JP3713719B2 - Method for producing polysiloxane - Google Patents

Method for producing polysiloxane Download PDF

Info

Publication number
JP3713719B2
JP3713719B2 JP34047493A JP34047493A JP3713719B2 JP 3713719 B2 JP3713719 B2 JP 3713719B2 JP 34047493 A JP34047493 A JP 34047493A JP 34047493 A JP34047493 A JP 34047493A JP 3713719 B2 JP3713719 B2 JP 3713719B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
condensation reaction
silane
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34047493A
Other languages
Japanese (ja)
Other versions
JPH07157562A (en
Inventor
勝利 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP34047493A priority Critical patent/JP3713719B2/en
Publication of JPH07157562A publication Critical patent/JPH07157562A/en
Application granted granted Critical
Publication of JP3713719B2 publication Critical patent/JP3713719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Silicon Polymers (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、新規なオルガノポリシロキサンとその製造法に関する。
【0002】
【従来の技術とその問題点】
従来、シランの共加水分解では2種類あるいはそれ以上のシランを同時に仕込んで行われている。これまでのシランの加水分解物の利用方法は、溶剤中で低加水分解度に止め、アルコキシ基を残した程度でこれをプライマーとして利用したり、あるいは常温で安定なオリゴマーとして分離利用するのが通例であった。しかるに常温で安定なシラノール基と有機官能基を合わせ持つた三次元構造性のポリマーは知られていなかったし、これを単離した報告はない。
【0003】
【発明が解決しようとする課題】
常温で安定なシラノール基と有機官能基を合わせ持ち、ポリマー骨格構造がブロック状で三次元性とリニアー性を持つ新規オルガノポリシロキサンとその製造方法を提供する。なお、本ポリマーの末端基はシラノールである。本発明者は、上述の構造のポリシロキサンとその製造法を見出すべく鋭意研究を行った。その結果、後述の二段の加水分解縮合反応によると効果的に該化合物とその製造法が可能となることを見出しこの知見に基づいて本発明を完成した。本発明による二段加水分解縮合反応による製造方法は、この反応により溶剤中に生成したオルガノポリシロキサンを溶剤より単離して、各種用途に常温にて安定に取扱出来るオイルあるいは樹脂状物として供する事を目的としている。それ故に後述の実施例で示した如く、加水分解速度が著しく異なるシラン同志を一括仕込で製造した場合、生成したポリマーは三次元構造性のシラン成分がブロック状となり難くリニアー成分とより短い単位で構成されたポリマーとなり粘度が低いポリマーしか得られない条件となる。従って本発明の製造方法によらないと目的のオガノポリシロキサンは得られない。
【0004】
【課題を解決するための手段】
本発明は、下記(1)ないし(5)の各構成を有する。
(1)一般式Si(OR)4 で示されるテトラアルコキシシラン(A)と一般式R23 Si(OR)2 で示されるシラン化合物(C)とを酸触媒の存在下で共加水分解縮合反応させるに際して、最初に(A)を酸触媒、シラン総モルの3〜4倍の水、親水性溶媒の存在下に加水分解縮合反応させ、つづいて反応混合物中に(C)と、三次元性ポリマーにリニアー性シラン化合物をブロック状に共重合させるために必要な縮合触媒を添加して共加水分解縮合反応させることを特徴とする式〔化4〕で示されるオルガノポリシロキサンの製造法。
【化4】

