180 ° C. for 3 to 13 hours. In addition, as above-mentioned, when using a hardening | curing agent (B) for the composition for optical semiconductor sealing, the composition for optical semiconductor sealing is prepared just before making it harden | cure, Then, the composition for optical semiconductor sealing is on a board | substrate. It can be cured by coating and heat treatment.

前述のとおり、本発明の光半導体封止用組成物を硬化して得られる封止材は、耐熱性等に優れるとともに、耐透湿性に優れる。   As described above, the encapsulant obtained by curing the composition for optical semiconductor encapsulation of the present invention is excellent in heat resistance and the like and excellent in moisture permeability.

<発光素子>
本発明に係る発光素子は、前記光半導体封止用組成物を用いて光半導体を封止することにより得られる。前記組成物を用いて光半導体を封止する際、前記組成物は公知の方法により硬化させることができる。たとえば、本組成物を塗布した後、100〜180℃で3〜13時間加熱することによって硬化させ、封止材である硬化体を形成させることができる。硬化は段階的に昇温を行う過程(ステップキュア)で行ってもよい。
<Light emitting element>
The light emitting element according to the present invention is obtained by sealing an optical semiconductor using the optical semiconductor sealing composition. When sealing an optical semiconductor using the composition, the composition can be cured by a known method. For example, after apply | coating this composition, it can be made to harden | cure by heating at 100-180 degreeC for 3 to 13 hours, and the hardening body which is a sealing material can be formed. Curing may be performed in a process of stepwise temperature rise (step cure).

光半導体としては、LED(Light Emitting Diode、発光ダイオード)およびLD(Laser Diode)等が挙げられる。
図1は、光半導体を本発明の光半導体封止用組成物で封止して得られる発光素子、すなわち本発明に係る発光素子の一具体例である発光素子1の模式図である。発光素子1は、電極6と、電極6上に設置され、ワイヤー7により電極6と電気的に接続された光半導体2と、光半導体2を収容するように配置されたリフレクター3と、リフレクター3内に充填され、光半導体2を封止する封止材4を有する。封止材4は、本発明の光半導体封止用組成物を硬化させて得られる。封止材4中には、シリカ粒子5が分散されている。
Examples of the optical semiconductor include an LED (Light Emitting Diode) and an LD (Laser Diode).
FIG. 1 is a schematic view of a light emitting device obtained by encapsulating an optical semiconductor with the composition for encapsulating an optical semiconductor of the present invention, that is, a light emitting device 1 as a specific example of the light emitting device according to the present invention. The light-emitting element 1 includes an electrode 6, an optical semiconductor 2 installed on the electrode 6 and electrically connected to the electrode 6 by a wire 7, a reflector 3 disposed so as to receive the optical semiconductor 2, and a reflector 3. It has the sealing material 4 with which it fills in and seals the optical semiconductor 2. The sealing material 4 is obtained by curing the optical semiconductor sealing composition of the present invention. Silica particles 5 are dispersed in the sealing material 4.

前述のとおり、本発明の光半導体封止用組成物を硬化して得られる封止材は、耐熱性等に優れるとともに、耐透湿性に優れる。このため、本発明の光半導体封止用組成物により光半導体を封止して得られる発光素子は、封止材を透過する水蒸気により光半導体が劣化することがなく、長期にわたり安定的に使用することができる。   As described above, the encapsulant obtained by curing the composition for optical semiconductor encapsulation of the present invention is excellent in heat resistance and the like and excellent in moisture permeability. For this reason, the light-emitting element obtained by encapsulating the optical semiconductor with the composition for encapsulating an optical semiconductor of the present invention can be used stably over a long period without deterioration of the optical semiconductor due to water vapor that passes through the sealing material. can do.

