JP5407615B2 - Organopolysiloxane, curable composition containing the same, and method for producing the same - Google Patents

Organopolysiloxane, curable composition containing the same, and method for producing the same Download PDF

Info

Publication number
JP5407615B2
JP5407615B2 JP2009165796A JP2009165796A JP5407615B2 JP 5407615 B2 JP5407615 B2 JP 5407615B2 JP 2009165796 A JP2009165796 A JP 2009165796A JP 2009165796 A JP2009165796 A JP 2009165796A JP 5407615 B2 JP5407615 B2 JP 5407615B2
Authority
JP
Japan
Prior art keywords
group
compound
parts
formula
organopolysiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009165796A
Other languages
Japanese (ja)
Other versions
JP2011021078A (en
Inventor
哲也 根本
太一 田崎
正之 元成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2009165796A priority Critical patent/JP5407615B2/en
Publication of JP2011021078A publication Critical patent/JP2011021078A/en
Application granted granted Critical
Publication of JP5407615B2 publication Critical patent/JP5407615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item

Description

本願発明は、オルガノポリシロキサンならびにこれを含む硬化性組成物およびその製造方法に関し、さらに詳しくは、加熱時の密着性に優れ、クラックが発生せず、さらに硬度の高い硬化物を形成できるオルガノポリシロキサンならびにこれを含む硬化性組成物およびその製造方法に関する。   The present invention relates to an organopolysiloxane, a curable composition containing the organopolysiloxane, and a method for producing the same. More specifically, the organopolysiloxane has excellent adhesion during heating, does not generate cracks, and can form a cured product having higher hardness. The present invention relates to siloxane, a curable composition containing the same, and a method for producing the same.

従来、光半導体封止用樹脂としては、ビスフェノールAグリシジルエーテルを主剤とするエポキシ化合物が一般に用いられていたが、このようなエポキシ化合物は芳香環を有するため、青色または紫外光を発光する光半導体の封止を行うには、紫外線に対する耐久性(UV耐久性)が不十分であった。   Conventionally, an epoxy compound mainly composed of bisphenol A glycidyl ether has been generally used as a resin for encapsulating an optical semiconductor, but since such an epoxy compound has an aromatic ring, an optical semiconductor that emits blue or ultraviolet light. In order to perform sealing, durability against ultraviolet rays (UV durability) was insufficient.

そこで、光半導体封止用樹脂のUV耐久性を改良するため、脂環式エポキシ化合物を用いることが提案されているが、依然としてUV耐久性は十分なものとはいえなかった。
一方、シロキサン骨格を有する樹脂は耐候性に優れていることが知られており、近年ではポリジメチルシロキサンを主骨格とする樹脂を光半導体封止材に用いる検討が行われている。
Therefore, it has been proposed to use an alicyclic epoxy compound in order to improve the UV durability of the resin for encapsulating an optical semiconductor, but the UV durability has still not been sufficient.
On the other hand, it is known that a resin having a siloxane skeleton is excellent in weather resistance, and in recent years, studies using a resin having polydimethylsiloxane as a main skeleton as an optical semiconductor sealing material have been conducted.

特許文献1には、エポキシ基を有する線状シロキサンを含有する組成物が開示されている。しかし、この組成物を光半導体封止用に使用した場合、線状シロキサンは線膨張係数が大きいため、その硬化物は加熱時の密着性に劣ったり、硬化物にクラックが発生したりするなどの問題があった。   Patent Document 1 discloses a composition containing a linear siloxane having an epoxy group. However, when this composition is used for sealing an optical semiconductor, linear siloxane has a large coefficient of linear expansion, so that the cured product is inferior in adhesion during heating, or cracks are generated in the cured product, etc. There was a problem.

この点、四官能のシラン化合物(Q:Si(OR)4)と一官能のシラン化合物(M:SiR3(OR))との加水分解物(MQ)をベースとするポリシロキサンは線膨張係数が小さいため、その硬化物は加熱時の密着性に優れ、硬化物にクラックが発生しにくいことが知られている。 In this respect, polysiloxane based on a hydrolyzate (MQ) of a tetrafunctional silane compound (Q: Si (OR) 4 ) and a monofunctional silane compound (M: SiR 3 (OR)) has a linear expansion coefficient. Therefore, it is known that the cured product has excellent adhesion during heating, and cracks are hardly generated in the cured product.

特許文献2には、ビニル基を有するMQおよびSiHを有するMQを用いたLED封止材用の組成物が開示されている。しかし、この組成物は、硬化触媒として白金属金属触媒を用いるため、硬化物の透明性が低いという問題があった。   Patent Document 2 discloses a composition for an LED sealing material using MQ having a vinyl group and MQ having SiH. However, since this composition uses a white metal metal catalyst as a curing catalyst, there is a problem that the transparency of the cured product is low.

特許文献3には、エポキシ基を有するMQをベースとするポリシロキサンが記載されている。しかし、このポリシロキサンを光半導体封止用に用いた場合、このポリシロキサンの合成においては、Si−Hを有するMQを合成したのちにこれとエポキシ基を有する化合物とを反応させるため、系中から触媒を完全に除去することが困難であり、このため封止材の透明性が低いという問題があった。また、このポリシロキサンから得られる硬化物は、硬度が低いという問題もあった。   Patent Document 3 describes a polysiloxane based on MQ having an epoxy group. However, when this polysiloxane is used for sealing an optical semiconductor, in the synthesis of this polysiloxane, after synthesizing MQ having Si—H, this is reacted with a compound having an epoxy group. Therefore, it was difficult to completely remove the catalyst from the catalyst, and there was a problem that the transparency of the sealing material was low. Moreover, the hardened | cured material obtained from this polysiloxane also had the problem that hardness was low.

特開平4−339816号公報JP-A-4-339816 特開2004−186168号公報JP 2004-186168 A 特開平5−105758号公報Japanese Patent Laid-Open No. 5-105758

本願発明は、加熱時の密着性に優れ、また、クラックが発生しにくく、透明性が高く、硬度が高い硬化物を形成することのできるポリシロキサンおよびこれを含む硬化性組成物を提供することを目的とする。   The present invention provides a polysiloxane capable of forming a cured product that is excellent in adhesion during heating, hardly generates cracks, has high transparency, and has high hardness, and a curable composition containing the polysiloxane. With the goal.

前記目的を達成する本発明は、
下記一般式(1)〜(3)で表される構成単位を含むオルガノポリシロキサンであって、シラノール当量が0g/eq.を超え500g/eq.以下であり、該オルガノポリシロキサンを構成する全シロキサン単位を100モル%とした場合に、三官能性シロキサン単位を10〜70モル%含有することを特徴とするオルガノポリシロキサンである。
The present invention for achieving the above object
An organopolysiloxane containing structural units represented by the following general formulas (1) to (3), having a silanol equivalent of 0 g / eq. Exceeding 500 g / eq. The organopolysiloxane is characterized by containing 10 to 70 mol% of a trifunctional siloxane unit when the total siloxane units constituting the organopolysiloxane are 100 mol%.

Figure 0005407615
〔式中、R1およびR3は、それぞれ独立に非置換もしくは置換の炭素数1〜3の1価の炭化水素基を示す。
Figure 0005407615
[Wherein, R 1 and R 3 each independently represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 3 carbon atoms.

Eは、エポキシ基を有する炭素数3〜20の有機基を示す。
9は、それぞれ独立に水素原子または非置換もしくは置換の炭素数1〜3の炭化水素基を示す。
R E represents an organic group having 3 to 20 carbon atoms having an epoxy group.
R 9 each independently represents a hydrogen atom or an unsubstituted or substituted hydrocarbon group having 1 to 3 carbon atoms.

aは0または1である。〕
前記オルガノポリシロキサにおいては、前記オルガノポリシロキサンを構成する全シロキサン単位を100モル%とした場合に、一官能性シロキサン単位を20〜80モル%、四官能性シロキサン単位を10〜60モル%含有することが好ましく、
前記式(1)のREが下記一般式(7)〜(10)のいずれかで表されることが好ましい。
a is 0 or 1; ]
In the organopolysiloxane, when the total siloxane unit constituting the organopolysiloxane is 100 mol%, the monofunctional siloxane unit is 20 to 80 mol% and the tetrafunctional siloxane unit is 10 to 60 mol%. It is preferable to contain,
It is preferable that R E of the formula (1) is represented by any one of the following general formulas (7) to (10).

Figure 0005407615
〔一般式(7)中R5はメチレン基または2価の炭素数2〜10の直鎖状アルキレン基または炭素数3〜10の分岐鎖状アルキレン基を示す。〕
Figure 0005407615
[R 5 in General Formula (7) represents a methylene group, a divalent linear alkylene group having 2 to 10 carbon atoms, or a branched alkylene group having 3 to 10 carbon atoms. ]

Figure 0005407615
〔一般式(8)中R6はメチレン基または2価の炭素数2〜10の直鎖状アルキレン基または炭素数3〜10の分岐鎖状アルキレン基を示す。〕
Figure 0005407615
[In General Formula (8), R 6 represents a methylene group, a divalent linear alkylene group having 2 to 10 carbon atoms, or a branched alkylene group having 3 to 10 carbon atoms. ]

Figure 0005407615
〔一般式(9)中R7はメチレン基または2価の炭素数2〜10の直鎖状アルキレン基または炭素数3〜10の分岐鎖状アルキレン基を示す。〕
Figure 0005407615
[In the general formula (9), R 7 represents a methylene group, a divalent linear alkylene group having 2 to 10 carbon atoms or a branched alkylene group having 3 to 10 carbon atoms. ]

Figure 0005407615
〔一般式(10)中R8はメチレン基または2価の炭素数2〜10の直鎖状アルキレン基または炭素数3〜10の分岐鎖状アルキレン基を示す。〕
他の発明は、前記オルガノポリシロキサンとエポキシ用硬化剤とを含有することを特徴とする硬化性組成物である。
Figure 0005407615
[In General Formula (10), R 8 represents a methylene group, a divalent linear alkylene group having 2 to 10 carbon atoms, or a branched alkylene group having 3 to 10 carbon atoms. ]
Another invention is a curable composition comprising the organopolysiloxane and an epoxy curing agent.

前記硬化性組成物においては、前記エポキシ用硬化剤が酸無水物であることが好ましい。
他の発明は、前記硬化性組成物からなる光半導体封止用組成物であり、
該光半導体封止用組成物を用いた発光素子である。
In the curable composition, the epoxy curing agent is preferably an acid anhydride.
Another invention is an optical semiconductor sealing composition comprising the curable composition,
It is a light emitting element using this composition for optical semiconductor sealing.

また、他の発明は、
下記式(2)で表される構成単位、下記式(3)で表される構成単位、およびシラノール基を含むシロキサン化合物(A)と
エポキシ基を有するアルコキシシラン化合物(B)とを
塩基性化合物の存在下反応させる工程を含む事を特徴とする前記オルガノポリシロキサンの製造方法である。
In addition, other inventions
A basic compound comprising a structural unit represented by the following formula (2), a structural unit represented by the following formula (3), a siloxane compound (A) containing a silanol group and an alkoxysilane compound (B) having an epoxy group The process for producing an organopolysiloxane is characterized by comprising a step of reacting in the presence of.

Figure 0005407615
Figure 0005407615

Figure 0005407615
〔式(2)中、R1、前記オルガノポリシロキサンに含まれる構成単位を表わす式()におけるR1と同様である。〕
Figure 0005407615
Wherein (2), R 1 are the same as R 1 in the formula (2) representing the structural unit contained in the organopolysiloxane. ]

前記オルガノポリシロキサンの製造方法において、前記シロキサン化合物(A)が、
下記式(4)で表されるシラン化合物(A−1)と
下記式(5)で表されるシラン化合物、該シラン化合物の縮合物、および該シラン化合物の加水分解物からなる群から選ばれる少なくとも1種(A−2)とを
反応させて得られることが好ましく、
In the method for producing the organopolysiloxane, the siloxane compound (A) is:
It is selected from the group consisting of a silane compound (A-1) represented by the following formula (4), a silane compound represented by the following formula (5), a condensate of the silane compound, and a hydrolyzate of the silane compound. It is preferably obtained by reacting with at least one (A-2),

Figure 0005407615
〔式(4)中、R1、前記シロキサン化合物(A)に含まれる構成単位を表わす式()におけるR1と同様である。〕
Figure 0005407615
[In Formula (4), R < 1 > is the same as R < 1 > in Formula ( 2 ) showing the structural unit contained in the said siloxane compound (A) . ]

Figure 0005407615
〔式(5)中R2は非置換もしくは置換の1価の炭化水素基を示す。〕
前記アルコキシシラン化合物(B)が下記式(6)で表される化合物であることが好ましい。
Figure 0005407615
[In formula (5), R 2 represents an unsubstituted or substituted monovalent hydrocarbon group. ]
The alkoxysilane compound (B) is preferably a compound represented by the following formula (6).

Figure 0005407615
〔式(6)中RE、R3およびaは、それぞれ式(1)におけるRE、R3およびaと同様である。R4はそれぞれ独立に非置換または置換の炭素数1〜3の炭化水素基を示す。〕
Figure 0005407615
[Formula (6) was R E, R 3 and a are, R E in each formula (1) is the same as R 3 and a. R 4 each independently represents an unsubstituted or substituted hydrocarbon group having 1 to 3 carbon atoms. ]

本願発明に係るポリシロキサンを用いれば、加熱時の密着性に優れ、また、クラックが発生しにくく、透明性が高く、硬度が高い硬化物を形成することのできる硬化性組成物を製造することができる。また、本願発明に係るポリシロキサンの製造方法によれば、前記ポリシロキサンを効率良く製造することができる。   By using the polysiloxane according to the present invention, it is possible to produce a curable composition that is excellent in adhesion at the time of heating, hardly generates cracks, has high transparency, and can form a cured product with high hardness. Can do. Moreover, according to the manufacturing method of the polysiloxane which concerns on this invention, the said polysiloxane can be manufactured efficiently.

図1は、LEDの模式図である。FIG. 1 is a schematic diagram of an LED. 図2は、蛍光部を有するLEDの模式図である。FIG. 2 is a schematic diagram of an LED having a fluorescent part.

<硬化性組成物>
本発明に係る硬化性組成物は、オルガノポリシロキサンおよびエポキシ用硬化剤を含み、必要に応じてシリカ粒子等を含有することができる。本発明に係る硬化性組成物は、光半導体封止用組成物として好適に使用することができる。
<Curable composition>
The curable composition concerning this invention contains organopolysiloxane and the hardening | curing agent for epoxy, and can contain a silica particle etc. as needed. The curable composition concerning this invention can be used conveniently as a composition for optical semiconductor sealing.

オルガノポリシロキサン
前記硬化性組成物に含有されるオルガノポリシロキサンは、下記一般式(1)〜(3)で表される構成単位を含み、シラノール当量が0g/eq.を超え500g/eq.以下であり、該オルガノポリシロキサンを構成する全シロキサン単位を100モル%とした場合に、三官能性シロキサン単位を10〜70モル%含有するエポキシ基含有有機基を有するオルガノポリシロキサンである。
Organopolysiloxane The organopolysiloxane contained in the curable composition contains structural units represented by the following general formulas (1) to (3) and has a silanol equivalent of 0 g / eq. Exceeding 500 g / eq. The organopolysiloxane is an organopolysiloxane having an epoxy group-containing organic group containing 10 to 70 mol% of a trifunctional siloxane unit when the total amount of siloxane units constituting the organopolysiloxane is 100 mol%.

Figure 0005407615
〔式中、R1およびR3は、それぞれ独立に非置換もしくは置換の炭素数1〜3の1価の炭化水素基を示す。
Eは、エポキシ基を有する炭素数3〜20の有機基を示す。
9は、それぞれ独立に水素原子または非置換もしくは置換の炭素数1〜3の炭化水素基を示す。
aは0または1である。〕
Figure 0005407615
[Wherein, R 1 and R 3 each independently represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 3 carbon atoms.
R E represents an organic group having 3 to 20 carbon atoms having an epoxy group.
R 9 each independently represents a hydrogen atom or an unsubstituted or substituted hydrocarbon group having 1 to 3 carbon atoms.
a is 0 or 1; ]

前記オルガノポリシロキサンは、エポキシ基の開環重合により硬化することができる。前記オルガノポリシロキサンのエポキシ当量は、250〜1000g/eq.、好ましくは250〜800g/eq.、より好ましくは300〜800g/eq.である。前記エポキシ当量が250g/eq.未満であると、硬化物の光、熱に対する耐久性が劣り、1000g/eq.を超えると硬化物の硬度が不足し、脆弱になってしまう傾向がある。   The organopolysiloxane can be cured by ring-opening polymerization of epoxy groups. The epoxy equivalent of the organopolysiloxane is 250 to 1000 g / eq. , Preferably 250 to 800 g / eq. , More preferably 300 to 800 g / eq. It is. The epoxy equivalent is 250 g / eq. If it is less than 1, the durability of the cured product to light and heat is inferior, and 1000 g / eq. If it exceeds, the hardness of the cured product tends to be insufficient and fragile.

Eは、エポキシ基を有する炭素数3〜20の有機基である。オルガノポリシロキサンは、REとして下記一般式(7)〜(10)で表される基の少なくとも1つを有することが好ましい。オルガノポリシロキサンがこのような基を有すると、耐熱、耐光性および寸法安定性に優れた硬化物を得る事が出来る。 R E is an organic group having 3 to 20 carbon atoms having an epoxy group. The organopolysiloxane preferably has at least one of the group represented by R E by the following general formula (7) to (10). When the organopolysiloxane has such a group, a cured product having excellent heat resistance, light resistance and dimensional stability can be obtained.

一般式(7)で表される基としては、具体的には、2−(3’、4’―エポキシシクロヘキシル)エチル基等が挙げられる。
一般式(8)で表される基としては、具体的には、3−グリシジル基等が挙げられる。
Specific examples of the group represented by the general formula (7) include 2- (3 ′, 4′-epoxycyclohexyl) ethyl group and the like.
Specific examples of the group represented by the general formula (8) include a 3-glycidyl group.

一般式(9)で表される基としては、具体的には3−グリシドキシプロピル基等が挙げられる。
一般式(10)で表される基としては、具体的には2−(4’−メチルー3’、4’−エポキシシクロヘキシル)エチル基等が挙げられる。
Specific examples of the group represented by the general formula (9) include a 3-glycidoxypropyl group.
Specific examples of the group represented by the general formula (10) include a 2- (4′-methyl-3 ′, 4′-epoxycyclohexyl) ethyl group and the like.

Figure 0005407615
〔一般式(7)中R5はメチレン基または2価の炭素数2〜10の直鎖状アルキレン基または炭素数3〜10の分岐鎖状アルキレン基を示す。〕
Figure 0005407615
[R 5 in General Formula (7) represents a methylene group, a divalent linear alkylene group having 2 to 10 carbon atoms, or a branched alkylene group having 3 to 10 carbon atoms. ]

Figure 0005407615
〔一般式(8)中R6はメチレン基または2価の炭素数2〜10の直鎖状アルキレン基または炭素数3〜10の分岐鎖状アルキレン基を示す。〕
Figure 0005407615
[In General Formula (8), R 6 represents a methylene group, a divalent linear alkylene group having 2 to 10 carbon atoms, or a branched alkylene group having 3 to 10 carbon atoms. ]

Figure 0005407615
〔一般式(9)中R7はメチレン基または2価の炭素数2〜10の直鎖状アルキレン基または炭素数3〜10の分岐鎖状アルキレン基を示す。〕
Figure 0005407615
[In the general formula (9), R 7 represents a methylene group, a divalent linear alkylene group having 2 to 10 carbon atoms or a branched alkylene group having 3 to 10 carbon atoms. ]

Figure 0005407615
〔一般式(10)中R8はメチレン基または2価の炭素数2〜10の直鎖状アルキレン基または炭素数3〜10の分岐鎖状アルキレン基を示す。〕
Figure 0005407615
[In General Formula (10), R 8 represents a methylene group, a divalent linear alkylene group having 2 to 10 carbon atoms, or a branched alkylene group having 3 to 10 carbon atoms. ]

前記オルガノポリシロキサンは、エポキシ基とともにシラノール基を含有する。式(1)におけるR9は、それぞれ独立に水素原子または非置換もしくは置換の炭素数1〜3の炭化水素基である。式(1)において、R9が水素原子であるとき、OR9とこのOR9が結合したSiとはシラノール基を形成する。aは0または1であるから、式(1)において(OR9)は必ず存在する。オルガノポリシロキサンがシラノール基を含有することにより、本組成物を硬化させるとき、シラノール基同士による架橋が形成され、硬度の高い硬化物が得られると考えられる。全R9に占める水素原子の割合としては5〜100モル%であることが好ましく、10〜80モル%であることがより好ましい。 The organopolysiloxane contains a silanol group together with an epoxy group. R 9 in Formula (1) is each independently a hydrogen atom or an unsubstituted or substituted hydrocarbon group having 1 to 3 carbon atoms. In the formula (1), when R 9 is a hydrogen atom, OR 9 and Si bonded with OR 9 form a silanol group. Since a is 0 or 1, (OR 9 ) always exists in the formula (1). When organopolysiloxane contains a silanol group, when this composition is hardened | cured, the bridge | crosslinking by silanol groups will be formed and it will be thought that hardened | cured material with high hardness is obtained. The proportion of hydrogen atoms in the total R 9 is preferably 5 to 100 mol%, more preferably 10 to 80 mol%.