Figure 0003713719
(ここで、R2 ,R3 は、それぞれ炭素数1〜8のアルキル基、フェニル基炭素数2〜8のアルケニル基3−グリシドキシプロピル基または3−クロロプロピル基であり、Rは炭素数1〜8のアルキル基であり、m,nはそれぞれ3以下の正の整数、xは0を含まない1.0以下の数である
(2)一般式R1 Si(OR)3 で示されるトリアルコキシシラン化合物(B)と一般式R23 Si(OR)2 で示されるシラン化合物(C)とを酸触媒の存在下で共加水分解縮合反応させるに際して、最初に(B)を酸触媒、シラン総モルの3〜4倍の水、親水性溶媒の存在下に加水分解縮合反応させ、つづいて反応混合物中に(C)と、三次元性ポリマーにリニアー性シラン化合物をブロック状に共重合させるために必要な縮合触媒を添加して共加水分解縮合反応させることを特徴とする式〔化5〕で示されるオルガノポリシロキサンの製造法。
【化5】
Figure 0003713719
(ここで、R1 ,R2 ,R3 は、それぞれ炭素数1〜8のアルキル基炭素数2〜8のアルケニル基3−グリシドキシプロピル基、3−メタクリロキシプロピル基、3−メルカプトプロピル基、3−クロロプロピル基、エポキシシクロヘキシルエチル基またはフェニル基であり、Rは炭素数1〜8のアルキル基であり、m,lはそれぞれ3以下の正の整数、yは0を含まない1.0以下の数である
(3)テトラアルコキシシラン(A)が、テトラメトキシシランもしくはテトラエトキシシランまたはこれらの加水分解物であるメチルシリケート59(SiO2 含有率約59%のオリゴマー)もしくはエチルシリケート40(SiO2含有率約40%のオリゴマー)のいずれかである前記(1)に記載の製造法。
(4)トリアルコキシシラン化合物(B)が、ビニルトリアルコキシシラン3−グリシドキシプロピルトリアルコキシシラン3−メタクリロキシプロピルトリアルコキシシラン3−メルカプトプロピルトリアルコキシシシランエポキシシクロヘキシルエチルトリアルコキシシラン3−クロロプロピルトリアルコキシシランフェニルトリアルコキシシラン(ここでアルコキシはメトキシまたはエトキシである)のいずれかである前記(2)に記載の製造法。
(5)シラン化合物(C)が、3−グリシドキシプロピルアルキルジアルコキシシラン3−クロロプロピルアルキルジアルコキシシランジアルキルジアルコキシシランフェニルアルキルジアルコキシシラン(ここでアルキルはメチルまたはエチルであり、アルコキシはメトキシまたはエトキシである)のいずれかである前記(1)乃至(4)のいずれか1項に記載の製造法。
【0005】
本発明の構成と効果につき以下に詳述する。本発明は、一般式Si(OR)4 で示されるテトラアルコキシシラン(A)と一般式R1 Si(OR)3 で示されるトリアルコキシシラン化合物(B)及び一般式R23 Si(OR)2 で示されるシラン化合物(C)の内から(A)と(C)、(B)と(C)の異なる2種の組み合わせで触媒量の酸触媒下で共加水分解縮合反応させるに際して、(A)や(B)の三次元構造性のアルコキシシランを単独に加水分解してオリゴマーのブロックを形成せしめる。しかる後に(C)成分のリニアー形成ジアルコキシシランを加水分解共縮合させる二段加水分解縮合によるブロック状共重合体を製造する方法に関する。R 1 とR 2 有機官能基を有するシリルプロピル基の場合、例えば3−メタクリロキシプロピル基を有するトリアルコキシシランや低級アルキルジアルコキシシランでは一般に加水分解速度はテトラアルコキシシランに比較して遅いので触媒を添加する必要がある。触媒種としては有機錫化合物等が好適に使用される。反応溶剤としては親水性溶剤叉は親水性溶剤を含む混合溶剤が好適に使用される。加水分解に必要な水の量はシラン総モルの3〜4倍モルが好適である。ここでR 1 とR 2 3−グリシドキシプロピル基やビニル基等の有機官能基を含むシランカップリング剤やC1 〜C8 の飽和炭化水素基、フェニル基あるいはアルケニル基が適応される。アルコキシ基ORはC1 〜C8 の飽和アルコールより製造したものであり、反応速度を考慮するとC1 〜C3 が好適に使用される。本発明により製造される共加水分解縮合化合物は〔化4〕、〔化5〕で示される常温でオイル状ないし樹脂状であり、かつ生成したシラノール基はそれぞれx=1.0以下、y=1.0以下もしくはx+y=2.0以下である常温で安定なオルガノポリシロキサンである。x及びx+yがこれ以上だと生成したポリマーはゲル化物を含んだりゲル体である。
【0006】
次に加水分解触媒としての酸であるが、触媒量の酸があればよく酸濃度は特に規定しない。例えば希釈した酸を規定量の水の分だけ添加する方法もある。酸の種類としては酢酸等の有機酸や塩酸、硫酸等の無機酸あるいは強酸性イオン交換樹脂のいずれも使用出来るが好ましくは加水分解速度の早い無機酸が推奨される。
【0007】
シラノール縮合触媒として作用する広範な種類の物質のいずれもが本発明に用いる事が出来る。かかる物質には、例えば、ジブチル錫ジラウレート、酢酸第一錫、オクタン酸第一錫の様な有機錫化合物、あるいはナフテン酸亜鉛、オクタン酸亜鉛、2−エチルヘキサン酸及びナフテン酸コバルトの如き金属カルボキシレート、チタニウムエステル及びキレートが挙げられる。好ましい化合物は有機錫化合物で特に錫カルボキシレート、例えばジブチル錫ジラウレート、ジブチル錫ジアセテートがある。
縮合触媒量は触媒量であれば特に規定しないが一般的にはシラン総量の0.05%以下で行われる。
【0008】
加水分解を充分行わせる為の水の量はシラン総モルに対して3〜4倍モル、好ましくは3.5倍モル以上の添加が必要である。反応溶媒としては親水性溶媒単独でもよいが、親水性溶媒の混合溶媒や親油性と親水溶媒の混合溶媒も適応出来る。例えば、メタノール、エタノール、アセトン、ターシャリブタノール、ジアセトンアルコール等の親水性溶媒、あるいはキシレン/アルコール、トルエン/アルコール等の混合溶媒も使用できる。
【0009】
本発明で得られたオルガノポリシロキサンオイルの溶解性の測定はガラスサンプル管に本発明の油状オルガノポリシロキサンのサンプル100mgを採り、これに1mlの各溶媒を加えて肉眼観察により溶け易さを判定する方法で行った。その結果は易溶、溶解、微溶(微白濁)、難溶(白濁)、不溶の5段階表示で行った。本発明のオルガノポリシロキサンは一般に次の(a)〜(d)の様な手段で上記一般式で示されるものである事を確認出来る。
(a)赤外吸収スペクトル(IR)の解析
3450cm-1付近のSi−OHの特徴的吸収、3000cm -1 〜2900cm -1 付近のCH結合に基づく数本の吸収、1100cm -1 〜1000cm -1 付近のSi−O−Siのブロードな吸収が現れる。3450cm-1付近の吸収ピークと2940cm-1付近の吸収ピークとの吸光度(logI0 /I)比はシラノール基含有率の相対値の指標となる。すなわち、この値が1.0以下であれば常温で安定なシラノール基を有したオイルである。この値が1.0以上では数十℃の加熱で樹脂状態の固体を呈するオルガノポリシロキサンポリマーである。一方メタクリロキシ基を有するポリマーでは2900cm-1付近のCH結合に基づく数本の吸収、1720cm-1の−C=CCOO−吸収,1640cm-1付近のC=C吸収、1100cm-1〜1000cm-1付近のSi−O−Siのブロードな吸収が現れる。3450cm-1付近の吸収ピークと1720cm-1付近の吸収ピークとの吸光度(logI0 /I)比はシラノール基含有率の相対値の指標となる。すなわち、この値が1.0以下であれば常温で安定なシラノール基を有したオイルである。この値が1.0以上では数十℃の加熱で樹脂状態の固体を呈するオルガノポリシロキサンポリマーである。
(b)1 H−核磁気共鳴スペクトル(1 H−NMR)
本発明のオルガノポリシロキサン中の水素原子の個数や結合様式、更に重水素置換により(Si)−OHである確認、水素原子の比から(Si)−OHの個数を知る事が出来る。
(c)エポキシ酸素量の定量
オキシラン酸素の定量はHBr−酢酸の滴定法により求める。
(d)炭素、水素(CH)元素分析
ミクロ元素分析法により炭素、水素含有率を知る事が出来る。粘度データーの測定は東京計器(株)製回転粘度計‘VISCONIC’を用いて25℃恒温で行った。
【0010】
【発明の効果】
本発明の二段加水分解縮合による製造方法ではブロック状のコポリマーを製造出来るので生成したオルガノポリシロキサンは、後述した実施例において証明されている如く、ポリマー中に常温にて安定なシラノール基を有し、使用アルコキシ原料由来の有機官能基を1ないし2個有する事からマルチファンクショナルな反応性オルガノポリシロキサンと言える。また、本ポリマーの末端基はシラノールである。本発明の製造法によるオルガノポリシロキサンは大抵のメチル系ポリシロキサンが有機溶媒や有機樹脂に溶解ないし親和性を持つていないのに対して本発明によるオルガノポリシロキサンは多種類の有機溶媒に溶解する。また多種類の有機樹脂に親和性を示す。これら特徴より変性シリコーンオイルとしての用途は勿論、その他離型剤、剥離紙用シリコーン、パーソナルケア用シリコーン、塗料添加剤、シリコーン粘着剤、接着シール材、変性シリコーンシラント他広範囲の用途に展開出来る有用なものである。また、2種類以上のポリマーで構成されるポリマーアロイやブレンドに於いて、異種樹脂同志の界面に作用して混練を容易ならしめたり、ポリマー間のカップリングも期待される。本発明を更に具体的に説明する為に以下実施例をあげて説明するが、本発明はこれらの実施例に限定されるものではない。
【0011】
実施例1
シラノール基含有ポリシロキサン−3−グリシドキシプロピルメチルポリシロキサン共重合オイルの合成S520/正珪酸エチル=2/1(モル)
1Lの三口フラスコに多摩化学社製の正珪酸エチル(テトラエトキシシラン)70gを採り、反応溶剤としてトルエン/メタノール=60/40の混合溶媒500mlを加える。加水分解触媒として塩酸を触媒量と3.5倍モルの水64mlを加えて常温下に30分間攪拌反応せしめる。ガスクロマトグラフィー(GC)にて正珪酸エチルのピークの消失を確認する。チッソ社製S520(3−グリシドキシプロピルメチルジメトキシシラン)の148gと縮合触媒としてジブチル錫ジラウレートの0.05gを添加し、常温にて攪拌下に3〜5時間加水分解縮合反応させる。GCにてS520及びこれのオリゴマーピーク消失を確認して反応終了とする。ウォーターバスにて加温し強攪拌下でメタノール及び共沸溶剤を留去する。残留液を300mlフラスコに移し、オイルバスにて加温し強攪拌下で残留トルエン及び塩酸を含む水を留去せしめる。こうして得られた油状オルガノポリシロキサンは119gで理論収率の98%、無色微かに甘い香りのする透明粘性液体、オキシラン酸素含有8.0%、C43.7%、H7.9%であった。実験式C 14 29.4 6.7 Si に対する計算値であるオキシラン酸素8.3%、C43.8%,H8.0%、O26.5%、Si21.9%によく一致した。粘度は7,800センチポイズ(25℃)であった。IRチャート及びNMRチャートを図1、図2に示した。なおNMRで1.96ppmのシグナルがOHに基づく事の証明は図3に示した重水素置換により確認した。肉眼観察による溶け易さの判定結果は、トルエン、ヘキサン、アセトンに易溶、メタノール、酢酸エチル、メチルエチルケトン、クロロホルムに溶解、エタノールに微溶(微白濁)、イソプロパノールに難溶(白濁)、水に不溶であった。前記、3450cm-1付近の吸収ピークと2940cm-1付近の吸収ピークとの吸光度(logI0 /I)比は繰り返し実験でそれぞれ0.70、0.82であった。構造式下記〔化7〕とシグナルの関係は表1の如くである。
【0012】
【化7】
Figure 0003713719
【0013】
【表1】
Figure 0003713719
【0014】
実施例1と同様な製造方法でS520/正珪酸エチルのモル比を変えて得た上記化7の構造式を有するポリマーの仕込モル比と粘度の関係を図4に示した。図4より明かな様に三次元構造性モノマー成分が多いポリマー程粘度が急速に高まる結果である。極めて理論に従った結果である。
【0015】
実施例2
実施例1と同じS520/正珪酸エチルのモル比で一括仕込(一段法)と本発明(二段法)比較の為の加水分解縮合反応をさせた。各シラン成分の測定はガスクロマトグラフィー(カラム:シリコンSE30)で反応追試の形で実施した。比較法(一段法)S520/正珪酸エチルのモル比=2/1で一括仕込でシラン総モルの3.5倍量の0.1規定塩酸水(加水触媒)及び触媒量の有機錫化合物を添加して常温にて加水分解縮合反応させた。反応スタート後の経過時間と各成分のパーセント測定結果を表2にまとめた。なおS520−1MはS520のモノメトキシモノシラノール体であり、S520−0MはS520のジシラノール体である。
【0016】
【表2】
Figure 0003713719
【0017】
本法(二段法)S520/正珪酸エチルのモル比=2/1でまづ正珪酸エチルのみをシラン総モルの3.5倍量の0.1規定塩酸水(加水触媒)で常温にて15分間加水分解反応させる。その後所定量のS520と触媒量の有機錫縮合触媒を添加して加水分解縮合反応させた。表3にS520添加後の経過時間と各成分のパーセント測定結果をまとめた。
【0018】
【表3】
Figure 0003713719
【0019】
表2と表3の結果から明かの如く、従来法である一段法では正珪酸エチルがほとんど加水分解しなくなる現象が生じる。この原因はS520の加水縮合を促進する為の有機錫触媒添加と関連しているが、無縮合触媒下での一段反応では正珪酸エチルの加水に5日、S520は20日でも完全に加水縮合しない大きな遅延を生じて実用上問題がある。
【0020】
実施例3
3−グリシドキシプロピルメチルポリシロキサン、シラノール基含有3−メタクリロキシプロピルポリシロキサン共重合オイルの合成S520/S710=2/1(モル)