1.ポリシロキサンの合成
ポリシロキサンの重量平均分子量、エポキシ当量の測定は下記方法にて行った。
1−1.重量平均分子量(Mw)
重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)により下記条件で測定し、ポリスチレン換算値として求めた。
1. Synthesis of polysiloxane The weight average molecular weight and epoxy equivalent of polysiloxane were measured by the following methods.
1-1. Weight average molecular weight (Mw)
The weight average molecular weight (Mw) was measured by gel permeation chromatography (GPC) under the following conditions and determined as a polystyrene equivalent value.

装置:HLC−8120C(東ソー社製)
カラム:TSK−gel MultiporeHXL−M(東ソー社製)
溶離液:THF、流量0.5mL/min、負荷量5.0%、100μL
1−2.エポキシ当量
JIS C2105に準拠し、得られたポリシロキサンのエポキシ当量を測定した。
1−3.特定構造単位の含有割合
2H NMRにより特定構造単位の含有割合を測定した。
Apparatus: HLC-8120C (manufactured by Tosoh Corporation)
Column: TSK-gel Multipore HXL-M (manufactured by Tosoh Corporation)
Eluent: THF, flow rate 0.5 mL / min, load 5.0%, 100 μL
1-2. Epoxy equivalent Based on JIS C2105, the epoxy equivalent of the obtained polysiloxane was measured.
1-3. Content ratio of specific structural units
The content ratio of the specific structural unit was measured by 2 H NMR.

[合成例1]ポリシロキサン(A1)の合成
反応容器に、ジフェニルジメトキシシラン(a1−1)20部、2−(3',4'−エポキシシクロヘキシル)エチルトリメトキシシラン(a2−1)8部、ジメチルジメトキシシラン(a3−1)8部およびジアザビシクロウンデセン3部を混合した後、この混合液を50℃で8時間加熱した。
[Synthesis Example 1] Synthesis of polysiloxane (A1) In a reaction vessel, 20 parts of diphenyldimethoxysilane (a1-1), 8 parts of 2- (3 ′, 4′-epoxycyclohexyl) ethyltrimethoxysilane (a2-1) After mixing 8 parts of dimethyldimethoxysilane (a3-1) and 3 parts of diazabicycloundecene, the mixture was heated at 50 ° C. for 8 hours.

加熱後の混合液に、メチルイソブチルケトン75部、メタノール25部および水25部を添加し、水層および有機層からなる2層液を得た。この2層液を25℃で1時間攪拌した後、6%シュウ酸水溶液30部を加えて25で1時間攪拌した。攪拌後、2層液の有機層を取り出し、この有機層を水で3回洗浄した。洗浄後、この有機層からメチルイソブチルケトン、メタノール、エタノールおよび水を留去して、ポリシロキサン(A1)を得た。このポリシロキサンは、Mwが1000、エポキシ当量が900、特定構造単位の含有割合が55質量%であった。   To the mixed liquid after heating, 75 parts of methyl isobutyl ketone, 25 parts of methanol and 25 parts of water were added to obtain a two-layer liquid comprising an aqueous layer and an organic layer. After stirring the two-layer solution at 25 ° C. for 1 hour, 30 parts of a 6% oxalic acid aqueous solution was added and stirred at 25 for 1 hour. After stirring, the organic layer of the two-layer liquid was taken out, and this organic layer was washed with water three times. After washing, methyl isobutyl ketone, methanol, ethanol and water were distilled off from this organic layer to obtain polysiloxane (A1). This polysiloxane had an Mw of 1000, an epoxy equivalent of 900, and a specific structural unit content of 55% by mass.