前記オルガノポリシロキサンのシラノール当量は、0g/eq.を超え500g/eq.以下である事が硬度の高い硬化物が得られるという点で好ましい。前記シラノール当量が500g/eq.より大きいと上記の架橋による硬度向上の効果がほとんど見られなくなってしまうことがある。   The silanol equivalent of the organopolysiloxane is 0 g / eq. Exceeding 500 g / eq. The following is preferable in that a cured product having high hardness can be obtained. The silanol equivalent was 500 g / eq. If it is larger, the effect of improving the hardness due to the cross-linking may be hardly seen.

9が表す炭化水素基としては、具体的には、メチル基、エチル基、プロピル基等が挙げられ、これらの中でもメチル基が特に好ましい。
1およびR3は、それぞれ独立に非置換もしくは置換の炭素数1〜3の1価の炭化水素基である。R1およびR3としては、具体的には、メチル基、エチル基、プロピル基等が挙げられ、これらの中でもメチル基が特に好ましい。
Specific examples of the hydrocarbon group represented by R 9 include a methyl group, an ethyl group, and a propyl group. Among these, a methyl group is particularly preferable.
R 1 and R 3 are each independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 3 carbon atoms. Specific examples of R 1 and R 3 include a methyl group, an ethyl group, and a propyl group. Among these, a methyl group is particularly preferable.

前記オルガノポリシロキサンにおいては、該オルガノポリシロキサンを構成する全シロキサン単位を100モル%とした場合に、三官能性シロキサン単位が10〜70モル%含有されることが好ましく、10〜60%含有することがさらに好ましい。前記オルガノポリシロキサンが三官能性シロキサン単位を前記範囲内で含有すると、耐熱、耐光性に優れ、且つ高硬度の硬化物を得る事が出来る。   In the organopolysiloxane, it is preferable that the trifunctional siloxane unit is contained in an amount of 10 to 70 mol%, preferably 10 to 60%, based on 100 mol% of all siloxane units constituting the organopolysiloxane. More preferably. When the organopolysiloxane contains a trifunctional siloxane unit within the above range, a cured product having excellent heat resistance and light resistance and high hardness can be obtained.

また、前記オルガノポリシロキサンにおいては、前記オルガノポリシロキサンを構成する全シロキサン単位を100モル%とした場合に、一官能性シロキサン単位が20〜80モル%含有されることが好ましく、20〜70モル%含有されることがさらに好ましい。   Moreover, in the said organopolysiloxane, when all the siloxane units which comprise the said organopolysiloxane are made into 100 mol%, it is preferable that 20-80 mol% of monofunctional siloxane units are contained, 20-70 mol. % Content is more preferable.

前記オルガノポリシロキサンにおいては、前記オルガノポリシロキサンを構成する全シロキサン単位を100モル%とした場合に、四官能性シロキサン単位が10〜60モル%含有されることが好ましく、20〜60モル%含有されることがさらに好ましい。前記オルガノポリシロキサンが一官能性シロキサン単位および四官能性シロキサン単位を前記範囲内で含有すると、無溶剤で液状のポリマー形状を保つことができ、かつ線膨張率が低いため剥離、クラックが生じにくいLED封止材を得ることができる。   The organopolysiloxane preferably contains 10 to 60 mol% of tetrafunctional siloxane units when the total siloxane units constituting the organopolysiloxane are 100 mol%. More preferably. When the organopolysiloxane contains a monofunctional siloxane unit and a tetrafunctional siloxane unit within the above range, a liquid polymer shape can be maintained without a solvent, and since the linear expansion coefficient is low, peeling and cracking are unlikely to occur. An LED encapsulant can be obtained.

ここで、一官能性シロキサン単位とは、1つの珪素原子に対し1つの酸素原子と3つの炭素原子が結合した単位をいう。三官能性シロキサン単位とは、1つの珪素原子に対し3つの酸素原子と1つの炭素原子が結合した単位をいう。四官能性シロキサン単位とは、1つの珪素原子に対し4つの酸素原子が結合した単位をいう。   Here, the monofunctional siloxane unit refers to a unit in which one oxygen atom and three carbon atoms are bonded to one silicon atom. A trifunctional siloxane unit refers to a unit in which three oxygen atoms and one carbon atom are bonded to one silicon atom. The tetrafunctional siloxane unit refers to a unit in which four oxygen atoms are bonded to one silicon atom.

前記オルガノポリシロキサンは、ゲルパーミエーションクロマトグラフィーにより測定したポリスチレン換算の重量平均分子量(Mw)が500〜1000000の範囲にあることが好ましく、1000〜30000の範囲にあることがより好ましい。オルガノポリシロキサンの重量平均分子量が前記範囲内にあると、本組成物を用いて光半導体封止用材料を製造する際に取扱いやすく、また本組成物から得られる硬化物は光半導体封止材として十分な材料強度及び特性を有する。
前記オルガノポリシロキサンは、組成物全体の質量に対し10〜95質量%含有されていることが好ましく、20〜90質量%含有されていることがより好ましい。
The organopolysiloxane preferably has a polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography in the range of 500 to 1000000, and more preferably in the range of 1000 to 30000. When the weight average molecular weight of the organopolysiloxane is within the above range, it is easy to handle when producing an optical semiconductor sealing material using the composition, and the cured product obtained from the composition is an optical semiconductor sealing material. Sufficient material strength and properties.
The organopolysiloxane is preferably contained in an amount of 10 to 95% by mass, more preferably 20 to 90% by mass, based on the total mass of the composition.

〔オルガノポリシロキサンの製造方法〕
前記オルガノポリシロキサンの製造方法については特に制限はないが、以下に示す製造方法によると前記オルガノポリシロキサンを効率良く製造することができる。
[Method for producing organopolysiloxane]
Although there is no restriction | limiting in particular about the manufacturing method of the said organopolysiloxane, According to the manufacturing method shown below, the said organopolysiloxane can be manufactured efficiently.

その製造方法は、下記式(2)で表される構成単位、下記式(3)で表される構成単位およびシラノール基を含むシロキサン化合物(A)(以下、「シロキサン化合物(A)」という)と
エポキシ基を有するアルコキシシラン化合物(B)(以下、「アルコキシシラン化合物(B)」という)とを
塩基性化合物の存在下反応させる工程(以下、工程(i)という)を含む製造方法である。この製造方法は、通常、工程(i)で得られた生成物を塩基性化合物の存在下、水と反応させる工程(以下、工程(ii)という。)を含む。
The production method includes a structural unit represented by the following formula (2), a structural unit represented by the following formula (3), and a siloxane compound (A) containing a silanol group (hereinafter referred to as “siloxane compound (A)”). And an alkoxysilane compound (B) having an epoxy group (hereinafter referred to as “alkoxysilane compound (B)”) in the presence of a basic compound (hereinafter referred to as step (i)). . This production method usually includes a step of reacting the product obtained in step (i) with water in the presence of a basic compound (hereinafter referred to as step (ii)).

Figure 0005407615
Figure 0005407615

Figure 0005407615
〔式(2)中、R1、前記オルガノポリシロキサンに含まれる構成単位を表わす式()におけるR1と同様である。〕
Figure 0005407615
Wherein (2), R 1 is the same as R 1 in formula (2) representing the structural unit contained in the organopolysiloxane. ]

(シロキサン化合物(A))
前記シロキサン化合物(A)は、たとえば、
下記式(4)で表されるシラン化合物(A−1)と
下記式(5)で表されるシラン化合物、該シラン化合物の縮合物、および該シラン化合物の加水分解物からなる群から選ばれる少なくとも1種(A−2)とを
反応させて得ることができる。
(Siloxane compound (A))
The siloxane compound (A) is, for example,
It is selected from the group consisting of a silane compound (A-1) represented by the following formula (4), a silane compound represented by the following formula (5), a condensate of the silane compound, and a hydrolyzate of the silane compound. It can be obtained by reacting with at least one (A-2).

Figure 0005407615
〔式(4)中、R1、前記シロキサン化合物(A)に含まれる構成単位を表わす式()におけるR1と同様である。〕
Figure 0005407615
[In Formula (4), R < 1 > is the same as R < 1 > in Formula ( 2 ) showing the structural unit contained in the said siloxane compound (A) . ]

Figure 0005407615
〔式(5)中R2は非置換もしくは置換の1価の炭化水素基を示す。〕
上記式(4)において、R1は、式(1)で挙げたR1と同様の基である。
Figure 0005407615
[In formula (5), R 2 represents an unsubstituted or substituted monovalent hydrocarbon group. ]
In the above formula (4), R 1 is the same group as R 1 listed in the formula (1).

上記式(5)においてR2は、非置換もしくは置換の1価の炭化水素基である。R2としては、具体的には、メチル基、エチル基、プロピル基等が挙げられ、これらの中でもメチル基が特に好ましい。 In the above formula (5), R 2 is an unsubstituted or substituted monovalent hydrocarbon group. Specific examples of R 2 include a methyl group, an ethyl group, and a propyl group. Among these, a methyl group is particularly preferable.

上記反応において、化合物(A−1)と化合物(A−2)との混合比は一官能の珪素原子と四官能の珪素原子のモル比で、通常(一官能の珪素原子):(四官能の珪素原子)=1:0.1〜1:2.5の範囲であり、好ましくは1:0.5〜1:2.0、より好ましくは1:0.7〜1:2.0の範囲である。一官能珪素モル比が上記範囲よりも大きいと線膨張係数、弾性率において望む物性を得る事が出来ず、上記範囲よりも小さいと無溶剤時の液状を保つ事が出来ない場合が多い。   In the above reaction, the mixing ratio of the compound (A-1) and the compound (A-2) is a molar ratio of a monofunctional silicon atom and a tetrafunctional silicon atom, and is usually (monofunctional silicon atom): (tetrafunctional Of silicon atoms) = 1: 0.1 to 1: 2.5, preferably 1: 0.5 to 1: 2.0, more preferably 1: 0.7 to 1: 2.0. It is a range. If the monofunctional silicon molar ratio is larger than the above range, desired physical properties in terms of linear expansion coefficient and elastic modulus cannot be obtained, and if it is smaller than the above range, the liquid state in the absence of a solvent cannot often be maintained.

化合物(A−1)と化合物(A−2)との反応は、たとえば、塩酸水溶液と化合物(A−1)との混合系に、撹拌しながら化合物(A−2)を滴下することによって行われる。
前記塩酸水溶液は、塩化水素を通常5質量%以上含み、好ましくは10質量%以上含む。
The reaction between the compound (A-1) and the compound (A-2) is performed, for example, by dropping the compound (A-2) into the mixed system of the hydrochloric acid aqueous solution and the compound (A-1) while stirring. Is called.
The hydrochloric acid aqueous solution usually contains 5% by mass or more, preferably 10% by mass or more of hydrogen chloride.

前記塩酸水溶液と化合物(A−1)との混合系には、反応に直接関与しない有機溶媒を、反応系を希釈するため、または水層および有機層の混合を良くするために共存させることもできる。このような有機溶媒としては、たとえば、メタノール、エタノール、イソプロパノール、アセトン、メチルエチルケトン、ベンゼン、トルエンおよびキシレン等が挙げられる。   In the mixed system of the hydrochloric acid aqueous solution and the compound (A-1), an organic solvent that does not directly participate in the reaction may coexist in order to dilute the reaction system or improve the mixing of the aqueous layer and the organic layer. it can. Examples of such an organic solvent include methanol, ethanol, isopropanol, acetone, methyl ethyl ketone, benzene, toluene, and xylene.

前記混合系における化合物(A−1)の濃度は、1〜90質量%が好ましく、10〜70質量%がより好ましい。化合物(A−2)を滴下するときの混合系の温度は、通常0〜90℃であり、好ましくは0〜40℃である。   1-90 mass% is preferable and, as for the density | concentration of the compound (A-1) in the said mixed system, 10-70 mass% is more preferable. The temperature of the mixed system when dropping the compound (A-2) is usually 0 to 90 ° C, preferably 0 to 40 ° C.

この反応により、上記式(2)で表される構成単位および上記式(3)で表される構成単位を含むMQ骨格を有するシロキサン化合物(A)が合成される。このシロキサン化合物(A)は、そのMQ骨格を形成するSi原子に結合したOH基、すなわちシラノール基を有する。   By this reaction, a siloxane compound (A) having an MQ skeleton containing the structural unit represented by the above formula (2) and the structural unit represented by the above formula (3) is synthesized. This siloxane compound (A) has an OH group bonded to an Si atom forming the MQ skeleton, that is, a silanol group.

(アルコキシシラン化合物(B))
アルコキシシラン化合物(B)はエポキシ基を有し、たとえば下記式(6)で表される。
(Alkoxysilane compound (B))
The alkoxysilane compound (B) has an epoxy group and is represented, for example, by the following formula (6).

Figure 0005407615
〔式(6)中RE、R3およびaは、それぞれ式(1)におけるRE、R3およびaと同様である。R4はそれぞれ独立に非置換または置換の炭素数1〜3の炭化水素基を示す。〕
上記式(6)において、REおよびR3は、それぞれ式(1)で挙げたREおよびR3と同様の基である。
Figure 0005407615
[Formula (6) was R E, R 3 and a are, R E in each formula (1) is the same as R 3 and a. R 4 each independently represents an unsubstituted or substituted hydrocarbon group having 1 to 3 carbon atoms. ]
In the above formula (6), R E and R 3 are the same groups as R E and R 3 mentioned in the formula (1), respectively.

4は、それぞれ独立に非置換または置換の炭素数1〜3の1価の炭化水素基である。R4としては、具体的には、メチル基、エチル基、プロピル基等が挙げられ、これらの中でもメチル基が特に好ましい。
aは、0または1である。
R 4 is each independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 3 carbon atoms. Specific examples of R 4 include a methyl group, an ethyl group, and a propyl group. Among these, a methyl group is particularly preferable.
a is 0 or 1;

アルコキシシラン化合物(B)としては2−(3’,4’−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシジルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、2−(4’−メチルー3’、4’−エポキシシクロヘキシル)エチルトリメトキシシランが好ましく、後述する工程(ii)における安定性の点で、2−(3’,4’−エポキシシクロヘキシル)エチルトリメトキシシランが特に好ましい。   Examples of the alkoxysilane compound (B) include 2- (3 ′, 4′-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 2- (4′-methyl-3). '4'-epoxycyclohexyl) ethyltrimethoxysilane is preferred, and 2- (3', 4'-epoxycyclohexyl) ethyltrimethoxysilane is particularly preferred from the viewpoint of stability in step (ii) described later.

また、この反応においては、硬化物の硬度調整のため、アルコキシシラン化合物(B)以外のアルコキシシランを適宜加えることができる。このようなアルコキシシランとしては、たとえば、トリメチルメトキシシラン、トリメチルエトキシシラン、トリエチルメトキシシラン、トリエチルエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン等を挙げることができる。   In this reaction, an alkoxysilane other than the alkoxysilane compound (B) can be appropriately added to adjust the hardness of the cured product. Examples of such alkoxysilane include trimethylmethoxysilane, trimethylethoxysilane, triethylmethoxysilane, triethylethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, methyltriethoxysilane, Examples thereof include ethyltriethoxysilane, tetramethoxysilane, and tetraethoxysilane.

(工程(i))
本工程は、シロキサン化合物(A)とアルコキシシラン化合物(B)とを、触媒である塩基性化合物の存在下反応させ、主として脱アルコールカップリング反応によりシロキサン結合を形成するものである。本工程は、極力水が存在しない状態で実施することが望ましい。水の存在下では反応工程に加水分解・脱水縮合過程が含まれ、この過程は平衡反応のため系全体の反応率を高めることが困難となる。
(Process (i))
In this step, the siloxane compound (A) and the alkoxysilane compound (B) are reacted in the presence of a basic compound as a catalyst to form a siloxane bond mainly by a dealcoholization coupling reaction. It is desirable to implement this process in a state where water is not present as much as possible. In the presence of water, the reaction process includes a hydrolysis / dehydration condensation process, which is an equilibrium reaction, making it difficult to increase the reaction rate of the entire system.

上記反応において、シロキサン化合物(A)とアルコキシシラン化合物(B)との混合モル比は、通常1:0.01〜1:100の範囲であり、好ましくは1:0.02〜1:50、より好ましくは1:0.05〜1:20の範囲である。混合モル比が上記範囲にあると反応が効率よく進行し、上述したエポキシ当量範囲内の光半導体封止用重合体が得られ、耐熱性に優れた硬化物を得ることができる。なお、シロキサン化合物(A)のモル数は、混合したシロキサン化合物(A)の質量を重量平均分子量(Mw)で除算した値をとする。   In the above reaction, the mixing molar ratio of the siloxane compound (A) and the alkoxysilane compound (B) is usually in the range of 1: 0.01 to 1: 100, preferably 1: 0.02 to 1:50, More preferably, it is in the range of 1: 0.05 to 1:20. When the mixing molar ratio is in the above range, the reaction proceeds efficiently, the above-mentioned polymer for sealing an optical semiconductor within the epoxy equivalent range is obtained, and a cured product having excellent heat resistance can be obtained. The number of moles of the siloxane compound (A) is a value obtained by dividing the mass of the mixed siloxane compound (A) by the weight average molecular weight (Mw).

上記反応の温度は、好ましくは10〜100℃、より好ましくは10〜80℃、特に好ましくは15〜70℃である。反応時間は、好ましくは1〜48時間、より好ましくは1〜24時間、特に好ましくは2〜12時間である。反応は、各成分を反応容器に一括で仕込んで実施してもよいし、一方の成分に他方の成分を間欠的にもしくは連続的に添加しながら行ってもよい。   The temperature of the reaction is preferably 10 to 100 ° C, more preferably 10 to 80 ° C, and particularly preferably 15 to 70 ° C. The reaction time is preferably 1 to 48 hours, more preferably 1 to 24 hours, and particularly preferably 2 to 12 hours. The reaction may be carried out by charging each component in a reaction vessel at once, or may be carried out while intermittently or continuously adding the other component to one component.

上記反応により生成したポリシロキサンに含まれるアルコキシシラン残基には、アルコキシ基が残存する(以下、このポリシロキサンを「アルコキシ基含有ポリシロキサン」という)。   An alkoxy group remains in the alkoxysilane residue contained in the polysiloxane produced by the above reaction (hereinafter, this polysiloxane is referred to as “alkoxy group-containing polysiloxane”).

(塩基性化合物)
上記塩基性化合物としては、アンモニア(アンモニア水溶液を含む)、有機アミン、有機アミン以外の含窒素化合物、水酸化ナトリウム、水酸化カリウム等のアルカリ金属やアルカリ土類金属の水酸化物、ナトリウムメトキシド、ナトリウムエトキシド等のアルカリ金属のアルコキシドが挙げられる。これらのうち、アンモニアならびに有機アミンおよび有機アミン以外の含窒素化合物が好ましい。
(Basic compound)
Examples of the basic compound include ammonia (including aqueous ammonia), organic amines, nitrogen-containing compounds other than organic amines, hydroxides of alkali metals and alkaline earth metals such as sodium hydroxide and potassium hydroxide, and sodium methoxide. And alkali metal alkoxides such as sodium ethoxide. Among these, ammonia and nitrogen-containing compounds other than organic amines and organic amines are preferable.

有機アミンとしては、アルキルアミン、アルコキシアミン、アルカノールアミン、アリールアミンなどが挙げられる。
アルキルアミンとしては、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、N,N−ジメチルアミン、N,N−ジエチルアミン、N,N−ジプロピルアミン、N,N−ジブチルアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミンなどの炭素数1〜4のアルキル基を有するアルキルアミンなどが挙げられる。
Examples of the organic amine include alkylamine, alkoxyamine, alkanolamine, and arylamine.
Alkylamines include methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, N, N-dimethylamine, N, N-diethylamine, N, N-dipropylamine, N, N-dibutylamine, trimethylamine , Alkylamines having an alkyl group having 1 to 4 carbon atoms, such as triethylamine, tripropylamine, and tributylamine.