1Lの三口フラスコにチッソ(株)社製のS710(3−メタクリロキシプロピルトリメトキシシラン)の62gを採り、反応溶剤としてトルエン/メタノール=60/40の混合溶媒500mlを加える。加水分解触媒として塩酸を触媒量と3.5倍モルの水48mlを加えて常温下に30分間攪拌反応せしめる。ガスクロマトグラフィー(GC)にてS710のピークの消失を確認する。チッソ社製S520の110gと縮合触媒としてジブチル錫ジラウレートの0.05gを添加し、常温にて攪拌下に3〜5時間加水分解縮合反応させる。GCにてS520及びこれのオリゴマーピーク消失を確認して反応終了とする。ウォオーターバスにて加温し強攪拌下でメタノール及び共沸溶剤を留去する。残留液を300mlフラスコに移し、オイルバスにて加温し強攪拌下で残留トルエン及び塩酸を含む水を留去せしめる。こうして得られた油状オルガノポリシロキサンは123gで理論収率の98%、無色無色透明粘性液体である。粘度は250センチポイズ(25℃)であった。IRチャート及びNMRチャートを図5、図6に示した。なおNMRで1.93ppmのシグナルがOHに基づく成分を含む事の証明は図7に示した重水素置換により確認した。IR及びNMRの結果解析より得られた油状オルガノポリシロキサンの示性式は(C 14 Si) ・(C 11.8 3.9 Si) である。肉眼観察による溶け易さの判定結果は、トルエンに易溶、アセトン、メタノール、酢酸エチル、メチルエチルケトン、クロロホルム、エタノール、イソプロパノールに溶解、但しアルコールには溶解が若干遅い、n−ヘキサンに難溶、水に不溶であった。前記、3450cm-1付近の吸収ピークと1720cm-1付近の吸収ピークとの吸光度(logI0 /I)比は0.25であった。構造式は下記〔化8〕の如くでシグナルの関係は表4に示した。
【0021】
【化8】
Figure 0003713719
【0022】
【表4】
Figure 0003713719
【0023】
実施例3と同様な製造方法でS520/S710のモル比を変えて得た上図の構造式を有するポリマーの仕込モル比と粘度の関係を図8に示した。図8より明かな様に三次元構造性モノマー成分が多いポリマー程粘度が急速に高まる結果である。極めて理論に従った結果である。
【0024】
比較例1
一段法による3−グリシドキシプロピルメチルポリシロキサン、シラノール基含有3−メタクリロキシプロピルポリシロキサン共重合オイルの合成実施例3ではS520/S710モル比=8/1〜1/8の範囲で2段法での製造であるが、本比較例ではS520とS710を一括仕込して触媒量の塩酸とジブチル錫ジラウレートを添加してメタノール/トルエン混合溶剤中にて、シラン総モルの3.5倍量の水を加えて加水分解縮合反応せしめた。単離したオルガノポリシロキサンオイルの粘度と仕込シランモル比率の関係を図9に示した。図9で明かの如くS520/S710=8/1〜1/8の範囲で粘度変化は200〜1700センチポイズ(25℃)と僅かであり、本発明による2段法(図8)と製造法の違いがポリマー構造に大きく影響している事を表している。すなわち3次元構造成分であるS710とリニアー成分であるS520の共加水縮合ではS710成分比が高まるにつれて増粘(架橋成分の増大)している事が理解される。一段法では加水分解速度の違い等からブロック状ポリマー同志の結合生成が少ない結果を意味しているものと考えられる。
【図面の簡単な説明】
図1〜9は、本発明の実施例の説明図である。
【図1】IRチャートを示す。
【図2】NMRチャートを示す。
【図3】NMRチャートを示す。
【図4】ポリマーの仕込モル比と粘度の関係を示す。
【図5】IRチャートを示す。
【図6】NMRチャートを示す。
【図7】NMRチャートを示す。
【図8】ポリマーの仕込モル比と粘度の関係を示す。
【図9】製品粘度と仕込シランモル比の関係を示す。[0001]
[Industrial application fields]
The present invention relates to a novel organopolysiloxane and a method for producing the same.
[0002]
[Prior art and its problems]
Conventionally, co-hydrolysis of silane has been performed by simultaneously charging two or more silanes. The conventional method of using hydrolyzate of silane is to stop the hydrolysis to a low degree in a solvent and use it as a primer to the extent that an alkoxy group remains, or to separate and use it as an oligomer stable at room temperature. It was customary. However, a three-dimensional structural polymer having a silanol group and an organic functional group that are stable at room temperature has not been known, and there is no report of isolating this.
[0003]
[Problems to be solved by the invention]
The present invention provides a novel organopolysiloxane having a silanol group and an organic functional group which are stable at room temperature, a polymer skeleton structure in a block shape, and three-dimensional and linear properties, and a method for producing the same. The terminal group of this polymer is silanol. The inventor has conducted intensive research to find a polysiloxane having the structure described above and a method for producing the polysiloxane. As a result, it was found that the compound and its production method can be effectively achieved by the two-stage hydrolysis condensation reaction described later, and the present invention was completed based on this finding. In the production method by the two-stage hydrolytic condensation reaction according to the present invention, the organopolysiloxane produced in the solvent by this reaction is isolated from the solvent and used as an oil or resinous material that can be handled stably at room temperature for various uses. It is an object. Therefore, as shown in the examples described later, when silanes having significantly different hydrolysis rates are produced by batch preparation, the three-dimensional structural silane component is difficult to block and the linear component is shorter than the linear component. The condition is that only a polymer having a low viscosity is obtained as a structured polymer. Therefore Oh Le Ganoderma polysiloxane not according to the manufacturing method when the object of the present invention can not be obtained.
[0004]
[Means for Solving the Problems]
The present invention has the following configurations (1) to (5) .
(1) Cohydrolysis of a tetraalkoxysilane (A) represented by the general formula Si (OR) 4 and a silane compound (C) represented by the general formula R 2 R 3 Si (OR) 2 in the presence of an acid catalyst. In carrying out the condensation reaction, first, (A) is subjected to a hydrolytic condensation reaction in the presence of an acid catalyst, 3 to 4 times the total moles of silane , and a hydrophilic solvent, and then (C) and tertiary A method for producing an organopolysiloxane represented by the formula [Chemical Formula 4], wherein a condensation catalyst necessary for copolymerizing a linear silane compound in a block form is added to an intrinsic polymer and subjected to a cohydrolysis condensation reaction .
[Formula 4]
Figure 0003713719
(Wherein R 2 and R 3 are each an alkyl group having 1 to 8 carbon atoms, a phenyl group , an alkenyl group having 2 to 8 carbon atoms , a 3-glycidoxypropyl group, or a 3-chloropropyl group; Is an alkyl group having 1 to 8 carbon atoms, m and n are each a positive integer of 3 or less, and x is a number of 1.0 or less not including 0 )
(2) A trialkoxysilane compound (B) represented by the general formula R 1 Si (OR) 3 and a silane compound (C) represented by the general formula R 2 R 3 Si (OR) 2 in the presence of an acid catalyst. In carrying out the cohydrolysis condensation reaction, first, (B) is subjected to a hydrolysis condensation reaction in the presence of an acid catalyst, 3 to 4 times the total moles of silane water, and a hydrophilic solvent, and then (C) in the reaction mixture. And an organopolysiloxane represented by the formula [Chemical Formula 5], wherein a condensation catalyst necessary for copolymerizing a linear silane compound in a block form is added to a three-dimensional polymer and subjected to a cohydrolysis condensation reaction Manufacturing method.
[Chemical formula 5]
Figure 0003713719
(Wherein, R 1, R 2, R 3 are each an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, 3-glycidoxypropyl group, 3-methacryloxy propyl, 3-mercapto A propyl group, a 3-chloropropyl group, an epoxycyclohexylethyl group, or a phenyl group, R is an alkyl group having 1 to 8 carbon atoms, m and l are each a positive integer of 3 or less, and y does not include 0. 1.0 or less )