[合成例2〜10]ポリシロキサン(A2)〜(A7)および(AR1)〜(AR3)の合成
下記表1に示す化合物を用いた以外は、合成例1と同様の手法にて、ポリシロキサン(A2)〜(A7)および(AR1)〜(AR3)を得た。なお、表1中の化合物の詳細については以下のとおりである。また、これらポリシロキサンの、Mw、エポキシ当量および特定構造の含有割合は、表1中に付記する。
[Synthesis Examples 2 to 10] Synthesis of Polysiloxanes (A2) to (A7) and (AR1) to (AR3) Polysiloxanes were synthesized in the same manner as in Synthesis Example 1 except that the compounds shown in Table 1 below were used. (A2) to (A7) and (AR1) to (AR3) were obtained. The details of the compounds in Table 1 are as follows. Further, the Mw, epoxy equivalent and content ratio of the specific structure of these polysiloxanes are appended in Table 1.

a1−1:ジフェニルジメトキシシラン
a1−2:ジフェニルシランジオール
a2−1:2−(3',4'−エポキシシクロヘキシル)エチルトリメトキシシラン
a3−1:ジメチルジメトキシシラン
a3−2:シクロヘキシルメチルジメトキシシラン
a3−3:フェニルトリメトキシシラン
a3−4:ヒドロキシ末端ポリジメチルシロキサン(モメンティブ株式会社製、商
品名「XC96−723」)
a3−5:ビニルトリメトキシシラン
a1-1: Diphenyldimethoxysilane a1-2: Diphenylsilanediol a2-1: 2- (3 ′, 4′-epoxycyclohexyl) ethyltrimethoxysilane a3-1: Dimethyldimethoxysilane a3-2: Cyclohexylmethyldimethoxysilane a3 -3: Phenyltrimethoxysilane a3-4: Hydroxy-terminated polydimethylsiloxane (trade name “XC96-723” manufactured by Momentive Co., Ltd.)
a3-5: Vinyltrimethoxysilane

Figure 2012092172
[合成例11]ビス(ジメチルシリル)ジフェニルシロキサン(C2)の合成
反応容器に、ジフェニルジメトキシシラン(a1−1)240部、1,1、3,3−テトラメチルジシロキサン134部およびトリフルオロメタンスルホン酸0.74部を25℃で混合した。混合液に酢酸360部を加え、混合液を50℃で3時間攪拌した。
Figure 2012092172
[Synthesis Example 11] Synthesis of bis (dimethylsilyl) diphenylsiloxane (C2) In a reaction vessel, 240 parts of diphenyldimethoxysilane (a1-1), 134 parts of 1,1,3,3-tetramethyldisiloxane and trifluoromethanesulfone 0.74 parts of acid was mixed at 25 ° C. 360 parts of acetic acid was added to the mixture, and the mixture was stirred at 50 ° C. for 3 hours.

加熱後の溶液を室温まで冷却し、トルエン500部を添加した。この溶液を水で3回洗浄した。洗浄後の有機層をディーンスターク付きの反応容器に移し、110℃で加熱した。反応溶液を減圧留去することで、ビス(ジメチルシリル)ジフェニルシロキサン(C2)を得た。   The heated solution was cooled to room temperature, and 500 parts of toluene was added. This solution was washed three times with water. The organic layer after washing was transferred to a reaction vessel equipped with a Dean Stark and heated at 110 ° C. The reaction solution was distilled off under reduced pressure to obtain bis (dimethylsilyl) diphenylsiloxane (C2).