アルコキシアミンとしては、メトキシメチルアミン、メトキシエチルアミン、メトキシプロピルアミン、メトキシブチルアミン、エトキシメチルアミン、エトキシエチルアミン、エトキシプロピルアミン、エトキシブチルアミン、プロポキシメチルアミン、プロポキシエチルアミン、プロポキシプロピルアミン、プロポキシブチルアミン、ブトキシメチルアミン、ブトキシエチルアミン、ブトキシプロピルアミン、ブトキシブチルアミンなどの炭素数1〜4のアルコキシ基を有するアルコキシアミンなどが挙げられる。   Alkoxyamines include methoxymethylamine, methoxyethylamine, methoxypropylamine, methoxybutylamine, ethoxymethylamine, ethoxyethylamine, ethoxypropylamine, ethoxybutylamine, propoxymethylamine, propoxyethylamine, propoxypropylamine, propoxybutylamine, butoxymethylamine , Alkoxyamines having 1 to 4 carbon atoms such as butoxyethylamine, butoxypropylamine, and butoxybutylamine.

アルカノールアミンとしては、メタノールアミン、エタノールアミン、プロパノールアミン、ブタノールアミン、N−メチルメタノールアミン、N−エチルメタノールアミン、N−プロピルメタノールアミン、N−ブチルメタノールアミン、N−メチルエタノールアミン、N−エチルエタノールアミン、N−プロピルエタノールアミン、N−ブチルエタノールアミン、N−メチルプロパノールアミン、N−エチルプロパノールアミン、N−プロピルプロパノールアミン、N−ブチルプロパノールアミン、N−メチルブタノールアミン、N−エチルブタノールアミンなどの炭素数1〜4のアルキル基を有するアルカノールアミンおよびその誘導体であるアルカノールアミンが挙げられる。   As alkanolamine, methanolamine, ethanolamine, propanolamine, butanolamine, N-methylmethanolamine, N-ethylmethanolamine, N-propylmethanolamine, N-butylmethanolamine, N-methylethanolamine, N-ethyl Ethanolamine, N-propylethanolamine, N-butylethanolamine, N-methylpropanolamine, N-ethylpropanolamine, N-propylpropanolamine, N-butylpropanolamine, N-methylbutanolamine, N-ethylbutanolamine Alkanolamine having an alkyl group having 1 to 4 carbon atoms such as alkanolamine and derivatives thereof.

アリールアミンとしてはアニリン、N−メチルアニリンなどが挙げられる。
さらに、上記以外の有機アミンおよび有機アミン以外の含窒素化合物として、テトラメチルアンモニウムハイドロキサイド、テトラエチルアンモニウムハイドロキサイド、テトラプロピルアンモニウムハイドロキサイド、テトラブチルアンモニウムハイドロキサイドなどのテトラアルキルアンモニウムハイドロキサイド;テトラメチルエチレンジアミン、テトラエチルエチレンジアミン、テトラプロピルエチレンジアミン、テトラブチルエチレンジアミンなどのテトラアルキルエチレンジアミン;メチルアミノメチルアミン、メチルアミノエチルアミン、メチルアミノプロピルアミン、メチルアミノブチルアミン、エチルアミノメチルアミンなどのアルキルアミノアルキルアミン;ピリジン、ピロール、ピペラジン、ピロリジン、ピペリジン、ピコリン、モルホリン、メチルモルホリン、ジアザビシクロオクラン、ジアザビシクロノナン、ジアザビシクロウンデセンなども挙げられる。
Examples of the arylamine include aniline and N-methylaniline.
Further, as other organic amines and nitrogen-containing compounds other than organic amines, tetraalkylammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, etc. Side: Tetraalkylethylenediamine such as tetramethylethylenediamine, tetraethylethylenediamine, tetrapropylethylenediamine, tetrabutylethylenediamine; Alkylaminoalkylamine such as methylaminomethylamine, methylaminoethylamine, methylaminopropylamine, methylaminobutylamine, ethylaminomethylamine Pyridine, pyrrole, piperazine, pyrrolidine, piperidine Picoline, morpholine, methylmorpholine, diazabicyclooctane okra down, diazabicyclononane, and also such as diazabicycloundecene.

このような塩基性化合物は、1種単独で用いても、2種以上を混合して用いてもよい。
これらのうち、トリエチルアミン、ピロリジン、テトラメチルアンモニウムハイドロキサイド、ピリジン、ジアザビシクロノナン、ジアザビシクロウンデセンが特に好ましい。
Such basic compounds may be used alone or in combination of two or more.
Of these, triethylamine, pyrrolidine, tetramethylammonium hydroxide, pyridine, diazabicyclononane and diazabicycloundecene are particularly preferable.

上記工程(i)において、塩基性化合物は、シロキサン化合物(A)とアルコキシシラン化合物(B)との合計100重量部に対して、通常1〜50重量部、好ましくは2〜30重量部、より好ましくは2〜20重量部添加される。   In the said process (i), a basic compound is 1-50 weight part normally with respect to a total of 100 weight part of a siloxane compound (A) and an alkoxysilane compound (B), Preferably it is 2-30 weight part. Preferably 2 to 20 parts by weight are added.

(有機溶剤)
上記工程(i)においては、有機溶剤を用いることもできる。
有機溶剤としては、たとえば、アルコール類、芳香族炭化水素類、エーテル類、ケトン類、エステル類などを挙げることができる。上記アルコール類としては、メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、i−ブチルアルコール、n−ブチルアルコール、sec−ブチルアルコール、t−ブチルアルコール、n−ヘキシルアルコール、n−オクチルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレンモノメチルエーテルアセテート、ジアセトンアルコールなどを挙げることができる。また、芳香族炭化水素類としては、ベンゼン、トルエン、キシレンなどが挙げられ、エーテル類としては、テトラヒドロフラン、ジオキサンなどが挙げられ、ケトン類としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトンなどが挙げられ、エステル類としては、酢酸エチル、酢酸プロピル、酢酸ブチル、炭酸プロピレン、乳酸メチル、乳酸エチル、乳酸ノルマルプロピル、乳酸イソプロピル、3−エトキシプロピオン酸メチル、3−エトキシプロピオン酸エチルなどが挙げられる。これらの有機溶剤は、1種単独で用いても、2種以上を混合して用いてもよい。これらの有機溶剤のうち、反応を促進する観点から、アルコール以外の有機溶剤、たとえば、メチルエチルケトン、メチルイソブチルケトン、トルエン、キシレンなどを使用することが好ましい。
(Organic solvent)
In the step (i), an organic solvent can also be used.
Examples of the organic solvent include alcohols, aromatic hydrocarbons, ethers, ketones, esters, and the like. Examples of the alcohols include methanol, ethanol, n-propyl alcohol, i-propyl alcohol, i-butyl alcohol, n-butyl alcohol, sec-butyl alcohol, t-butyl alcohol, n-hexyl alcohol, n-octyl alcohol, Examples include ethylene glycol, diethylene glycol, triethylene glycol, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene monomethyl ether acetate, and diacetone alcohol. Aromatic hydrocarbons include benzene, toluene, xylene, etc., ethers include tetrahydrofuran, dioxane, etc., and ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, and the like. Examples of the esters include ethyl acetate, propyl acetate, butyl acetate, propylene carbonate, methyl lactate, ethyl lactate, normal propyl lactate, isopropyl lactate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, and the like. . These organic solvents may be used individually by 1 type, or 2 or more types may be mixed and used for them. Among these organic solvents, from the viewpoint of promoting the reaction, it is preferable to use an organic solvent other than alcohol, for example, methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene and the like.

上記有機溶剤は、上記反応のコントロールなどを目的として適宜使用することができる。有機溶剤を使用する場合、その使用量は所望の条件に応じて適宜設定することができる。   The organic solvent can be appropriately used for the purpose of controlling the reaction. When an organic solvent is used, the amount used can be appropriately set according to desired conditions.

(工程(ii))
本工程においては、上記工程(i)で得られた生成物を塩基性化合物の存在下、水と反応させる。この反応により、アルコキシ基含有ポリシロキサン中に含まれるアルコキシ基が水酸基に変換され、シラノール基が生成されると考えられ、その結果前記オルガノポリシロキサンが生成されると考えられる(以下、この反応により得られたオルガノポリシロキサンを「シラノール基エポキシ基含有ポリシロキサン」ともいう)。この反応においては、上記アルコキシ基の全てがシラノール基に変換されるのではなく、その一部はアルコキシ基のまま残存している。また、上記シラノール基エポキシ基含有ポリシロキサンのシラノール基の一部は縮合していてもよい。
(Step (ii))
In this step, the product obtained in the step (i) is reacted with water in the presence of a basic compound. By this reaction, it is considered that the alkoxy group contained in the alkoxy group-containing polysiloxane is converted to a hydroxyl group and a silanol group is generated, and as a result, the organopolysiloxane is generated (hereinafter referred to as this reaction). The obtained organopolysiloxane is also referred to as “silanol group epoxy group-containing polysiloxane”). In this reaction, not all of the alkoxy groups are converted to silanol groups, but some of them remain as alkoxy groups. Moreover, a part of silanol group of the silanol group epoxy group-containing polysiloxane may be condensed.

この反応は、有機溶媒中で触媒である塩基性化合物の存在下で行うことが好ましい。このとき使用する触媒は、上記工程(i)に使用した塩基性化合物を継続して使用しても良いし、同種または異種の塩基性化合物を新たに追加してもよい。   This reaction is preferably performed in an organic solvent in the presence of a basic compound as a catalyst. As the catalyst used at this time, the basic compound used in the step (i) may be used continuously, or the same or different basic compound may be newly added.

工程(ii)の際に添加される水の量は、工程(i)におけるシロキサン化合物(A)とアルコキシシラン化合物(B)との重量の合計を100重量部とした場合、通常10〜500重量部、好ましくは20〜200重量部、より好ましくは30〜100重量部である。水の添加量が上記範囲にあると、工程(ii)が十分に進行するとともに、反応後に除去する水の量が少ないため好ましい。   The amount of water added in the step (ii) is usually 10 to 500 weights when the total weight of the siloxane compound (A) and the alkoxysilane compound (B) in the step (i) is 100 parts by weight. Parts, preferably 20 to 200 parts by weight, more preferably 30 to 100 parts by weight. It is preferable for the amount of water added to be in the above range because step (ii) proceeds sufficiently and the amount of water removed after the reaction is small.

上記工程(ii)の温度は、好ましくは10〜100℃、より好ましくは10〜80℃、特に好ましくは15〜70℃である。反応時間は、好ましくは0.3〜48時間、より好ましくは0.5〜24時間、特に好ましくは1〜12時間である。   The temperature in the step (ii) is preferably 10 to 100 ° C, more preferably 10 to 80 ° C, and particularly preferably 15 to 70 ° C. The reaction time is preferably 0.3 to 48 hours, more preferably 0.5 to 24 hours, and particularly preferably 1 to 12 hours.

上記工程(ii)で用いられる塩基性化合物の量は、シロキサン化合物(A)とアルコキシシラン化合物(B)との合計100重量部に対して、通常0.01〜50重量部、好ましくは0.1〜30重量部、より好ましくは0.5〜20重量部である。   The amount of the basic compound used in the above step (ii) is usually 0.01 to 50 parts by weight, preferably 0. 0 parts by weight with respect to 100 parts by weight as the total of the siloxane compound (A) and the alkoxysilane compound (B). 1 to 30 parts by weight, more preferably 0.5 to 20 parts by weight.

また、上記工程(i)後に引続いて上記工程(ii)を行う場合、上記工程(i)に使用した特定化合物をそのまま使用しても良いし、同種のまたは異種の特定化合物を新たに追加しても良い。   When the step (ii) is subsequently performed after the step (i), the specific compound used in the step (i) may be used as it is, or the same or different specific compound is newly added. You may do it.

工程(ii)に使用する有機溶媒としては、前記工程(i)で挙げた有機溶剤等を挙げることができる。
上記で得られたシラノール基エポキシ基含有ポリシロキサンの貯蔵安定性の点から、 工程(ii)後に脱特定化合物工程として水洗を行うことが好ましい。特に特定化合物として塩基性化合物を使用した場合、反応後に酸性化合物による中和を行った上で、水洗を行うことがより好ましい。
Examples of the organic solvent used in the step (ii) include the organic solvents mentioned in the step (i).
From the viewpoint of the storage stability of the silanol group epoxy group-containing polysiloxane obtained above, it is preferable to perform water washing as a despecification compound step after step (ii). In particular, when a basic compound is used as the specific compound, it is more preferable to perform water washing after neutralization with an acidic compound after the reaction.

中和に使用する酸性化合物としては、有機酸および無機酸が挙げられる。有機酸としては、たとえば、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、シュウ酸、マレイン酸、無水マレイン酸、メチルマロン酸、アジピン酸、セバシン酸、没食子酸、酪酸、メリト酸、アラキドン酸、シキミ酸、2−エチルヘキサン酸、オレイン酸、ステアリン酸、リノール酸、リノレイン酸、サリチル酸、安息香酸、p−アミノ安息香酸、p−トルエンスルホン酸、ベンゼンスルホン酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ギ酸、マロン酸、メタンスルホン酸、フタル酸、フマル酸、クエン酸、酒石酸などが挙げられる。上記無機酸としては、たとえば、塩酸、硝酸、硫酸、フッ酸、リン酸などが挙げられる。   Examples of the acidic compound used for neutralization include organic acids and inorganic acids. Examples of the organic acid include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, oxalic acid, maleic acid, maleic anhydride, methylmalonic acid, adipic acid, Sebacic acid, gallic acid, butyric acid, mellitic acid, arachidonic acid, shikimic acid, 2-ethylhexanoic acid, oleic acid, stearic acid, linoleic acid, linolenic acid, salicylic acid, benzoic acid, p-aminobenzoic acid, p-toluenesulfone Examples include acid, benzenesulfonic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, formic acid, malonic acid, methanesulfonic acid, phthalic acid, fumaric acid, citric acid, and tartaric acid. Examples of the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, and phosphoric acid.

酸性化合物の使用量は脱アルコール反応および加水分解反応に使用した塩基性化合物1規定に対し、通常0.5〜2規定、好ましくは0.8〜1.5規定、さらに好ましくは0.9〜1.3規定である。酸性化合物は水洗時に水層へ抽出され易い点からが水溶性の酸性化合物を使用することが好ましい。水に溶解して使用する場合、酸性化合物を、水100重量部に対して、通常0.5〜100重量部、好ましくは1〜50重量部、より好ましくは2〜10重量部添加する。   The amount of the acidic compound used is usually 0.5 to 2 N, preferably 0.8 to 1.5 N, more preferably 0.9 to 1 N of the basic compound used in the dealcoholization reaction and hydrolysis reaction. 1.3. The acidic compound is preferably a water-soluble acidic compound from the viewpoint that it can be easily extracted into the aqueous layer at the time of washing with water. When used by dissolving in water, the acidic compound is usually added in an amount of 0.5 to 100 parts by weight, preferably 1 to 50 parts by weight, more preferably 2 to 10 parts by weight with respect to 100 parts by weight of water.

中和後、十分に攪拌混合して静置し、水相と有機溶媒相との相分離を確認後、下層の水分を除去する。
中和後の水洗に使用する水は、シロキサン化合物(A)とアルコキシシラン化合物(B)との合計100重量部に対して、通常10〜500重量部、好ましくは20〜300部、より好ましくは30〜200部である。
After neutralization, the mixture is sufficiently stirred and allowed to stand, and after confirming phase separation between the aqueous phase and the organic solvent phase, the lower layer moisture is removed.
The water used for the water washing after neutralization is usually 10 to 500 parts by weight, preferably 20 to 300 parts, more preferably 100 parts by weight in total of the siloxane compound (A) and the alkoxysilane compound (B). 30 to 200 parts.

水洗は、水を添加して十分に攪拌した後、静置し、水相と有機溶媒相との相分離を確認後、下層の水分を除去することにより行う。水洗回数は好ましくは1回以上、さらに好ましくは2回以上である。
また、水洗後に不純物の除去を目的に有機溶媒で抽出しても良い。抽出に必要な有機溶媒は上記の有機溶媒が使用できる。有機溶媒の種類、及びその配合量は適宜選択できる。
Washing with water is performed by adding water and stirring sufficiently, and then allowing to stand, and after confirming phase separation between the aqueous phase and the organic solvent phase, removing the lower layer moisture. The number of washings is preferably 1 or more times, more preferably 2 or more times.
Moreover, you may extract with an organic solvent for the purpose of the removal of an impurity after water washing. As the organic solvent necessary for extraction, the above organic solvents can be used. The kind of organic solvent and its compounding quantity can be selected suitably.

エポキシ用硬化剤
エポキシ用硬化剤は、オルガノポリシロキサンを硬化させる物質である。
エポキシ用硬化剤(B)としては、酸無水物、アミン化合物、メルカプト化合物等を挙げることができる。これら中で、特に酸無水物が好ましい。
Epoxy Curing Agent The epoxy curing agent is a substance that cures the organopolysiloxane.
Examples of the epoxy curing agent (B) include acid anhydrides, amine compounds, and mercapto compounds. Of these, acid anhydrides are particularly preferred.

〔酸無水物〕
酸無水物としては、特に限定されないが、脂環式カルボン酸無水物が好ましい。
前記脂環式カルボン酸無水物としては、たとえば、下記式(11)〜(21)で表される化合物
[Acid anhydride]
Although it does not specifically limit as an acid anhydride, An alicyclic carboxylic acid anhydride is preferable.
Examples of the alicyclic carboxylic acid anhydride include compounds represented by the following formulas (11) to (21).

Figure 0005407615
や、4−メチルテトラヒドロフタル酸無水物、メチルナジック酸無水物、ドデセニルコハク酸無水物のほか、α−テルピネン、アロオシメン等の共役二重結合を有する脂環式化合物と無水マレイン酸とのディールス・アルダー反応生成物やこれらの水素添加物等を挙げることができる。なお、前記ディールス・アルダー反応生成物やこれらの水素添加物としては、任意の構造異性体および任意の幾何異性体を使用することができる。
Figure 0005407615
And Diels-Alder of maleic anhydride and alicyclic compounds having conjugated double bonds such as α-terpinene and alloocimene in addition to 4-methyltetrahydrophthalic anhydride, methylnadic acid anhydride, dodecenyl succinic anhydride Reaction products and hydrogenated products thereof can be exemplified. In addition, arbitrary structural isomers and arbitrary geometric isomers can be used as the Diels-Alder reaction product and hydrogenated products thereof.

また、前記脂環式カルボン酸無水物は、硬化反応を実質的に妨げない限り、適宜に化学的に変性して使用することもできる。
これらの脂環式カルボン酸無水物のうち、組成物の流動性や透明性の点から、式(11)、式(13)、式(15)、式(16)、式(17)または式(21)で表される化合物等が好ましい。特に好ましくは式(11)、式(13)、式(16)または式(21)で表される化合物である。
In addition, the alicyclic carboxylic acid anhydride can be used after being appropriately chemically modified as long as the curing reaction is not substantially hindered.
Among these alicyclic carboxylic acid anhydrides, from the viewpoint of fluidity and transparency of the composition, the formula (11), the formula (13), the formula (15), the formula (16), the formula (17) or the formula A compound represented by (21) is preferred. Particularly preferred are compounds represented by formula (11), formula (13), formula (16) or formula (21).

本発明において、脂環式カルボン酸無水物は、単独でまたは2種以上を混合して使用することができる。
また、酸無水物として、脂肪族酸無水物や芳香族酸無水物を1種以上使用することもできる。これらは脂環式酸無水物と併用するのが好ましい。
In this invention, an alicyclic carboxylic acid anhydride can be used individually or in mixture of 2 or more types.
In addition, one or more aliphatic acid anhydrides or aromatic acid anhydrides can be used as the acid anhydride. These are preferably used in combination with an alicyclic acid anhydride.

前記脂肪族酸無水物および芳香族酸無水物も、硬化反応を実質的に妨げない限り、適宜に化学的に変性して使用することができる。
脂肪族酸無水物および芳香族酸無水物の合計使用割合は、脂環式酸無水物との合計量に対して、好ましくは50質量%以下、さらに好ましくは30質量%以下である。
The aliphatic acid anhydride and aromatic acid anhydride can also be used after being appropriately chemically modified as long as they do not substantially interfere with the curing reaction.
The total use ratio of the aliphatic acid anhydride and the aromatic acid anhydride is preferably 50% by mass or less, more preferably 30% by mass or less, based on the total amount with the alicyclic acid anhydride.