(3) Tetraalkoxysilane (A) is tetramethoxysilane or tetraethoxysilane or a hydrolyzate thereof, methyl silicate 59 (an oligomer having a SiO 2 content of about 59%) or ethyl silicate 40 (a SiO 2 content of about a process according to (1) is either 40% of the oligomers).
(4) trialkoxysilane compound (B) is vinyltrialkoxysilane , 3-glycidoxypropyltrialkoxysilane , 3-methacryloxypropyltrialkoxysilane , 3-mercaptopropyltrialkoxysilane , epoxycyclohexylethyltrialkoxy The production method according to the above (2), which is any one of silane , 3-chloropropyltrialkoxysilane , and phenyltrialkoxysilane (wherein alkoxy is methoxy or ethoxy ) .
(5) The silane compound (C) is 3-glycidoxypropylalkyldialkoxysilane , 3-chloropropylalkyldialkoxysilane , dialkyldialkoxysilane , phenylalkyldialkoxysilane (wherein alkyl is methyl or ethyl) The method according to any one of (1) to (4), wherein alkoxy is any one of methoxy and ethoxy .
[0005]
The configuration and effects of the present invention will be described in detail below. The present invention have the general formula Si (OR) trialkoxysilane compound represented tetraalkoxysilane represented by 4 (A) and the general formula R 1 Si (OR) 3 ( B) and the general formula R 2 R 3 Si (OR ) from among the silane compounds represented by 2 (C) and (a) (C), when is a cohydrolysis condensation reaction in the presence of an acid catalyst a catalytic amount in two different combinations of (B) (C), and The three-dimensional structural alkoxysilane (A) or (B) is hydrolyzed independently to form an oligomer block. Thereafter, the present invention relates to a method for producing a block copolymer by two-stage hydrolytic condensation in which the linear-forming dialkoxysilane as the component (C) is hydrolyzed and co-condensed . R 1 And R 2 When is a silylpropyl group having an organic functional group, for example, a trialkoxysilane having a 3-methacryloxypropyl group or a lower alkyl dialkoxysilane generally has a slower hydrolysis rate than tetraalkoxysilane, so a catalyst needs to be added. There is. As the catalyst species, an organic tin compound or the like is preferably used. As the reaction solvent , a hydrophilic solvent or a mixed solvent containing a hydrophilic solvent is preferably used. The amount of water required for hydrolysis is preferably 3 to 4 moles of the total moles of silane. Where R 1 And R 2 3-glycidoxypropyl group or a saturated hydrocarbon group of the silane coupling agent and C 1 -C 8 containing organic functional group such as a vinyl group, a phenyl group or an alkenyl group is indicated. Alkoxy groups OR are those prepared from saturated alcohols of C 1 ~C 8, C 1 ~C 3 is preferably used in consideration of the reaction rate. The cohydrolyzed condensation compound produced by the present invention is oily or resinous at room temperature represented by [Chemical Formula 4] and [Chemical Formula 5] , and the produced silanol groups are each x = 1.0 or less, y = It is an organopolysiloxane that is stable at room temperature and is 1.0 or less or x + y = 2.0 or less. When x and x + y are more than this, the produced polymer contains a gelled product or is a gel.
[0006]
Next, although it is an acid as a hydrolysis catalyst, there should just be a catalyst amount of acid and acid concentration is not prescribed | regulated. For example, there is a method in which diluted acid is added by a specified amount of water. As the type of acid, either an organic acid such as acetic acid, an inorganic acid such as hydrochloric acid or sulfuric acid, or a strongly acidic ion exchange resin can be used, but an inorganic acid having a high hydrolysis rate is preferred.
[0007]
Any of a wide variety of substances that act as silanol condensation catalysts can be used in the present invention. Such materials include, for example, organotin compounds such as dibutyltin dilaurate, stannous acetate, stannous octoate, or metal carboxy such as zinc naphthenate, zinc octoate, 2-ethylhexanoic acid and cobalt naphthenate. The rate, titanium ester, and chelate are mentioned. Preferred compounds are organotin compounds, especially tin carboxylates such as dibutyltin dilaurate, dibutyltin diacetate.
The amount of the condensation catalyst is not particularly limited as long as it is a catalyst amount, but is generally 0.05% or less of the total amount of silane.
[0008]
The amount of water for allowing sufficient hydrolysis to be added is 3 to 4 times mol, preferably 3.5 times mol or more based on the total mol of silane . The reaction solvent may be a hydrophilic solvent alone, but a mixed solvent of a hydrophilic solvent or a mixed solvent of a lipophilic and a hydrophilic solvent can also be applied. For example, a hydrophilic solvent such as methanol, ethanol, acetone, tertiary butanol and diacetone alcohol, or a mixed solvent such as xylene / alcohol and toluene / alcohol can be used.
[0009]
The solubility of the organopolysiloxane oil obtained in the present invention is measured by taking 100 mg of the oily organopolysiloxane sample of the present invention in a glass sample tube and adding 1 ml of each solvent to this to determine the ease of dissolution by visual observation. It was done by the method. The results were displayed in five levels: readily soluble, soluble, slightly soluble (slightly cloudy), hardly soluble (cloudy), and insoluble. The organopolysiloxane of the present invention is generally in the unit, such as the following (a) ~ (d) can ensure that is represented by the above general formula.