2.光半導体封止用組成物の調製
[実施例1〜9および比較例1〜3]
下記表2に示す成分を、表2に示す割合で混合することにより、実施例1〜9および比較例1〜3の光半導体封止用組成物を調製した。なお、エポキシ樹脂用硬化剤(B1〜B2)およびその他成分(C1〜C2)の詳細は以下のとおりである。
B1:ヘキサヒドロ無水フタル酸およびメチルヘキサヒドロ無水フタル酸の混合物(商品名「MH−700G」、新日本理科株式会社製)。
B2:3,4−エポキシシクロヘキセニルメチル−3’、4’−エポキシシクロヘキセンカルボキシレート(商品名「セロキサイド2021P」、ダイセル化学株式会社製)。
C1:白金(0)ジビニルテトラメチルジシロキサンを0.3重量%含有するトルエン溶液
C2:ビス(ジメチルシリル)ジフェニルシロキサン
2. Preparation of composition for optical semiconductor encapsulation [Examples 1 to 9 and Comparative Examples 1 to 3]
By mixing the components shown in Table 2 in the proportions shown in Table 2, compositions for optical semiconductor encapsulation of Examples 1 to 9 and Comparative Examples 1 to 3 were prepared. In addition, the detail of the hardening | curing agent for epoxy resins (B1-B2) and other components (C1-C2) is as follows.
B1: Mixture of hexahydrophthalic anhydride and methylhexahydrophthalic anhydride (trade name “MH-700G”, manufactured by Shin Nippon Science Co., Ltd.).
B2: 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate (trade name “Celoxide 2021P”, manufactured by Daicel Chemical Industries, Ltd.).
C1: Toluene solution containing 0.3% by weight of platinum (0) divinyltetramethyldisiloxane C2: Bis (dimethylsilyl) diphenylsiloxane

Figure 2012092172
3.光半導体封止用組成物の評価
上記『2.光半導体封止用組成物の調製』で得た実施例1〜9および比較例1〜3の光半導体封止用組成物について下記3−1〜3−5の評価を行った。結果を上記表3に示す。
Figure 2012092172
3. Evaluation of composition for optical semiconductor sealing [2. Evaluation of the following 3-1 to 3-5 was performed about the composition for optical semiconductor sealing of Examples 1-9 and Comparative Examples 1-3 obtained by preparation of the composition for optical semiconductor sealing. The results are shown in Table 3 above.

3−1.耐透湿性
光半導体封止用組成物を剥離フィルム上に塗布し、塗膜を100℃で1時間、次いで、150℃で5時間加熱した。次いで、前記剥離フィルムを塗膜から剥離して、膜厚200μmの膜(耐透湿性評価用サンプル)を得た。
3-1. Moisture permeability resistance The composition for optical semiconductor sealing was apply | coated on the peeling film, and the coating film was heated at 100 degreeC for 1 hour, and then at 150 degreeC for 5 hours. Next, the release film was peeled off from the coating film to obtain a 200 μm-thick film (a sample for moisture permeability evaluation).

前記耐透湿性評価用サンプルの水蒸気透過率を、MOCON法に準じ、水蒸気透過率測定装置(商品名「PERMATRAN−W 3/31」、MOCON社製)にて測定した。以下の評価基準で耐透湿性を評価した。
A:水蒸気透過率が50g/m2/day未満。
B:水蒸気透過率が50〜100g/m2/day。
C:水蒸気透過率が100g/m2/dayより大きい。
The water vapor permeability of the moisture permeation resistance evaluation sample was measured with a water vapor permeability measuring device (trade name “PERMATRAN-W 3/31”, manufactured by MOCON) according to the MOCON method. The moisture permeability resistance was evaluated according to the following evaluation criteria.
A: Water vapor transmission rate is less than 50 g / m 2 / day.
B: Water vapor transmission rate is 50 to 100 g / m 2 / day.
C: Water vapor transmission rate is greater than 100 g / m 2 / day.

3−2.耐熱性
光半導体封止用組成物を乾燥膜厚が1mmになるように石英ガラス上に塗布した後、100℃で1時間乾燥して硬化させ、次いで150℃で5時間乾燥して硬化させて耐熱性評価用サンプルを作製した。この耐熱性評価用サンプルを150℃で500時間保管し、保管後の硬化体の外観を目視で観察し、耐熱性を評価した。なお、評価基準は以下のとおりである。
A:色変化なし
B:色がわずかに変色
C:はっきりと黄色化した
3-2. Heat resistance After applying the composition for encapsulating an optical semiconductor on quartz glass so that the dry film thickness becomes 1 mm, it is dried and cured at 100 ° C. for 1 hour, and then dried and cured at 150 ° C. for 5 hours. A sample for heat resistance evaluation was prepared. This sample for heat resistance evaluation was stored at 150 ° C. for 500 hours, and the appearance of the cured body after storage was visually observed to evaluate the heat resistance. The evaluation criteria are as follows.
A: No color change B: Slightly discolored C: Clear yellow