エポキシ用硬化剤として酸無水物を使用する場合、その使用量は、前記オルガノポリシロキサン中のエポキシ基1モルに対する酸無水物基の当量比として0.2〜1.7、好ましくは0.3〜1.5、さらに好ましくは0.5〜1.3、もっとも好ましくは0.6〜0.8である。この場合、該当量比が0.2未満でも、1.7を超えても、得られる硬化物のガラス転移点(Tg)の低下や着色等の不都合を生じるおそれがある。   When an acid anhydride is used as a curing agent for epoxy, the amount used is 0.2 to 1.7, preferably 0.3 as an equivalent ratio of acid anhydride groups to 1 mol of epoxy groups in the organopolysiloxane. To 1.5, more preferably 0.5 to 1.3, and most preferably 0.6 to 0.8. In this case, even if the corresponding amount ratio is less than 0.2 or exceeds 1.7, there is a possibility that inconveniences such as a decrease in the glass transition point (Tg) and coloring of the obtained cured product may occur.

硬化促進剤
本発明に係る硬化性組成物は、硬化促進剤を含有してもよい。硬化促進剤は、オルガノポリシロキサンとエポキシ用硬化剤との硬化反応を促進する成分である。
Curing accelerator The curable composition according to the present invention may contain a curing accelerator. The curing accelerator is a component that accelerates the curing reaction between the organopolysiloxane and the epoxy curing agent.

このような硬化促進剤としては、特に限定されるものではないが、たとえば、
ベンジルジメチルアミン、2,4,6−トリス(ジメチルアミノメチル)フェノール、シクロヘキシルジメチルアミン、トリエタノールアミンの如き3級アミン;UCAT410(サンアプロ株式会社)の如き特殊アミン;
2−メチルイミダゾール、2−n−ヘプチルイミダゾール、2−n−ウンデシルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、1−(2−シアノエチル)−2−メチルイミダゾール、1−(2−シアノエチル)−2−n−ウンデシルイミダゾール、1−(2−シアノエチル)−2−フェニルイミダゾール、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル−4,5−ジ(ヒドロキシメチル)イミダゾール、1−(2−シアノエチル)−2−フェニル−4,5−ジ〔(2'−シアノエトキシ)メチル〕イミダゾール、1−(2−シアノエチル)−2−n−ウンデシルイミダゾリウムトリメリテート、1−(2−シアノエチル)−2−フェニルイミダゾリウムトリメリテート、2−メチルイミダゾールのイソシアヌル酸付加物、2−フェニルイミダゾールのイソシアヌル酸付加物、2,4−ジアミノ−6−〔2'−メチルイミダゾリル−(1')〕エチル−s−トリアジンのイソシアヌル酸付加物の如きイミダゾール類;
ジフェニルフォスフィン、トリフェニルフォスフィン、亜リン酸トリフェニルの如き有機リン化合物;
ベンジルトリフェニルフォスフォニウムクロライド、テトラ−n−ブチルフォスフォニウムブロマイド、メチルトリフェニルフォスフォニウムブロマイド、エチルトリフェニルフォスフォニウムブロマイド、n−ブチルトリフェニルフォスフォニウムブロマイド、テトラフェニルフォスフォニウムブロマイド、エチルトリフェニルフォスフォニウムヨーダイド、エチルトリフェニルフォスフォニウムアセテート、テトラフェニルフォスフォニウムテトラフェニルボレート、トリフェニルベンジルホスフォニウムテトラフェニルボレート、テトラ−n−ブチルホスフォニウムテトラフルオロボレートの如き4級フォスフォニウム塩;
1,8−ジアザビシクロ[5.4.0]ウンデセン−7やその有機酸塩の如きジアザビシクロアルケン;
オクチル酸亜鉛、オクチル酸錫、アルミニウムアセチルアセトン錯体の如き有機金属化合物;
テトラエチルアンモニウムブロマイド、テトラ−n−ブチルアンモニウムブロマイド、UCAT18X(サンアプロ株式会社)あるいは下記式(22)
Such a curing accelerator is not particularly limited, but for example,
Tertiary amines such as benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, cyclohexyldimethylamine, triethanolamine; special amines such as UCAT410 (San Apro Corporation);
2-methylimidazole, 2-n-heptylimidazole, 2-n-undecylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenyl Imidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1- (2-cyanoethyl) -2-methylimidazole, 1- (2-cyanoethyl) -2-n-undecylimidazole, 1- ( 2-cyanoethyl) -2-phenylimidazole, 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-di (Hydroxymethyl) imidazole, 1- (2-cyanoethyl) -2-fur Nyl-4,5-di [(2′-cyanoethoxy) methyl] imidazole, 1- (2-cyanoethyl) -2-n-undecylimidazolium trimellitate, 1- (2-cyanoethyl) -2-phenyl Imidazolium trimellitate, isocyanuric acid adduct of 2-methylimidazole, isocyanuric acid adduct of 2-phenylimidazole, 2,4-diamino-6- [2'-methylimidazolyl- (1 ')] ethyl-s- Imidazoles such as isocyanuric acid adducts of triazines;
Organophosphorus compounds such as diphenylphosphine, triphenylphosphine, triphenyl phosphite;
Benzyltriphenylphosphonium chloride, tetra-n-butylphosphonium bromide, methyltriphenylphosphonium bromide, ethyltriphenylphosphonium bromide, n-butyltriphenylphosphonium bromide, tetraphenylphosphonium bromide , Ethyltriphenylphosphonium iodide, ethyltriphenylphosphonium acetate, tetraphenylphosphonium tetraphenylborate, triphenylbenzylphosphonium tetraphenylborate, tetra-n-butylphosphonium tetrafluoroborate Quaternary phosphonium salt;
Diazabicycloalkenes such as 1,8-diazabicyclo [5.4.0] undecene-7 and organic acid salts thereof;
Organometallic compounds such as zinc octylate, tin octylate, aluminum acetylacetone complex;
Tetraethylammonium bromide, tetra-n-butylammonium bromide, UCAT18X (San Apro Co., Ltd.) or the following formula (22)

Figure 0005407615
の如き4級アンモニウム塩;
三フッ化ホウ素、ホウ酸トリフェニルの如きホウ素化合物;塩化亜鉛、塩化第二錫の如き金属ハロゲン化合物、
ジシアンジアミドやアミンとエポキシ樹脂との付加物等のアミン付加型促進剤等の高融点分散型潜在性硬化促進剤;前記イミダゾール類、有機リン化合物や4級フォスフォニウム塩等の硬化促進剤の表面をポリマーで被覆したマイクロカプセル型潜在性硬化促進剤;アミン塩型潜在性硬化剤促進剤;ルイス酸塩、ブレンステッド酸塩等の高温解離型の熱カチオン重合型潜在性硬化促進剤等の潜在性硬化促進剤
等を挙げることができる。
Figure 0005407615
A quaternary ammonium salt such as
Boron compounds such as boron trifluoride and triphenyl borate; metal halides such as zinc chloride and stannic chloride,
High melting point dispersion type latent curing accelerators such as amine addition type accelerators such as dicyandiamide and adducts of amine and epoxy resin; surfaces of curing accelerators such as imidazoles, organophosphorus compounds and quaternary phosphonium salts Microcapsule-type latent curing accelerator coated with polymer; amine salt-type latent curing accelerator; high-temperature dissociation type thermal cationic polymerization type latent curing accelerator such as Lewis acid salt and Bronsted acid salt Can be mentioned.

これらの硬化促進剤のうち、イミダゾール類、4級フォスフォニウム塩、ジアザビシクロアルケン、有機金属化合物および4級アンモニウム塩が、無色透明で、長時間加熱しても変色し難い硬化物が得られる点で好ましい。   Among these curing accelerators, imidazoles, quaternary phosphonium salts, diazabicycloalkenes, organometallic compounds, and quaternary ammonium salts are colorless and transparent, and cured products that are difficult to discolor even when heated for a long time are obtained. This is preferable.

前記硬化促進剤は、単独でまたは2種以上を混合して使用することができる。
本発明に係る硬化性組成物において、硬化促進剤の含有量は、前記オルガノポリシロキサン100質量部に対して0.005〜6質量部、好ましくは0.01〜5質量部、さらに好ましくは0.05〜4質量部である。硬化促進剤の含有量が0.005質量部未満であると、硬化反応の促進効果が低下する傾向があり、一方6質量部を超えると、得られる硬化物に着色などの不都合を生じるおそれがある。
The said hardening accelerator can be used individually or in mixture of 2 or more types.
In the curable composition according to the present invention, the content of the curing accelerator is 0.005 to 6 parts by mass, preferably 0.01 to 5 parts by mass, and more preferably 0 to 100 parts by mass of the organopolysiloxane. 0.05 to 4 parts by mass. When the content of the curing accelerator is less than 0.005 parts by mass, the effect of promoting the curing reaction tends to be reduced. On the other hand, when the content exceeds 6 parts by mass, the obtained cured product may be disadvantageous such as coloring. is there.

その他の成分
本発明の硬化性組成物は、さらにシリカ粒子などの無機粒子や、密着助剤として前記オルガノポリシロキサン以外のエポキシ基含有ポリシロキサン、あるいはオキセタン化合物、チオール化合物、イソシアヌル環構造を有する化合物、アルコキシシランやその加水分解物または縮合物などを含んでいてもよい。また、本発明の硬化性組成物は、さらに蛍光体を含有することができ、蛍光体を含有した硬化性組成物の硬化体は、LED封止材として使用することができる。
Other components The curable composition of the present invention further includes inorganic particles such as silica particles, epoxy group-containing polysiloxanes other than the organopolysiloxane as adhesion assistants, or oxetane compounds, thiol compounds, and compounds having an isocyanuric ring structure. , Alkoxysilane or a hydrolyzate or condensate thereof may be contained. Moreover, the curable composition of this invention can contain fluorescent substance further, and the hardening body of the curable composition containing fluorescent substance can be used as LED sealing material.

[無機粒子]
本発明の硬化性組成物が無機粒子としてシリカ粒子を含有すると、硬化体の強度が向上するという点で好ましい。
[Inorganic particles]
When the curable composition of the present invention contains silica particles as inorganic particles, it is preferable in that the strength of the cured product is improved.

無機粒子としてシリカ粒子を配合する場合は、粉体、またはイソプロピルアルコールなどの極性溶媒やトルエンなどの非極性溶媒に分散した溶媒系のゾルもしくはコロイドなどの形態で使用することもできる。溶媒系のゾルもしくはコロイドの場合、配合後に溶媒溜去すればよい。シリカ粒子の分散性を向上させるために、表面処理を施したシリカ粒子を用いてもよい。   When silica particles are blended as inorganic particles, they can also be used in the form of powder or a solvent-based sol or colloid dispersed in a polar solvent such as isopropyl alcohol or a nonpolar solvent such as toluene. In the case of a solvent-based sol or colloid, the solvent may be distilled off after compounding. In order to improve the dispersibility of the silica particles, surface-treated silica particles may be used.

これらのシリカ粒子の1次粒子径は、通常0.0001〜1μm、さらに好ましくは0.001〜0.5μm、特に好ましくは0.002〜0.2μmである。
シリカ粒子溶媒系のゾルもしくはコロイドである場合、その固形分濃度は通常0質量%を超えて50量%以下、好ましくは0.01質量%以上40質量%以下である。
The primary particle diameter of these silica particles is usually 0.0001 to 1 μm, more preferably 0.001 to 0.5 μm, and particularly preferably 0.002 to 0.2 μm.
In the case of a silica particle solvent-based sol or colloid, the solid content concentration usually exceeds 0% by mass and is 50% by mass or less, preferably 0.01% by mass or more and 40% by mass or less.

本発明では、表面処理未処理の粉末状シリカとしては、日本アエロジル社製のOX50、#50、#150、#200、#300、疎水化処理の粉末状シリカとして、日本アエロジル社製のR972、R974、R976、RX50、RX200、RX300、RY50、RY200S、RY300、R106、東ソー社製のSS50A、SS30V、富士シリシア化学社製のサイロホービック100、サイロホービック200等が挙げられる。   In the present invention, as surface-treated untreated powdered silica, OX50, # 50, # 150, # 200, # 300 manufactured by Nippon Aerosil Co., Ltd., and R972 manufactured by Nippon Aerosil Co., Ltd. as hydrophobized powdered silica. R974, R976, RX50, RX200, RX300, RY50, RY200S, RY300, R106, SS50A and SS30V manufactured by Tosoh Corporation, Silo Hovic 100 and Silo Hovic 200 manufactured by Fuji Silysia Chemical Ltd., and the like.

また、溶剤分散のコロイダルシリカとしては、日産化学工業社製のイソプロピルアルコール等のアルコール系溶剤分散コロイダルシリカ、メチルイソブチル等のケトン系溶剤分散コロイダルシリカ、トルエン等の非極性溶剤分散コロイダルシリカ等が挙げられる。シリカ粒子は、上記硬化性組成物の調製時に添加してもよく、硬化性組成物の調製後に添加してもよい。   Examples of the solvent-dispersed colloidal silica include alcohol-based solvent-dispersed colloidal silica such as isopropyl alcohol manufactured by Nissan Chemical Industries, ketone-based solvent-dispersed colloidal silica such as methylisobutyl, and nonpolar solvent-dispersed colloidal silica such as toluene. It is done. Silica particles may be added during the preparation of the curable composition, or may be added after the preparation of the curable composition.

無機粒子の使用量は、前記オルガノポリシロキサンに対して、固形分換算で通常0質量%を超えて80質量%以下、好ましくは5質量%以上50質量%以下である。   The amount of the inorganic particles used is usually more than 0% by mass and 80% by mass or less, preferably 5% by mass or more and 50% by mass or less in terms of solid content with respect to the organopolysiloxane.

[密着助剤]
本発明の硬化性組成物は、次に挙げるような物質を密着助剤として含有することもできる。
前記オルガノポリシロキサン以外のエポキシ基含有ポリシロキサンとしては、上記式(1)で表されるエポキシ基含有アルコキシシランと、下記式(III)
[Adhesion aid]
The curable composition of the present invention can also contain the following substances as adhesion assistants.
Examples of the epoxy group-containing polysiloxane other than the organopolysiloxane include an epoxy group-containing alkoxysilane represented by the above formula (1) and the following formula (III):

Figure 0005407615
(式(III)中、R5およびR6はそれぞれ独立に非置換または置換の1価の炭化水素基を示し、pは0〜2の整数である)
で表されるアルコキシシランとの加水分解縮合物や、シラノール基を含有しないエポキシ基含有ポリジメチルシロキサンなどが挙げられる。
Figure 0005407615
(In Formula (III), R 5 and R 6 each independently represents an unsubstituted or substituted monovalent hydrocarbon group, and p is an integer of 0 to 2)
And hydrolyzed condensates with alkoxysilanes, and epoxy group-containing polydimethylsiloxanes that do not contain silanol groups.

このような上記式(III)で表されるアルコキシシランとしては、具体的には、テトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシシラン、テトラ−i−プロポキシシラン、テトラ−n−ブトキシシランなどのテトラアルコキシシラン類(式(III)においてp=0);
メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、i−プロピルトリメトキシシラン、i−プロピルトリエトキシシラン、n−ブチルトリメトキシシラン、n−ブチルトリエトキシシラン、n−ペンチルトリメトキシシラン、n−ヘキシルトリメトキシシラン、n−ヘプチルトリメトキシシラン、n−オクチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、3−クロロプロピルトリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、3,3,3−トリフルオロプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−ヒドロキシエチルトリメトキシシラン、2−ヒドロキシエチルトリエトキシシラン、2−ヒドロキシプロピルトリメトキシシラン、2−ヒドロキシプロピルトリエトキシシラン、3−ヒドロキシプロピルトリメトキシシラン、3−ヒドロキシプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−イソシアナートプロピルトリメトキシシラン、3−イソシアナートプロピルトリエトキシシラン、3−(メタ)アクリルオキシプロピルトリメトキシシラン、3−(メタ)アクリルオキシプロピルトリエトキシシラン、3−ウレイドプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシランなどのトリアルコキシシラン類(式(III)においてp=1);ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジ−n−プロピルジメトキシシラン、ジ−n−プロピルジエトキシシラン、ジ−i−プロピルジメトキシシラン、ジ−i−プロピルジエトキシシラン、ジ−n−ブチルジメトキシシラン、ジ−n−ブチルジエトキシシラン、ジ−n−ペンチルジメトキシシラン、ジ−n−ペンチルジエトキシシラン、ジ−n−ヘキシルジメトキシシラン、ジ−n−ヘキシルジエトキシシラン、ジ−n−ヘプチルジメトキシシラン、ジ−n−ヘプチルジエトキシシラン、ジ−n−オクチルジメトキシシラン、ジ−n−オクチルジエトキシシラン、ジ−n−シクロヘキシルジメトキシシラン、ジ−n−シクロヘキシルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシランなどのジアルコキシシラン類(式(III)においてp=2);
が挙げられる。
Specific examples of the alkoxysilane represented by the above formula (III) include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, and tetra-n-butoxysilane. Tetraalkoxysilanes (p = 0 in formula (III));
Methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, i-propyltrimethoxysilane, i-propyltriethoxysilane, n- Butyltrimethoxysilane, n-butyltriethoxysilane, n-pentyltrimethoxysilane, n-hexyltrimethoxysilane, n-heptyltrimethoxysilane, n-octyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, Cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane 3,3,3-trifluoropropyltrimethoxysilane, 3,3,3-trifluoropropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-hydroxyethyltrimethoxy Silane, 2-hydroxyethyltriethoxysilane, 2-hydroxypropyltrimethoxysilane, 2-hydroxypropyltriethoxysilane, 3-hydroxypropyltrimethoxysilane, 3-hydroxypropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3- (meth) acryloxypropyltrimethoxysilane, 3 Trialkoxysilanes such as (meth) acryloxypropyltriethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane (p = 1 in formula (III)); dimethyldimethoxysilane, dimethyldiethoxysilane Diethyldimethoxysilane, diethyldiethoxysilane, di-n-propyldimethoxysilane, di-n-propyldiethoxysilane, di-i-propyldimethoxysilane, di-i-propyldiethoxysilane, di-n-butyldimethoxy Silane, di-n-butyldiethoxysilane, di-n-pentyldimethoxysilane, di-n-pentyldiethoxysilane, di-n-hexyldimethoxysilane, di-n-hexyldiethoxysilane, di-n-heptyl Dimethoxysilane, di-n- Heptyldiethoxysilane, di-n-octyldimethoxysilane, di-n-octyldiethoxysilane, di-n-cyclohexyldimethoxysilane, di-n-cyclohexyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, etc. Alkoxysilanes (p = 2 in formula (III));
Is mentioned.

オキセタン化合物としては、下記式(O−1)〜(O−10)で表される化合物が挙げられる。   Examples of the oxetane compound include compounds represented by the following formulas (O-1) to (O-10).

Figure 0005407615
Figure 0005407615

Figure 0005407615
チオール化合物としては、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−メルカプトプロピルトリ−n−プロポキシシラン、3−メルカプトプロピルトリ−i−プロポキシシラン、3−メルカプトプロピルトリ−n−ブトキシシラン、3−メルカプトプロピルトリ−sec−ブトキシシランなどが挙げられる。
Figure 0005407615
Examples of the thiol compound include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropyltri-n-propoxysilane, 3-mercaptopropyltri-i-propoxysilane, and 3-mercaptopropyltri-n. -Butoxysilane, 3-mercaptopropyltri-sec-butoxysilane and the like.

イソシアヌル環構造を有する化合物としては、イソシアヌル酸トリス(3−トリメトキシシリル−n−プロピル)、イソシアヌル酸トリス(2−ヒドロキシエチル)、イソシアヌル酸トリグリシジル、イソシアヌル酸トリス(2−カルボキシエチル)などが挙げられる。   Examples of the compound having an isocyanuric ring structure include isocyanuric acid tris (3-trimethoxysilyl-n-propyl), isocyanuric acid tris (2-hydroxyethyl), isocyanuric acid triglycidyl, isocyanuric acid tris (2-carboxyethyl) and the like. Can be mentioned.