(A) the characteristic absorption of the Si-OH in the vicinity of the analysis 3450 cm -1 in the infrared absorption spectrum (IR), several of absorption based on the CH bond in the vicinity of 3000cm -1 ~2900cm -1, 1100cm -1 ~1000cm -1 Broad absorption of nearby Si—O—Si appears. The absorbance (log I 0 / I) ratio between the absorption peak near 3450 cm −1 and the absorption peak near 2940 cm −1 is an indicator of the relative value of the silanol group content. That is, if this value is 1.0 or less, the oil has a silanol group that is stable at room temperature. When this value is 1.0 or more, it is an organopolysiloxane polymer that exhibits a resinous solid when heated to several tens of degrees Celsius. On the one hand, a polymer having a methacryloxy group absorption of several based on CH bond at around 2900cm -1, -C = CCOO- absorption of 1720 cm -1, C = C absorption in the vicinity of 1640cm -1, 1100cm -1 ~1000cm around -1 Broad absorption of Si-O-Si appears. The absorbance (log I 0 / I) ratio between the absorption peak near 3450 cm −1 and the absorption peak near 1720 cm −1 is an indicator of the relative value of the silanol group content. That is, if this value is 1.0 or less, the oil has a silanol group that is stable at room temperature. When this value is 1.0 or more, it is an organopolysiloxane polymer that exhibits a resinous solid when heated to several tens of degrees Celsius.
(B) 1 H-nuclear magnetic resonance spectrum ( 1 H-NMR)
The number of (Si) -OH can be determined from the number of hydrogen atoms in the organopolysiloxane of the present invention, the bonding mode, confirmation of (Si) -OH by deuterium substitution, and the ratio of hydrogen atoms.
(C) Quantification of the amount of epoxy oxygen The oxirane oxygen is quantified by the HBr-acetic acid titration method.
(D) Carbon, hydrogen (CH) elemental analysis The carbon and hydrogen content can be known by microelemental analysis. The viscosity data was measured at a constant temperature of 25 ° C. using a rotational viscometer “VISCONIC” manufactured by Tokyo Keiki Co., Ltd.
[0010]
【The invention's effect】
Since the block copolymer can be produced by the production method by the two-stage hydrolytic condensation of the present invention, the produced organopolysiloxane has a silanol group which is stable at room temperature in the polymer as proved in Examples described later. In addition, since it has 1 to 2 organic functional groups derived from the alkoxy raw material used, it can be said to be a multi-functional reactive organopolysiloxane . Moreover, the terminal group of this polymer is silanol. The organopolysiloxane produced by the production method of the present invention is not soluble or compatible with most organic polysiloxanes in organic solvents or organic resins, whereas the organopolysiloxane of the present invention is soluble in many kinds of organic solvents. . It also has affinity for many types of organic resins. Based on these characteristics, it can be used as a modified silicone oil, as well as other release agents, release paper silicones, personal care silicones, paint additives, silicone adhesives, adhesive sealants, modified silicone silanes, and a wide range of other applications. it is useful. In addition, polymer alloys and blends composed of two or more types of polymers are expected to act on the interfaces between different resins to facilitate kneading and coupling between polymers. In order to describe the present invention more specifically, examples will be described below, but the present invention is not limited to these examples.
[0011]
Example 1
Synthesis of Silanol Group-Containing Polysiloxane-3-Glycidoxypropylmethyl Polysiloxane Copolymer Oil S520 / Ethyl Normal Silicate = 2/1 (Mole)
70 g of normal ethyl silicate (tetraethoxysilane) manufactured by Tama Chemical Co., Ltd. is taken into a 1 L three-necked flask, and 500 ml of a mixed solvent of toluene / methanol = 60/40 is added as a reaction solvent. As a hydrolysis catalyst, hydrochloric acid is added in a catalytic amount and 64 ml of 3.5 times moles of water, and the mixture is stirred at room temperature for 30 minutes. The disappearance of the peak of normal ethyl silicate is confirmed by gas chromatography (GC). 148 g of S520 (3-glycidoxypropylmethyldimethoxysilane) manufactured by Chisso Corporation and 0.05 g of dibutyltin dilaurate as a condensation catalyst are added and subjected to hydrolysis and condensation reaction at room temperature with stirring for 3 to 5 hours. After confirming S520 and disappearance of the oligomer peak thereof by GC, the reaction is completed. Heat in a water bath and distill off methanol and azeotropic solvent with vigorous stirring. The residual liquid is transferred to a 300 ml flask, heated in an oil bath, and water containing residual toluene and hydrochloric acid is distilled off under strong stirring. The oily organopolysiloxane thus obtained was 119 g and had a theoretical yield of 98%, a transparent viscous liquid having a colorless and slightly sweet scent, oxirane oxygen content of 8.0%, C43.7% and H7.9%. The calculated values for the empirical formula C 14 H 29.4 O 6.7 Si 3 were in good agreement with oxirane oxygen 8.3%, C 43.8%, H 8.0%, O 26.5% and Si 21.9%. The viscosity was 7,800 centipoise (25 ° C.). The IR chart and NMR chart are shown in FIGS. It was confirmed by NMR that the 1.96 ppm signal was based on OH by deuterium substitution shown in FIG. The results of easiness of dissolution by visual observation are as follows. Easily soluble in toluene, hexane and acetone, dissolved in methanol, ethyl acetate, methyl ethyl ketone and chloroform, slightly soluble in ethanol (slightly cloudy), hardly soluble in isopropanol (cloudy), in water It was insoluble. The absorbance of the absorption peak and 2940 cm -1 vicinity of the absorption peak near 3450cm -1 (logI 0 / I) ratio was respectively repeated experiments 0.70,0.82. Table 1 shows the relationship between the following structural formula [Chemical Formula 7] and signals.
[0012]
[Chemical 7]
Figure 0003713719
[0013]
[Table 1]
Figure 0003713719
[0014]
FIG. 4 shows the relationship between the charged molar ratio and the viscosity of the polymer having the structural formula of Chemical Formula 7 obtained by changing the molar ratio of S520 / normal ethyl silicate by the same production method as in Example 1. As is clear from FIG. 4, the viscosity increases more rapidly as the polymer has more three-dimensional structural monomer components. This is a very theoretical result.
[0015]
Example 2