3−3.剥離耐性
光半導体封止用組成物をLEDパッケージ(表面実装型、トップビュータイプ、図1の光半導体2、電極6、ワイヤー7およびリフレクター3により構成される部分)中に注入し、100℃で1時間乾燥して硬化させ、次いで150℃で5時間乾燥して硬化させて硬化体サンプルを作製した。得られた硬化体サンプルを恒温恒湿槽(エスペック製PL−3KP)中、85℃85%RH下で5時間保管した後、卓上はんだリフロー装置(千住金属工業株式会社製STR−2010)を用いて260℃、10秒間の加熱処理を2回行った。光学顕微鏡でリフロー処理後のパッケージ内の硬化体とパッケージ樹脂との間の剥離を観察した。各光半導体封止用組成物に対し10個ずつ硬化体サンプルを作製し、それぞれのサンプルに対して同様の観察を行い、剥離耐性を下記基準で評価した。
A:5時間保管後ですべてのサンプルに剥離発生なし
B:5時間保管後でサンプル10個中剥離発生1〜2個
C:5時間保管後でサンプル10個中剥離発生3個以上
3-3. Peeling resistance An optical semiconductor sealing composition is injected into an LED package (surface-mounting type, top-view type, part constituted by the optical semiconductor 2, the electrode 6, the wire 7 and the reflector 3 in FIG. 1) at 100 ° C. It was dried and cured for 1 hour, and then dried and cured at 150 ° C. for 5 hours to prepare a cured body sample. The obtained cured body sample was stored in a constant temperature and humidity chamber (Espec SP-3KP) at 85 ° C. and 85% RH for 5 hours, and then a tabletop solder reflow apparatus (STR-2010 manufactured by Senju Metal Industry Co., Ltd.) was used. The heat treatment was performed twice at 260 ° C. for 10 seconds. Separation between the cured product in the package after reflow treatment and the package resin was observed with an optical microscope. Ten cured samples were prepared for each composition for optical semiconductor encapsulation, the same observation was performed on each sample, and the peel resistance was evaluated according to the following criteria.
A: No peeling occurred in all samples after storage for 5 hours B: 1-2 occurrences of peeling in 10 samples after storage for 5 hours C: 3 or more occurrences of peeling in 10 samples after storage for 5 hours

3−4.冷熱衝撃耐性
光半導体封止用組成物をLEDパッケージ(表面実装型、トップビュータイプ、図1の光半導体2、電極6、ワイヤー7およびリフレクター3により構成される部分)中に注入し、100℃で1時間、続いて150℃で3時間加熱することで冷熱衝撃耐性評価用サンプルの作製を行った。
3-4. Thermal shock resistant composition for optical semiconductor encapsulation is injected into an LED package (surface mounted type, top view type, part constituted by optical semiconductor 2, electrode 6, wire 7 and reflector 3 in FIG. 1) at 100 ° C. A sample for evaluation of thermal shock resistance was prepared by heating for 1 hour at 150 ° C. for 3 hours.

冷熱衝撃試験装置(商品名「TOM17」、ESPEC社製)を使用して、上記冷熱衝撃耐性評価用サンプルに対して、1℃/分の速度での−40℃から100℃までの昇温、100℃から−40℃までの冷却を1サイクルとする冷熱衝撃試験を1000サイクル実施した。各光半導体封止用組成物に対し10個ずつ冷熱衝撃耐性評価用サンプルを作製し、それぞれのサンプルに対して同様の試験を実施した。1000サイクル実施後の冷熱衝撃耐性評価用サンプルを、光学顕微鏡を用いて観察し、パッケージと樹脂との間の剥離および樹脂内部におけるクラックの有無を目視にて評価した。なお、評価基準は以下のとおりである。
剥離の有無
A:すべてのサンプルに剥離なし
B:パッケージと樹脂との間でサンプル10個中1個から4個に剥離が生じた
C:パッケージと樹脂との間でサンプル10個中5個以上に剥離が生じた
クラックの有無
A:すべてのサンプルにクラック発生なし
B:樹脂内部でサンプル10個中1個から4個にクラックが発生した
C:樹脂内部でサンプル10個中5個以上にクラックが発生した
Using a thermal shock test apparatus (trade name “TOM17”, manufactured by ESPEC), a temperature increase from −40 ° C. to 100 ° C. at a rate of 1 ° C./min with respect to the thermal shock resistance evaluation sample. A thermal shock test in which cooling from 100 ° C. to −40 ° C. was 1 cycle was performed 1000 cycles. Ten samples for evaluation of thermal shock resistance were prepared for each composition for optical semiconductor encapsulation, and the same test was performed on each sample. The sample for evaluating thermal shock resistance after 1000 cycles was observed using an optical microscope, and the presence or absence of peeling between the package and the resin and cracks inside the resin was visually evaluated. The evaluation criteria are as follows.
Existence of peeling A: No peeling on all samples B: Separation occurred in 1 to 4 samples out of 10 between package and resin C: 5 or more samples out of 10 between package and resin A: No cracks occurred in all samples B: Cracks occurred in 1 to 4 out of 10 samples inside the resin C: Cracks occurred in 5 or more out of 10 samples inside the resin There has occurred

3−5.電極黒色化抑制能
光半導体封止用組成物をLEDパッケージ(表面実装型、トップビュータイプ、図1の光半導体2、電極6、ワイヤー7およびリフレクター3により構成される部分)中に注入し、100℃で1時間、続いて150℃で3時間加熱することで電極黒色化抑制能評価用サンプルの作製を行った。
3-5. Electrode blackening suppression ability An optical semiconductor sealing composition is injected into an LED package (surface-mounting type, top view type, portion constituted by the optical semiconductor 2, the electrode 6, the wire 7, and the reflector 3 in FIG. 1). A sample for evaluating electrode blackening suppression ability was prepared by heating at 100 ° C. for 1 hour and subsequently at 150 ° C. for 3 hours.

上記電極黒色化抑制能評価用サンプルを耐圧容器内(体積1L)に静置した後、容器内体積中に10体積%が硫化水素となるよう、硫化水素ガスを送り込んだ。その後、前記耐圧容器を80℃で24時間加熱した。加熱後の電極黒色化抑制能評価用サンプルの銀電極の変色具合について、光学顕微鏡にて目視により観察して、電極黒色化抑制能を評価した。なお、評価基準は以下のとおりである。
A:銀電極はLEDパッケージの銀電極と同じ銀色である。
B:銀電極部分が黄色に変化した。
C:銀電極部分が黒色に変化した。
After the sample for evaluating electrode blackening suppression ability was allowed to stand in a pressure-resistant container (volume: 1 L), hydrogen sulfide gas was fed so that 10% by volume of the sample was hydrogen sulfide. Thereafter, the pressure vessel was heated at 80 ° C. for 24 hours. About the discoloration condition of the silver electrode of the sample for electrode blackening suppression ability evaluation after a heating, it observed by visual observation with the optical microscope, and evaluated electrode blackening suppression ability. The evaluation criteria are as follows.
A: The silver electrode is the same silver color as the silver electrode of the LED package.
B: The silver electrode part turned yellow.
C: The silver electrode part changed to black.

Figure 2012092172
Figure 2012092172

1・・発光素子
2・・光半導体
3・・リフレクター
4・・封止材
5・・シリカ粒子
6・・電極
7・・ワイヤー
1 .. Light emitting element 2 .. Optical semiconductor 3 .. Reflector 4 .. Sealing material 5 .. Silica particle 6 .. Electrode 7 .. Wire

Claims (5)

エポキシ基を有し、下記式(1)に示す繰り返し構造単位を有するポリシロキサン(A)を40〜95質量%含有することを特徴とする光半導体封止用組成物。
Figure 2012092172
(式(1)中、Arはアリール基を示す。)
An optical semiconductor sealing composition comprising 40 to 95% by mass of polysiloxane (A) having an epoxy group and having a repeating structural unit represented by the following formula (1).
Figure 2012092172
(In the formula (1), Ar represents an aryl group.)
前記ポリシロキサン(A)中に含まれる前記式(1)に示す繰り返し構造単位の含有割合が、20〜80質量%である請求項1に記載の光半導体封止用組成物。   The composition for optical semiconductor sealing according to claim 1, wherein a content ratio of the repeating structural unit represented by the formula (1) contained in the polysiloxane (A) is 20 to 80% by mass. さらに、前記エポキシ樹脂用硬化剤(B)を含有する請求項1〜請求項2のいずれかに記載の光半導体封止用組成物。   Furthermore, the composition for optical semiconductor sealing in any one of Claims 1-2 containing the said hardening | curing agent for epoxy resins (B). 前記エポキシ樹脂用硬化剤(B)が酸無水物である請求項3に記載の光半導体封止用組成物。   The composition for optical semiconductor encapsulation according to claim 3, wherein the epoxy resin curing agent (B) is an acid anhydride. 請求項1〜請求項4のいずれかに記載の光半導体封止用組成物を用いて光半導体を封止してなる発光素子。   The light emitting element formed by sealing an optical semiconductor using the composition for optical semiconductor sealing in any one of Claims 1-4.
JP2010238578A 2010-10-25 2010-10-25 Composition for sealing optical semiconductor, and light-emitting element Pending JP2012092172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010238578A JP2012092172A (en) 2010-10-25 2010-10-25 Composition for sealing optical semiconductor, and light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010238578A JP2012092172A (en) 2010-10-25 2010-10-25 Composition for sealing optical semiconductor, and light-emitting element

Publications (1)

Publication Number Publication Date
JP2012092172A true JP2012092172A (en) 2012-05-17

Family

ID=46385906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010238578A Pending JP2012092172A (en) 2010-10-25 2010-10-25 Composition for sealing optical semiconductor, and light-emitting element

Country Status (1)

Country Link
JP (1) JP2012092172A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051103A1 (en) 2012-09-28 2014-04-03 三菱化学株式会社 Thermosetting resin composition, method for producing same, method for producing cured resin product, and method for causing self-polymerization of epoxy compound
WO2015060289A1 (en) * 2013-10-24 2015-04-30 東レ株式会社 Phosphor composition, phosphor sheet, phosphor sheet laminate, led chip and led package each using said phosphor composition, phosphor sheet or phosphor sheet laminate, and method for manufacturing led package
EP3034535A1 (en) 2014-12-18 2016-06-22 Shin-Etsu Chemical Co., Ltd. Epoxy resin containing silicone-modified epoxy resin and polyvalent carboxylic acid compound, and cured product thereof
JP2018104576A (en) * 2016-12-27 2018-07-05 信越化学工業株式会社 Silicone resin composition and optical semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071168A1 (en) * 2008-12-19 2010-06-24 日本化薬株式会社 Carboxylic acid compound and epoxy resin composition containing same
JP2011178912A (en) * 2010-03-02 2011-09-15 Sekisui Chem Co Ltd Sealant for optical semiconductor device, and optical semiconductor device using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071168A1 (en) * 2008-12-19 2010-06-24 日本化薬株式会社 Carboxylic acid compound and epoxy resin composition containing same
JP2011178912A (en) * 2010-03-02 2011-09-15 Sekisui Chem Co Ltd Sealant for optical semiconductor device, and optical semiconductor device using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051103A1 (en) 2012-09-28 2014-04-03 三菱化学株式会社 Thermosetting resin composition, method for producing same, method for producing cured resin product, and method for causing self-polymerization of epoxy compound
US9550877B2 (en) 2012-09-28 2017-01-24 Mitsubishi Chemical Corporation Thermosetting resin composition, method for producing same, method for producing cured resin product, and method for causing self-polymerization of epoxy compound
WO2015060289A1 (en) * 2013-10-24 2015-04-30 東レ株式会社 Phosphor composition, phosphor sheet, phosphor sheet laminate, led chip and led package each using said phosphor composition, phosphor sheet or phosphor sheet laminate, and method for manufacturing led package
JPWO2015060289A1 (en) * 2013-10-24 2017-03-09 東レ株式会社 Phosphor composition, phosphor sheet, phosphor sheet laminate, LED chip using them, LED package, and method for producing the same
EP3034535A1 (en) 2014-12-18 2016-06-22 Shin-Etsu Chemical Co., Ltd. Epoxy resin containing silicone-modified epoxy resin and polyvalent carboxylic acid compound, and cured product thereof
US10308803B2 (en) 2014-12-18 2019-06-04 Shin-Etsu Chemical Co., Ltd. Epoxy resin containing silicone-modified epoxy resin and polyvalent carboxylic acid compound, and cured product thereof
JP2018104576A (en) * 2016-12-27 2018-07-05 信越化学工業株式会社 Silicone resin composition and optical semiconductor device

Similar Documents

Publication Publication Date Title
KR101011421B1 (en) Thermosetting resin composition and photosemiconductor encapsulation material
JP6135675B2 (en) Epoxy and alkoxysilyl group-containing silsesquioxane and composition thereof
CN101638519B (en) Resin composition for encapsulating optical semiconductor element
JP5549789B1 (en) Thermosetting resin composition, method for producing the same, method for producing resin cured product, and method for generating self-polymerization of epoxy compound
TW201538637A (en) Addition-curable silicone composition
JP5407615B2 (en) Organopolysiloxane, curable composition containing the same, and method for producing the same
JP2013139547A (en) Curable composition, cured product, and optical semiconductor device
JP2012255125A (en) Thermoset resin composition, member for semiconductor device, and semiconductor device using the same
KR20130018320A (en) Epoxy silicone condensate, curable composition comprising epoxy silicone condensate, and cured product thereof
JP2012092172A (en) Composition for sealing optical semiconductor, and light-emitting element
JP5556671B2 (en) Curable composition, cured film, and semiconductor light emitting device
JP2012241059A (en) Thermosetting resin composition, member for semiconductor device, and semiconductor device using the same
JP6496185B2 (en) Curable silicone resin composition and cured product thereof
TW201113330A (en) Photo-semiconductor package composition
JP2012184290A (en) Silicone composition, curable composition and light-emitting component using the same
JP2012241136A (en) Silicone-modified epoxy resin composition, photosemiconductor sealing composition and photosemiconductor element adhesive containing the resin composition
JP2010013619A (en) Polymer for optical semiconductor sealing use and method for producing the same, and composition for optical semiconductor sealing use
JP2008222881A (en) Epoxy-silicone mixed resin composition and light-emitting semiconductor device
TW202010780A (en) Curable organopolysiloxane composition, encapsulant, and semiconductor device
TW201439219A (en) Curable silicone composition, cured product thereof, and optical semiconductor device
TW201323524A (en) Curable composition, cured object and optical semiconductor device
JP2011105778A (en) Optical semiconductor sealing composition and light-emitting apparatus
JP2013231160A (en) Curable composition, cured product, and optical semiconductor device
JP5762876B2 (en) Epoxy resin curing agent and epoxy resin composition containing the epoxy resin curing agent
JP2017078103A (en) Organic silicon compound, thermosetting composition comprising the organic silicon compound, and optical semiconductor sealing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140603