また、アルコキシシランやその加水分解物または縮合物としては上述した式(III)で表されるアルコキシシランやその加水分解物、またはその縮合物が挙げられる。式(III)の縮合物としては、上述に例示したアルコキシシランの単独縮合物や2種以上のアルコキシシランの縮合物として、テトラメトキシシランオリゴマー、テトラエトキシシランオリゴマー、メチルトリメトキシシランオリゴマー、メチルトリメトキシシランとジメチルジメトキシシランの縮合物が挙げられる。アルコキシシランの縮合物を使用する場合は、ポリシロキサン(A)に対する相溶性の点からMwが3000以下であることが好ましい。   Moreover, as alkoxysilane, its hydrolyzate, or its condensate, the alkoxysilane represented by Formula (III) mentioned above, its hydrolyzate, or its condensate is mentioned. Examples of the condensate of formula (III) include a single condensate of alkoxysilane exemplified above and a condensate of two or more alkoxysilanes, such as tetramethoxysilane oligomer, tetraethoxysilane oligomer, methyltrimethoxysilane oligomer, methyltrimethoxysilane. Examples include condensates of methoxysilane and dimethyldimethoxysilane. When using a condensate of alkoxysilane, it is preferable that Mw is 3000 or less from the viewpoint of compatibility with polysiloxane (A).

これらのシリカ粒子や、前記オルガノポリシロキサン以外のエポキシ基含有ポリシロキサン、あるいはオキセタン化合物、チオール化合物、イソシアヌル環構造を有する化合物、アルコキシシランやその加水分解物または縮合物は、前記オルガノポリシロキサンの合成時に添加しても良いし、硬化体を形成する際に添加しても良い。オルガノポリシロキサンとの相溶性を良くするために合成時に添加することがより好ましい。   These silica particles, epoxy group-containing polysiloxanes other than the organopolysiloxane, oxetane compounds, thiol compounds, compounds having an isocyanuric ring structure, alkoxysilanes and hydrolysates or condensates thereof are synthesized from the organopolysiloxanes. Sometimes it may be added, or it may be added when forming a cured product. In order to improve the compatibility with the organopolysiloxane, it is more preferable to add at the time of synthesis.

〔本発明に係る硬化性組成物の作用〕
このシラノール基、エポキシ基を有するMQポリマーであるオルガノポリシロキサンを用いると四官能成分に由来する緻密なポリマー骨格形成に加えてエポキシ基と酸無水物による架橋反応、シラノール基同士の縮合反応が起こる。その結果ポリマーの線膨張率低下による変温時の熱応力減少、ポリマー自身の強度向上によって冷熱衝撃耐性が向上する。また合成の際に遷移金属触媒等を用いていないため耐光性に優れたポリマーが得られる。
[Operation of the curable composition according to the present invention]
When using organopolysiloxane, an MQ polymer with silanol groups and epoxy groups, in addition to the formation of a dense polymer skeleton derived from tetrafunctional components, crosslinking reactions between epoxy groups and acid anhydrides, and condensation reactions between silanol groups occur. . As a result, the thermal shock resistance is improved by reducing the thermal stress during temperature change due to a decrease in the linear expansion coefficient of the polymer and improving the strength of the polymer itself. Further, since no transition metal catalyst or the like is used in the synthesis, a polymer excellent in light resistance can be obtained.

<発光素子>
本発明に係る発光素子は、前記光半導体封止用組成物を用いて光半導体を封止することにより得られる。前記組成物を用いて光半導体を封止する際、前記組成物は公知の方法により硬化させることができる。たとえば、本組成物を塗布した後、100〜180℃で3〜13時間加熱することによって硬化させ、硬化体を形成させることができる。硬化は段階的に昇温を行う過程(ステップキュア)で行ってもよい。発光素子としては、LED(Light Emitting Diode、発光ダイオード)およびLD(Laser Diode)等が挙げられる。
<Light emitting element>
The light emitting element according to the present invention is obtained by sealing an optical semiconductor using the optical semiconductor sealing composition. When sealing an optical semiconductor using the composition, the composition can be cured by a known method. For example, after apply | coating this composition, it hardens | cures by heating at 100-180 degreeC for 3 to 13 hours, and can form a hardening body. Curing may be performed in a process of stepwise temperature rise (step cure). Examples of the light emitting element include an LED (Light Emitting Diode) and an LD (Laser Diode).

図1および図2はLEDの模式図である。図1および図2において、光半導体である発光素子部50は封止材51で封止されている。図1においては、発光素子部50は蛍光体54を分散させた封止材51で封止されている。発光素子部50は、図2のようにバインダー53と蛍光体54とを含有する蛍光部52を有する場合もある。図1および図2に示したLEDにおける封止材51を、本発明に係る光半導体封止用組成物で形成することができる。   1 and 2 are schematic diagrams of LEDs. In FIG. 1 and FIG. 2, a light emitting element portion 50 that is an optical semiconductor is sealed with a sealing material 51. In FIG. 1, the light emitting element portion 50 is sealed with a sealing material 51 in which a phosphor 54 is dispersed. The light emitting element part 50 may have the fluorescent part 52 containing the binder 53 and the fluorescent substance 54 like FIG. The sealing material 51 in the LED shown in FIG. 1 and FIG. 2 can be formed with the composition for optical semiconductor sealing according to the present invention.

また、上記光半導体封止用組成物でLED素子等の発光素子を封止し、硬化させることにより発光装置を得ることができる。LED素子としては、青色LED素子、紫外LED素子等を用いることができる。さらに、硬化体中に蛍光体を含有させ、LED素子から発せられた光を変換することもできる。   Moreover, a light-emitting device can be obtained by sealing and curing a light-emitting element such as an LED element with the composition for encapsulating an optical semiconductor. As the LED element, a blue LED element, an ultraviolet LED element, or the like can be used. Furthermore, the fluorescent substance can be contained in the cured body, and the light emitted from the LED element can be converted.

以下、本発明を実施例により説明するが、本発明は、この実施例により何ら限定されるものではない。なお、実施例および比較例中の「部」および「%」は、特記しない限り、「重量部」および「重量%」を示す。
実施例および比較例における各種測定は、下記の方法により行った。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited at all by this Example. In the examples and comparative examples, “parts” and “%” indicate “parts by weight” and “% by weight” unless otherwise specified.
Various measurements in Examples and Comparative Examples were performed by the following methods.

(1)GPC測定
シラノール基エポキシ基含有ポリシロキサンの重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより下記条件で測定し、ポリスチレン換算値として示した。
装置:HLC−8120C(東ソー社製)
カラム:TSK−gel MultiporeHXL−M(東ソー社製)
溶離液:THF、流量0.5mL/min、負荷量5.0%、100μL
(2)エポキシ当量
JIS C2105に準拠し、シラノール基エポキシ基含有ポリシロキサンのエポキシ当量を測定した。
(1) GPC measurement The weight average molecular weight of the silanol group epoxy group-containing polysiloxane was measured by gel permeation chromatography under the following conditions, and was shown as a polystyrene equivalent value.
Apparatus: HLC-8120C (manufactured by Tosoh Corporation)
Column: TSK-gel Multipore H XL- M (manufactured by Tosoh Corporation)
Eluent: THF, flow rate 0.5 mL / min, load 5.0%, 100 μL
(2) Epoxy equivalent Based on JIS C2105, the epoxy equivalent of silanol group epoxy group containing polysiloxane was measured.

(3)シラノール当量
得られたシラノール基エポキシ基含有ポリシロキサン中のシラノール当量は以下の方法で求めた。
測定するシラノール基エポキシ基含有ポリシロキサンを100g秤量した。49.2gの2−(3’,4’−エポキシシクロヘキシル)エチルトリメトキシシラン、10重量%のジアザビシクロウンデセンを加え50℃で撹拌を行った。2−(3’,4’−エポキシシクロヘキシル)エチルトリメトキシシランの消費量をガスクロマトグラフィーによって追跡し、消費が止まった時点で反応終了とした。反応終了時に2−(3’,4’−エポキシシクロヘキシル)エチルトリメトキシシランが完全に消費された場合シラノール当量は500g/eq.以下、2−(3’,4’−エポキシシクロヘキシル)エチルトリメトキシシランの完全消費が見られなかった場合シラノール当量は500g/eq.より大きいとした。
(3) Silanol equivalent The silanol equivalent in the resulting silanol group epoxy group-containing polysiloxane was determined by the following method.
100 g of silanol group epoxy group-containing polysiloxane to be measured was weighed. 49.2 g of 2- (3 ′, 4′-epoxycyclohexyl) ethyltrimethoxysilane, 10% by weight of diazabicycloundecene was added, and the mixture was stirred at 50 ° C. The consumption of 2- (3 ′, 4′-epoxycyclohexyl) ethyltrimethoxysilane was monitored by gas chromatography, and the reaction was terminated when the consumption ceased. When 2- (3 ′, 4′-epoxycyclohexyl) ethyltrimethoxysilane is completely consumed at the end of the reaction, the silanol equivalent is 500 g / eq. Hereinafter, when complete consumption of 2- (3 ′, 4′-epoxycyclohexyl) ethyltrimethoxysilane was not observed, the silanol equivalent was determined to be greater than 500 g / eq.

(4)シラノール基エポキシ基含有ポリシロキサン中の一官能性シロキサン単位/二官能性シロキサン単位/三官能性シロキサン単位/四官能性シロキサン単位の同定方法
得られたシラノール基エポキシ基含有ポリシロキサン中の一官能性シロキサン単位/二官能性シロキサン単位/三官能性シロキサン単位/四官能性シロキサン単位比、すなわち一官能珪素/二官能性珪素/三官能珪素/四官能珪素比は以下の方法で求めた。
組成物100重量部に対し重クロロホルムを100重量部加えた溶液を作成し、29Si−NMRを測定した。得られたチャートの10から0ppm付近のピーク、―10から―30ppm付近のピーク、―40から−70ppmのピーク、―80から−120ppmのピークの積分値を求めた。これらの積分値から(一官能珪素)/(二官能珪素)/(三官能珪素)/(四官能珪素)=(10から0ppm付近のピーク積分値)/(―10から―30ppmのピーク積分値)/(―40から−70ppmのピーク積分値)/(―80から−120ppmのピーク積分値)として算出した。
(4) Identification method of monofunctional siloxane unit / bifunctional siloxane unit / trifunctional siloxane unit / tetrafunctional siloxane unit in silanol group epoxy group-containing polysiloxane In the obtained silanol group epoxy group-containing polysiloxane The ratio of monofunctional siloxane unit / bifunctional siloxane unit / trifunctional siloxane unit / tetrafunctional siloxane unit, that is, monofunctional silicon / bifunctional silicon / trifunctional silicon / tetrafunctional silicon ratio was determined by the following method. .
A solution in which 100 parts by weight of deuterated chloroform was added to 100 parts by weight of the composition was prepared, and 29Si-NMR was measured. The integrated values of a peak around 10 to 0 ppm, a peak around -10 to -30 ppm, a peak between -40 to -70 ppm, and a peak between -80 to -120 ppm of the obtained chart were obtained. From these integrated values, (monofunctional silicon) / (bifunctional silicon) / (trifunctional silicon) / (tetrafunctional silicon) = (peak integrated value near 10 to 0 ppm) / (peak integrated value of −10 to −30 ppm) ) / (Peak integration value from -40 to -70 ppm) / (peak integration value from -80 to -120 ppm).

(5)線膨張係数
得られた組成物を膜厚が1mmになるようにシャーレに入れ、100℃で1時間乾燥硬化させ、次いで150℃で5時間乾燥硬化させて硬化体を作製した。この硬化体を熱・応力・歪測定装置(エスアイアイ・ナノテクノロジー(株)製:TMA/SS6100)を用い、−50℃〜300℃での線膨張係数を測定した。
(5) Linear expansion coefficient The obtained composition was put into a petri dish so that the film thickness was 1 mm, dried and cured at 100 ° C for 1 hour, and then dried and cured at 150 ° C for 5 hours to prepare a cured product. The cured product was measured for linear expansion coefficient at −50 ° C. to 300 ° C. using a heat / stress / strain measuring apparatus (manufactured by SII Nanotechnology Co., Ltd .: TMA / SS6100).

(6)硬度
得られた組成物を膜厚が1mmになるようにシャーレに入れ、100℃で1時間乾燥硬化させ、次いで150℃で5時間乾燥硬化させて硬化体を作製した。この硬化体をJIS K6253により、タイプAデュロメータおよびタイプDデュロメータによって硬度を測定した。
(6) Hardness The obtained composition was placed in a petri dish so that the film thickness was 1 mm, dried and cured at 100 ° C. for 1 hour, and then dried and cured at 150 ° C. for 5 hours to produce a cured product. The hardness of this cured product was measured by a type A durometer and a type D durometer according to JIS K6253.

(7)耐熱性
得られた組成物を乾燥膜厚が1mmになるように石英ガラス上に塗布した後、100℃で1時間乾燥硬化させ、次いで150℃で5時間乾燥硬化させて硬化体を作製した。この硬化体を150℃で500時間保管し、保管後の硬化体の外観を目視で観察し、下記基準で評価した。
(色変化)
A:変化なし
B:わずかに変色
C:黄色化した
(7) Heat resistance After the obtained composition was applied on quartz glass so that the dry film thickness was 1 mm, it was dried and cured at 100 ° C. for 1 hour, and then dried and cured at 150 ° C. for 5 hours to obtain a cured product. Produced. This cured body was stored at 150 ° C. for 500 hours, and the appearance of the cured body after storage was visually observed and evaluated according to the following criteria.
(Color change)
A: No change B: Slight discoloration C: Yellowish

(8)耐光性
得られた組成物を乾燥膜厚が1mmになるように石英ガラス上に塗布した後、100℃で1時間乾燥硬化させ、次いで150℃で5時間乾燥硬化させて硬化体を作製した。この硬化体に波長350nm以下の光をカットしたスポットUV照射装置(ウシオ電機社製:SP−VII)を使用して照度5000mW/cm2の紫外線を500時間照射した。紫外線照射後の硬化体の外観を目視で観察し、下記基準で評価した。
A:変化なし
B:黄変した
C:黒く焼け焦げた
(8) Light resistance After applying the obtained composition on quartz glass so that the dry film thickness is 1 mm, it is dried and cured at 100 ° C. for 1 hour, and then dried and cured at 150 ° C. for 5 hours to obtain a cured product. Produced. The cured product was irradiated with ultraviolet rays having an illuminance of 5000 mW / cm 2 for 500 hours using a spot UV irradiation device (USHIO Corp .: SP-VII) in which light having a wavelength of 350 nm or less was cut. The appearance of the cured product after ultraviolet irradiation was visually observed and evaluated according to the following criteria.
A: No change B: Yellowed C: Black burnt

(9)吸湿・リフロー時の剥離耐性
得られた組成物をLEDパッケージ(表面実装型、トップビュータイプ)中に注入し、100℃で1時間乾燥硬化させ、次いで150℃で5時間乾燥硬化させて硬化体サンプルを作製した。得られたサンプルを恒温恒湿槽(エスペック製PL−3KP)中で85℃85%RH下で5時間保管した後、卓上はんだリフロー装置(千住金属工業株式会社製STR−2010)を用いてMAX260℃10秒のリフロー工程を2回行った。光学顕微鏡でリフロー処理後のパッケージ内の硬化体とパッケージ樹脂との間の剥離を観察した。各サンプルに対し、10個ずつ実施した。
剥離耐性およびクラック耐性を下記基準で評価した。
(剥離耐性)
AA:8時間保管後でも剥離発生なし
A:5時間保管後では剥離発生なし、8時間保管後では剥離発生あり
B:5時間保管後で剥離発生1〜2個
C:5時間保管後で剥離発生3個以上
(9) Peeling resistance during moisture absorption and reflow The obtained composition is poured into an LED package (surface mount type, top view type), dried and cured at 100 ° C. for 1 hour, and then dried and cured at 150 ° C. for 5 hours. Thus, a cured body sample was prepared. The obtained sample was stored for 5 hours at 85 ° C. and 85% RH in a constant temperature and humidity chamber (PL-3KP manufactured by ESPEC), and then MAX260 using a desktop solder reflow device (STR-2010 manufactured by Senju Metal Industry Co., Ltd.). The reflow process at 10 ° C. for 10 seconds was performed twice. Separation between the cured product in the package after reflow treatment and the package resin was observed with an optical microscope. Ten samples were carried out for each sample.
Peel resistance and crack resistance were evaluated according to the following criteria.
(Peeling resistance)
AA: No peeling even after 8 hours storage A: No peeling after 5 hours storage, peeling after 8 hours storage B: 1 to 2 peeling after 5 hours storage C: peeling after 5 hours storage 3 or more occurrences

(10)冷熱衝撃耐性評価方法
得られた組成物を表面実装型(トップビュー)パッケージ中に塗布を行い、100℃で1時間、続いて150℃で3時間加熱することで評価用サンプルの作成を行った。
上記評価用サンプルを冷熱衝撃試験装置(ESPEC社製 TOM17)中、1℃/minの速度で−40℃から100℃の昇温、100℃から−40℃までの冷却を1サイクルとする、冷熱衝撃試験を1000サイクル実施した。試験終了後、光学顕微鏡を用いパッケージと樹脂間での剥離および樹脂内部におけるクラックを目視により観察を行った。1つのサンプルにつき10回同様の試験を行い、下記の基準に従い評価した。
(剥離)
A:剥離なし
B:10回中1回から4回、パッケージと樹脂との間に剥離が生じた
C:10回中1回から5回以上、パッケージと樹脂との間に剥離が生じた
(クラック)
A:クラック発生なし
B:10回中1回から4回、樹脂内部にクラックが発生した
C:10回中1回から5回以上、樹脂内部にクラックが発生した
(10) Thermal shock resistance evaluation method The obtained composition is applied in a surface mount type (top view) package, and a sample for evaluation is prepared by heating at 100 ° C for 1 hour and then at 150 ° C for 3 hours. Went.
The above-mentioned sample for evaluation was cooled in a thermal shock test apparatus (TOM17 manufactured by ESPEC) at a rate of 1 ° C./min, from -40 ° C. to 100 ° C. and from 100 ° C. to −40 ° C. as one cycle. The impact test was performed 1000 cycles. After completion of the test, peeling between the package and the resin and cracks inside the resin were visually observed using an optical microscope. The same test was conducted 10 times per sample, and evaluation was performed according to the following criteria.
(Peeling)
A: No peeling
B: Peeling occurred between the package and the resin 1 to 4 times out of 10 times
C: Separation occurred between the package and the resin 1 to 5 times or more out of 10 times (crack)
A: No cracking
B: Cracks occurred inside the resin 1 to 4 times out of 10 times
C: Cracks occurred in the resin from 1 to 5 times out of 10 times

〔シラノール基エポキシ基含有ポリシロキサンの合成例〕
(一官能珪素化合物と四官能珪素化合物の加水分解縮合によって得られるシロキサン化合物(A1)の合成)
撹拌機を備える反応器に、水22.6部、37%塩酸水溶液15.1部、エタノール11.3部、ヘキサメチルジシロキサン(信越化学工業(株)製、商品名:KF−96L−0.65cs)21.5部を加え、室温で撹拌した。この溶液にテトラエトキシシラン(信越化学工業(株)製、商品名:KBE―04)78.5部を1時間かけて滴下した。滴下終了後反応溶液を75℃まで昇温し、その後75℃で1時間撹拌した。撹拌終了後冷却した溶液から上層である水層を除去し、トルエン150部を加えた後に分液漏斗に移し、水層が中性になるまで水洗を行った。得られた有機層を濃縮する事により、一官能珪素化合物と四官能珪素化合物の加水分解縮合によって得られるシロキサン化合物(A1)を70wt%トルエン溶液として得た。
[Synthesis example of silanol group epoxy group-containing polysiloxane]
(Synthesis of siloxane compound (A1) obtained by hydrolytic condensation of monofunctional silicon compound and tetrafunctional silicon compound)
In a reactor equipped with a stirrer, water 22.6 parts, 37% hydrochloric acid aqueous solution 15.1 parts, ethanol 11.3 parts, hexamethyldisiloxane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KF-96L-0) .65cs) 21.5 parts was added and stirred at room temperature. To this solution, 78.5 parts of tetraethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBE-04) was added dropwise over 1 hour. After completion of the dropwise addition, the reaction solution was heated to 75 ° C. and then stirred at 75 ° C. for 1 hour. After completion of the stirring, the upper aqueous layer was removed from the cooled solution, and after adding 150 parts of toluene, the solution was transferred to a separatory funnel and washed with water until the aqueous layer became neutral. By concentrating the obtained organic layer, a siloxane compound (A1) obtained by hydrolytic condensation of a monofunctional silicon compound and a tetrafunctional silicon compound was obtained as a 70 wt% toluene solution.