In the same molar ratio of S520 / normal ethyl silicate as in Example 1, the batch preparation (one-stage method) and the hydrolysis-condensation reaction for comparison of the present invention (two-stage method) were performed. Each silane component was measured by gas chromatography (column: silicon SE30) in the form of a reaction follow-up. Comparative method (one-step method) S520 / normal ethyl silicate molar ratio = 2/1 and charged in a batch with 0.1N hydrochloric acid water (hydrocatalyst) 3.5 times the total silane mole and a catalytic amount of organotin compound It was added and subjected to hydrolysis condensation reaction at room temperature. The elapsed time after the start of the reaction and the percentage measurement results of each component are summarized in Table 2. S520-1M is a monomethoxymonosilanol body of S520, and S520-0M is a disilanol body of S520.
[0016]
[Table 2]
Figure 0003713719
[0017]
This method (two-step method) S520 / normal ethyl silicate molar ratio = 2/1. First, only normal ethyl silicate was brought to room temperature with 0.1N hydrochloric acid (hydrocatalyst) 3.5 times the total amount of silane. For 15 minutes. Thereafter, a predetermined amount of S520 and a catalytic amount of an organic tin condensation catalyst were added to cause a hydrolysis condensation reaction. Table 3 summarizes the elapsed time after the addition of S520 and the percentage measurement results of each component.
[0018]
[Table 3]
Figure 0003713719
[0019]
As is clear from the results in Tables 2 and 3, the conventional one-stage method causes a phenomenon in which normal ethyl silicate hardly hydrolyzes. This cause is related to the addition of organotin catalyst to promote the hydrolysis of S520, but in a one-step reaction under a non-condensation catalyst, 5 days for the addition of normal ethyl silicate and S520 for the complete hydrolysis even for 20 days. There is a practical problem with a large delay.
[0020]
Example 3
Synthesis of 3-glycidoxypropylmethylpolysiloxane and silanol group-containing 3-methacryloxypropylpolysiloxane copolymer oil S520 / S710 = 2/1 (mol)
62 g of S710 (3-methacryloxypropyltrimethoxysilane) manufactured by Chisso Corporation is taken into a 1 L three-necked flask, and 500 ml of a mixed solvent of toluene / methanol = 60/40 is added as a reaction solvent. As a hydrolysis catalyst, hydrochloric acid is added in a catalytic amount and 48 ml of 3.5 times moles of water, and the mixture is stirred at room temperature for 30 minutes. The disappearance of the peak of S710 is confirmed by gas chromatography (GC). 110 g of S520 manufactured by Chisso Corporation and 0.05 g of dibutyltin dilaurate as a condensation catalyst are added and subjected to hydrolysis and condensation reaction at room temperature with stirring for 3 to 5 hours. After confirming S520 and disappearance of the oligomer peak thereof by GC, the reaction is completed. Heat in a water bath and distill off methanol and azeotropic solvent with vigorous stirring. The residual liquid is transferred to a 300 ml flask, heated in an oil bath, and water containing residual toluene and hydrochloric acid is distilled off under strong stirring. The oily organopolysiloxane thus obtained was 123 g, 98% of the theoretical yield, and was a colorless, colorless and transparent viscous liquid. The viscosity was 250 centipoise (25 ° C.). IR chart and NMR chart are shown in FIGS. It was confirmed by NMR that the 1.93 ppm signal contained a component based on OH by deuterium substitution shown in FIG. The characteristic formula of the oily organopolysiloxane obtained from IR and NMR analysis is (C 7 H 14 O 3 Si) 2 · (C 7 H 11.8 O 3.9 Si) 1 It is. The results of the determination of easiness of dissolution by visual observation are as follows: Easily soluble in toluene, dissolved in acetone, methanol, ethyl acetate, methyl ethyl ketone, chloroform, ethanol, isopropanol, but slightly soluble in alcohol, slightly soluble in n-hexane, water It was insoluble. The absorbance (log I 0 / I) ratio between the absorption peak near 3450 cm −1 and the absorption peak near 1720 cm −1 was 0.25. The structural formula is as shown in [Chemical Formula 8] below, and the signal relationship is shown in Table 4.
[0021]
[Chemical 8]
Figure 0003713719
[0022]
[Table 4]
Figure 0003713719
[0023]
FIG. 8 shows the relationship between the charged molar ratio of the polymer having the above structural formula obtained by changing the molar ratio of S520 / S710 by the same production method as in Example 3 and the viscosity. As is clear from FIG. 8, the viscosity increases more rapidly as the polymer has more three-dimensional structural monomer components. This is a very theoretical result.
[0024]
Comparative Example 1
Synthesis of 3-glycidoxypropylmethylpolysiloxane and silanol group-containing 3-methacryloxypropylpolysiloxane copolymer oil by one-stage method In Example 3, S520 / S710 molar ratio = two-stage in the range of 8/1 to 1/8 In this comparative example, S520 and S710 are charged together, a catalytic amount of hydrochloric acid and dibutyltin dilaurate are added, and the amount is 3.5 times the total mole of silane in a methanol / toluene mixed solvent. The water was added to cause hydrolysis and condensation reaction. The relationship between the viscosity of the isolated organopolysiloxane oil and the charged silane molar ratio is shown in FIG. As apparent from FIG. 9, the viscosity change is as small as 200 to 1700 centipoise (25 ° C.) in the range of S520 / S710 = 8/1 to 1/8. This shows that the difference greatly affects the polymer structure. That is, it is understood that in the cohydrocondensation of S710 as a three-dimensional structural component and S520 as a linear component, the viscosity increases (increases in crosslinking component) as the S710 component ratio increases. In the one-stage method, it is considered that the result is that there is little bond formation between the block polymers due to differences in hydrolysis rate and the like.
[Brief description of the drawings]
1-9 is explanatory drawing of the Example of this invention.
FIG. 1 shows an IR chart.
FIG. 2 shows an NMR chart.
FIG. 3 shows an NMR chart.
FIG. 4 shows the relationship between the charged molar ratio of polymer and viscosity.
FIG. 5 shows an IR chart.
FIG. 6 shows an NMR chart.
FIG. 7 shows an NMR chart.
FIG. 8 shows the relationship between the charged molar ratio of polymer and the viscosity.
FIG. 9 shows the relationship between product viscosity and charged silane molar ratio.

Claims (5)

一般式Si(OR)4 で示されるテトラアルコキシシラン(A)と一般式R23 Si(OR)2 で示されるシラン化合物(C)とを酸触媒の存在下で共加水分解縮合反応させるに際して、最初に(A)を酸触媒、シラン総モルの3〜4倍の水、親水性溶媒の存在下に加水分解縮合反応させ、つづいて反応混合物中に(C)と、三次元性ポリマーにリニアー性シラン化合物をブロック状に共重合させるために必要な縮合触媒を添加して共加水分解縮合反応させることを特徴とする式〔化1〕で示されるオルガノポリシロキサンの製造法。
Figure 0003713719
(ここで、R2 ,R3 は、それぞれ炭素数1〜8のアルキル基、フェニル基炭素数2〜8のアルケニル基3−グリシドキシプロピル基または3−クロロプロピル基であり、Rは炭素数1〜8のアルキル基であり、m,nはそれぞれ3以下の正の整数、xは0を含まない1.0以下の数である
A tetraalkoxysilane (A) represented by the general formula Si (OR) 4 and a silane compound (C) represented by the general formula R 2 R 3 Si (OR) 2 are subjected to a cohydrolytic condensation reaction in the presence of an acid catalyst. In this case, first, (A) is subjected to a hydrolytic condensation reaction in the presence of an acid catalyst, 3 to 4 times the total moles of silane , and a hydrophilic solvent, followed by (C) and a three-dimensional polymer in the reaction mixture. A process for producing an organopolysiloxane represented by the formula [Chemical Formula 1], wherein a co-hydrolysis condensation reaction is carried out by adding a condensation catalyst necessary for copolymerizing a linear silane compound in a block form .
Figure 0003713719
(Wherein R 2 and R 3 are each an alkyl group having 1 to 8 carbon atoms, a phenyl group , an alkenyl group having 2 to 8 carbon atoms , a 3-glycidoxypropyl group, or a 3-chloropropyl group; Is an alkyl group having 1 to 8 carbon atoms, m and n are each a positive integer of 3 or less, and x is a number of 1.0 or less not including 0 )
一般式R1 Si(OR)3 で示されるトリアルコキシシラン化合物(B)と一般式R23 Si(OR)2 で示されるシラン化合物(C)とを酸触媒の存在下で共加水分解縮合反応させるに際して、最初に(B)を酸触媒、シラン総モルの3〜4倍の水、親水性溶媒の存在下に加水分解縮合反応させ、つづいて反応混合物中に(C)と、三次元性ポリマーにリニアー性シラン化合物をブロック状に共重合させるために必要な縮合触媒を添加して共加水分解縮合反応させることを特徴とする式〔化2〕で示されるオルガノポリシロキサンの製造法。
Figure 0003713719
(ここで、R1 ,R2 ,R3 は、それぞれ炭素数1〜8のアルキル基炭素数2〜8のアルケニル基3−グリシドキシプロピル基、3−メタクリロキシプロピル基、3−メルカプトプロピル基、3−クロロプロピル基、エポキシシクロヘキシルエチル基またはフェニル基であり、Rは炭素数1〜8のアルキル基であり、m,lはそれぞれ3以下の正の整数、yは0を含まない1.0以下の数である
Cohydrolysis general formula R 1 Si (OR) trialkoxysilane compound represented by 3 (B) and the general formula R 2 R 3 Si (OR) a silane compound represented by 2 and (C) in the presence of an acid catalyst In the condensation reaction, first, (B) is subjected to a hydrolytic condensation reaction in the presence of an acid catalyst, 3 to 4 times the total moles of silane , and a hydrophilic solvent, followed by (C) and tertiary reaction in the reaction mixture. A method for producing an organopolysiloxane represented by the formula [Chemical Formula 2], comprising adding a condensation catalyst necessary for copolymerizing a linear silane compound into a block form to an intrinsic polymer and subjecting it to a cohydrolysis condensation reaction .
Figure 0003713719
(Wherein, R 1, R 2, R 3 are each an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, 3-glycidoxypropyl group, 3-methacryloxy propyl, 3-mercapto A propyl group, a 3-chloropropyl group, an epoxycyclohexylethyl group, or a phenyl group, R is an alkyl group having 1 to 8 carbon atoms, m and l are each a positive integer of 3 or less, and y does not include 0. 1.0 or less )
テトラアルコキシシラン(A)が、テトラメトキシシランもしくはテトラエトキシシランまたはこれらの加水分解物であるメチルシリケート59(SiO2 含有率約59%のオリゴマー)もしくはエチルシリケート40(SiO2含有率約40%のオリゴマー)のいずれかである請求項1に記載の製造法。 Tetraalkoxysilane (A) is tetramethoxysilane or tetraethoxysilane or a hydrolyzate thereof methyl silicate 59 (an oligomer having a SiO 2 content of about 59%) or ethyl silicate 40 (a SiO 2 content of about 40%). The production method according to claim 1, which is any one of oligomers) . トリアルコキシシラン化合物(B)が、ビニルトリアルコキシシラン3−グリシドキシプロピルトリアルコキシシラン3−メタクリロキシプロピルトリアルコキシシラン3−メルカプトプロピルトリアルコキシシシランエポキシシクロヘキシルエチルトリアルコキシシラン3−クロロプロピルトリアルコキシシランフェニルトリアルコキシシラン(ここでアルコキシはメトキシまたはエトキシである)のいずれかである請求項2に記載の製造法。 Trialkoxysilane compound (B) is vinyltrialkoxysilane , 3-glycidoxypropyltrialkoxysilane , 3-methacryloxypropyltrialkoxysilane , 3-mercaptopropyltrialkoxysilane , epoxycyclohexylethyltrialkoxysilane , 3 - process according to claim 2 is either chloropropyl trialkoxysilane, phenyl trialkoxysilane (wherein the alkoxy is methoxy or ethoxy). シラン化合物(C)が、3−グリシドキシプロピルアルキルジアルコキシシラン3−クロロプロピルアルキルジアルコキシシランジアルキルジアルコキシシランフェニルアルキルジアルコキシシラン(ここでアルキルはメチルまたはエチルであり、アルコキシはメトキシまたはエトキシである)のいずれかである請求項1乃至4のいずれか1項に記載の製造法。 Silane compound (C) is 3-glycidoxypropylalkyldialkoxysilane , 3-chloropropylalkyldialkoxysilane , dialkyldialkoxysilane , phenylalkyldialkoxysilane (wherein alkyl is methyl or ethyl, alkoxy is The method according to any one of claims 1 to 4, which is any one of methoxy and ethoxy .
JP34047493A 1993-12-08 1993-12-08 Method for producing polysiloxane Expired - Fee Related JP3713719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34047493A JP3713719B2 (en) 1993-12-08 1993-12-08 Method for producing polysiloxane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34047493A JP3713719B2 (en) 1993-12-08 1993-12-08 Method for producing polysiloxane