(一官能珪素化合物と四官能珪素化合物の加水分解縮合によって得られるシロキサン化合物(A2)の合成)
撹拌機を備える反応器に、水22.6部、37%塩酸水溶液15.1部、エタノール11.3部、ヘキサメチルジシロキサン(信越化学工業(株)製、商品名:KF−96L−0.65cs)21.5部を加え、室温で撹拌した。この溶液にテトラエトキシシラン(信越化学工業(株)製、商品名:KBE―04)11.0部を1時間かけて滴下した。滴下終了後反応溶液を75℃まで昇温し、その後75℃で1時間撹拌した。撹拌終了後冷却した溶液から上層である水層を除去し、トルエン150部を加えた後に分液漏斗に移し、水層が中性になるまで水洗を行った。得られた有機層を濃縮する事により、一官能珪素化合物と四官能珪素化合物の加水分解縮合によって得られるシロキサン化合物(A2)を70wt%トルエン溶液として得た。
(Synthesis of siloxane compound (A2) obtained by hydrolytic condensation of monofunctional silicon compound and tetrafunctional silicon compound)
In a reactor equipped with a stirrer, water 22.6 parts, 37% hydrochloric acid aqueous solution 15.1 parts, ethanol 11.3 parts, hexamethyldisiloxane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KF-96L-0) .65cs) 21.5 parts was added and stirred at room temperature. To this solution, 11.0 parts of tetraethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBE-04) was added dropwise over 1 hour. After completion of the dropwise addition, the reaction solution was heated to 75 ° C. and then stirred at 75 ° C. for 1 hour. After completion of the stirring, the upper aqueous layer was removed from the cooled solution, and after adding 150 parts of toluene, the solution was transferred to a separatory funnel and washed with water until the aqueous layer became neutral. By concentrating the obtained organic layer, a siloxane compound (A2) obtained by hydrolytic condensation of a monofunctional silicon compound and a tetrafunctional silicon compound was obtained as a 70 wt% toluene solution.

(一官能珪素化合物と四官能珪素化合物の加水分解縮合によって得られるシロキサン化合物(A3)の合成)
撹拌機を備える反応器に、水22.6部、37%塩酸水溶液15.1部、エタノール11.3部、ヘキサメチルジシロキサン(信越化学工業(株)製、商品名:KF−96L−0.65cs)21.5部を加え、室温で撹拌した。この溶液にテトラエトキシシラン(信越化学工業(株)製、商品名:KBE―04)276部を1時間かけて滴下した。滴下終了後反応溶液を75℃まで昇温し、その後75℃で1時間撹拌した。撹拌終了後冷却した溶液から上層である水層を除去し、トルエン150部を加えた後に分液漏斗に移し、水層が中性になるまで水洗を行った。得られた有機層を濃縮する事により、一官能珪素化合物と四官能珪素化合物の加水分解縮合によって得られるシロキサン化合物(A3)を70wt%トルエン溶液として得た。
(Synthesis of siloxane compound (A3) obtained by hydrolytic condensation of monofunctional silicon compound and tetrafunctional silicon compound)
In a reactor equipped with a stirrer, water 22.6 parts, 37% hydrochloric acid aqueous solution 15.1 parts, ethanol 11.3 parts, hexamethyldisiloxane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KF-96L-0) .65cs) 21.5 parts was added and stirred at room temperature. To this solution, 276 parts of tetraethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBE-04) was added dropwise over 1 hour. After completion of the dropwise addition, the reaction solution was heated to 75 ° C. and then stirred at 75 ° C. for 1 hour. After completion of the stirring, the upper aqueous layer was removed from the cooled solution, and after adding 150 parts of toluene, the solution was transferred to a separatory funnel and washed with water until the aqueous layer became neutral. By concentrating the obtained organic layer, a siloxane compound (A3) obtained by hydrolytic condensation of a monofunctional silicon compound and a tetrafunctional silicon compound was obtained as a 70 wt% toluene solution.

(一官能珪素化合物と四官能珪素化合物の加水分解縮合によって得られるシロキサン化合物(A4)の合成)
撹拌機を備える反応器に、水22.6部、37%塩酸水溶液15.1部、エタノール11.3部、ヘキサメチルジシロキサン(信越化学工業(株)製、商品名:KF−96L−0.65cs)21.5部を加え、室温で撹拌した。この溶液にテトラエトキシシラン(信越化学工業(株)製、商品名:KBE―04)5.5部を1時間かけて滴下した。滴下終了後反応溶液を75℃まで昇温し、その後75℃で1時間撹拌した。撹拌終了後冷却した溶液から上層である水層を除去し、トルエン150部を加えた後に分液漏斗に移し、水層が中性になるまで水洗を行った。得られた有機層を濃縮する事により、一官能珪素化合物と四官能珪素化合物の加水分解縮合によって得られるシロキサン化合物(A4)を70wt%トルエン溶液として得た。
(Synthesis of a siloxane compound (A4) obtained by hydrolytic condensation of a monofunctional silicon compound and a tetrafunctional silicon compound)
In a reactor equipped with a stirrer, water 22.6 parts, 37% hydrochloric acid aqueous solution 15.1 parts, ethanol 11.3 parts, hexamethyldisiloxane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KF-96L-0) .65cs) 21.5 parts was added and stirred at room temperature. To this solution, 5.5 parts of tetraethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBE-04) was added dropwise over 1 hour. After completion of the dropwise addition, the reaction solution was heated to 75 ° C. and then stirred at 75 ° C. for 1 hour. After completion of the stirring, the upper aqueous layer was removed from the cooled solution, and after adding 150 parts of toluene, the solution was transferred to a separatory funnel and washed with water until the aqueous layer became neutral. By concentrating the obtained organic layer, a siloxane compound (A4) obtained by hydrolytic condensation of a monofunctional silicon compound and a tetrafunctional silicon compound was obtained as a 70 wt% toluene solution.

(合成例1:シラノール基エポキシ基含有ポリシロキサン(B1)の合成)
撹拌機を備える反応器に上記一官能珪素化合物と四官能珪素化合物の加水分解縮合によって得られるシロキサン化合物(A1)70wt%トルエン溶液100部と2−(3’,4’−エポキシシクロヘキシル)エチルトリメトキシシラン84.4部、触媒としてジアザビシクロウンデセン15.7部を加え50℃で24時間撹拌した。この反応生成物にメチルイソブチルケトン300部、メタノール100部、水100部を添加し、25℃で1時間加水分解反応を行った後、6%シュウ酸水溶液189部を加えて室温で1時間中和反応を行った。その後、水層を分離し、有機相を水100部で洗浄した。この水洗操作を3回行った後、溶媒を留去してMw=2500のシラノール基エポキシ基含有ポリシロキサン(B1)を得た。このシラノール基エポキシ基含有ポリシロキサン(B1)のエポキシ当量を上記方法により評価したところ、440であった。シラノール当量を評価したところ500g/eq.以下であった。また珪素原子の比は一官能珪素/二官能珪素/三官能珪素/四官能珪素=32/0/26/42であった。
(Synthesis Example 1: Synthesis of Silanol Group Epoxy Group-Containing Polysiloxane (B1))
In a reactor equipped with a stirrer, 100 parts of a 70 wt% toluene solution of siloxane compound (A1) obtained by hydrolysis and condensation of the above monofunctional silicon compound and tetrafunctional silicon compound and 2- (3 ′, 4′-epoxycyclohexyl) ethyltri 84.4 parts of methoxysilane and 15.7 parts of diazabicycloundecene were added as a catalyst and stirred at 50 ° C. for 24 hours. To this reaction product, 300 parts of methyl isobutyl ketone, 100 parts of methanol and 100 parts of water were added and subjected to a hydrolysis reaction at 25 ° C. for 1 hour, followed by addition of 189 parts of a 6% aqueous oxalic acid solution at room temperature for 1 hour. A sum reaction was performed. Thereafter, the aqueous layer was separated and the organic phase was washed with 100 parts of water. After performing this washing operation three times, the solvent was distilled off to obtain a silanol group epoxy group-containing polysiloxane (B1) having Mw = 2500. It was 440 when the epoxy equivalent of this silanol group epoxy group containing polysiloxane (B1) was evaluated by the said method. When the silanol equivalent was evaluated, it was 500 g / eq. It was the following. The ratio of silicon atoms was monofunctional silicon / bifunctional silicon / trifunctional silicon / tetrafunctional silicon = 32/0/26/42.

(合成例2:シラノール基エポキシ基含有ポリシロキサン(B2)の合成)
撹拌機を備える反応器に上記一官能珪素化合物と四官能珪素化合物の加水分解縮合によって得られるシロキサン化合物(A1)70wt%トルエン溶液100部と2−(3’,4’−エポキシシクロヘキシル)エチルトリメトキシシラン30部、触媒としてジアザビシクロウンデセン15.7部を加え50℃で24時間撹拌した。この反応生成物にメチルイソブチルケトン300部、メタノール100部、水100部を添加し、25℃で1時間加水分解反応を行った後、6%シュウ酸水溶液189部を加えて室温で1時間中和反応を行った。その後、水層を分離し、有機相を水100部で洗浄した。この水洗操作を3回行った後、溶媒を留去してMw=3000のシラノール基エポキシ基含有ポリシロキサン(B2)を得た。このシラノール基エポキシ基含有ポリシロキサン(B2)のエポキシ当量を上記方法により評価したところ、860であった。シラノール当量を評価したところ500g/eq.以下であった。また珪素原子の比は一官能珪素/二官能珪素/三官能珪素/四官能珪素=36/0/10/54であった。
(Synthesis Example 2: Synthesis of silanol group epoxy group-containing polysiloxane (B2))
In a reactor equipped with a stirrer, 100 parts of a 70 wt% toluene solution of siloxane compound (A1) obtained by hydrolysis and condensation of the above monofunctional silicon compound and tetrafunctional silicon compound and 2- (3 ′, 4′-epoxycyclohexyl) ethyltri 30 parts of methoxysilane and 15.7 parts of diazabicycloundecene as a catalyst were added and stirred at 50 ° C. for 24 hours. To this reaction product, 300 parts of methyl isobutyl ketone, 100 parts of methanol and 100 parts of water were added and subjected to a hydrolysis reaction at 25 ° C. for 1 hour, followed by addition of 189 parts of a 6% aqueous oxalic acid solution at room temperature for 1 hour. A sum reaction was performed. Thereafter, the aqueous layer was separated and the organic phase was washed with 100 parts of water. After performing this washing operation three times, the solvent was distilled off to obtain a silanol group epoxy group-containing polysiloxane (B2) having Mw = 3000. It was 860 when the epoxy equivalent of this silanol group epoxy group containing polysiloxane (B2) was evaluated by the said method. When the silanol equivalent was evaluated, it was 500 g / eq. It was the following. The ratio of silicon atoms was monofunctional silicon / bifunctional silicon / trifunctional silicon / tetrafunctional silicon = 36/0/10/54.

(合成例3:エポキシ基含有シロキサン化合物(B3)の合成)
撹拌機を備える反応器に上記一官能珪素化合物と四官能珪素化合物の加水分解縮合によって得られるシロキサン化合物(A1)70wt%トルエン溶液100部と2−(3’,4’−エポキシシクロヘキシル)エチルトリメトキシシラン500部、触媒としてジアザビシクロウンデセン15.7部を加え50℃で24時間撹拌した。この反応生成物にメチルイソブチルケトン300部、メタノール100部、水100部を添加し、25℃で1時間加水分解反応を行った後、6%シュウ酸水溶液189部を加えて室温で1時間中和反応を行った。その後、水層を分離し、有機相を水100部で洗浄した。この水洗操作を3回行った後、溶媒を留去してMw=2000のシラノール基エポキシ基含有ポリシロキサン(B3)を得た。このシラノール基エポキシ基含有ポリシロキサン(B3)のエポキシ当量を上記方法により評価したところ、280であった。シラノール当量を評価したところ500g/eq.以下であった。また珪素原子の比は一官能珪素/二官能珪素/三官能珪素/四官能珪素=15/0/65/20であった。
(Synthesis Example 3: Synthesis of epoxy group-containing siloxane compound (B3))
In a reactor equipped with a stirrer, 100 parts of a 70 wt% toluene solution of siloxane compound (A1) obtained by hydrolysis and condensation of the above monofunctional silicon compound and tetrafunctional silicon compound and 2- (3 ′, 4′-epoxycyclohexyl) ethyltri 500 parts of methoxysilane and 15.7 parts of diazabicycloundecene as a catalyst were added and stirred at 50 ° C. for 24 hours. To this reaction product, 300 parts of methyl isobutyl ketone, 100 parts of methanol and 100 parts of water were added and subjected to a hydrolysis reaction at 25 ° C. for 1 hour, followed by addition of 189 parts of a 6% aqueous oxalic acid solution at room temperature for 1 hour. A sum reaction was performed. Thereafter, the aqueous layer was separated and the organic phase was washed with 100 parts of water. After performing this washing operation three times, the solvent was distilled off to obtain a silanol group epoxy group-containing polysiloxane (B3) having Mw = 2000. It was 280 when the epoxy equivalent of this silanol group epoxy group containing polysiloxane (B3) was evaluated by the said method. When the silanol equivalent was evaluated, it was 500 g / eq. It was the following. The ratio of silicon atoms was monofunctional silicon / bifunctional silicon / trifunctional silicon / tetrafunctional silicon = 15/0/65/20.

(合成例4:エポキシ基含有シロキサン化合物(B4)の合成)
撹拌機を備える反応器に上記一官能珪素化合物と四官能珪素化合物の加水分解縮合によって得られるシロキサン化合物(A2)70wt%トルエン溶液100部と2−(3’,4’−エポキシシクロヘキシル)エチルトリメトキシシラン102部、触媒としてジアザビシクロウンデセン15.7部を加え50℃で24時間撹拌した。この反応生成物にメチルイソブチルケトン300部、メタノール100部、水100部を添加し、25℃で1時間加水分解反応を行った後、6%シュウ酸水溶液189部を加えて室温で1時間中和反応を行った。その後、水層を分離し、有機相を水100部で洗浄した。この水洗操作を3回行った後、溶媒を留去してMw=3000のシラノール基エポキシ基含有ポリシロキサン(B4)を得た。このシラノール基エポキシ基含有ポリシロキサン(B4)のエポキシ当量を上記方法により評価したところ、420であった。シラノール当量を評価したところ500g/eq.以下であった。また珪素原子の比は一官能珪素/二官能珪素/三官能珪素/四官能珪素=58/0/30/12であった。
(Synthesis Example 4: Synthesis of Epoxy Group-Containing Siloxane Compound (B4))
In a reactor equipped with a stirrer, 100 parts of a 70 wt% toluene solution of siloxane compound (A2) obtained by hydrolytic condensation of the above monofunctional silicon compound and tetrafunctional silicon compound and 2- (3 ′, 4′-epoxycyclohexyl) ethyltri 102 parts of methoxysilane and 15.7 parts of diazabicycloundecene as a catalyst were added and stirred at 50 ° C. for 24 hours. To this reaction product, 300 parts of methyl isobutyl ketone, 100 parts of methanol and 100 parts of water were added and subjected to a hydrolysis reaction at 25 ° C. for 1 hour, followed by addition of 189 parts of a 6% aqueous oxalic acid solution at room temperature for 1 hour. A sum reaction was performed. Thereafter, the aqueous layer was separated and the organic phase was washed with 100 parts of water. After performing this washing operation three times, the solvent was distilled off to obtain a silanol group epoxy group-containing polysiloxane (B4) having Mw = 3000. It was 420 when the epoxy equivalent of this silanol group epoxy group containing polysiloxane (B4) was evaluated by the said method. When the silanol equivalent was evaluated, it was 500 g / eq. It was the following. The ratio of silicon atoms was monofunctional silicon / bifunctional silicon / trifunctional silicon / tetrafunctional silicon = 58/0/30/12.

(合成例5:エポキシ基含有シロキサン化合物(B5)の合成)
撹拌機を備える反応器に上記一官能珪素化合物と四官能珪素化合物の加水分解縮合によって得られるシロキサン化合物(A3)70wt%トルエン溶液100部と2−(3’,4’−エポキシシクロヘキシル)エチルトリメトキシシラン124部、触媒としてジアザビシクロウンデセン15.7部を加え50℃で24時間撹拌した。この反応生成物にメチルイソブチルケトン300部、メタノール100部、水100部を添加し、25℃で1時間加水分解反応を行った後、6%シュウ酸水溶液189部を加えて室温で1時間中和反応を行った。その後、水層を分離し、有機相を水100部で洗浄した。この水洗操作を3回行った後、溶媒を留去してMw=3500のシラノール基エポキシ基含有ポリシロキサン(B5)を得た。このシラノール基エポキシ基含有ポリシロキサン(B5)のエポキシ当量を上記方法により評価したところ、390であった。シラノール当量を評価したところ500g/eq.以下であった。また珪素原子の比は一官能珪素/二官能珪素/三官能珪素/四官能珪素=12/0/30/58であった。
(Synthesis Example 5: Synthesis of epoxy group-containing siloxane compound (B5))
In a reactor equipped with a stirrer, 100 parts of a 70 wt% toluene solution of siloxane compound (A3) obtained by hydrolytic condensation of the above monofunctional silicon compound and tetrafunctional silicon compound and 2- (3 ′, 4′-epoxycyclohexyl) ethyltri 124 parts of methoxysilane and 15.7 parts of diazabicycloundecene as a catalyst were added and stirred at 50 ° C. for 24 hours. To this reaction product, 300 parts of methyl isobutyl ketone, 100 parts of methanol and 100 parts of water were added and subjected to a hydrolysis reaction at 25 ° C. for 1 hour, followed by addition of 189 parts of a 6% aqueous oxalic acid solution at room temperature for 1 hour. A sum reaction was performed. Thereafter, the aqueous layer was separated and the organic phase was washed with 100 parts of water. After performing this washing operation three times, the solvent was distilled off to obtain a silanol group epoxy group-containing polysiloxane (B5) having Mw = 3500. It was 390 when the epoxy equivalent of this silanol group epoxy group containing polysiloxane (B5) was evaluated by the said method. When the silanol equivalent was evaluated, it was 500 g / eq. It was the following. The ratio of silicon atoms was monofunctional silicon / bifunctional silicon / trifunctional silicon / tetrafunctional silicon = 12/0/30/58.

(合成例6:エポキシ基含有シロキサン化合物(B6)の合成)
撹拌機を備える反応器に上記一官能珪素化合物と四官能珪素化合物の加水分解縮合によって得られるシロキサン化合物(A4)70wt%トルエン溶液100部と2−(3’,4’−エポキシシクロヘキシル)エチルトリメトキシシラン100部、触媒としてジアザビシクロウンデセン15.7部を加え50℃で24時間撹拌した。この反応生成物にメチルイソブチルケトン300部、メタノール100部、水100部を添加し、25℃で1時間加水分解反応を行った後、6%シュウ酸水溶液189部を加えて室温で1時間中和反応を行った。その後、水層を分離し、有機相を水100部で洗浄した。この水洗操作を3回行った後、溶媒を留去してMw=3500のシラノール基エポキシ基含有ポリシロキサン(B6)を得た。このシラノール基エポキシ基含有ポリシロキサン(B6)のエポキシ当量を上記方法により評価したところ、430であった。シラノール当量を評価したところ500g/eq.以下であった。また珪素原子の比は一官能珪素/二官能珪素/三官能珪素/四官能珪素=64/0/30/6であった。
(Synthesis Example 6: Synthesis of epoxy group-containing siloxane compound (B6))
In a reactor equipped with a stirrer, 100 parts of a 70 wt% toluene solution of siloxane compound (A4) obtained by hydrolytic condensation of the above monofunctional silicon compound and tetrafunctional silicon compound and 2- (3 ′, 4′-epoxycyclohexyl) ethyltri 100 parts of methoxysilane and 15.7 parts of diazabicycloundecene as a catalyst were added and stirred at 50 ° C. for 24 hours. To this reaction product, 300 parts of methyl isobutyl ketone, 100 parts of methanol and 100 parts of water were added and subjected to a hydrolysis reaction at 25 ° C. for 1 hour, followed by addition of 189 parts of a 6% aqueous oxalic acid solution at room temperature for 1 hour. A sum reaction was performed. Thereafter, the aqueous layer was separated and the organic phase was washed with 100 parts of water. After performing this washing operation three times, the solvent was distilled off to obtain a silanol group epoxy group-containing polysiloxane (B6) having Mw = 3500. It was 430 when the epoxy equivalent of this silanol group epoxy group containing polysiloxane (B6) was evaluated by the said method. When the silanol equivalent was evaluated, it was 500 g / eq. It was the following. The ratio of silicon atoms was monofunctional silicon / bifunctional silicon / trifunctional silicon / tetrafunctional silicon = 64/0/30/6.

(合成例7:シラノール基エポキシ基含有ポリシロキサン(B7)の合成)
撹拌機を備える反応器に上記一官能珪素化合物と四官能珪素化合物の加水分解縮合によって得られるシロキサン化合物(A1)70wt%トルエン溶液100部と2−(3’,4’−エポキシシクロヘキシル)エチルメチルジメトキシシラン84.0部、触媒としてジアザビシクロウンデセン15.7部を加え50℃で24時間撹拌した。この反応生成物にメチルイソブチルケトン300部、メタノール100部、水100部を添加し、25℃で1時間加水分解反応を行った後、6%シュウ酸水溶液189部を加えて室温で1時間中和反応を行った。その後、水層を分離し、有機相を水100部で洗浄した。この水洗操作を3回行った後、溶媒を留去してMw=2400のシラノール基エポキシ基含有ポリシロキサン(B7)を得た。このシラノール基エポキシ基含有ポリシロキサン(B7)のエポキシ当量を上記方法により評価したところ、440であった。シラノール当量を評価したところ500g/eq.以下であった。また珪素原子の比は一官能珪素/二官能珪素/三官能珪素/四官能珪素=32/26/0/42であった。
(Synthesis Example 7: Synthesis of Silanol Group Epoxy Group-Containing Polysiloxane (B7))
In a reactor equipped with a stirrer, 100 parts of a 70 wt% toluene solution of siloxane compound (A1) obtained by hydrolytic condensation of the above monofunctional silicon compound and tetrafunctional silicon compound and 2- (3 ′, 4′-epoxycyclohexyl) ethylmethyl 84.0 parts of dimethoxysilane and 15.7 parts of diazabicycloundecene were added as a catalyst and stirred at 50 ° C. for 24 hours. To this reaction product, 300 parts of methyl isobutyl ketone, 100 parts of methanol and 100 parts of water were added and subjected to a hydrolysis reaction at 25 ° C. for 1 hour, followed by addition of 189 parts of a 6% aqueous oxalic acid solution at room temperature for 1 hour. A sum reaction was performed. Thereafter, the aqueous layer was separated and the organic phase was washed with 100 parts of water. After performing this water washing operation 3 times, the solvent was distilled off to obtain a silanol group epoxy group-containing polysiloxane (B7) having Mw = 2400. It was 440 when the epoxy equivalent of this silanol group epoxy group containing polysiloxane (B7) was evaluated by the said method. When the silanol equivalent was evaluated, it was 500 g / eq. It was the following. The ratio of silicon atoms was monofunctional silicon / bifunctional silicon / trifunctional silicon / tetrafunctional silicon = 32/26/0/42.

(合成例8:エポキシ基含有シロキサン化合物(B8)の合成)
撹拌機を備える反応器に上記一官能珪素化合物と四官能珪素化合物の加水分解縮合によって得られるシロキサン化合物(A1)70wt%トルエン溶液100部と2−(3’,4’−エポキシシクロヘキシル)エチルトリメトキシシラン8.3部、触媒としてジアザビシクロウンデセン15.7部を加え50℃で24時間撹拌した。この反応生成物にメチルイソブチルケトン300部、メタノール100部、水100部を添加し、25℃で1時間加水分解反応を行った後、6%シュウ酸水溶液189部を加えて室温で1時間中和反応を行った。その後、水層を分離し、有機相を水100部で洗浄した。この水洗操作を3回行った後、溶媒を留去してMw=3000のシラノール基エポキシ基含有ポリシロキサン(B8)を得た。このシラノール基エポキシ基含有ポリシロキサン(B8)のエポキシ当量を上記方法により評価したところ、2500であった。シラノール当量を評価したところ500g/eq.より大きかった。また珪素原子の比は一官能珪素/二官能珪素/三官能珪素/四官能珪素=42/0/3/55であった。
(Synthesis Example 8: Synthesis of epoxy group-containing siloxane compound (B8))
In a reactor equipped with a stirrer, 100 parts of a 70 wt% toluene solution of siloxane compound (A1) obtained by hydrolysis and condensation of the above monofunctional silicon compound and tetrafunctional silicon compound and 2- (3 ′, 4′-epoxycyclohexyl) ethyltri After adding 8.3 parts of methoxysilane and 15.7 parts of diazabicycloundecene as a catalyst, the mixture was stirred at 50 ° C. for 24 hours. To this reaction product, 300 parts of methyl isobutyl ketone, 100 parts of methanol and 100 parts of water were added and subjected to a hydrolysis reaction at 25 ° C. for 1 hour, followed by addition of 189 parts of a 6% aqueous oxalic acid solution at room temperature for 1 hour. A sum reaction was performed. Thereafter, the aqueous layer was separated and the organic phase was washed with 100 parts of water. After performing this washing operation three times, the solvent was distilled off to obtain a silanol group epoxy group-containing polysiloxane (B8) having Mw = 3000. It was 2500 when the epoxy equivalent of this silanol group epoxy group containing polysiloxane (B8) was evaluated by the said method. When the silanol equivalent was evaluated, it was 500 g / eq. It was bigger. The ratio of silicon atoms was monofunctional silicon / bifunctional silicon / trifunctional silicon / tetrafunctional silicon = 42/0/3/55.

(合成例9:エポキシ基含有シロキサン化合物(B9)の合成)
撹拌機を備える反応器に上記一官能珪素化合物と四官能珪素化合物の加水分解縮合によって得られるシロキサン化合物(A1)70wt%トルエン溶液100部と2−(3’,4’−エポキシシクロヘキシル)エチルトリメトキシシラン2430部、触媒としてジアザビシクロウンデセン15.7部を加え50℃で24時間撹拌した。この反応生成物にメチルイソブチルケトン300部、メタノール100部、水100部を添加し、25℃で1時間加水分解反応を行った後、6%シュウ酸水溶液189部を加えて室温で1時間中和反応を行った。その後、水層を分離し、有機相を水100部で洗浄した。この水洗操作を3回行った後、溶媒を留去してMw=3000のシラノール基エポキシ基含有ポリシロキサン(B9)を得た。このシラノール基エポキシ基含有ポリシロキサン(B9)のエポキシ当量を上記方法により評価したところ、240であった。シラノール当量を評価したところ500g/eq.以下であった。また珪素原子の比は一官能珪素/二官能珪素/三官能珪素/四官能珪素=4/0/90/6であった。
(Synthesis Example 9: Synthesis of Epoxy Group-Containing Siloxane Compound (B9))
In a reactor equipped with a stirrer, 100 parts of a 70 wt% toluene solution of siloxane compound (A1) obtained by hydrolysis and condensation of the above monofunctional silicon compound and tetrafunctional silicon compound and 2- (3 ′, 4′-epoxycyclohexyl) ethyltri 2430 parts of methoxysilane and 15.7 parts of diazabicycloundecene were added as a catalyst, and the mixture was stirred at 50 ° C. for 24 hours. To this reaction product, 300 parts of methyl isobutyl ketone, 100 parts of methanol and 100 parts of water were added and subjected to a hydrolysis reaction at 25 ° C. for 1 hour, followed by addition of 189 parts of a 6% aqueous oxalic acid solution at room temperature for 1 hour. A sum reaction was performed. Thereafter, the aqueous layer was separated and the organic phase was washed with 100 parts of water. After performing this water washing operation 3 times, the solvent was distilled off to obtain a silanol group epoxy group-containing polysiloxane (B9) having Mw = 3000. It was 240 when the epoxy equivalent of this silanol group epoxy group containing polysiloxane (B9) was evaluated by the said method. When the silanol equivalent was evaluated, it was 500 g / eq. It was the following. The ratio of silicon atoms was monofunctional silicon / bifunctional silicon / trifunctional silicon / tetrafunctional silicon = 4/0/90/6.

(合成例10:白金触媒によるヒドロシリル化を用いて合成されるエポキシ基含有シロキサン化合物(C1)の合成)
(一官能珪素化合物と四官能珪素化合物の加水分解縮合によって得られる珪素原子に結合した水素原子を有するシロキサン化合物の合成)
撹拌機を備える反応器に、水24.0部、37%塩酸水溶液16.0部、エタノール12.0部、1,1,3,3、−テトラメチルジシロキサン(信越化学工業(株)製、試薬名:LS−7040)23.9部を加え、室温で撹拌した。この溶液にテトラエトキシシラン(信越化学工業(株)製、商品名:KBE―04)76.1部を1時間かけて滴下した。滴下終了後反応溶液を室温で3時間撹拌した。撹拌終了後上層である水層を除去し、トルエン150部を加えた後に分液漏斗に移し、水層が中性になるまで水洗を行った。得られた有機層を濃縮する事により、珪素原子に結合した水素原子を含む一官能珪素化合物と四官能珪素化合物の加水分解縮合によって得られるシロキサン化合物を70wt%トルエン溶液として得た。
(Synthesis Example 10: Synthesis of Epoxy Group-Containing Siloxane Compound (C1) Synthesized Using Platinum Catalyst Hydrosilylation)
(Synthesis of a siloxane compound having a hydrogen atom bonded to a silicon atom obtained by hydrolytic condensation of a monofunctional silicon compound and a tetrafunctional silicon compound)
In a reactor equipped with a stirrer, 24.0 parts of water, 16.0 parts of 37% aqueous hydrochloric acid, 12.0 parts of ethanol, 1,1,3,3, -tetramethyldisiloxane (manufactured by Shin-Etsu Chemical Co., Ltd.) And 23.9 parts of reagent name: LS-7040) and stirred at room temperature. To this solution, 76.1 parts of tetraethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBE-04) was added dropwise over 1 hour. After completion of the dropwise addition, the reaction solution was stirred at room temperature for 3 hours. After the stirring, the upper aqueous layer was removed, 150 parts of toluene was added, and the mixture was transferred to a separatory funnel and washed with water until the aqueous layer became neutral. By concentrating the obtained organic layer, a siloxane compound obtained by hydrolysis condensation of a monofunctional silicon compound containing a hydrogen atom bonded to a silicon atom and a tetrafunctional silicon compound was obtained as a 70 wt% toluene solution.

(白金触媒を用いたヒドロシリル化によるエポキシ基含有シロキサン化合物の合成)
撹拌機を備える反応器に上記一官能珪素化合物と四官能珪素化合物の加水分解縮合によって得られる珪素原子に結合した水素原子を有するシロキサン化合物の70wt%トルエン溶液100部と1,2−エポキシ−4−ビニルシクロヘキサン55.9部、触媒として塩化白金酸を白金濃度が10ppmとなるように加え120℃で1時間撹拌し冷却した。得られた溶液から溶剤を留去することによりエポキシ基含有シロキサン化合物(C1)を得たが、この化合物には黄色の着色が見られた。
このエポキシ基含有シロキサン化合物(C1)のエポキシ当量は360であった。シラノール当量を評価したところ500g/eq.より大きかった。
(Synthesis of epoxy group-containing siloxane compounds by hydrosilylation using platinum catalyst)
In a reactor equipped with a stirrer, 100 parts of a 70 wt% toluene solution of a siloxane compound having a hydrogen atom bonded to a silicon atom obtained by hydrolysis condensation of the monofunctional silicon compound and the tetrafunctional silicon compound, and 1,2-epoxy-4 -55.9 parts of vinylcyclohexane, chloroplatinic acid was added as a catalyst so that the platinum concentration was 10 ppm, and the mixture was stirred at 120 ° C for 1 hour and cooled. The solvent was distilled off from the obtained solution to obtain an epoxy group-containing siloxane compound (C1), and yellow coloring was observed in this compound.
The epoxy equivalent of this epoxy group-containing siloxane compound (C1) was 360. When the silanol equivalent was evaluated, it was 500 g / eq. It was bigger.

(合成例11:2官能珪素化合物を主骨格とするエポキシ基含有シロキサン化合物(D1)の合成)
撹拌機を備える反応器に、1,3,5,7−テトラメチルシクロテトラシロキサン(信越化学工業(株)製)30部、ビニル基を1g中に1.64mmol含有するα−ビニルジメチルシリルオキシ−ω−ビニルジメチルシリルーポリジメチルシロキサン[ジメチルシロキサン単位の平均重合度が14である。]152.4部、4−ビニルシクロへキセンオキサイド35.65部(ダイセル化学工業(株)製: セロキサイド2000)、1,4−ジオキサン(和光純薬社製試薬)855部を窒素下にて仕込んだ後攪拌しながら60℃に昇温した。これに白金元素換算で1,0 00ppmの白金を含有する白金ジビニルテトラメチルジシロキサン錯体の1,4−ジオキサン溶液1.7部を窒素下にて添加し、引き続き4時間反応した。反応終了後、反応液温度を30℃に下げ、該反応液に、乾燥窒素気流下にて120℃で3時間加熱乾燥した300gの活性炭( 和光純薬製:顆粒状特級)を添加して、30℃から40℃の温度で24時間攪拌処理を継続した後、活性炭をろ過した。得られた処理液をエバポレーターを用いて加熱温度45℃、圧力10kPa の条件で1.5時間、順次圧力を低減して、最終30Paに圧力を下げて3時間かけて溶媒及び炭素−炭素二重結合を有する化合物を留去し、エポキシ基含有シロキサン化合物(D1)を得た。エポキシ基含有シロキサン化合物(D1)のエポキシ当量は900、含有される遷移金属成分は白金のみであり、該成分の含有量は白金元素換算で3ppmであった。シラノール当量を評価したところ500g/eq.より大きかった。
(Synthesis Example 11: Synthesis of epoxy group-containing siloxane compound (D1) having bifunctional silicon compound as main skeleton)
In a reactor equipped with a stirrer, 30 parts of 1,3,5,7-tetramethylcyclotetrasiloxane (manufactured by Shin-Etsu Chemical Co., Ltd.), α-vinyldimethylsilyloxy containing 1.64 mmol of vinyl group in 1 g -Ω-vinyldimethylsilyl-polydimethylsiloxane [average degree of polymerization of dimethylsiloxane units is 14. ] 152.4 parts, 35.65 parts of 4-vinylcyclohexene oxide (manufactured by Daicel Chemical Industries, Ltd .: Celoxide 2000), and 855 parts of 1,4-dioxane (a reagent manufactured by Wako Pure Chemical Industries, Ltd.) are charged under nitrogen. Thereafter, the temperature was raised to 60 ° C. with stirring. To this was added 1.7 parts of a 1,4-dioxane solution of a platinum divinyltetramethyldisiloxane complex containing 1,000 ppm of platinum in terms of platinum element, and the reaction was continued for 4 hours. After completion of the reaction, the temperature of the reaction solution was lowered to 30 ° C., and 300 g of activated carbon (manufactured by Wako Pure Chemicals: Granular Special Grade) heated and dried at 120 ° C. for 3 hours under a dry nitrogen stream was added to the reaction solution, After continuing the stirring treatment at a temperature of 30 ° C. to 40 ° C. for 24 hours, the activated carbon was filtered. The obtained treatment liquid was heated using an evaporator under conditions of a heating temperature of 45 ° C. and a pressure of 10 kPa for 1.5 hours, the pressure was sequentially reduced, and finally the pressure was reduced to 30 Pa. The compound having a bond was distilled off to obtain an epoxy group-containing siloxane compound (D1). The epoxy equivalent of the epoxy group-containing siloxane compound (D1) was 900, the transition metal component contained was only platinum, and the content of the component was 3 ppm in terms of platinum element. When the silanol equivalent was evaluated, it was 500 g / eq. It was bigger.

(実施例1)
上記合成例1で得られたエポキシ基含有シロキサン化合物(B1)100部に対し酸無水物(新日本理化(株)製:MH700G)を26部、硬化促進剤としてサンアプロ(株)製U−CAT18Xを0.13部加え十分に攪拌した(以下、「組成物(1)」という。組成物(1)について、上記方法により線膨張係数、硬度、耐熱性、耐光性、吸湿・リフロー耐性、冷熱衝撃時の剥離・クラック耐性を評価した。評価結果を表1に示した。表1中、MおよびQは、それぞれ一官能のシラン化合物および四官能のシラン化合物を表し、Si(1)、Si(2)、Si(3)および Si(4)は、それぞれ一官能珪素、二官能珪素、三官能珪素および四官能珪素を意味する。
Example 1
26 parts of acid anhydride (manufactured by Nippon Nippon Chemical Co., Ltd .: MH700G) with respect to 100 parts of the epoxy group-containing siloxane compound (B1) obtained in Synthesis Example 1 and U-CAT18X manufactured by San Apro Co., Ltd. as a curing accelerator (Hereinafter referred to as “composition (1)”. Composition (1) was subjected to linear expansion coefficient, hardness, heat resistance, light resistance, moisture absorption / reflow resistance, The peel / crack resistance upon impact was evaluated, and the evaluation results are shown in Table 1. In Table 1, M and Q represent a monofunctional silane compound and a tetrafunctional silane compound, respectively, and Si (1), Si (2), Si (3) and Si (4) mean monofunctional silicon, bifunctional silicon, trifunctional silicon and tetrafunctional silicon, respectively.

(実施例2)
上記合成例2で得られたエポキシ基含有シロキサン化合物(B2)100部に対し酸無水物(新日本理化(株)製:MH700G)を13部、硬化促進剤としてサンアプロ(株)製U−CAT18Xを0.07部加え十分に攪拌した(以下、「組成物(2)」という。組成物(2)について、上記方法により線膨張係数、硬度、耐熱性、耐光性、吸湿・リフロー耐性、冷熱衝撃時の剥離・クラック耐性を評価した。評価結果を表1に示した。
(Example 2)
13 parts of an acid anhydride (manufactured by Nippon Nippon Chemical Co., Ltd .: MH700G) with respect to 100 parts of the epoxy group-containing siloxane compound (B2) obtained in Synthesis Example 2 above, U-CAT18X manufactured by San Apro Co., Ltd. as a curing accelerator 0.07 part was added and sufficiently stirred (hereinafter referred to as “composition (2)”. Composition (2) was subjected to the above-described methods for the linear expansion coefficient, hardness, heat resistance, light resistance, moisture absorption / reflow resistance, cold heat. The peel / crack resistance during impact was evaluated and the evaluation results are shown in Table 1.

(実施例3)
上記合成例3で得られたエポキシ基含有シロキサン化合物(B3)100部に対し酸無水物(新日本理化(株)製:MH700G)を41部、硬化促進剤としてサンアプロ(株)製U−CAT18Xを0.21部加え十分に攪拌した(以下、「組成物(3)」という。組成物(3)について、上記方法により線膨張係数、硬度、耐熱性、耐光性、吸湿・リフロー耐性、冷熱衝撃時の剥離・クラック耐性を評価した。評価結果を表1に示した。
(Example 3)
41 parts of acid anhydride (manufactured by Nippon Kayaku Co., Ltd .: MH700G) with respect to 100 parts of the epoxy group-containing siloxane compound (B3) obtained in Synthesis Example 3 above, U-CAT18X manufactured by San Apro Co., Ltd. as a curing accelerator (Hereinafter referred to as “composition (3)”) About composition (3), the coefficient of linear expansion, hardness, heat resistance, light resistance, moisture absorption / reflow resistance, cold heat The peel / crack resistance during impact was evaluated and the evaluation results are shown in Table 1.

(実施例4)
上記合成例4で得られたエポキシ基含有シロキサン化合物(B4)100部に対し酸無水物(新日本理化(株)製:MH700G)を27部、硬化促進剤としてサンアプロ(株)製U−CAT18Xを0.14部加え十分に攪拌した(以下、「組成物(4)」という。組成物(4)について、上記方法により線膨張係数、硬度、耐熱性、耐光性、吸湿・リフロー耐性、冷熱衝撃時の剥離・クラック耐性を評価した。評価結果を表1に示した。
Example 4
27 parts of acid anhydride (manufactured by Shin Nippon Rika Co., Ltd .: MH700G) and 100 parts of epoxy group-containing siloxane compound (B4) obtained in Synthesis Example 4 above, U-CAT18X made by San Apro Co., Ltd. as a curing accelerator (Hereinafter referred to as “composition (4)”) About the composition (4), the coefficient of linear expansion, hardness, heat resistance, light resistance, moisture absorption / reflow resistance, cold heat The peel / crack resistance during impact was evaluated and the evaluation results are shown in Table 1.

(実施例5)
上記合成例5で得られたエポキシ基含有シロキサン化合物(B5)100部に対し酸無水物(新日本理化(株)製:MH700G)を29部、硬化促進剤としてサンアプロ(株)製U−CAT18Xを0.15部加え十分に攪拌した(以下、「組成物(5)」という。組成物(5)について、上記方法により線膨張係数、硬度、耐熱性、耐光性、吸湿・リフロー耐性、冷熱衝撃時の剥離・クラック耐性を評価した。評価結果を表1に示した。
(Example 5)
29 parts of acid anhydride (manufactured by Shin Nippon Rika Co., Ltd .: MH700G) with respect to 100 parts of the epoxy group-containing siloxane compound (B5) obtained in Synthesis Example 5 and U-CAT18X manufactured by San Apro Co., Ltd. as a curing accelerator (Hereinafter referred to as “composition (5)”) About the composition (5), the coefficient of linear expansion, hardness, heat resistance, light resistance, moisture absorption / reflow resistance, cold heat The peel / crack resistance during impact was evaluated and the evaluation results are shown in Table 1.

(実施例6)
上記合成例6で得られたエポキシ基含有シロキサン化合物(B6)100部に対し酸無水物(新日本理化(株)製:MH700G)を27部、硬化促進剤としてサンアプロ(株)製U−CAT18Xを0.13部加え十分に攪拌した(以下、「組成物(6)」という。組成物(6)について、上記方法により線膨張係数、硬度、耐熱性、耐光性、吸湿・リフロー耐性、冷熱衝撃時の剥離・クラック耐性を評価した。評価結果を表1に示した。
(Example 6)
27 parts of an acid anhydride (manufactured by Shin Nippon Rika Co., Ltd .: MH700G) with respect to 100 parts of the epoxy group-containing siloxane compound (B6) obtained in Synthesis Example 6 above, U-CAT18X manufactured by San Apro Co., Ltd. as a curing accelerator (Hereinafter referred to as “composition (6).” About composition (6), the linear expansion coefficient, hardness, heat resistance, light resistance, moisture absorption / reflow resistance, The peel / crack resistance during impact was evaluated and the evaluation results are shown in Table 1.

(比較例1)
上記合成例8で得られたエポキシ基含有シロキサン化合物(B8)100部に対し酸無水物(新日本理化(株)製:MH700G)を5部、硬化促進剤としてサンアプロ(株)製U−CAT18Xを0.02部加え十分に攪拌した(以下、「組成物(8)」という。組成物(8)については、上記条件では硬化せず、測定用のサンプルを得ることができなかったので、線膨張係数、硬度、耐熱性、耐光性、吸湿・リフロー耐性、冷熱衝撃時の剥離・クラック耐性を評価することはできなかった。
(Comparative Example 1)
5 parts of acid anhydride (manufactured by Shin Nippon Rika Co., Ltd .: MH700G) per 100 parts of the epoxy group-containing siloxane compound (B8) obtained in Synthesis Example 8 above, and U-CAT18X manufactured by San Apro Co., Ltd. as a curing accelerator 0.02 part was added and sufficiently stirred (hereinafter referred to as “composition (8)”. The composition (8) was not cured under the above conditions, and a sample for measurement could not be obtained. The linear expansion coefficient, hardness, heat resistance, light resistance, moisture absorption / reflow resistance, and peeling / crack resistance during cold shock could not be evaluated.

(比較例2)
上記合成例9で得られたエポキシ基含有シロキサン化合物(B9)100部に対し酸無水物(新日本理化(株)製:MH700G)を48部、硬化促進剤としてサンアプロ(株)製U−CAT18Xを0.24部加え十分に攪拌した(以下、「組成物(9)」という。組成物(9)について、上記方法により線膨張係数、硬度、耐熱性、耐光性、吸湿・リフロー耐性、冷熱衝撃時の剥離・クラック耐性を評価した。評価結果を表1に示した。
(Comparative Example 2)
48 parts of an acid anhydride (manufactured by Shin Nippon Rika Co., Ltd .: MH700G) with respect to 100 parts of the epoxy group-containing siloxane compound (B9) obtained in Synthesis Example 9 and U-CAT18X manufactured by San Apro Co., Ltd. as a curing accelerator (Hereinafter referred to as “composition (9)”) About the composition (9), the coefficient of linear expansion, hardness, heat resistance, light resistance, moisture absorption / reflow resistance, cold heat The peel / crack resistance during impact was evaluated and the evaluation results are shown in Table 1.

(比較例3)
上記合成例10で得られたエポキシ基含有シロキサン化合物(C1)100部に対し酸無水物(新日本理化(株)製:MH700G)を32部、硬化促進剤としてサンアプロ(株)製U−CAT18Xを0.16部加え十分に攪拌した(以下、「組成物(10)」という。組成物(10)について、上記方法により線膨張係数、硬度、耐熱性、耐光性、吸湿・リフロー耐性、冷熱衝撃時の剥離・クラック耐性を評価した。評価結果を表1に示した。
(Comparative Example 3)
32 parts of an acid anhydride (manufactured by Shin Nippon Rika Co., Ltd .: MH700G) with respect to 100 parts of the epoxy group-containing siloxane compound (C1) obtained in Synthesis Example 10 above, U-CAT18X manufactured by San Apro Co., Ltd. as a curing accelerator (Hereinafter referred to as “composition (10)”) About composition (10), the coefficient of linear expansion, hardness, heat resistance, light resistance, moisture absorption / reflow resistance, cold heat The peel / crack resistance during impact was evaluated and the evaluation results are shown in Table 1.

(比較例4)
上記合成例11で得られたエポキシ基含有シロキサン化合物(D1)100部に対し酸無水物(新日本理化(株)製:MH700G)を13部、硬化促進剤としてサンアプロ(株)製U−CAT18Xを0.06部加え十分に攪拌した(以下、「組成物(11)」という。組成物(11)について、上記方法により線膨張係数、硬度、耐熱性、耐光性、吸湿・リフロー耐性、冷熱衝撃時の剥離・クラック耐性を評価した。評価結果を表1に示した。
(Comparative Example 4)
13 parts of acid anhydride (manufactured by Nippon Nippon Chemical Co., Ltd .: MH700G) with respect to 100 parts of the epoxy group-containing siloxane compound (D1) obtained in Synthesis Example 11 above, U-CAT18X manufactured by San Apro Co., Ltd. as a curing accelerator (Hereinafter referred to as “Composition (11)”) About the composition (11), the coefficient of linear expansion, hardness, heat resistance, light resistance, moisture absorption / reflow resistance, cold heat The peel / crack resistance during impact was evaluated and the evaluation results are shown in Table 1.

(比較例5)
上記合成例7で得られたエポキシ基含有シロキサン化合物(B7)100部に対し酸無水物(新日本理化(株)製:MH700G)を26部、硬化促進剤としてサンアプロ(株)製U−CAT18Xを0.13部加え十分に攪拌した(以下、「組成物(7)」という。組成物(7)について、上記方法により線膨張係数、硬度、耐熱性、耐光性、吸湿・リフロー耐性、冷熱衝撃時の剥離・クラック耐性を評価した。評価結果を表1に示した。
(Comparative Example 5)
26 parts of an acid anhydride (manufactured by Shin Nippon Rika Co., Ltd .: MH700G) with respect to 100 parts of the epoxy group-containing siloxane compound (B7) obtained in Synthesis Example 7 above, U-CAT18X made by San Apro Co., Ltd. as a curing accelerator (Hereinafter referred to as “composition (7).” About the composition (7), the linear expansion coefficient, hardness, heat resistance, light resistance, moisture absorption / reflow resistance, The peel / crack resistance during impact was evaluated and the evaluation results are shown in Table 1.

Figure 0005407615
Figure 0005407615

50発光素子部
51封止材
52蛍光部
53バインダー
54蛍光体
50 light emitting element part 51 sealing material 52 fluorescent part 53 binder 54 phosphor

Claims (10)

下記一般式(1)〜(3)で表される構成単位を含むオルガノポリシロキサンであって、
シラノール当量が0g/eq.を超え500g/eq.以下であり、
該オルガノポリシロキサンを構成する全シロキサン単位を100モル%とした場合に、三官能性シロキサン単位を10〜70モル%含有することを特徴とするオルガノポリシロキサン。
Figure 0005407615
〔式中、R1およびR3は、それぞれ独立に非置換もしくは置換の炭素数1〜3の1価の炭化水素基を示す。
Eは、エポキシ基を有する炭素数3〜20の有機基を示す。
9は、それぞれ独立に水素原子または非置換もしくは置換の炭素数1〜3の炭化水素基を示す。
aは0またはである。〕
An organopolysiloxane containing structural units represented by the following general formulas (1) to (3),
Silanol equivalent is 0 g / eq. Exceeding 500 g / eq. And
An organopolysiloxane comprising 10 to 70 mol% of a trifunctional siloxane unit when the total amount of siloxane units constituting the organopolysiloxane is 100 mol%.
Figure 0005407615
[Wherein, R 1 and R 3 each independently represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 3 carbon atoms.
R E represents an organic group having 3 to 20 carbon atoms having an epoxy group.
R 9 each independently represents a hydrogen atom or an unsubstituted or substituted hydrocarbon group having 1 to 3 carbon atoms.
a is 0 or 1 ; ]
前記オルガノポリシロキサンを構成する全シロキサン単位を100モル%とした場合に、一官能性シロキサン単位を20〜80モル%、四官能性シロキサン単位を10〜60モル%含有することを特徴とする請求項1に記載のオルガノポリシロキサン。   The monofunctional siloxane unit is contained in an amount of 20 to 80 mol% and the tetrafunctional siloxane unit is contained in an amount of 10 to 60 mol% when the total amount of siloxane units constituting the organopolysiloxane is 100 mol%. Item 3. The organopolysiloxane according to Item 1. 前記式(1)のREが下記一般式(7)〜(10)のいずれかで表されることを特徴とする請求項1または2に記載のオルガノポリシロキサン。
Figure 0005407615
〔一般式(7)中R5はメチレン基または2価の炭素数2〜10の直鎖状アルキレン基または炭素数3〜10の分岐鎖状アルキレン基を示す。〕
Figure 0005407615
〔一般式(8)中R6はメチレン基または2価の炭素数2〜10の直鎖状アルキレン基または炭素数3〜10の分岐鎖状アルキレン基を示す。〕
Figure 0005407615
〔一般式(9)中R7はメチレン基または2価の炭素数2〜10の直鎖状アルキレン基または炭素数3〜10の分岐鎖状アルキレン基を示す。〕
Figure 0005407615
〔一般式(10)中R8はメチレン基または2価の炭素数2〜10の直鎖状アルキレン基または炭素数3〜10の分岐鎖状アルキレン基を示す。〕
3. The organopolysiloxane according to claim 1, wherein R E of the formula (1) is represented by any one of the following general formulas (7) to (10).
Figure 0005407615
[R 5 in General Formula (7) represents a methylene group, a divalent linear alkylene group having 2 to 10 carbon atoms, or a branched alkylene group having 3 to 10 carbon atoms. ]
Figure 0005407615
[In General Formula (8), R 6 represents a methylene group, a divalent linear alkylene group having 2 to 10 carbon atoms, or a branched alkylene group having 3 to 10 carbon atoms. ]
Figure 0005407615
[In the general formula (9), R 7 represents a methylene group, a divalent linear alkylene group having 2 to 10 carbon atoms or a branched alkylene group having 3 to 10 carbon atoms. ]
Figure 0005407615
[In General Formula (10), R 8 represents a methylene group, a divalent linear alkylene group having 2 to 10 carbon atoms, or a branched alkylene group having 3 to 10 carbon atoms. ]
請求項1〜3のいずれかに記載のオルガノポリシロキサンとエポキシ用硬化剤とを含有することを特徴とする硬化性組成物。   A curable composition comprising the organopolysiloxane according to claim 1 and an epoxy curing agent. 前記エポキシ用硬化剤が酸無水物であることを特徴とする請求項4に記載の硬化性組成物。   The curable composition according to claim 4, wherein the epoxy curing agent is an acid anhydride. 請求項4または5に記載の硬化性組成物からなる光半導体封止用組成物。   The composition for optical semiconductor sealing which consists of a curable composition of Claim 4 or 5. 請求項6に記載の光半導体封止用組成物を用いた発光素子。   The light emitting element using the composition for optical semiconductor sealing of Claim 6. 下記式(2)で表される構成単位、下記式(3)で表される構成単位、およびシラノール基を含むシロキサン化合物(A)と
エポキシ基を有するアルコキシシラン化合物(B)とを
塩基性化合物の存在下反応させる工程を含むことを特徴とする請求項1に記載のオルガノポリシロキサンの製造方法。
Figure 0005407615
Figure 0005407615
〔式(2)中、R1請求項1の式()におけるR1と同様である。〕
A basic compound comprising a structural unit represented by the following formula (2), a structural unit represented by the following formula (3), a siloxane compound (A) containing a silanol group and an alkoxysilane compound (B) having an epoxy group The method for producing an organopolysiloxane according to claim 1, further comprising a step of reacting in the presence of.
Figure 0005407615
Figure 0005407615
[In formula (2), R 1 is the same as R 1 in formula (2) according to claim 1. ]
前記シロキサン化合物(A)が、
下記式(4)で表されるシラン化合物(A−1)と
下記式(5)で表されるシラン化合物、該シラン化合物の縮合物、および該シラン化合物の加水分解物からなる群から選ばれる少なくとも1種(A−2)とを
反応させて得られることを特徴とする請求項8に記載のオルガノポリシロキサンの製造方法。
Figure 0005407615
〔式(4)中、R1請求項8の式()におけるR1と同様である。〕
Figure 0005407615
〔式(5)中R2は非置換もしくは置換の1価の炭化水素基を示す。〕
The siloxane compound (A) is
It is selected from the group consisting of a silane compound (A-1) represented by the following formula (4), a silane compound represented by the following formula (5), a condensate of the silane compound, and a hydrolyzate of the silane compound. The method for producing an organopolysiloxane according to claim 8, wherein the organopolysiloxane is obtained by reacting at least one (A-2).
Figure 0005407615
[In formula (4), R 1 is the same as R 1 in formula (2) according to claim 8. ]
Figure 0005407615
[In formula (5), R 2 represents an unsubstituted or substituted monovalent hydrocarbon group. ]
前記アルコキシシラン化合物(B)が下記式(6)で表される化合物であることを特徴とする請求項8または9に記載のオルガノポリシロキサンの製造方法。
Figure 0005407615
〔式(6)中RE、R3およびaは、それぞれ式(1)におけるRE、R3およびaと同様である。R4はそれぞれ独立に非置換または置換の炭素数1〜3の炭化水素基を示す。〕
The method for producing an organopolysiloxane according to claim 8 or 9, wherein the alkoxysilane compound (B) is a compound represented by the following formula (6).
Figure 0005407615
[Formula (6) was R E, R 3 and a are, R E in each formula (1) is the same as R 3 and a. R 4 each independently represents an unsubstituted or substituted hydrocarbon group having 1 to 3 carbon atoms. ]
JP2009165796A 2009-07-14 2009-07-14 Organopolysiloxane, curable composition containing the same, and method for producing the same Active JP5407615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009165796A JP5407615B2 (en) 2009-07-14 2009-07-14 Organopolysiloxane, curable composition containing the same, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009165796A JP5407615B2 (en) 2009-07-14 2009-07-14 Organopolysiloxane, curable composition containing the same, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011021078A JP2011021078A (en) 2011-02-03
JP5407615B2 true JP5407615B2 (en) 2014-02-05

Family

ID=43631429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009165796A Active JP5407615B2 (en) 2009-07-14 2009-07-14 Organopolysiloxane, curable composition containing the same, and method for producing the same

Country Status (1)

Country Link
JP (1) JP5407615B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057000A (en) * 2011-09-08 2013-03-28 Mitsubishi Chemicals Corp Thermosetting resin composition, semiconductor device member and semiconductor light-emitting device using the same
EP2763198A4 (en) * 2011-09-30 2015-07-08 Konica Minolta Inc Light emitting device and coating liquid
JP6526417B2 (en) * 2011-12-14 2019-06-05 ダウ シリコーンズ コーポレーション Resin-linear organosiloxane block copolymer curable composition
JPWO2014104295A1 (en) * 2012-12-28 2017-01-19 コニカミノルタ株式会社 Light emitting device
KR101842424B1 (en) * 2013-12-23 2018-03-28 다우 코닝 코포레이션 Silicate resins and methods of preparing same
JP6331758B2 (en) * 2014-06-25 2018-05-30 味の素株式会社 Resin composition
JP6580878B2 (en) * 2015-06-17 2019-09-25 株式会社ダイセル Polyorganosilsesquioxane, curable composition, hard coat film, and cured product
CN107828057B (en) * 2017-11-13 2021-01-29 唐山三友硅业有限责任公司 Preparation method and application of siloxane modified epoxy resin for LED packaging
CN110551364B (en) * 2019-09-10 2022-03-25 武汉理工大学 Preparation method of polysiloxane/epoxy resin interpenetrating network polymer material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3474007B2 (en) * 1993-11-05 2003-12-08 信越化学工業株式会社 Method for producing organofunctional organosiloxane containing organic functional groups
JP3713719B2 (en) * 1993-12-08 2005-11-09 チッソ株式会社 Method for producing polysiloxane
US5510430A (en) * 1995-03-31 1996-04-23 General Electric Company Method of functionalizing organosiloxane condensation products
DE19800021A1 (en) * 1998-01-02 1999-07-08 Huels Silicone Gmbh Process for the preparation of polyorganosiloxane resins containing mono- and tetrafunctional units
JP2005298754A (en) * 2004-04-15 2005-10-27 Mitsubishi Rayon Co Ltd Active energy ray-curable composition for coating and method for forming protective film
JP2008231333A (en) * 2007-03-23 2008-10-02 Asahi Kasei Corp Synthetic method for curable silicone, curable silicone prepared by the same and its cured product
JP2008248170A (en) * 2007-03-30 2008-10-16 Nippon Steel Chem Co Ltd Polyfunctional epoxy silicone resin, method for producing the same and curable resin composition
TW200925173A (en) * 2007-12-07 2009-06-16 Jsr Corp Curative composition, coating composition for optical element, material for LED sealing, and manufacturing method of those compositions

Also Published As

Publication number Publication date
JP2011021078A (en) 2011-02-03

Similar Documents

Publication Publication Date Title
JP5407615B2 (en) Organopolysiloxane, curable composition containing the same, and method for producing the same
JP5034283B2 (en) High refractive material forming composition and cured body thereof, and method for producing high refractive material forming composition
JPWO2005100445A1 (en) Optical semiconductor sealing composition, optical semiconductor sealing material, and method for producing optical semiconductor sealing composition
JPWO2009072632A1 (en) Curable composition, optical element coating composition, LED sealing material, and method for producing the same
JP5549789B1 (en) Thermosetting resin composition, method for producing the same, method for producing resin cured product, and method for generating self-polymerization of epoxy compound
JP2008143954A (en) Isocyanuric ring-containing polymer, method for producing the same, and composition containing the same
JP2007106798A (en) Composition for optical semiconductor encapsulation, optical semiconductor encapsulating agent and manufacturing process of composition for optical semiconductor encapsulation
JPWO2008090971A1 (en) Epoxy group-terminated polydimethylsiloxane, method for producing the same, and curable polysiloxane composition
JP2007169427A (en) Optical semiconductor-encapsulating composition, its manufacturing process and optical semiconductor-encapsulating agent
TW200951183A (en) Composition having silicone-containing polymer and cured product thereof
JPWO2010090280A1 (en) Transparent encapsulant composition and optical semiconductor element
JP2007169406A (en) Optical semiconductor-encapsulating composition, its manufacturing process and optical semiconductor-encapsulating agent
JP2006225515A (en) Optical semiconductor element, sealing material therefor and sealing composition
TWI466972B (en) A wafer bonding agent composition for an optical semiconductor element, and an optical semiconductor device using the same
JP2010059359A (en) Epoxy group-containing multifunctional polysiloxane and method for producing the same, and curable polysiloxane composition
TWI705582B (en) Condensation reaction type crystal grain bonding agent, LED light emitting device and manufacturing method thereof
JP2009292855A (en) Polymer for sealing optical semiconductor, method for producing it, and composition for sealing optical semiconductor
WO2006083025A1 (en) Optical semiconductor, sealing material therefor and sealing composition
JP2011063799A (en) Sealing composition for optical semiconductor
JP2010013619A (en) Polymer for optical semiconductor sealing use and method for producing the same, and composition for optical semiconductor sealing use
JP2012092172A (en) Composition for sealing optical semiconductor, and light-emitting element
KR101652120B1 (en) Die bond agent composition for optical semiconductor element and optical semiconductor device using the composition
JP2009108109A (en) Thermosetting resin composition, cured product, and light emitting diode derived from them
JP2009079219A (en) Siloxane resin composition, cured product and optical semiconductor using the same
WO2014136806A1 (en) Organopolysiloxane and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R150 Certificate of patent or registration of utility model

Ref document number: 5407615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250