Publications (2)

Publication Number Publication Date
JPH07157562A JPH07157562A (en) 1995-06-20
JP3713719B2 true JP3713719B2 (en) 2005-11-09

Family

ID=18337313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34047493A Expired - Fee Related JP3713719B2 (en) 1993-12-08 1993-12-08 Method for producing polysiloxane

Country Status (1)

Country Link
JP (1) JP3713719B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1837902B1 (en) * 2000-08-21 2017-05-24 Dow Global Technologies LLC Use of organosilicate resins as hardmasks for organic polymer dielectrics in fabrication of microelectronic devices
JP4781779B2 (en) * 2005-10-27 2011-09-28 信越化学工業株式会社 Method for producing high molecular weight organopolysiloxane, composition containing high molecular weight organopolysiloxane, and optical semiconductor device sealed with cured product thereof
JP5171063B2 (en) * 2007-02-23 2013-03-27 東レ・ダウコーニング株式会社 Method for producing organopolysiloxane resin and silicone flame retardant comprising the organopolysiloxane resin
JP5407615B2 (en) * 2009-07-14 2014-02-05 Jsr株式会社 Organopolysiloxane, curable composition containing the same, and method for producing the same
JP5861307B2 (en) * 2011-08-05 2016-02-16 ナガセケムテックス株式会社 Hard coat composition
US9139737B1 (en) 2011-11-21 2015-09-22 Nanophase Technologies Corporation Multifunctional coated powders and high solids dispersions
US10555892B1 (en) 2017-03-09 2020-02-11 Nanophase Technologies Corporation Functionalized siloxane or polysiloxane coated particles with enhanced light filtering properties
US10590278B2 (en) 2017-04-10 2020-03-17 Nanophase Technologies Corporation Coated powders having high photostability

Also Published As

Publication number Publication date
JPH07157562A (en) 1995-06-20

Similar Documents

Publication Publication Date Title
US7319129B2 (en) Silsesquioxane derivative and process for producing the same
US5548050A (en) Method for the preparation of organic solvent-soluble polytitanosiloxanes
JP2511348B2 (en) Organopolysiloxane and method for producing the same
JP4707791B2 (en) Water-based composition of aminofunctional silicon compound, process for its preparation and use thereof
US20060089504A1 (en) Silsesquioxane derivative having functional group
EP0195936A1 (en) Method for producing organosilicon polymers and the polymers prepared thereby
US7514519B2 (en) Polymer obtained by using silsesquioxane derivative
US8367792B2 (en) Polysiloxane compound and method of producing the same
JPH07224075A (en) Pure phenylpropylalkylsiloxane
US4160858A (en) Solventless silicone resins
JP3713719B2 (en) Method for producing polysiloxane
JPH0633335B2 (en) Method for producing organopolysiloxane
JP3622218B2 (en) New silicone compounds
JP2544033B2 (en) Method for producing carboxy functional silicone
JP2715652B2 (en) Method for producing hydrogen polysiloxane
JP3622215B2 (en) Novel polysiloxane and its production method
JP3584482B2 (en) New silicone compound and its production method
JP3586879B2 (en) New organopolysiloxane copolymer
JP3844788B2 (en) Organopolysiloxane and its production method
JP3740714B2 (en) Siloxane compound, method for producing the same, and curable composition
TWI468444B (en) An organopolysiloxane compound containing a? -keto ester group
JP3494229B2 (en) New polysiloxane and its production method
JPH0912586A (en) (poly)stannosiloxane and its production
JP3849820B2 (en) Siloxane ultrafine particles
JPH09110887A (en) Siloxane compound and its cured product

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050815

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees