WO2010071168A1 - Carboxylic acid compound and epoxy resin composition containing same - Google Patents

Carboxylic acid compound and epoxy resin composition containing same Download PDF

Info

Publication number
WO2010071168A1
WO2010071168A1 PCT/JP2009/071028 JP2009071028W WO2010071168A1 WO 2010071168 A1 WO2010071168 A1 WO 2010071168A1 JP 2009071028 W JP2009071028 W JP 2009071028W WO 2010071168 A1 WO2010071168 A1 WO 2010071168A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
compound
carboxylic acid
resin composition
anhydride
Prior art date
Application number
PCT/JP2009/071028
Other languages
French (fr)
Japanese (ja)
Inventor
直房 宮川
政隆 中西
智江 佐々木
義浩 川田
健一 窪木
静 青木
瑞観 鈴木
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2010542997A priority Critical patent/JP5580212B2/en
Priority to SG2011043742A priority patent/SG172173A1/en
Priority to CN2009801514654A priority patent/CN102257039B/en
Publication of WO2010071168A1 publication Critical patent/WO2010071168A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4085Curing agents not provided for by the groups C08G59/42 - C08G59/66 silicon containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/423Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof containing an atom other than oxygen belonging to a functional groups to C08G59/42, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to a carboxylic acid compound and a resin composition containing the carboxylic acid compound. More specifically, it has a specific structure, epoxy resin curing agent, paint, adhesive, molded article, optical material, semiconductor, optical semiconductor encapsulant resin, optical semiconductor die bond material resin, polyimide resin, etc.
  • the present invention relates to carboxylic acid compounds useful as raw materials and modifiers, plasticizers, lubricating oil raw materials, pharmaceutical and agrochemical intermediates, coating resin raw materials, toner resins and the like, and epoxy resin compositions containing the same.
  • Epoxy resins can be cured to obtain cured products with excellent adhesion, mechanical properties, water resistance, chemical resistance, heat resistance, electrical properties, etc., so paints, adhesives, composite materials, molding materials It is used in a wide range of fields such as casting materials, various coating materials and resists.
  • curing agent used for an epoxy resin an amine compound, a carboxylic acid compound, a carboxylic acid anhydride, a phenol compound, a thiol compound etc. are mentioned as a general thing, for example.
  • various carboxylic acid compounds and carboxylic acid anhydrides are used for applications such as when the cured product requires high transparency and heat resistance, or when an appropriate pot life is required.
  • Carboxylic acid has a strong intermolecular hydrogen bond and is not only crystallized, but also has a very poor compatibility with other resins, so that its use is avoided.
  • a liquid epoxy resin composition using a bisphenol-type epoxy resin, an alicyclic epoxy resin, etc. as a resin for sealing an optical semiconductor such as an LED (Light Emitting Diode, light-emitting diode) is excellent in mechanical strength and adhesive strength. It was used (refer patent document 1).
  • LEDs have been used in fields that require high brightness, such as automotive headlamps and lighting applications. Accordingly, resins that encapsulate optical semiconductor elements are particularly resistant to UV and heat. It has come to be required.
  • bisphenol-type epoxy resins and alicyclic epoxy resins have sufficient UV resistance and heat resistance as described above, and may not be used in fields where high luminance is required.
  • a silicone resin sealing material using a noncovalent group-containing organopolysiloxane and an organohydrogenpolysiloxane is used (see Patent Document 2).
  • a sealing material using such a silicone resin has excellent UV resistance and heat resistance, it has problems such as low adhesion to the base material and sticking of the sealing surface. It was.
  • a condensate of a silicon compound having an epoxy group and a liquid acid anhydride are used to develop a sealing material that is excellent in UV resistance, heat resistance, and has good adhesion. (See Patent Document 3 and Patent Document 4).
  • Acid anhydrides used in such applications include hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, tetrahydroanhydride because they are colorless and transparent, are liquid at room temperature, and are easy to handle.
  • Carboxylic anhydrides such as phthalic acid, methyltetrahydrophthalic anhydride, norbornane-2,3-dicarboxylic anhydride, methylnorbornane-2,3-dicarboxylic anhydride, and mixtures thereof are used.
  • these carboxylic acid anhydrides are often low molecular weight compounds. Therefore, in the epoxy resin composition using the carboxylic acid anhydride as a curing agent, volatilization during thermal curing becomes a problem.
  • the volatilization of the carboxylic acid anhydride is not only a problem that the epoxy resin composition is poorly cured due to the absence of the required amount of the carboxylic acid anhydride (curing agent) in the curing reaction, but also due to its harmfulness.
  • the impact on the environment is also significant, such as adverse effects on the environment, production line contamination, and air pollution.
  • the curing becomes insufficient, stickiness of the sealing surface due to the remaining unreacted epoxy resin may occur, and the epoxy resin due to carboxylic acid anhydride that volatilizes during curing. Curing of the resin is regarded as a problem from the functional and environmental aspects.
  • the present invention is a carboxylic acid that is liquid at room temperature, has excellent volatility at high temperatures, and has a low volatility during the curing process as a curing agent for epoxy resins, and provides a cured product that is colorless and transparent and has no surface stickiness.
  • the object is to provide a compound.
  • the present inventors have obtained a silicone skeleton obtained by reacting a silicone compound having a specific skeleton with a compound having a carboxylic anhydride group having a specific skeleton.
  • the present invention has been completed by finding that the above-mentioned problems can be solved by using a carboxylic acid compound having the above as a curing agent for an epoxy resin.
  • the compound having one or more carboxylic acid anhydride groups in the molecule is at least one carboxylic acid compound (A) selected from compounds (c) represented by the following formulas (3) to (5):
  • R 1 represents an alkylene group having 1 to 10 carbon atoms which may contain an ether group
  • R 2 represents a methyl group or a phenyl group
  • n represents an average value of 1 to 100).
  • R 1 represents an alkylene group having 1 to 10 carbon atoms which may contain an ether group
  • R 2 represents a methyl group or a phenyl group
  • n represents an average value of 1 to 100).
  • the carboxylic acid compound (A) of the present invention is liquid at room temperature (25 ° C.) and has very little volatility in a temperature range usually employed for curing an epoxy resin. Furthermore, this carboxylic acid compound (A) is used as a raw material for modified or modified raw materials such as epoxy resin curing agents, paints, adhesives, molded products, semiconductors, optical semiconductor encapsulant resins, optical semiconductor die bond material resins, and polyimide resins. It is useful as a quality agent, plasticizer, lubricant oil raw material, pharmaceutical and agrochemical intermediate, paint resin raw material, and toner resin, and in particular, the carboxylic acid compound (A) can be obtained from the ability to cure epoxy resin. Due to the high transparency of the cured product, it is extremely useful as a curing agent for epoxy resins for sealing high-luminance white LEDs and other optical semiconductors.
  • R 1 represents an alkylene group having 1 to 10 carbon atoms which may contain an ether group
  • R 2 represents a methyl group or a phenyl group
  • n represents an average value of 1 to 100
  • R 1 examples include methylene, ethylene, propylene, isopropylene, butylene, isobutylene, pentylene, isopentylene, hexylene, heptylene, octylene and other alkylene groups, and the following formulas (8) to (17) And the like, and the total number of carbon atoms of the alkylene group is 1 to 10.
  • Particularly preferred is an alkylene group interrupted with an ether represented by the formula (12). (In the formulas (8) to (17), the leftmost carbon atom is the side bonded to the silicon atom of the formula (1).)
  • R 2 represents a methyl group or a phenyl group, and may be the same or different. However, since the carboxylic acid compound (A) is liquid at room temperature, the methyl group is preferable.
  • n is an average value of 1 to 100, preferably 2 to 80, more preferably 5 to 50.
  • silicone compound (a) represented by the formula (1) examples include silicone compounds having alcoholic hydroxyl groups at both ends. Specific examples include X-22-160AS, KF6001, KF6002, KF6003 (all manufactured by Shin-Etsu Chemical Co., Ltd.); BY16-201, BY16-004, SF8427 (all Toray Dow Corning Co., Ltd.); XF42-B0970, XF42-C3294 (both manufactured by Momentive Performance Materials Japan GK), etc., are all available from the market. These modified silicone oils having alcoholic hydroxyl groups at both ends can be used alone or in combination of two or more. Among these, X-22-160AS, KF6001, KF6002, BY16-201, or XF42-B0970 is preferable.
  • the compounds represented by the formulas (3) to (5) are methylhexahydrophthalic anhydride, norbornane-2,3-dicarboxylic acid anhydride, methylnorbornane-2,3-dicarboxylic acid anhydride, respectively.
  • Carboxylic anhydride groups react with functional groups having active hydrogen such as alcoholic hydroxyl groups, phenolic hydroxyl groups, amino groups, carboxyl groups and silanol groups to form ester bonds, amide bonds, etc. Ring opening of the anhydride group produces a free carboxylic acid.
  • the carboxylic acid compound (A) of the present invention is an adduct of the silicone compound (a) and at least one selected from the compounds (c) represented by the above formulas (3) to (5).
  • the carboxylic acid compound (A) can be obtained by addition reaction of the carboxylic anhydride group of the compound (c) represented by (3) to (5) with the alcoholic hydroxyl group of the silicone compound (a).
  • the addition reaction in order to adjust the molecular weight and viscosity of the carboxylic acid compound (A), together with the compound (c) having a carboxylic acid anhydride represented by the formulas (3) to (5), one or more in the molecule An addition reaction can also be carried out using the compound (b) having a carboxylic anhydride group.
  • the compound (b) having one or more carboxylic anhydride groups in the molecule includes, for example, succinic anhydride, methyl succinic anhydride, ethyl succinic anhydride, 2,3-butanedicarboxylic anhydride, 2,4 -Saturated aliphatic carboxylic acid anhydrides such as pentanedicarboxylic acid anhydride, 3,5-heptanedicarboxylic acid anhydride, 1,2,3,4-butanetetracarboxylic dianhydride; maleic acid anhydride, dodecyl succinic acid Unsaturated aliphatic carboxylic acid anhydrides such as anhydrides; hexahydrophthalic acid anhydride, methylhexahydrophthalic acid anhydride, 1,3-cyclohexanedicarboxylic acid anhydride, nadic acid anhydride, methylnadic acid anhydride, bicyclo [2,2,2] octane-2
  • Cyclic unsaturated aliphatic carboxylic anhydrides phthalic anhydride, isophthalic anhydride, terephthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and other aromatic carboxylic anhydrides, etc.
  • the compound (b) having one or more carboxylic acid anhydride groups in the molecule is used in combination with the compounds (c) represented by the formulas (3) to (5), in addition to the compound (c), Two or more kinds can be mixed and used.
  • the carboxylic acid compound (A) is liquid at room temperature and the cured product obtained by curing the carboxylic acid compound (A) and the epoxy resin is excellent in transparency
  • the following formulas (2), (6), Hexahydrophthalic anhydride, 1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride, and 1,2,3,4-butanetetracarboxylic dianhydride represented by (7) are preferred.
  • the compound (b) is desirably 5 to 80 mol%, more preferably 10 to 78 mol%, of the total of the compound (b) and the compound (c).
  • the reaction between the silicone compound (a) and the compound (c) (and optionally the compound (b)) can be performed in a solvent or without a solvent.
  • the solvent any solvent that does not react with the silicone compound (a) and the compound (c) (and optionally the compound (b)) represented by the formula (1) can be used without any particular limitation.
  • the solvent examples include aprotic polar solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran, acetonitrile, methyl ethyl ketone, cyclopentanone, and methyl isobutyl ketone, and aromatic hydrocarbons such as toluene and xylene. Of these, aromatic hydrocarbons are preferred.
  • aromatic hydrocarbons are preferred.
  • These solvents may be used alone or in combination of two or more.
  • the amount of the solvent used is not particularly limited, but the total weight of the silicone compound (a) and the compound (c) represented by the formulas (3) to (5) (and the compound (b) if necessary) is 100 wt. It is usually preferable to use 0.1 to 300 parts by weight per part.
  • a catalyst may be used for the reaction.
  • usable catalysts include hydrochloric acid, sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, nitric acid, trifluoroacetic acid, trichloroacetic acid and other acidic compounds, water Metal hydroxides such as sodium oxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, amine compounds such as triethylamine, tripropylamine, tributylamine, pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.
  • heterocyclic compounds such as undec-7-ene, imidazole, triazole, tetrazole, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, Methyl ethylammonium hydroxide, trimethylpropylammonium hydroxide, trimethylbutylammonium hydroxide, trimethylcetylammonium hydroxide, trioctylmethylammonium hydroxide, tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetramethylammonium Examples include quaternary ammonium salts such as acetate and trioctylmethylammonium acetate. These catalysts may be used alone or in combination of two or more. Of these, triethylamine, pyridine
  • the amount of the catalyst used is not particularly limited, but the silicone compound (a) represented by the formula (1) and the compound (c) represented by the formulas (3) to (5) (and optionally the compound (b) In general, 0.1 to 100 parts by weight is preferably used if necessary.
  • the reaction temperature in the reaction is usually 80 to 180 ° C, preferably 110 to 140 ° C.
  • the reaction time is usually 1 to 12 hours.
  • Mw (weight average molecular weight) of the reaction product can be measured by GPC (gel permeation chromatography). When the reaction is completed, heating is stopped, and when a solvent is used, the solvent can be removed under reduced pressure to obtain the target carboxylic acid compound. The Mw (weight average molecular weight) of the obtained carboxylic acid compound can be similarly confirmed by GPC.
  • the carboxylic acid compound (A) of the present invention has a specific structure, is liquid at room temperature (25 ° C.), and has extremely low volatility in a temperature range usually employed for curing an epoxy resin. Furthermore, since this carboxylic acid compound (A) is excellent in transparency, epoxy resin curing agents, paints, adhesives, molded products, semiconductors, optical semiconductor encapsulant resins, optical semiconductor die bond material resins, polyimides It is useful as a raw material for resins and modifiers, a raw material for plasticizers and lubricants, an intermediate for medicines and agricultural chemicals, a raw material for paint resins, and a resin for toners. Since it is excellent and the transparency of the cured product is excellent, it is extremely useful as a curing agent for epoxy resin used for sealing an optical semiconductor such as a white LED with high brightness.
  • the carboxylic acid compound (A) of the present invention can be used alone as a curing agent for an epoxy resin, but as a curing agent for an epoxy resin by mixing the carboxylic acid compound (A) and a curing accelerator. It is also a preferred embodiment to use.
  • the curing accelerator to be mixed with the carboxylic acid compound (A) any one having the ability to accelerate the curing reaction between an epoxy group and a carboxylic acid and a carboxylic anhydride can be used.
  • the ammonium salt curing accelerator, phosphonium salt curing accelerator, imidazole curing accelerator, amine curing accelerator, phosphine curing accelerator, phosphite curing accelerator, Lewis acid curing Examples include accelerators.
  • an ammonium salt-based curing accelerator and a phosphonium salt-based curing accelerator include an excellent transparency. Especially excellent.
  • the ammonium salt curing accelerator include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, trimethylpropylammonium hydroxide, trimethylbutylammonium hydroxide.
  • Trimethylcetylammonium hydroxide Trimethylcetylammonium hydroxide, trioctylmethylammonium hydroxide, tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetramethylammonium acetate, trioctylmethylammonium acetate and the like.
  • the phosphonium salt curing accelerator include ethyltriphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate, methyltributylphosphonium dimethylphosphate, methyltributylphosphonium diethylphosphate, and the like. These curing accelerators may be used alone or in combination of two or more. Among these curing accelerators, trimethyl cetyl ammonium hydroxide and methyl tributyl phosphonium dimethyl phosphate are preferable.
  • imidazole curing accelerator examples include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, 1 -Benzyl-2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,3-dihydro -1H-pyrrolo- [1,2-a] benzimidazole, 2,4-diamino-6 (2'-methylimidazole (1 ')) ethyl-s-triazine, 2,4-diamino-6 (2'- Undecylimidazole (1 ′)) ethyl-s-triazine
  • Examples of the amine curing accelerator include triethylamine, tripropylamine, tributylamine and the like.
  • Examples of the heterocyclic compound type curing accelerator include pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7-ene, imidazole, triazole, tetrazole and the like.
  • Examples of the phosphine curing accelerator include triethylphosphine, tributylphosphine, triphenylphosphine, and the like.
  • Examples of the phosphite curing accelerator include trimethyl phosphite and triethyl phosphite.
  • Lewis acid curing accelerator examples include BF 3 monoethylamine, BF 3 diethylamine, BF 3 triethylamine, BF 3 benzylamine, BF 3 aniline, BF 3 piperazine, BF 3 piperidine, PF 5 ethyl amine, PF 5 butyl amine, and PF 5 Examples include laurylamine, PF 5 benzylamine, AsF 5 laurylamine and the like. These curing accelerators may be used alone or in combination of two or more.
  • Each of the curing accelerators may be added in an amount of 0.1 to 10 parts by weight with respect to 100 parts by weight of the carboxylic acid compound (A) of the present invention.
  • the epoxy resin composition of the present invention contains a carboxylic acid compound (A) and an epoxy resin, and, if necessary, a curing accelerator and various additives.
  • epoxy resins that can be used here include, for example, epoxy resins that are glycidyl etherification products of phenolic compounds, epoxy resins that are glycidyl etherification products of various novolak resins, alicyclic epoxy resins, aliphatic epoxy resins, heterocyclic types Epoxy resins, glycidyl ester epoxy resins, glycidyl amine epoxy resins, epoxy resins obtained by glycidylation of halogenated phenols, condensates of silicon compounds having an epoxy group with other silicon compounds, polymerizable groups having an epoxy group Examples include a copolymer of a saturated compound and other polymerizable unsaturated compound.
  • Examples of the epoxy resin that is a glycidyl etherified product of the phenol compound include 2- [4- (2,3-epoxypropoxy) phenyl] -2- [4- [1,1-bis [4- (2,3 -Hydroxy) phenyl] ethyl] phenyl] propane, bisphenol A, bisphenol F, bisphenol S, 4,4'-biphenol, tetramethyl bisphenol A, dimethyl bisphenol A, tetramethyl bisphenol F, dimethyl bisphenol F, tetramethyl bisphenol S, Dimethylbisphenol S, tetramethyl-4,4′-biphenol, dimethyl-4,4′-biphenol, 1- (4-hydroxyphenyl) -2- [4- (1,1-bis- (4-hydroxyphenyl) Ethyl) phenyl] propane, 2,2'-me Ren-bis (4-methyl-6-tert-butylphenol), 4,4′-butylidene-bis (3-methyl-6-ter
  • novolac resins such as a novolak resin, a phenol novolac resin containing a xylylene skeleton, a phenol novolak resin containing a dicyclopentadiene skeleton, a phenol novolak resin containing a biphenyl skeleton, and a phenol novolac resin containing a fluorene skeleton.
  • Examples of the alicyclic epoxy resin include alicyclic rings having an aliphatic ring skeleton such as 3,4-epoxycyclohexylmethyl- (3,4-epoxy) cyclohexylcarboxylate and bis (3,4-epoxycyclohexylmethyl) adipate.
  • An epoxy resin is mentioned.
  • Examples of the aliphatic epoxy resin include glycidyl ethers of polyhydric alcohols such as 1,4-butanediol, 1,6-hexanediol, polyethylene glycol, and pentaerythritol.
  • heterocyclic epoxy resin examples include heterocyclic epoxy resins having a heterocyclic ring such as an isocyanuric ring and a hydantoin ring.
  • examples of the glycidyl ester-based epoxy resin include epoxy resins made of carboxylic acid esters such as hexahydrophthalic acid diglycidyl ester.
  • examples of the glycidylamine-based epoxy resin include epoxy resins obtained by glycidylating amines such as aniline and toluidine.
  • epoxy resins obtained by glycidylating halogenated phenols include brominated bisphenol A, brominated bisphenol F, brominated bisphenol S, brominated phenol novolac, brominated cresol novolac, chlorinated bisphenol S, chlorinated bisphenol A, and the like.
  • An epoxy resin obtained by glycidylating any of the halogenated phenols include brominated bisphenol A, brominated bisphenol F, brominated bisphenol S, brominated phenol novolac, brominated cresol novolac, chlorinated bisphenol S, chlorinated bisphenol A, and the like.
  • the condensate of the silicon compound having an epoxy group and the other silicon compound is, for example, a hydrolysis condensate of an alkoxysilane compound having an epoxy group and an alkoxysilane having a methyl group or a phenyl group, or an alkoxy group having an epoxy group. It is a condensate of a silane compound and a polydimethylsiloxane having a silanol group, a polydimethyldiphenylsiloxane having a silanol group, or a condensate obtained by combining them.
  • alkoxysilane compound having an epoxy group examples include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, and 3-glycidoxypropyltrimethoxysilane. , 3-glycidoxypropylmethyldimethoxysilane and the like.
  • polydimethylsiloxane having a silanol group and polydimethyldiphenylsiloxane having a silanol group for example, X-21-5841, KF-9701 (manufactured by Shin-Etsu Chemical Co., Ltd.), BY16-873 are commercially available products. , PRX413 (Toray Dow Corning) XC96-723, YF3804, YF3800, XF3905, YF3057 (Momentive Performance Materials Japan GK), DMS-S12, DMS-S14, DMS-S15, DMS- S21, DMS-S27, DMS-S31 (manufactured by Gelest) and the like.
  • Marproof G-0115S, G-0130S and G-0250S are commercially available products.
  • the polymerizable unsaturated compound having an epoxy group include glycidyl acrylate, glycidyl methacrylate, 4 -Vinyl-1-cyclohexene-1,2-epoxide and the like.
  • Examples of other polymerizable unsaturated compound copolymers include methyl (meth) acrylate, ether (meth) acrylate, benzyl (meth) acrylate, cyclohexyl (meth) acrylate, styrene, and vinylcyclohexane. These epoxy resins may be used alone or in combination of two or more.
  • the epoxy equivalent (measured by the method described in JIS K-7236) is 400 to 1500 g / eq. And preferably 450 to 1100 g / eq. Is more preferable.
  • Epoxy equivalent is 400 g / eq. If it is less than 1, the cured product tends to be too hard and cracks such as cracks tend to occur, and 1500 g / eq. If it is larger than the range, surface stickiness tends to occur.
  • the weight average molecular weight is preferably 1500 to 10,000, more preferably 1800 to 5000. If the weight average molecular weight is less than 1500, the toughness of the cured product tends to be inferior.
  • the weight average molecular weight is greater than 10,000, the viscosity tends to be high and workability tends to be poor.
  • the epoxy resins having the epoxy equivalent weight and the weight average molecular weight condensation of a silicon compound having an epoxy group with other silicon compounds from the viewpoints of transparency, heat-resistant transparency, light-resistant transparency, heat cycle resistance, etc. More preferred are.
  • the weight average molecular weight in this invention is a polystyrene conversion and a weight average molecular weight (Mw) measured on condition of the following etc. using GPC (gel permeation chromatography).
  • each component in the epoxy resin composition of the present invention includes the silicone compound (a) represented by the formula (1) of the present invention and the compound (c) represented by the formulas (3) to (5) (and 5 to 95 parts by weight, preferably 20 to 80 parts by weight of the carboxylic acid compound (A) obtained by addition reaction with the compound (b)) having a carboxylic acid anhydride group, if necessary, the epoxy resin 5 as described above ⁇ 95 parts by weight, preferably 20 to 80 parts by weight, if necessary, curing accelerator, 0.005 to 10 parts by weight, preferably 0.05 to 5 parts by weight.
  • the epoxy resin composition of the present invention can be obtained by uniformly mixing the above components at room temperature or under heating. For example, mix thoroughly until uniform using an extruder, kneader, three rolls, universal mixer, planetary mixer, homomixer, homodisper, bead mill, etc., and if necessary, filter with SUS mesh etc. Prepared.
  • the epoxy resin curing agent and the epoxy resin composition of the present invention can be used in combination with other epoxy resin curing agents as necessary.
  • examples of the epoxy resin curing agent that can be used in combination include polyvalent carboxylic acids, carboxylic anhydrides, phenols, hydrazines, and mercaptans.
  • polyvalent carboxylic acids examples include aliphatic polyvalent carboxylic acids, cycloaliphatic polyvalent carboxylic acids, aromatic polyvalent carboxylic acids, and heterocyclic polyvalent carboxylic acids.
  • aliphatic polycarboxylic acid examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1,2,3-propanetricarboxylic acid, 1, Examples include 2,3,4-butanetetracarboxylic acid.
  • cycloaliphatic polyvalent carboxylic acid examples include hexahydrophthalic acid, 1,3-adamantane diacetic acid, 1,3-adamantane dicarboxylic acid, tetrahydrophthalic acid, 2,3-norbornene dicarboxylic acid, 1,2,4 -Cyclohexanetricarboxylic acid, 1,3,5-cyclohexanetricarboxylic acid, 1,2,3-cyclohexanetricarboxylic acid, 1,2,4,6-cyclohexanetetracarboxylic acid and the like.
  • aromatic polyvalent carboxylic acid examples include phthalic acid, isophthalic acid, terephthalic acid, 1,2-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, and 2,3-naphthalenedicarboxylic acid.
  • carboxylic acid anhydrides include aliphatic carboxylic acid anhydrides, cycloaliphatic carboxylic acid anhydrides, and aromatic carboxylic acid anhydrides.
  • aliphatic carboxylic acid anhydride include succinic acid anhydride, methyl succinic acid anhydride, ethyl succinic acid anhydride, 2,3-butanedicarboxylic acid anhydride, 2,4-pentanedicarboxylic acid anhydride, 3,5- Examples include heptane dicarboxylic acid anhydride, 1,2,3,4-butanetetracarboxylic dianhydride, maleic acid anhydride, dodecyl succinic acid anhydride and the like.
  • Cyclic aliphatic carboxylic acid anhydrides include hexahydrophthalic acid anhydride, methyl hexahydrophthalic acid anhydride, 1,3-cyclohexanedicarboxylic acid anhydride, hydrogenated nadic acid anhydride, hydrogenated methyl nadic acid anhydride, Bicyclo [2,2,2] octane-2,3-dicarboxylic anhydride, 1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, nadic acid Anhydride, methyl nadic anhydride, 4,5-dimethyl-4-cyclohex
  • aromatic carboxylic anhydride examples include phthalic anhydride, isophthalic anhydride, terephthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like.
  • 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, 4- (2,5-dioxotetrahydrofuran-3-yl) -1 examples thereof include compounds having an aliphatic carboxylic acid anhydride and a cyclic aliphatic carboxylic acid anhydride in the same compound such as 2,3,4-tetrahydronaphthalene-1,2-dicarboxylic acid anhydride.
  • phenols examples include bisphenol A, bisphenol F, bisphenol S, 4,4′-biphenylphenol, tetramethyl bisphenol A, dimethyl bisphenol A, tetramethyl bisphenol F, dimethyl bisphenol F, tetramethyl bisphenol S, dimethyl bisphenol S.
  • hydrazines examples include isophthalic acid dihydrazide, adipic acid dihydrazide, sebacic acid dihydrazide, dodecanedioic acid dihydrazide, and 2,6-naphthalenedicarboxylic acid dihydrazide.
  • Examples of the mercaptans include trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), dipentaerythritol hexakis (3-mercaptopropionate), tris [(3 -Mercaptopropionyloxy) -ethyl], isocyanurate 1,4-bis (3-mercaptobutyryloxy) butane, pentaerythritol tetrakis (3-mercaptobutyrate), 1,3,5-tris (3-mercaptobutyl And oxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione.
  • epoxy resin curing agents may be used alone or in combination of two or more.
  • the proportion of the carboxylic acid compound (A) in the total curing agent is 50% by weight or more, preferably 80%. Adjust the usage so that it is at least wt%.
  • a coupling agent, a phosphor, an inorganic filler, highly heat conductive fine particles, a phosphorus compound filler as a flame retardant, a binder resin, etc. are added to the epoxy resin composition of the present invention as necessary.
  • Examples of coupling agents that can be used include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 2- (3,4-epoxycyclohexyl) ethyl.
  • Trimethoxysilane N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltri Methoxysilane, vinyltrimethoxysilane, N- (2- (vinylbenzylamino) ethyl) 3-aminopropyltrimethoxysilane hydrochloride, 3-methacryloxypropyltrimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloro Silane coupling agents such as propyltrimethoxysilane; isopropyl (N-ethylaminoethylamino) titanate, isopropyl triisostearoyl titanate, titanium di (dioctyl pyrophosphate) oxyacetate
  • the coupling agents may be used alone or in combination of two or more.
  • the use of a coupling agent can be expected to improve the adhesion to the substrate and the hardness of the cured product.
  • the coupling agent is usually contained in an amount of 0.05 to 20 parts by weight, preferably 0.1 to 10 parts by weight, if necessary, in the epoxy resin composition of the present invention.
  • phosphors examples include phosphors such as YAG phosphors, TAG phosphors, orthosilicate phosphors, thiogallate phosphors, and sulfide phosphors. Fluorescence can be imparted to the epoxy resin composition by adding a phosphor.
  • inorganic fillers examples include powders of crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc and the like. Or a bead obtained by spheroidizing these.
  • an inorganic filler heat resistance and light resistance can be imparted, viscosity can be adjusted, and the like.
  • the content of these inorganic fillers is used in an amount of 0 to 90 parts by weight in the epoxy resin composition of the present invention.
  • Examples of the high thermal conductive fine particles that can be used include metal particles such as gold, silver, copper, iron, nickel, tin, aluminum, cobalt, and indium, and alloys thereof, metal oxides such as aluminum oxide, magnesium oxide, and titanium oxide, Examples thereof include metal nitrides such as boron nitride and aluminum nitride, carbon compounds such as graphite, diamond and carbon black, and metal-coated particles obtained by coating a resin layer with a metal layer. By adding the high thermal conductive fine particles, the thermal conductivity of the epoxy resin composition can be improved.
  • the phosphorus-containing compound that can be used may be a reactive type or an additive type.
  • Examples of phosphorus-containing compounds include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylylenyl phosphate, 1,3-phenylenebis (dixylyl).
  • Phosphoric esters such as lenyl phosphate), 1,4-phenylenebis (dixylylenyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate), 9,10-dihydro-9-oxa-10 -Phosphanphenanthrene-10-oxide, 10 (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide, and other phosphanes, epoxy resin and active hydrogen of the phosphanes Phosphorus-containing ester obtained by reaction Xyl compounds, red phosphorus, and the like.
  • Phosphoric esters, phosphanes, or phosphorus-containing epoxy compounds are preferable, and 1,3-phenylenebis (dixylenyl phosphate), 1,4-phenylenebis (dixylylene). Nyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate) or phosphorus-containing epoxy compounds are preferred.
  • Binder resins that can be used include butyral resins, acetal resins, acrylic resins, epoxy-nylon resins, NBR-phenol resins, epoxy-NBR resins, polyamide resins, polyimide resins, and silicone resins. Although it is mentioned, it is not limited to these.
  • the binder resin is usually contained in an amount of 0.05 to 50 parts by weight, preferably 0.05 to 20 parts by weight, if necessary, in the epoxy resin composition of the present invention.
  • the curable resin composition of the present invention includes a release agent such as stearic acid, palmitic acid, zinc stearate, calcium stearate, a coloring agent such as a dye and a pigment, an antioxidant, a light stabilizer, and a moisture resistance improver.
  • a release agent such as stearic acid, palmitic acid, zinc stearate, calcium stearate
  • a coloring agent such as a dye and a pigment
  • an antioxidant such as a dye and a pigment
  • a light stabilizer such as a light stabilizer
  • a moisture resistance improver such as a dye and a pigment
  • Thixotropy imparting agent, antifoaming agent, tackifier, impact resistance improving agent, ion trapping agent, antistatic agent, lubricant, leveling agent, surface tension reducing agent, antifoaming agent, antisettling agent, surfactant, ultraviolet ray Additives such as an absorbent, various thermosetting resins, and various other resins can be added
  • the epoxy resin composition of the present invention can be used as a varnish or ink by mixing a solvent as necessary.
  • the solvent can be used as long as it has a high solubility in each component such as the carboxylic acid compound (A), epoxy resin, curing accelerator, and other additives of the present invention and does not react with them.
  • alcohols such as methanol, ethanol, propanol, butanol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, 3-methoxybutanol, 3-methyl-3-methoxybutanol, etc.
  • Glycol ethers ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate Alkylene glycol ether acetates such as 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate and ethyl ethoxypropiolate; aromatic hydrocarbons such as benzene, toluene and xylene; acetone, methyl ethyl ketone, methyl isobutyl Ketones such as ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone; methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl 2-hydroxy-2-methylpropionate, 2-hydroxy -2-ethyl ethyl propionate,
  • dimethylformamide, dimethylacetamide, dimethylsulfoxide, acetonitrile and the like can be used as the aprotic polar solvent.
  • These solvents are usually contained in an amount of 2 to 90 parts by weight in the epoxy resin composition of the present invention as required.
  • the epoxy resin composition of the present invention in the case of using a solvent as a varnish or ink may be subjected to microfiltration using, for example, a 0.05 to 2 ⁇ m filter.
  • the epoxy resin composition of the present invention is used as a sealing material for an optical semiconductor such as a high-intensity white LED, or a die bond material
  • other curing agents Prepare an epoxy resin composition by thoroughly mixing additives such as curing accelerators, coupling materials, antioxidants, light stabilizers, etc., as a sealing material, or as both a die bond material and a sealing material used.
  • a mixing method a kneader, a three-roll, a universal mixer, a planetary mixer, a homomixer, a homodisper, a bead mill or the like is used to mix at room temperature or warm.
  • Optical semiconductor elements such as high-intensity white LEDs are generally GaAs, GaP, GaAlAs, GaAsP, AlGa, InP, GaN, InN, AlN, InGaN laminated on a substrate of sapphire, spinel, SiC, Si, ZnO or the like.
  • Such a semiconductor chip is bonded to a lead frame, a heat sink, or a package using an adhesive (die bond material).
  • a wire such as a gold wire is connected to pass an electric current.
  • the semiconductor chip is sealed with a sealing material such as an epoxy resin in order to protect it from heat and moisture and play a role of a lens.
  • the epoxy resin composition of the present invention can be used as this sealing material or die bond material. From the viewpoint of the process, it is advantageous to use the epoxy resin composition of the present invention for both the die bond material and the sealing material.
  • the epoxy resin composition of the present invention is applied by a dispenser, potting, or screen printing, and then the semiconductor chip is placed and heat-cured. Yes, the semiconductor chip can be bonded.
  • the heating methods such as hot air circulation, infrared rays and high frequency can be used.
  • the heating conditions are preferably 80 to 230 ° C. for about 1 minute to 24 hours.
  • post-curing is performed at 120 to 180 ° C. for 30 minutes to 10 hours. it can.
  • a compression molding method or the like in which a semiconductor chip fixed on a substrate is immersed therein and heat-cured and then released from a mold is used.
  • the injection method include dispenser, transfer molding, injection molding and the like.
  • methods such as hot air circulation, infrared rays and high frequency can be used.
  • the heating conditions are preferably 80 to 230 ° C. for about 1 minute to 24 hours.
  • post-curing is performed at 120 to 180 ° C. for 30 minutes to 10 hours. it can.
  • the carboxylic acid compound (A) of the present invention has a specific structure, is liquid at room temperature (25 ° C.), has excellent epoxy resin curability, and is usually employed in a temperature range for curing the epoxy resin. Is very volatile.
  • the epoxy resin composition containing the carboxylic acid compound (A) of the present invention can be used for various applications including optical component materials in which ordinary epoxy resin compositions are used.
  • the optical material refers to general materials used for applications that allow light such as visible light, infrared light, ultraviolet light, X-rays, and lasers to pass through the material. More specifically, in addition to the optical semiconductor sealing material such as lamp type and SMD type, and the optical semiconductor die bond material, the following may be mentioned.
  • It is a peripheral material for liquid crystal display devices such as a substrate material, a light guide plate, a prism sheet, a deflection plate, a retardation plate, a viewing angle correction film, an adhesive, and a film for a liquid crystal such as a polarizer protective film in the liquid crystal display field.
  • color PDP plasma display
  • antireflection films antireflection films
  • optical correction films housing materials
  • front glass protective films front glass replacement materials
  • adhesives and LED displays that are expected as next-generation flat panel displays
  • LED molding materials LED sealing materials, front glass protective films, front glass substitute materials, adhesives, and substrate materials for plasma addressed liquid crystal (PALC) displays, light guide plates, prism sheets, deflection plates , Phase difference plate, viewing angle correction film, adhesive, polarizer protective film, front glass protective film in organic EL (electroluminescence) display, front glass substitute material, adhesive, and various in field emission display (FED) Film substrate
  • PLC plasma addressed liquid crystal
  • VD video disc
  • CD / CD-ROM CD-R / RW
  • DVD-R / DVD-RAM MO / MD
  • PD phase change disc
  • disc substrate materials for optical cards Pickup lenses, protective films, sealing materials, adhesives and the like.
  • optical equipment In the field of optical equipment, they are steel camera lens materials, finder prisms, target prisms, finder covers, and light receiving sensor parts. It is also a photographic lens and viewfinder for video cameras. Projection lenses for projection televisions, protective films, sealing materials, adhesives, and the like. These include lens materials, sealing materials, adhesives, and films for optical sensing devices.
  • optical components In the field of optical components, they are fiber materials, lenses, waveguides, element sealing materials, adhesives and the like around optical switches in optical communication systems. Optical fiber materials, ferrules, sealing materials, adhesives, etc. around the optical connector. For optical passive components and optical circuit components, there are lenses, waveguides, LED sealing materials, CCD sealing materials, adhesives, and the like.
  • OEIC optoelectronic integrated circuit
  • automotive lamp reflectors In the field of automobiles and transport equipment, automotive lamp reflectors, bearing retainers, gear parts, anti-corrosion coatings, switch parts, headlamps, engine internal parts, electrical parts, various interior and exterior parts, drive engines, brake oil tanks, automobile protection Rusted steel plate, interior panel, interior material, wire harness for protection / bundling, fuel hose, automobile lamp, glass substitute.
  • it is a multilayer glass for railway vehicles.
  • they are toughness imparting agents for aircraft structural materials, engine peripheral members, protective / bundling wire harnesses, and corrosion resistant coatings.
  • it In the construction field, it is interior / processing materials, electrical covers, sheets, glass interlayers, glass substitutes, and solar cell peripheral materials. For agriculture, it is a house covering film.
  • Next generation optical / electronic functional organic materials include peripheral materials for organic EL elements, organic photorefractive elements, optical amplification elements that are light-to-light conversion devices, optical computing elements, substrate materials around organic solar cells, fiber materials, elements Sealing material, adhesive and the like.
  • sealing agents potting, dipping, transfer mold sealing for capacitors, transistors, diodes, light-emitting diodes, ICs, LSIs, potting sealings for ICs, LSIs such as COB, COF, TAB, flip chip
  • underfill for sealing, and sealing (reinforcing underfill) when mounting IC packages such as BGA and CSP.
  • optical materials include general uses in which epoxy resin compositions are used.
  • sealant including printed circuit boards and wire coatings
  • additives to other resins and the like can be mentioned.
  • the adhesive include civil engineering, architectural, automotive, general office, and medical adhesives, and electronic material adhesives.
  • adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, semiconductor adhesives such as underfills, BGA reinforcing underfills, anisotropic conductive films ( ACF) and an adhesive for mounting such as anisotropic conductive paste (ACP).
  • the transparency of the cured product obtained therefrom is excellent, it is extremely useful as a curing agent for epoxy resins for sealing high-luminance white LEDs and other optical semiconductors.
  • Other uses include raw materials such as polyimide resins, modifiers, plasticizers, lubricating oil raw materials, cyanate resin compositions for substrates, additives to other resins, raw materials for paint resins, toner resins, medicines, etc. Useful as an agrochemical intermediate.
  • ⁇ Epoxy equivalent Measured by the method described in JIS K-7236.
  • O Acid value Measured using an AT-610 potentiometric titrator manufactured by Kyoto Electronics Industry Co., Ltd. Specifically, the measurement sample was dissolved in methyl ethyl ketone and ethanol and titrated with a 0.1 mol / L sodium hydroxide aqueous solution.
  • ⁇ Viscosity Measured using an E-type viscometer at 25 ° C.
  • -Weight average molecular weight It measured using GPC (gel permeation chromatography) by Shimadzu Corporation.
  • the column used was a guard column SHODEX GPC LF-G LF-804 (3), flow rate 1.0 ml / min, column temperature 40 ° C., solvent THF (tetrahydrofuran), detector RI (differential refraction detector). .
  • the standard curve made from Shodex was used for the calibration curve.
  • ⁇ Decrease in thermal weight Using TG / DTA6200 manufactured by Shimadzu Corporation, the temperature was increased from 30 ° C. at 20 ° C./minute, heated to 120 ° C., and held at 120 ° C. for 60 minutes to measure the weight reduction rate. The air flow rate was 200 ml / min.
  • Transmittance Using a U-3300 manufactured by Hitachi, Ltd., a light transmittance of 400 nm was measured.
  • MH700G used in the examples is a mixture of methylhexahydrophthalic anhydride and hexahydrophthalic anhydride manufactured by Shin Nippon Rika Co., Ltd., and the mixing ratio is 70 wt.% Of methylhexahydrophthalic anhydride. % (68 mol%).
  • HNA-100 is a mixture of methylnorbornane-2,3-dicarboxylic acid anhydride and norbornane-2,3-dicarboxylic acid anhydride manufactured by Shin Nippon Chemical Co., Ltd., and the mixing ratio is methylnorbornane-2.
  • 3-dicarboxylic acid anhydride is 80 wt% (79 mol%).
  • Synthesis Example 1 (Synthesis of a condensate between a silicon compound having an epoxy group and another silicon compound) 29.1 parts of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 130.6 parts of polydimethyldiphenylsiloxane having a silanol group having a molecular weight of 1700 (measured by GPC), 10.0 parts of 0.5% KOH methanol solution was charged into a reaction vessel and heated to 75 ° C. After raising the temperature, the reaction was carried out at 75 ° C. under reflux for 8 hours.
  • Example 1 Reaction of 50 parts of carbinol-modified silicone X22-160AS (manufactured by Shin-Etsu Chemical Co., Ltd.), 15.4 parts of Jamaicacid MH (methylhexahydrophthalic anhydride, Shin Nippon Rika Co., Ltd.), and 10 parts of toluene
  • the vessel was charged, heated to 130 ° C., and GPC was measured after 3 hours, the peak of Jamaicacid MH disappeared. Thereafter, the reaction was further continued for 2 hours. After completion of the reaction, the solvent was removed under reduced pressure to obtain 65.0 parts of carboxylic acid compound (A-1).
  • the weight average molecular weight of the obtained carboxylic acid compound was 1700.
  • Example 2 50 parts of both ends carbinol-modified silicone X22-160AS (manufactured by Shin-Etsu Chemical Co., Ltd.), Ricacid MH700G (mixture of methylhexahydrophthalic anhydride and hexahydrophthalic anhydride, manufactured by Shin Nippon Rika Co., Ltd.) 16 .8 parts and 10 parts of toluene were charged into a reaction vessel, heated to 130 ° C., and GPC was measured after 3 hours. As a result, the peak of Jamaicacid MH700G disappeared. Thereafter, the reaction was further continued for 2 hours. After completion of the reaction, the solvent was removed under reduced pressure to obtain 66.8 parts of carboxylic acid compound (A-2). The weight average molecular weight of the obtained carboxylic acid compound was 1700.
  • Example 3 8. 50 parts of both ends carbinol-modified silicone X22-160AS (manufactured by Shin-Etsu Chemical Co., Ltd.), HTAn (1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride, manufactured by Mitsubishi Gas Chemical Co., Ltd.) 9 parts, licacid MH700G (mixture of methylhexahydrophthalic anhydride and hexahydrophthalic anhydride, made by Shin Nippon Rika Co., Ltd.) 8.4 parts, 10 parts of toluene were charged in a reaction vessel, and the temperature was raised to 130 ° C. When GPC was measured after 3 hours, the peaks of HTAn and Guatemalacid MH700G disappeared. Thereafter, the reaction was further continued for 2 hours. After completion of the reaction, the solvent was removed under reduced pressure to obtain 68.2 parts of carboxylic acid compound (A-3). The weight average molecular weight of the obtained carboxylic acid compound was 1900.
  • Example 4 50 parts of both ends carbinol-modified silicone X22-160AS (manufactured by Shin-Etsu Chemical Co., Ltd.), ricacid MH (methylhexahydrophthalic anhydride, Shin Nippon Rika Co., Ltd.) 9.2 parts, ricacid BT-100 ( 4.0 parts of 1,2,3,4-butanetetracarboxylic dianhydride (manufactured by Shin Nippon Rika Co., Ltd.) and 10 parts of toluene were charged into a reaction vessel, heated to 130 ° C., and GPC was added after 3 hours. When measured, the peaks of Jamaicacid MH and Guatemalacid BT-100 disappeared. Thereafter, the reaction was further continued for 2 hours. After completion of the reaction, the solvent was removed under reduced pressure to obtain 63.0 parts of a carboxylic acid compound (A-4). The weight average molecular weight of the obtained carboxylic acid compound was 4640.
  • Example 5 50 parts of both-end carbinol-modified silicone X22-160AS (manufactured by Shin-Etsu Chemical Co., Ltd.), Ricacid HNA-100 (a mixture of norbornane-2,3-dicarboxylic acid anhydride and methylnorbornane-2,3-dicarboxylic acid anhydride) (Manufactured by Shin Nippon Rika Co., Ltd.) 17.0 parts and 10 parts of toluene were charged in a reaction vessel, heated to 130 ° C., and GPC was measured after 3 hours. The peak of Jamaicacid HNA-100 disappeared. Thereafter, the reaction was further continued for 2 hours. After completion of the reaction, the solvent was removed under reduced pressure to obtain 66.8 parts of carboxylic acid compound (A-5). The obtained carboxylic acid compound had a weight average molecular weight of 1,730.
  • Example 6 100 parts of the carboxylic acid compound (A-1) obtained in Example 1 and 108 parts of the siloxane compound (B-1) having an epoxy group obtained in Synthesis Example 1 were added as an epoxy resin, mixed, and defoamed for 20 minutes. And an epoxy resin composition was obtained.
  • Example 7 An epoxy resin composition was obtained in the same manner as in Example 6 except that the carboxylic acid compound was changed from A-1 to A-2 in Example 6.
  • Example 8 An epoxy resin composition was obtained in the same manner as in Example 6 except that the carboxylic acid compound was changed from A-1 to A-3 in Example 6.
  • Example 9 An epoxy resin composition was obtained in the same manner as in Example 6 except that the carboxylic acid compound was changed from A-1 to A-4 in Example 6.
  • Example 10 An epoxy resin composition was obtained in the same manner as in Example 6 except that the carboxylic acid compound was changed from A-1 to A-5 in Example 6.
  • Example 11 An epoxy resin composition was prepared in the same manner as in Example 6 except that the epoxy resin in Example 6 was changed to ERL-4221 (3,4-epoxycyclohexylmethyl- (3,4-epoxy) cyclohexylcarboxylate, manufactured by Dow Chemical). I got a thing.
  • Comparative Example 1 841 parts of the epoxy group-containing siloxane compound (B-1) obtained in Synthesis Example 1 as an epoxy resin, and Ricacid MH700G (methyl hexahydrophthalic anhydride and hexahydrophthalic acid) which is a liquid carboxylic acid anhydride as an epoxy resin curing agent 100 parts of a mixture of acid anhydrides (manufactured by Shin Nippon Rika Co., Ltd.) and 0.8 parts of PX-4MP (phosphonium salt-based curing accelerator, manufactured by Nippon Chemical Industry Co., Ltd.) as a curing accelerator are mixed for 20 minutes. Foaming was performed to obtain an epoxy resin composition.
  • MH700G methyl hexahydrophthalic anhydride and hexahydrophthalic acid
  • Comparative Example 2 The epoxy resin composition was the same as in Comparative Example 1 except that the epoxy resin of Comparative Example 1 was changed to ERL-4221 (3,4-epoxycyclohexylmethyl- (3,4-epoxy) cyclohexylcarboxylate, manufactured by Dow Chemical). I got a thing.
  • Example of trial use of epoxy resin composition as optical semiconductor encapsulant The curable resin compositions obtained in Examples 6 to 11 and Comparative Examples 1 and 2 were filled in a syringe, and the emission wavelength was measured using a precision discharge device. A surface-mounted LED mounted with a light-emitting element having a wavelength of 405 nm was cast, and pre-cured at 120 ° C. for 3 hours and then cured at 150 ° C. for 1 hour to seal the surface-mounted LED.
  • MH700G A mixture of methylhexahydrophthalic anhydride and hexahydrophthalic anhydride, manufactured by Shin Nippon Rika Co., Ltd.
  • Table 2 shows the compounding ratio of the epoxy resin compositions obtained in Examples 6 to 11 and Comparative Examples 1 and 2, the transmittance of the cured product, the dent of the cured product accompanying the volatilization of the cured product, and the results of surface tack. Shown in The test in Table 2 was performed as follows.
  • the epoxy resin compositions obtained in Examples 6 to 11 and Comparative Examples 1 and 2 were subjected to vacuum defoaming for 20 minutes, and then on a glass substrate on which a dam was formed with heat-resistant tape so as to be 30 mm ⁇ 20 mm ⁇ height 1 mm. I cast it gently. The cast was cured at 120 ° C. for 1 hour after pre-curing at 120 ° C. for 3 hours to obtain a test piece for transmittance having a thickness of 1 mm.
  • the ricacid MH700G of the comparative example shows a significant decrease in thermogravimetricity at 120 ° C., whereas the carboxylic acid compounds A-1 to A-5 of Examples 1 to 5 In the case of liquid, the weight was hardly decreased. Further, as is clear from the results shown in Table 2, in Comparative Examples 1 and 2, there are many dents in the cured product, while in Examples 6 to 11, almost no dents are observed, and further, the transmittance of the cured product. And the surface was not sticky.

Abstract

Disclosed is a carboxylic acid compound which is liquid at room temperature, has little volatility at high temperatures, and provides a colorless, transparent hardened product with no surface stickiness as a hardening agent for an epoxy resin composition used particularly as a sealing material. This carboxylic acid compound is a carboxylic acid compound (A) obtained by causing an addition reaction between a silicone compound (a) represented by formula (1) and a compound such as that represented by the formula (3) having one or more carboxylic acid anhydride groups in the molecule. (In formula (1), R1 represents an alkylene group with a total carbon number of 1-10 and which can include an ether group, R2 represents a methyl group or a phenyl group, and n represents an average value of 1-100.)

Description

カルボン酸化合物及びそれを含有するエポキシ樹脂組成物Carboxylic acid compound and epoxy resin composition containing the same
 本発明は、カルボン酸化合物及びこれを含有する樹脂組成物に関する。更に詳しくは、特定の構造を有し、エポキシ樹脂硬化剤、塗料、接着剤、成形品、光学用材料、半導体、光半導体の封止材用樹脂、光半導体のダイボンド材用樹脂、ポリイミド樹脂等の原料や改質剤、可塑剤、潤滑油原料、医農薬中間体、塗料用樹脂の原料、トナー用樹脂等として有用なカルボン酸化合物及びそれを含有するエポキシ樹脂組成物に関する。 The present invention relates to a carboxylic acid compound and a resin composition containing the carboxylic acid compound. More specifically, it has a specific structure, epoxy resin curing agent, paint, adhesive, molded article, optical material, semiconductor, optical semiconductor encapsulant resin, optical semiconductor die bond material resin, polyimide resin, etc. The present invention relates to carboxylic acid compounds useful as raw materials and modifiers, plasticizers, lubricating oil raw materials, pharmaceutical and agrochemical intermediates, coating resin raw materials, toner resins and the like, and epoxy resin compositions containing the same.
 エポキシ樹脂はこれを硬化させることにより、接着性、機械特性、耐水性、耐薬品性、耐熱性、電気特性等に優れた硬化物が得られることから、塗料、接着剤、コンポジット材、成形材、注形材料、各種コーティング材、レジスト等の幅広い分野で使用されている。エポキシ樹脂に用いられる硬化剤としては、例えば、アミン化合物、カルボン酸化合物、カルボン酸無水物、フェノール化合物、チオール化合物等が一般的なものとして挙げられる。これらの硬化剤の中でも、その硬化物に高い透明性や耐熱性が求められる場合や、適度な可使時間が必要とされる場合等の用途には、種々のカルボン酸化合物やカルボン酸無水物が多く用いられ、特に液状組成物においては、該硬化剤として液状のカルボン酸無水物を使用するのが一般的となってきている。カルボン酸は分子間での水素結合が強く、結晶化してしまうだけでなく、他樹脂への相溶性がすこぶる悪いため、その使用は避けられているというのが実情である。 Epoxy resins can be cured to obtain cured products with excellent adhesion, mechanical properties, water resistance, chemical resistance, heat resistance, electrical properties, etc., so paints, adhesives, composite materials, molding materials It is used in a wide range of fields such as casting materials, various coating materials and resists. As a hardening | curing agent used for an epoxy resin, an amine compound, a carboxylic acid compound, a carboxylic acid anhydride, a phenol compound, a thiol compound etc. are mentioned as a general thing, for example. Among these curing agents, various carboxylic acid compounds and carboxylic acid anhydrides are used for applications such as when the cured product requires high transparency and heat resistance, or when an appropriate pot life is required. In particular, in a liquid composition, it has become common to use a liquid carboxylic acid anhydride as the curing agent. Carboxylic acid has a strong intermolecular hydrogen bond and is not only crystallized, but also has a very poor compatibility with other resins, so that its use is avoided.
 LED(Light Emitting Diode、発光ダイオード)等の光半導体封止用の樹脂として、機械強度、接着力に優れることからビスフェノール型エポキシ樹脂、脂環式エポキシ樹脂等を用いた液状のエポキシ樹脂組成物が用いられていた(特許文献1を参照)。近年、LEDは自動車用ヘッドランプや照明用途など高い輝度が求められる分野で使用されるようになってきており、それに伴い、光半導体素子を封止する樹脂には、UV耐性、耐熱性が特に要求されるようになってきた。しかし、前述したような、ビスフェノール型エポキシ樹脂や脂環式エポキシ樹脂等では充分なUV耐性、耐熱性があるとはいい難く、高輝度が求められる分野では使用できない場合があった。そこで、高いUV耐性、耐熱性等を有する封止材として、非共有結合性基含有オルガノポリシロキサンとオルガノハイドロジェンポリシロキサンを用いたシリコーン樹脂封止材が用いられている(特許文献2を参照)。しかしながら、このようなシリコーン樹脂を用いてなる封止材は、UV耐性、耐熱性が優れているものの、基材への密着性が低かったり、封止表面がべた付いてしまったりする問題をかかえていた。これらの問題を解決すべく、エポキシ基を有するケイ素化合物の縮合物と液状酸無水物を用いて、UV耐性、耐熱性に優れ、さらには密着性が良好な封止材が求められ開発が進められている(特許文献3、特許文献4を参照)。このような用途に用いられる酸無水物としては、無色透明であること、室温で液状であること、取り扱いが容易であること等の理由からヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ノルボルナン-2,3-ジカルボン酸無水物、メチルノルボルナン-2,3-ジカルボン酸無水物等のカルボン酸無水物やこれらの混合物が用いられている。しかし、これらのカルボン酸無水物は低分子量の化合物が多い。したがって、該カルボン酸無水物を硬化剤とするエポキシ樹脂組成物においては、熱硬化時の揮発が問題となる。カルボン酸無水物の揮発は、硬化反応において、必要量のカルボン酸無水物(硬化剤)が存在しないことに起因するエポキシ樹脂組成物の硬化不良が起こるという問題だけでなく、その有害性による人体への悪影響、生産ラインの汚染、さらには大気汚染など、環境への影響も大きい。またこの場合、硬化が不十分になってしまうため、残存している未反応のエポキシ樹脂による封止表面のべた付きも発生してしまうなど、硬化時に揮発してしまうカルボン酸無水物によるエポキシ樹脂の硬化は機能面、環境面からも問題視されている。 A liquid epoxy resin composition using a bisphenol-type epoxy resin, an alicyclic epoxy resin, etc. as a resin for sealing an optical semiconductor such as an LED (Light Emitting Diode, light-emitting diode) is excellent in mechanical strength and adhesive strength. It was used (refer patent document 1). In recent years, LEDs have been used in fields that require high brightness, such as automotive headlamps and lighting applications. Accordingly, resins that encapsulate optical semiconductor elements are particularly resistant to UV and heat. It has come to be required. However, it is difficult to say that bisphenol-type epoxy resins and alicyclic epoxy resins have sufficient UV resistance and heat resistance as described above, and may not be used in fields where high luminance is required. Therefore, as a sealing material having high UV resistance, heat resistance, etc., a silicone resin sealing material using a noncovalent group-containing organopolysiloxane and an organohydrogenpolysiloxane is used (see Patent Document 2). ). However, although a sealing material using such a silicone resin has excellent UV resistance and heat resistance, it has problems such as low adhesion to the base material and sticking of the sealing surface. It was. In order to solve these problems, a condensate of a silicon compound having an epoxy group and a liquid acid anhydride are used to develop a sealing material that is excellent in UV resistance, heat resistance, and has good adhesion. (See Patent Document 3 and Patent Document 4). Acid anhydrides used in such applications include hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, tetrahydroanhydride because they are colorless and transparent, are liquid at room temperature, and are easy to handle. Carboxylic anhydrides such as phthalic acid, methyltetrahydrophthalic anhydride, norbornane-2,3-dicarboxylic anhydride, methylnorbornane-2,3-dicarboxylic anhydride, and mixtures thereof are used. However, these carboxylic acid anhydrides are often low molecular weight compounds. Therefore, in the epoxy resin composition using the carboxylic acid anhydride as a curing agent, volatilization during thermal curing becomes a problem. The volatilization of the carboxylic acid anhydride is not only a problem that the epoxy resin composition is poorly cured due to the absence of the required amount of the carboxylic acid anhydride (curing agent) in the curing reaction, but also due to its harmfulness. The impact on the environment is also significant, such as adverse effects on the environment, production line contamination, and air pollution. In this case, since the curing becomes insufficient, stickiness of the sealing surface due to the remaining unreacted epoxy resin may occur, and the epoxy resin due to carboxylic acid anhydride that volatilizes during curing. Curing of the resin is regarded as a problem from the functional and environmental aspects.
日本国特開2003-277473号公報Japanese Unexamined Patent Publication No. 2003-277473 日本国特開2006-299099号公報Japanese Unexamined Patent Publication No. 2006-299099 日本国特開2008-174640号公報Japanese Unexamined Patent Publication No. 2008-174640 日本国特開2008-255295号公報Japanese Unexamined Patent Publication No. 2008-255295
 本発明は、室温で液状であり、高温での耐揮発性に優れ、特にエポキシ樹脂の硬化剤としてその硬化工程中における揮発性が小さく、無色透明で表面のベタツキがない硬化物を与えるカルボン酸化合物を提供することを目的とする。 The present invention is a carboxylic acid that is liquid at room temperature, has excellent volatility at high temperatures, and has a low volatility during the curing process as a curing agent for epoxy resins, and provides a cured product that is colorless and transparent and has no surface stickiness. The object is to provide a compound.
 本発明者らは前記した課題を解決すべく、鋭意研究を重ねた結果、特定の骨格を有するシリコーン系化合物と特定の骨格を有するカルボン酸無水物基を有する化合物を反応させて得られるシリコーン骨格をもつカルボン酸化合物をエポキシ樹脂の硬化剤として用いることにより、上記課題が解決されることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have obtained a silicone skeleton obtained by reacting a silicone compound having a specific skeleton with a compound having a carboxylic anhydride group having a specific skeleton. The present invention has been completed by finding that the above-mentioned problems can be solved by using a carboxylic acid compound having the above as a curing agent for an epoxy resin.
 すなわち本発明は、
(1)下記式(1)で表されるシリコーン化合物(a)と、分子内に1個以上のカルボン酸無水物基をもつ化合物とを付加反応させることにより得られるカルボン酸化合物であって、上記分子内に1個以上のカルボン酸無水物基を持つ化合物は、下記式(3)~(5)で表される化合物(c)から選ばれる少なくとも一種であるカルボン酸化合物(A)
That is, the present invention
(1) A carboxylic acid compound obtained by subjecting a silicone compound (a) represented by the following formula (1) to a compound having one or more carboxylic anhydride groups in the molecule, The compound having one or more carboxylic acid anhydride groups in the molecule is at least one carboxylic acid compound (A) selected from compounds (c) represented by the following formulas (3) to (5):
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式(1)において、Rはエーテル基を含んでも良い炭素総数1~10のアルキレン基を、Rはメチル基又はフェニル基を、nは平均値で1~100をそれぞれ表す。)、 (In Formula (1), R 1 represents an alkylene group having 1 to 10 carbon atoms which may contain an ether group, R 2 represents a methyl group or a phenyl group, and n represents an average value of 1 to 100).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(2)下記式(1)で表されるシリコーン化合物(a)と、分子内に1個以上のカルボン酸無水物基をもつ化合物とを付加反応させることにより得られるカルボン酸化合物であって、上記分子内に1個以上のカルボン酸無水物基を持つ化合物が、下記式(3)で表される化合物であるカルボン酸化合物(A) (2) A carboxylic acid compound obtained by addition reaction of a silicone compound (a) represented by the following formula (1) and a compound having one or more carboxylic anhydride groups in the molecule, Carboxylic acid compound (A) in which the compound having one or more carboxylic anhydride groups in the molecule is a compound represented by the following formula (3)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式(1)において、Rはエーテル基を含んでも良い炭素総数1~10のアルキレン基を、Rはメチル基又はフェニル基を、nは平均値で1~100をそれぞれ表す。)、 (In Formula (1), R 1 represents an alkylene group having 1 to 10 carbon atoms which may contain an ether group, R 2 represents a methyl group or a phenyl group, and n represents an average value of 1 to 100).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(3)前記(1)項または(2)項に記載のカルボン酸化合物(A)と硬化促進剤を含有するエポキシ樹脂硬化剤、
(4)前記(1)項または(2)項に記載のカルボン酸化合物(A)又は請求項3記載のエポキシ樹脂硬化剤とエポキシ樹脂を含有するエポキシ樹脂組成物、
(5)エポキシ樹脂のエポキシ当量が400~1500g/eq.、重量平均分子量が1500~5000である前記(4)項に記載のエポキシ樹脂組成物、
(6)エポキシ樹脂組成物の用途が光半導体封止材用である前記(5)項に記載のエポキシ樹脂組成物、
(7)エポキシ樹脂組成物の用途が光半導体ダイボンド材用である前記(5)項に記載のエポキシ樹脂組成物、
(8)前記(4)項~(7)項のいずれか一項に記載のエポキシ樹脂組成物の硬化物、
に関する。
(3) An epoxy resin curing agent containing the carboxylic acid compound (A) according to the item (1) or (2) and a curing accelerator,
(4) An epoxy resin composition containing the carboxylic acid compound (A) according to (1) or (2) or the epoxy resin curing agent according to claim 3 and an epoxy resin,
(5) The epoxy equivalent of the epoxy resin is 400-1500 g / eq. The epoxy resin composition according to item (4), wherein the weight average molecular weight is 1500 to 5000,
(6) The epoxy resin composition according to the above (5), wherein the use of the epoxy resin composition is for an optical semiconductor sealing material,
(7) The epoxy resin composition according to (5), wherein the use of the epoxy resin composition is for an optical semiconductor die bond material,
(8) A cured product of the epoxy resin composition according to any one of (4) to (7),
About.
 本発明のカルボン酸化合物(A)は、室温(25℃)で液状であり、エポキシ樹脂を硬化させるのに通常採用される温度域での揮発性が極めて少ない。さらにこのカルボン酸化合物(A)は、エポキシ樹脂の硬化剤、塗料、接着剤、成形品、半導体、光半導体の封止材用樹脂、光半導体のダイボンド材用樹脂、ポリイミド樹脂などの原料や改質剤、可塑剤、潤滑油原料、医農薬中間体、塗料用樹脂の原料、トナー用樹脂として有用であるが、とりわけ、この該カルボン酸化合物(A)はエポキシ樹脂に対する硬化能力及びこれから得られる硬化物の高透明性のため、高輝度の白色LED他の光半導体の封止用のエポキシ樹脂の硬化剤として極めて有用である。 The carboxylic acid compound (A) of the present invention is liquid at room temperature (25 ° C.) and has very little volatility in a temperature range usually employed for curing an epoxy resin. Furthermore, this carboxylic acid compound (A) is used as a raw material for modified or modified raw materials such as epoxy resin curing agents, paints, adhesives, molded products, semiconductors, optical semiconductor encapsulant resins, optical semiconductor die bond material resins, and polyimide resins. It is useful as a quality agent, plasticizer, lubricant oil raw material, pharmaceutical and agrochemical intermediate, paint resin raw material, and toner resin, and in particular, the carboxylic acid compound (A) can be obtained from the ability to cure epoxy resin. Due to the high transparency of the cured product, it is extremely useful as a curing agent for epoxy resins for sealing high-luminance white LEDs and other optical semiconductors.
 以下本発明を詳細に説明する。
 まず、下記式(1)で示される本発明のシリコーン化合物(a)について説明する。
The present invention will be described in detail below.
First, the silicone compound (a) of the present invention represented by the following formula (1) will be described.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式(1)において、Rはエーテル基を含んでも良い炭素総数1~10のアルキレン基を、Rはメチル基又はフェニル基を、nは平均値で1~100をそれぞれ表す。) (In Formula (1), R 1 represents an alkylene group having 1 to 10 carbon atoms which may contain an ether group, R 2 represents a methyl group or a phenyl group, and n represents an average value of 1 to 100)
 式(1)において、Rの具体例としては、メチレン、エチレン、プロピレン、イソプロピレン、ブチレン、イソブチレン、ペンチレン、イソペンチレン、へキシレン、ヘプチレン、オクチレン等のアルキレン基、下記式(8)~(17)で示されるようなエーテルで中断されたアルキレン基等が挙げられ、アルキレン基の炭素総数としては1~10個である。特に好ましいものとしては、式(12)で表されるエーテルで中断されたアルキレン基が挙げられる。(式(8)~(17)において最左端の炭素原子が式(1)のケイ素原子に結合している側とする。) In the formula (1), specific examples of R 1 include methylene, ethylene, propylene, isopropylene, butylene, isobutylene, pentylene, isopentylene, hexylene, heptylene, octylene and other alkylene groups, and the following formulas (8) to (17) And the like, and the total number of carbon atoms of the alkylene group is 1 to 10. Particularly preferred is an alkylene group interrupted with an ether represented by the formula (12). (In the formulas (8) to (17), the leftmost carbon atom is the side bonded to the silicon atom of the formula (1).)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 前記式(1)において、Rはメチル基又はフェニル基を表し同一又は異種のいずれでもよいが、カルボン酸化合物(A)が室温で液状であるためにはフェニル基と比較し、メチル基が好ましい。 In the formula (1), R 2 represents a methyl group or a phenyl group, and may be the same or different. However, since the carboxylic acid compound (A) is liquid at room temperature, the methyl group is preferable.
 式(1)においてnは平均値で1~100であるが、好ましくは2~80、より好ましくは5~50である。 In the formula (1), n is an average value of 1 to 100, preferably 2 to 80, more preferably 5 to 50.
 式(1)で示されるシリコーン化合物(a)は、例えば、両末端にアルコール性水酸基をもつシリコーン系化合物が挙げられる。その具体例としては両末端カルビノール変性シリコーンオイルである、X-22-160AS、KF6001、KF6002、KF6003(いずれも信越化学工業(株)製);BY16-201、BY16-004、SF8427(いずれも東レ・ダウコーニング(株)製);XF42-B0970、XF42-C3294(いずれもモメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)等が挙げられ、いずれも市場から入手できる。これら両末端にアルコール性水酸基を持つ変性シリコーンオイルは1種又は2種以上を混合して用いることが出来る。これらの中でもX-22-160AS、KF6001、KF6002、BY16-201またはXF42-B0970が好ましい。 Examples of the silicone compound (a) represented by the formula (1) include silicone compounds having alcoholic hydroxyl groups at both ends. Specific examples include X-22-160AS, KF6001, KF6002, KF6003 (all manufactured by Shin-Etsu Chemical Co., Ltd.); BY16-201, BY16-004, SF8427 (all Toray Dow Corning Co., Ltd.); XF42-B0970, XF42-C3294 (both manufactured by Momentive Performance Materials Japan GK), etc., are all available from the market. These modified silicone oils having alcoholic hydroxyl groups at both ends can be used alone or in combination of two or more. Among these, X-22-160AS, KF6001, KF6002, BY16-201, or XF42-B0970 is preferable.
 次に式(3)~(5)で表されるカルボン酸無水物基を有する化合物(c)について説明する。 Next, the compound (c) having a carboxylic anhydride group represented by the formulas (3) to (5) will be described.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(3)~(5)で表される化合物はそれぞれ、メチルヘキサヒドロフタル酸無水物、ノルボルナン-2,3-ジカルボン酸無水物、メチルノルボルナン-2,3-ジカルボン酸無水物であり分子内にカルボン酸無水物基を有する化合物である。カルボン酸無水物基は、アルコール性水酸基、フェノール性水酸基、アミノ基、カルボキシル基、シラノール基等の活性水素を有する官能基と開環付加反応し、エステル結合、アミド結合などを形成する一方で酸無水物基の開環によって、フリーのカルボン酸を生成する。
 本発明のカルボン酸化合物(A)はシリコーン化合物(a)と前記式(3)~(5)で示される化合物(c)から選ばれる少なくとも一種との付加物である。(3)~(5)で示される化合物(c)が有するカルボン酸無水物基とシリコーン化合物(a)のアルコール性水酸基を付加反応させてカルボン酸化合物(A)を得ることができる。
 付加反応にはカルボン酸化合物(A)の分子量、粘度を調整する目的で、式(3)~(5)で示されるカルボン酸無水物をもつ化合物(c)と共に、分子内に1個以上のカルボン酸無水物基をもつ化合物(b)を併用して付加反応をすることもできる。
The compounds represented by the formulas (3) to (5) are methylhexahydrophthalic anhydride, norbornane-2,3-dicarboxylic acid anhydride, methylnorbornane-2,3-dicarboxylic acid anhydride, respectively. Is a compound having a carboxylic acid anhydride group. Carboxylic anhydride groups react with functional groups having active hydrogen such as alcoholic hydroxyl groups, phenolic hydroxyl groups, amino groups, carboxyl groups and silanol groups to form ester bonds, amide bonds, etc. Ring opening of the anhydride group produces a free carboxylic acid.
The carboxylic acid compound (A) of the present invention is an adduct of the silicone compound (a) and at least one selected from the compounds (c) represented by the above formulas (3) to (5). The carboxylic acid compound (A) can be obtained by addition reaction of the carboxylic anhydride group of the compound (c) represented by (3) to (5) with the alcoholic hydroxyl group of the silicone compound (a).
For the addition reaction, in order to adjust the molecular weight and viscosity of the carboxylic acid compound (A), together with the compound (c) having a carboxylic acid anhydride represented by the formulas (3) to (5), one or more in the molecule An addition reaction can also be carried out using the compound (b) having a carboxylic anhydride group.
 分子内に1個以上のカルボン酸無水物基をもつ化合物(b)は、例えば、コハク酸無水物、メチルコハク酸無水物、エチルコハク酸無水物、2,3-ブタンジカルボン酸無水物、2,4-ペンタンジカルボン酸無水物、3,5-ヘプタンジカルボン酸無水物、1,2,3,4-ブタンテトラカルボン酸二無水物等の飽和脂肪族カルボン酸無水物;マレイン酸無水物、ドデシルコハク酸無水物等の不飽和脂肪族カルボン酸無水物;ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、1,3-シクロヘキサンジカルボン酸無水物、ナジック酸無水物、メチルナジック酸無水物、ビシクロ[2,2,2]オクタン-2,3-ジカルボン酸無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物等の環状飽和脂肪族カルボン酸無水物;テトラヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、ナジック酸無水物、メチルナジック酸無水物、4,5-ジメチル-4-シクロヘキセン-1,2-ジカルボン酸無水物、ビシクロ[2.2.2]-5-オクテン-2,3-ジカルボン酸無水物等の環状不飽和脂肪族カルボン酸無水物;フタル酸無水物、イソフタル酸無水物、テレフタル酸無水物、トリメリット酸無水物、ピロメリット酸無水物等の芳香族カルボン酸無水物等が挙げられ、その他、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物等の同一化合物内に飽和脂肪族カルボン酸無水物、環状飽和カルボン酸無水物、環状不飽和カルボン酸無水物を持つポリカルボン酸化合物等も挙げられる。
 分子内にカルボン酸無水物基を1個以上もつ化合物(b)は、式(3)~(5)で示される化合物(c)と併用する場合、化合物(c)の他に、1種又は2種以上混合して用いることができる。この中でも、カルボン酸化合物(A)が室温で液状であり、カルボン酸化合物(A)とエポキシ樹脂とを硬化してなる硬化物の透明性が優れるため、下記式(2)、(6)、(7)で表される、ヘキサヒドロフタル酸無水物、1,2,4-シクロヘキサントリカルボン酸-1,2-無水物、1,2,3,4-ブタンテトラカルボン酸二無水物が好ましい。
The compound (b) having one or more carboxylic anhydride groups in the molecule includes, for example, succinic anhydride, methyl succinic anhydride, ethyl succinic anhydride, 2,3-butanedicarboxylic anhydride, 2,4 -Saturated aliphatic carboxylic acid anhydrides such as pentanedicarboxylic acid anhydride, 3,5-heptanedicarboxylic acid anhydride, 1,2,3,4-butanetetracarboxylic dianhydride; maleic acid anhydride, dodecyl succinic acid Unsaturated aliphatic carboxylic acid anhydrides such as anhydrides; hexahydrophthalic acid anhydride, methylhexahydrophthalic acid anhydride, 1,3-cyclohexanedicarboxylic acid anhydride, nadic acid anhydride, methylnadic acid anhydride, bicyclo [2,2,2] octane-2,3-dicarboxylic anhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclo Cyclic saturated aliphatic carboxylic acid anhydrides such as tantalum tetracarboxylic dianhydride and 1,2,4,5-cyclohexanetetracarboxylic dianhydride; tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, nadic acid anhydride Products, methyl nadic acid anhydride, 4,5-dimethyl-4-cyclohexene-1,2-dicarboxylic acid anhydride, bicyclo [2.2.2] -5-octene-2,3-dicarboxylic acid anhydride, etc. Cyclic unsaturated aliphatic carboxylic anhydrides; phthalic anhydride, isophthalic anhydride, terephthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and other aromatic carboxylic anhydrides, etc. 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, 4- (2,5-dioxothel, Lahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic acid anhydride and the like, saturated aliphatic carboxylic acid anhydride, cyclic saturated carboxylic acid anhydride, cyclic unsaturation A polycarboxylic acid compound having a carboxylic anhydride is also included.
When the compound (b) having one or more carboxylic acid anhydride groups in the molecule is used in combination with the compounds (c) represented by the formulas (3) to (5), in addition to the compound (c), Two or more kinds can be mixed and used. Among these, since the carboxylic acid compound (A) is liquid at room temperature and the cured product obtained by curing the carboxylic acid compound (A) and the epoxy resin is excellent in transparency, the following formulas (2), (6), Hexahydrophthalic anhydride, 1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride, and 1,2,3,4-butanetetracarboxylic dianhydride represented by (7) are preferred.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 化合物(b)を用いる場合は、化合物(b)は、化合物(b)と化合物(c)の合計中、5~80mol%であることが望ましく、10~78mol%がより好ましい。
 シリコーン化合物(a)と化合物(c)(及び必要により、化合物(b))との反応は、溶剤中でも無溶剤でも行うことができる。溶剤としては、式(1)で表されるシリコーン化合物(a)と化合物(c)(及び必要により化合物(b))と反応しない溶剤であれば特に制限なく使用できる。使用できる溶剤としては、例えばジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、テトラヒドロフラン、アセトニトリル、メチルエチルケトン、シクロペンタノン、メチルイソブチルケトンのような非プロトン性極性溶媒、トルエン、キシレンのような芳香族炭化水素等が挙げられ、これらの中で、芳香族炭化水素が好ましい。これらの溶剤は1種又は2種以上を混合して用いても良い。溶剤の使用量には、特に制限はないが、前記シリコーン化合物(a)及び式(3)~式(5)で示される化合物(c)(及び必要により化合物(b))の合計重量100重量部に対して、通常0.1~300重量部使用するのが好ましい。
When the compound (b) is used, the compound (b) is desirably 5 to 80 mol%, more preferably 10 to 78 mol%, of the total of the compound (b) and the compound (c).
The reaction between the silicone compound (a) and the compound (c) (and optionally the compound (b)) can be performed in a solvent or without a solvent. As the solvent, any solvent that does not react with the silicone compound (a) and the compound (c) (and optionally the compound (b)) represented by the formula (1) can be used without any particular limitation. Examples of the solvent that can be used include aprotic polar solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran, acetonitrile, methyl ethyl ketone, cyclopentanone, and methyl isobutyl ketone, and aromatic hydrocarbons such as toluene and xylene. Of these, aromatic hydrocarbons are preferred. These solvents may be used alone or in combination of two or more. The amount of the solvent used is not particularly limited, but the total weight of the silicone compound (a) and the compound (c) represented by the formulas (3) to (5) (and the compound (b) if necessary) is 100 wt. It is usually preferable to use 0.1 to 300 parts by weight per part.
 反応には触媒を使用してもよく、使用できる触媒としては、例えば塩酸、硫酸、メタンスルホン酸、トリフルオロメタンスルホン酸、パラトルエンスルホン酸、硝酸、トリフルオロ酢酸、トリクロロ酢酸等の酸性化合物、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム等の金属水酸化物、トリエチルアミン、トリプロピルアミン、トリブチルアミン等のアミン化合物、ピリジン、ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、イミダゾール、トリアゾール、テトラゾール等の複素環式化合物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルプロピルアンモニウムヒドロキシド、トリメチルブチルアンモニウムヒドロキシド、トリメチルセチルアンモニウムヒドロキシド、トリオクチルメチルアンモニウムヒドロキシド、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムヨージド、テトラメチルアンモニウムアセテート、トリオクチルメチルアンモニウムアセテート等の4級アンモニウム塩等が挙げられる。これらの触媒は1種又は2種以上を混合して用いても良い。これらの中で、トリエチルアミン、ピリジン、ジメチルアミノピリジンが好ましい。 A catalyst may be used for the reaction. Examples of usable catalysts include hydrochloric acid, sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, nitric acid, trifluoroacetic acid, trichloroacetic acid and other acidic compounds, water Metal hydroxides such as sodium oxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, amine compounds such as triethylamine, tripropylamine, tributylamine, pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4. 0] heterocyclic compounds such as undec-7-ene, imidazole, triazole, tetrazole, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, Methyl ethylammonium hydroxide, trimethylpropylammonium hydroxide, trimethylbutylammonium hydroxide, trimethylcetylammonium hydroxide, trioctylmethylammonium hydroxide, tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetramethylammonium Examples include quaternary ammonium salts such as acetate and trioctylmethylammonium acetate. These catalysts may be used alone or in combination of two or more. Of these, triethylamine, pyridine, and dimethylaminopyridine are preferred.
 触媒の使用量には、特に制限はないが、式(1)で表されるシリコーン化合物(a)および式(3)~(5)で示される化合物(c)(及び必要により化合物(b))の合計重量100重量部に対して、通常0.1~100重量部必要により使用するのが好ましい。 The amount of the catalyst used is not particularly limited, but the silicone compound (a) represented by the formula (1) and the compound (c) represented by the formulas (3) to (5) (and optionally the compound (b) In general, 0.1 to 100 parts by weight is preferably used if necessary.
 反応における反応温度は、通常80~180℃、好ましくは110~140℃である。又、反応時間は通常1~12時間である。反応生成物のMw(重量平均分子量)はGPC(ゲルパーミエーションクロマトグラフィー)により測定することが出来る。反応が終了したら、加熱を止め、溶剤を使用した場合には、溶剤を減圧除去して目的のカルボン酸化合物を得ることができる。得られたカルボン酸化合物のMw(重量平均分子量)は同様にGPCで確認が可能である。 The reaction temperature in the reaction is usually 80 to 180 ° C, preferably 110 to 140 ° C. The reaction time is usually 1 to 12 hours. Mw (weight average molecular weight) of the reaction product can be measured by GPC (gel permeation chromatography). When the reaction is completed, heating is stopped, and when a solvent is used, the solvent can be removed under reduced pressure to obtain the target carboxylic acid compound. The Mw (weight average molecular weight) of the obtained carboxylic acid compound can be similarly confirmed by GPC.
 本発明のカルボン酸化合物(A)は、特定の構造を有し、室温(25℃)で液状であり、エポキシ樹脂を硬化させるのに通常採用される温度域での揮発性が極めて少ない。
 さらにこのカルボン酸化合物(A)は透明性にすぐれるので、エポキシ樹脂の硬化剤、塗料、接着剤、成形品、半導体、光半導体の封止材用樹脂、光半導体のダイボンド材用樹脂、ポリイミド樹脂などの原料や改質剤、可塑剤や潤滑油原料、医農薬中間体、塗料用樹脂の原料、トナー用樹脂として有用であるが、とりわけエポキシ樹脂の硬化剤として用いた場合、硬化能に優れ、その硬化物の透明度が優れるので、高輝度の白色LED他の光半導体封止に用いられるエポキシ樹脂用硬化剤として極めて有用である。
The carboxylic acid compound (A) of the present invention has a specific structure, is liquid at room temperature (25 ° C.), and has extremely low volatility in a temperature range usually employed for curing an epoxy resin.
Furthermore, since this carboxylic acid compound (A) is excellent in transparency, epoxy resin curing agents, paints, adhesives, molded products, semiconductors, optical semiconductor encapsulant resins, optical semiconductor die bond material resins, polyimides It is useful as a raw material for resins and modifiers, a raw material for plasticizers and lubricants, an intermediate for medicines and agricultural chemicals, a raw material for paint resins, and a resin for toners. Since it is excellent and the transparency of the cured product is excellent, it is extremely useful as a curing agent for epoxy resin used for sealing an optical semiconductor such as a white LED with high brightness.
 本発明のカルボン酸化合物(A)は、これ単独でエポキシ樹脂用の硬化剤として使用できるものであるが、該カルボン酸化合物(A)と硬化促進剤を混合してエポキシ樹脂用の硬化剤として使用するのも好ましい態様である。該カルボン酸化合物(A)に混合する硬化促進剤としてはエポキシ基とカルボン酸およびカルボン酸無水物との硬化反応を促進する能力のあるものは何れも使用可能であるが、使用できる硬化促進剤の例としては、アンモニウム塩系硬化促進剤、ホスホニウム塩系硬化促進剤、イミダゾ-ル系硬化促進剤、アミン系硬化促進剤、ホスフィン系硬化促進剤、ホスファイト系硬化促進剤、ルイス酸系硬化促進剤等が挙げられる。 The carboxylic acid compound (A) of the present invention can be used alone as a curing agent for an epoxy resin, but as a curing agent for an epoxy resin by mixing the carboxylic acid compound (A) and a curing accelerator. It is also a preferred embodiment to use. As the curing accelerator to be mixed with the carboxylic acid compound (A), any one having the ability to accelerate the curing reaction between an epoxy group and a carboxylic acid and a carboxylic anhydride can be used. Examples of the ammonium salt curing accelerator, phosphonium salt curing accelerator, imidazole curing accelerator, amine curing accelerator, phosphine curing accelerator, phosphite curing accelerator, Lewis acid curing Examples include accelerators.
 これらの中でも高輝度の白色LEDなどの光半導体封止に用いられるエポキシ樹脂組成物用硬化剤用途には、その透明性が優れることから、アンモニウム塩系硬化促進剤、ホスホニウム塩系硬化促進剤が特に優れる。アンモニウム塩系硬化促進剤としては、例えばテトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルプロピルアンモニウムヒドロキシド、トリメチルブチルアンモニウムヒドロキシド、トリメチルセチルアンモニウムヒドロキシド、トリオクチルメチルアンモニウムヒドロキシド、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムヨージド、テトラメチルアンモニウムアセテート、トリオクチルメチルアンモニウムアセテート等が挙げられる。ホスホニウム塩系硬化促進剤としては、例えばエチルトリフェニルホスホニウムブロミド、テトラフェニルホスホニウムテトラフェニルボレート、メチルトリブチルホスホニウムジメチルホスフェート、メチルトリブチルホスホニウムジエチルホスフェート等が挙げられる。これら硬化促進剤は1種又は2種以上を混合して用いても良い。これら硬化促進剤の中でもトリメチルセチルアンモニウムヒドロキシド、メチルトリブチルホスホニウムジメチルホスフェートが好ましい。 Among these, for the curing agent use for epoxy resin compositions used for sealing optical semiconductors such as high-intensity white LEDs, an ammonium salt-based curing accelerator and a phosphonium salt-based curing accelerator include an excellent transparency. Especially excellent. Examples of the ammonium salt curing accelerator include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, trimethylpropylammonium hydroxide, trimethylbutylammonium hydroxide. , Trimethylcetylammonium hydroxide, trioctylmethylammonium hydroxide, tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetramethylammonium acetate, trioctylmethylammonium acetate and the like. Examples of the phosphonium salt curing accelerator include ethyltriphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate, methyltributylphosphonium dimethylphosphate, methyltributylphosphonium diethylphosphate, and the like. These curing accelerators may be used alone or in combination of two or more. Among these curing accelerators, trimethyl cetyl ammonium hydroxide and methyl tributyl phosphonium dimethyl phosphate are preferable.
 その他の汎用用途には、上記アンモニウム塩系硬化促進剤、ホスホニウム塩系硬化促進剤の他、イミダゾール系硬化促進剤、アミン系硬化促進剤、複素環化合物系硬化促進剤、ホスフィン系硬化促進剤、ホスファイト系硬化促進剤、ルイス酸系硬化促進剤等が使用できる。 Other general-purpose applications include the above ammonium salt-based curing accelerators, phosphonium salt-based curing accelerators, imidazole-based curing accelerators, amine-based curing accelerators, heterocyclic compound-based curing accelerators, phosphine-based curing accelerators, A phosphite type hardening accelerator, a Lewis acid type hardening accelerator, etc. can be used.
 イミダゾール系硬化促進剤としては、例えば2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2,3-ジヒドロ-1H-ピロロ-〔1,2-a〕ベンズイミダゾール、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-ウンデシルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-エチル,4-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン・イソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸の2:3付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-3,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール又は1-シアノエチル-2-フェニル-3,5-ジシアノエトキシメチルイミダゾール等が挙げられる。 Examples of the imidazole curing accelerator include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, 1 -Benzyl-2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,3-dihydro -1H-pyrrolo- [1,2-a] benzimidazole, 2,4-diamino-6 (2'-methylimidazole (1 ')) ethyl-s-triazine, 2,4-diamino-6 (2'- Undecylimidazole (1 ′)) ethyl-s-triazine, 2 4-diamino-6 (2′-ethyl, 4-methylimidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2′-methylimidazole (1 ′)) ethyl-s-triazine, Isocyanuric acid adduct, 2-methylimidazole isocyanuric acid 2: 3 adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-3,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxy Examples thereof include methylimidazole and 1-cyanoethyl-2-phenyl-3,5-dicyanoethoxymethylimidazole.
 アミン系硬化促進剤としては、例えばトリエチルアミン、トリプロピルアミン、トリブチルアミン等が挙げられる。
 複素環化合物系硬化促進剤としては、例えばピリジン、ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、イミダゾール、トリアゾール、テトラゾール等が挙げられる。
 ホスフィン系硬化促進剤としては、例えばトリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等が挙げられる。
 ホスファイト系硬化促進剤としては、例えばトリメチルホスファイト、トリエチルホスファイト等が挙げられる。
 ルイス酸系硬化促進剤としては、例えばBFモノエチルアミン、BFジエチルアミン、BFトリエチルアミン、BFベンジルアミン、BFアニリン、BFピペラジン、BFピペリジン、PFエチルアミン、PFブチルアミン、PFラウリルアミン、PFベンジルアミン、AsFラウリルアミン等が挙げられる。これら硬化促進剤は1種又は2種以上を混合して用いても良い。
Examples of the amine curing accelerator include triethylamine, tripropylamine, tributylamine and the like.
Examples of the heterocyclic compound type curing accelerator include pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7-ene, imidazole, triazole, tetrazole and the like.
Examples of the phosphine curing accelerator include triethylphosphine, tributylphosphine, triphenylphosphine, and the like.
Examples of the phosphite curing accelerator include trimethyl phosphite and triethyl phosphite.
Examples of the Lewis acid curing accelerator include BF 3 monoethylamine, BF 3 diethylamine, BF 3 triethylamine, BF 3 benzylamine, BF 3 aniline, BF 3 piperazine, BF 3 piperidine, PF 5 ethyl amine, PF 5 butyl amine, and PF 5 Examples include laurylamine, PF 5 benzylamine, AsF 5 laurylamine and the like. These curing accelerators may be used alone or in combination of two or more.
 前記各硬化促進剤は、本発明のカルボン酸化合物(A)100重量部に対して、0.1~10重量部添加することができる。 Each of the curing accelerators may be added in an amount of 0.1 to 10 parts by weight with respect to 100 parts by weight of the carboxylic acid compound (A) of the present invention.
 本発明のエポキシ樹脂組成物は、カルボン酸化合物(A)及びエポキシ樹脂並びに、必要により硬化促進剤及び各種添加剤等を含有する。
 ここで使用できるエポキシ樹脂の例としては、例えばフェノール化合物のグリシジルエーテル化物であるエポキシ樹脂、各種ノボラック樹脂のグリシジルエーテル化物であるエポキシ樹脂、脂環式エポキシ樹脂、脂肪族系エポキシ樹脂、複素環式エポキシ樹脂、グリシジルエステル系エポキシ樹脂、グリシジルアミン系エポキシ樹脂、ハロゲン化フェノール類をグリシジル化したエポキシ樹脂、エポキシ基をもつケイ素化合物とそれ以外のケイ素化合物との縮合物、エポキシ基を持つ重合性不飽和化合物とそれ以外の他の重合性不飽和化合物との共重合体等が挙げられる。
The epoxy resin composition of the present invention contains a carboxylic acid compound (A) and an epoxy resin, and, if necessary, a curing accelerator and various additives.
Examples of epoxy resins that can be used here include, for example, epoxy resins that are glycidyl etherification products of phenolic compounds, epoxy resins that are glycidyl etherification products of various novolak resins, alicyclic epoxy resins, aliphatic epoxy resins, heterocyclic types Epoxy resins, glycidyl ester epoxy resins, glycidyl amine epoxy resins, epoxy resins obtained by glycidylation of halogenated phenols, condensates of silicon compounds having an epoxy group with other silicon compounds, polymerizable groups having an epoxy group Examples include a copolymer of a saturated compound and other polymerizable unsaturated compound.
 前記フェノール類化合物のグリシジルエーテル化物であるエポキシ樹脂としては、例えば2-[4-(2,3-エポキシプロポキシ)フェニル]-2-[4-[1,1-ビス[4-(2,3-ヒドロキシ)フェニル]エチル]フェニル]プロパン、ビスフェノールA、ビスフェノールF、ビスフェノールS、4,4’-ビフェノール、テトラメチルビスフェノールA、ジメチルビスフェノールA、テトラメチルビスフェノールF、ジメチルビスフェノールF、テトラメチルビスフェノールS、ジメチルビスフェノールS、テトラメチル-4,4’-ビフェノール、ジメチル-4,4’-ビフェノール、1-(4-ヒドロキシフェニル)-2-[4-(1,1-ビス-(4-ヒドロキシフェニル)エチル)フェニル]プロパン、2,2’-メチレン-ビス(4-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデン-ビス(3-メチル-6-tert-ブチルフェノール)、トリスヒドロキシフェニルメタン、レゾルシノール、ハイドロキノン、ピロガロール、フロログリシノール、ジイソプロピリデン骨格を有するフェノール類、1,1-ジ-4-ヒドロキシフェニルフルオレン等のフルオレン骨格を有するフェノール類、フェノール化ポリブタジエン等のポリフェノール化合物のグリシジルエーテル化物であるエポキシ樹脂等が挙げられる。 Examples of the epoxy resin that is a glycidyl etherified product of the phenol compound include 2- [4- (2,3-epoxypropoxy) phenyl] -2- [4- [1,1-bis [4- (2,3 -Hydroxy) phenyl] ethyl] phenyl] propane, bisphenol A, bisphenol F, bisphenol S, 4,4'-biphenol, tetramethyl bisphenol A, dimethyl bisphenol A, tetramethyl bisphenol F, dimethyl bisphenol F, tetramethyl bisphenol S, Dimethylbisphenol S, tetramethyl-4,4′-biphenol, dimethyl-4,4′-biphenol, 1- (4-hydroxyphenyl) -2- [4- (1,1-bis- (4-hydroxyphenyl) Ethyl) phenyl] propane, 2,2'-me Ren-bis (4-methyl-6-tert-butylphenol), 4,4′-butylidene-bis (3-methyl-6-tert-butylphenol), trishydroxyphenylmethane, resorcinol, hydroquinone, pyrogallol, phloroglucinol, Examples thereof include phenols having a diisopropylidene skeleton, phenols having a fluorene skeleton such as 1,1-di-4-hydroxyphenylfluorene, and epoxy resins which are glycidyl etherified products of polyphenol compounds such as phenolized polybutadiene.
 前記各種ノボラック樹脂のグリシジルエーテル化物であるエポキシ樹脂としては、例えばフェノール、クレゾール類、エチルフェノール類、ブチルフェノール類、オクチルフェノール類、ビスフェノールA、ビスフェノールF及びビスフェノールS等のビスフェノール類、ナフトール類等の各種フェノールを原料とするノボラック樹脂、キシリレン骨格含有フェノールノボラック樹脂、ジシクロペンタジエン骨格含有フェノールノボラック樹脂、ビフェニル骨格含有フェノールノボラック樹脂、フルオレン骨格含有フェノールノボラック樹脂等の各種ノボラック樹脂のグリシジルエーテル化物等が挙げられる。 Examples of epoxy resins that are glycidyl etherified products of various novolak resins include phenols, cresols, ethylphenols, butylphenols, octylphenols, bisphenols such as bisphenol A, bisphenol F and bisphenol S, and various phenols such as naphthols. And glycidyl etherified products of various novolac resins such as a novolak resin, a phenol novolac resin containing a xylylene skeleton, a phenol novolak resin containing a dicyclopentadiene skeleton, a phenol novolak resin containing a biphenyl skeleton, and a phenol novolac resin containing a fluorene skeleton.
 前記脂環式エポキシ樹脂としては、例えば3,4-エポキシシクロヘキシルメチル-(3,4-エポキシ)シクロヘキシルカルボキシレート、ビス(3,4-エポキシシクロヘキシルメチル)アジペート等の脂肪族環骨格を有する脂環式エポキシ樹脂が挙げられる。
 前記脂肪族系エポキシ樹脂としては、例えば1,4-ブタンジオール、1,6-ヘキサンジオール、ポリエチレングリコール、ペンタエリスリトール等の多価アルコールのグリシジルエーテル類が挙げられる。
 複素環式エポキシ樹脂としては、例えばイソシアヌル環、ヒダントイン環等の複素環を有する複素環式エポキシ樹脂が挙げられる。
 前記グリシジルエステル系エポキシ樹脂としては、例えばヘキサヒドロフタル酸ジグリシジルエステル等のカルボン酸エステル類からなるエポキシ樹脂が挙げられる。
 グリシジルアミン系エポキシ樹脂としては、例えばアニリン、トルイジン等のアミン類をグリシジル化したエポキシ樹脂が挙げられる。
 前記ハロゲン化フェノール類をグリシジル化したエポキシ樹脂としては、例えばブロム化ビスフェノールA、ブロム化ビスフェノールF、ブロム化ビスフェノールS、ブロム化フェノールノボラック、ブロム化クレゾールノボラック、クロル化ビスフェノールS、クロル化ビスフェノールA等のハロゲン化フェノール類をグリシジル化したエポキシ樹脂が挙げられる。
Examples of the alicyclic epoxy resin include alicyclic rings having an aliphatic ring skeleton such as 3,4-epoxycyclohexylmethyl- (3,4-epoxy) cyclohexylcarboxylate and bis (3,4-epoxycyclohexylmethyl) adipate. An epoxy resin is mentioned.
Examples of the aliphatic epoxy resin include glycidyl ethers of polyhydric alcohols such as 1,4-butanediol, 1,6-hexanediol, polyethylene glycol, and pentaerythritol.
Examples of the heterocyclic epoxy resin include heterocyclic epoxy resins having a heterocyclic ring such as an isocyanuric ring and a hydantoin ring.
Examples of the glycidyl ester-based epoxy resin include epoxy resins made of carboxylic acid esters such as hexahydrophthalic acid diglycidyl ester.
Examples of the glycidylamine-based epoxy resin include epoxy resins obtained by glycidylating amines such as aniline and toluidine.
Examples of epoxy resins obtained by glycidylating halogenated phenols include brominated bisphenol A, brominated bisphenol F, brominated bisphenol S, brominated phenol novolac, brominated cresol novolac, chlorinated bisphenol S, chlorinated bisphenol A, and the like. An epoxy resin obtained by glycidylating any of the halogenated phenols.
 前記エポキシ基をもつケイ素化合物とそれ以外のケイ素化合物との縮合物とは、例えばエポキシ基をもつアルコキシシラン化合物とメチル基やフェニル基を持つアルコキシシランの加水分解縮合物や、エポキシ基をもつアルコキシシラン化合物とシラノール基をもつポリジメチルシロキサン、シラノール基をもつポリジメチルジフェニルシロキサンとの縮合物、またはそれらを併用し得られた縮合化合物のことである。エポキシ基をもつアルコキシシラン化合物としては、例えば2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン等が挙げられる。シラノール基をもつポリジメチルシロキサン、シラノール基をもつポリジメチルジフェニルシロキサンとしては、例えば市場から入手可能な製品では、X-21-5841、KF-9701(信越化学工業(株)製)、BY16-873、PRX413(東レ・ダウコーニング(株)製)XC96-723、YF3804、YF3800、XF3905、YF3057(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社)、DMS-S12、DMS-S14、DMS-S15、DMS-S21、DMS-S27、DMS-S31(Gelest社製)等が挙げられる。
 エポキシ基を持つ重合性不飽和化合物とそれ以外の他の重合性不飽和化合物との共重合体としては、市場から入手可能な製品ではマープルーフG-0115S、同G-0130S、同G-0250S、同G-1010S、同G-0150M、同G-2050M (日油(株)製)等が挙げられ、エポキシ基を持つ重合性不飽和化合物としては、例えばアクリル酸グリシジル、メタクリル酸グリシジル、4-ビニル-1-シクロヘキセン-1,2-エポキシド等が挙げられる。また他の重合性不飽和化合物の共重合体としては、例えばメチル(メタ)アクリレート、エーテル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、スチレン、ビニルシクロヘキサンなどが挙げられる。これらエポキシ樹脂は1種又は2種以上を混合して用いても良い。
The condensate of the silicon compound having an epoxy group and the other silicon compound is, for example, a hydrolysis condensate of an alkoxysilane compound having an epoxy group and an alkoxysilane having a methyl group or a phenyl group, or an alkoxy group having an epoxy group. It is a condensate of a silane compound and a polydimethylsiloxane having a silanol group, a polydimethyldiphenylsiloxane having a silanol group, or a condensate obtained by combining them. Examples of the alkoxysilane compound having an epoxy group include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, and 3-glycidoxypropyltrimethoxysilane. , 3-glycidoxypropylmethyldimethoxysilane and the like. As polydimethylsiloxane having a silanol group and polydimethyldiphenylsiloxane having a silanol group, for example, X-21-5841, KF-9701 (manufactured by Shin-Etsu Chemical Co., Ltd.), BY16-873 are commercially available products. , PRX413 (Toray Dow Corning) XC96-723, YF3804, YF3800, XF3905, YF3057 (Momentive Performance Materials Japan GK), DMS-S12, DMS-S14, DMS-S15, DMS- S21, DMS-S27, DMS-S31 (manufactured by Gelest) and the like.
As a copolymer of a polymerizable unsaturated compound having an epoxy group and other polymerizable unsaturated compounds, Marproof G-0115S, G-0130S and G-0250S are commercially available products. G-1010S, G-0150M, G-2050M (manufactured by NOF Corporation), and the like. Examples of the polymerizable unsaturated compound having an epoxy group include glycidyl acrylate, glycidyl methacrylate, 4 -Vinyl-1-cyclohexene-1,2-epoxide and the like. Examples of other polymerizable unsaturated compound copolymers include methyl (meth) acrylate, ether (meth) acrylate, benzyl (meth) acrylate, cyclohexyl (meth) acrylate, styrene, and vinylcyclohexane. These epoxy resins may be used alone or in combination of two or more.
 本発明のエポキシ樹脂組成物を特に光半導体封止材用途に用いる場合、前記したエポキシ樹脂の中でも、エポキシ当量(JIS K-7236に記載の方法で測定)が400~1500g/eq.のものが好ましく、450~1100g/eq.がさらに好ましい。エポキシ当量が400g/eq.未満のものであると、硬化物が硬くなりすぎてクラック等のひび割れが発生する傾向があり、1500g/eq.よりも大きいと、表面のベタツキが発生する傾向がある。
 また、重量平均分子量は1500~10000のものが好ましく、1800~5000のものがさらに好ましい。重量平均分子量が1500未満のものであると、硬化物の靭性が劣る傾向があり、例えばヒートサイクル試験などにおいてクラック等のひび割れが発生する懸念がある。重量平均分子量が10000より大きいものであると粘度が高く、作業性に劣る傾向がある。
 前記したエポキシ当量と重量平均分子量であるエポキシ樹脂の中でも、透明性、耐熱透明性、耐光透明性、耐ヒートサイクル性等の観点から、エポキシ基をもつケイ素化合物とそれ以外のケイ素化合物との縮合物がさらに好ましい。
 なお、本発明における重量平均分子量とは、GPC(ゲルパーミエーションクロマトグラフィー)を用いて、下記条件等で測定されたポリスチレン換算、重量平均分子量(Mw)のことである。
 GPCの各種条件
   メーカー:島津製作所
   カラム:ガードカラム SHODEX GPC LF-G LF-804(3本)
   流速:1.0ml/min.
   カラム温度:40℃
   使用溶剤:THF(テトラヒドロフラン)
   検出器:RI(示差屈折検出器)
When the epoxy resin composition of the present invention is used particularly for an optical semiconductor encapsulant, the epoxy equivalent (measured by the method described in JIS K-7236) is 400 to 1500 g / eq. And preferably 450 to 1100 g / eq. Is more preferable. Epoxy equivalent is 400 g / eq. If it is less than 1, the cured product tends to be too hard and cracks such as cracks tend to occur, and 1500 g / eq. If it is larger than the range, surface stickiness tends to occur.
The weight average molecular weight is preferably 1500 to 10,000, more preferably 1800 to 5000. If the weight average molecular weight is less than 1500, the toughness of the cured product tends to be inferior. For example, cracks such as cracks may occur in a heat cycle test or the like. If the weight average molecular weight is greater than 10,000, the viscosity tends to be high and workability tends to be poor.
Among the epoxy resins having the epoxy equivalent weight and the weight average molecular weight, condensation of a silicon compound having an epoxy group with other silicon compounds from the viewpoints of transparency, heat-resistant transparency, light-resistant transparency, heat cycle resistance, etc. More preferred are.
In addition, the weight average molecular weight in this invention is a polystyrene conversion and a weight average molecular weight (Mw) measured on condition of the following etc. using GPC (gel permeation chromatography).
Various conditions of GPC Manufacturer: Shimadzu Corporation Column: Guard column SHODEX GPC LF-G LF-804 (3)
Flow rate: 1.0 ml / min.
Column temperature: 40 ° C
Solvent: THF (tetrahydrofuran)
Detector: RI (differential refraction detector)
 本発明のエポキシ樹脂組成物における前記各成分の含有量は、本発明の式(1)で表されるシリコーン化合物(a)と式(3)~(5)で示される化合物(c)(及び必要によりカルボン酸無水物基をもつ化合物(b))とを付加反応させることにより得られるカルボン酸化合物(A)5~95重量部、好ましくは20~80重量部、前記したようなエポキシ樹脂5~95重量部、好ましくは20~80重量部、必要により硬化促進剤、0.005~10重量部、好ましくは0.05~5重量部である。 The content of each component in the epoxy resin composition of the present invention includes the silicone compound (a) represented by the formula (1) of the present invention and the compound (c) represented by the formulas (3) to (5) (and 5 to 95 parts by weight, preferably 20 to 80 parts by weight of the carboxylic acid compound (A) obtained by addition reaction with the compound (b)) having a carboxylic acid anhydride group, if necessary, the epoxy resin 5 as described above ~ 95 parts by weight, preferably 20 to 80 parts by weight, if necessary, curing accelerator, 0.005 to 10 parts by weight, preferably 0.05 to 5 parts by weight.
 本発明のエポキシ樹脂組成物は前記各成分を常温もしくは加温下で均一に混合することにより得られる。例えば、押出機、ニーダー、三本ロール、万能ミキサー、プラネタリーミキサー、ホモミキサー、ホモディスパー、ビーズミル等を用いて均一になるまで充分に混合し、必要によりSUSメッシュ等によりろ過処理を行うことにより調製される。 The epoxy resin composition of the present invention can be obtained by uniformly mixing the above components at room temperature or under heating. For example, mix thoroughly until uniform using an extruder, kneader, three rolls, universal mixer, planetary mixer, homomixer, homodisper, bead mill, etc., and if necessary, filter with SUS mesh etc. Prepared.
 本発明のエポキシ樹脂硬化剤及びエポキシ樹脂組成物には、必要に応じて他のエポキシ樹脂硬化剤を併用することができる。
 併用できるエポキシ樹脂硬化剤としては、例えば、多価カルボン酸類、カルボン酸無水物類、フェノール類、ヒドラジン類、メルカプタン類等が挙げられる。
The epoxy resin curing agent and the epoxy resin composition of the present invention can be used in combination with other epoxy resin curing agents as necessary.
Examples of the epoxy resin curing agent that can be used in combination include polyvalent carboxylic acids, carboxylic anhydrides, phenols, hydrazines, and mercaptans.
 前記多価カルボン酸類としては、脂肪族多価カルボン酸、環状脂肪族多価カルボン酸、芳香族多価カルボン酸、複素環多価カルボン酸等が挙げられる。
 前記脂肪族多価カルボン酸としては、例えばシュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,2,3-プロパントリカルボン酸、1,2,3,4-ブタンテトラカルボン酸等が挙げられる。
 前記環状脂肪族多価カルボン酸としては、例えばヘキサヒドロフタル酸、1,3-アダマンタン二酢酸、1,3-アダマンタンジカルボン酸、テトラヒドロフタル酸、2,3-ノルボルネンジカルボン酸、1,2,4-シクロヘキサントリカルボン酸、1,3,5-シクロヘキサントリカルボン酸、1,2,3-シクロヘキサントリカルボン酸、1,2,4,6-シクロヘキサンテトラカルボン酸等が挙げられる。
 前記芳香族多価カルボン酸としては、例えばフタル酸、イソフタル酸、テレフタル酸、1,2-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、9,10-アントラセンジカルボン酸、4,4’-ベンゾフェノンジカルボン酸、2,2’-ビフェニルジカルボン酸、3,3’-ビフェニルジカルボン酸、4,4’-ビフェニルジカルボン酸、3,3’-ビフェニルエーテルジカルボン酸、4,4’-ビフェニルエーテルジカルボン酸、4,4’-ビナフチルジカルボン酸、ヘミメリット酸、トリメリット酸、トリメシン酸、1,2,4-ナフタレントリカルボン酸、2,5,7-ナフタレントリカルボン酸、メロファン酸、プレーニト酸、ピロメリット酸、3,3’4,4’-ベンゾフェノンテトラカルボン酸、2,2’3,3’-ベンゾフェノンテトラカルボン酸、2,3,3’,4’-ベンゾフェノンテトラカルボン酸、3,3’4,4’-ビフェニルテトラカルボン酸、2,2’,3,3’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、4,4’-オキシジフタル酸、3,3’4,4’-ジフェニルメタンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、2,3,6,7-ナフタレンテトラカルボン酸、アントラセンテトラカルボン酸等が挙げられる。
 前記複素環多価カルボン酸としては、例えばトリス(2-カルボキシエチル)イソシアヌレート、トリス(3-カルボキシプロピル)イソシアヌレート等が挙げられる。
Examples of the polyvalent carboxylic acids include aliphatic polyvalent carboxylic acids, cycloaliphatic polyvalent carboxylic acids, aromatic polyvalent carboxylic acids, and heterocyclic polyvalent carboxylic acids.
Examples of the aliphatic polycarboxylic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1,2,3-propanetricarboxylic acid, 1, Examples include 2,3,4-butanetetracarboxylic acid.
Examples of the cycloaliphatic polyvalent carboxylic acid include hexahydrophthalic acid, 1,3-adamantane diacetic acid, 1,3-adamantane dicarboxylic acid, tetrahydrophthalic acid, 2,3-norbornene dicarboxylic acid, 1,2,4 -Cyclohexanetricarboxylic acid, 1,3,5-cyclohexanetricarboxylic acid, 1,2,3-cyclohexanetricarboxylic acid, 1,2,4,6-cyclohexanetetracarboxylic acid and the like.
Examples of the aromatic polyvalent carboxylic acid include phthalic acid, isophthalic acid, terephthalic acid, 1,2-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, and 2,3-naphthalenedicarboxylic acid. Acid, 2,6-naphthalenedicarboxylic acid, 9,10-anthracene dicarboxylic acid, 4,4′-benzophenone dicarboxylic acid, 2,2′-biphenyl dicarboxylic acid, 3,3′-biphenyl dicarboxylic acid, 4,4′- Biphenyl dicarboxylic acid, 3,3′-biphenyl ether dicarboxylic acid, 4,4′-biphenyl ether dicarboxylic acid, 4,4′-binaphthyl dicarboxylic acid, hemimellitic acid, trimellitic acid, trimesic acid, 1,2,4- Naphthalenetricarboxylic acid, 2,5,7-naphthalenetricarboxylic acid, merophanic acid, plani Acid, pyromellitic acid, 3,3′4,4′-benzophenone tetracarboxylic acid, 2,2′3,3′-benzophenone tetracarboxylic acid, 2,3,3 ′, 4′-benzophenone tetracarboxylic acid, 3,3′4,4′-biphenyltetracarboxylic acid, 2,2 ′, 3,3′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, 4,4′-oxydiphthalate Acid, 3,3'4,4'-diphenylmethanetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 2,3,6,7- Naphthalene tetracarboxylic acid, anthracene tetracarboxylic acid and the like can be mentioned.
Examples of the heterocyclic polycarboxylic acid include tris (2-carboxyethyl) isocyanurate and tris (3-carboxypropyl) isocyanurate.
 前記カルボン酸無水物類としては、脂肪族カルボン酸無水物、環状脂肪族カルボン酸無水物、芳香族カルボン酸無水物等が挙げられる。
 前記脂肪族カルボン酸無水物としては、例えばコハク酸無水物、メチルコハク酸無水物、エチルコハク酸無水物、2,3-ブタンジカルボン酸無水物、2,4-ペンタンジカルボン酸無水物、3,5-ヘプタンジカルボン酸無水物、1,2,3,4-ブタンテトラカルボン酸二無水物、マレイン酸無水物、ドデシルコハク酸無水物等が挙げられる。
 環状脂肪族カルボン酸無水物としては、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、1,3-シクロヘキサンジカルボン酸無水物、水素添加ナジック酸無水物、水素添加メチルナジック酸無水物、ビシクロ[2,2,2]オクタン-2,3-ジカルボン酸無水物、1,2,4-シクロヘキサントリカルボン酸-1,2-無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、テトラヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、ナジック酸無水物、メチルナジック酸無水物、4,5-ジメチル-4-シクロヘキセン-1,2-ジカルボン酸無水物、ビシクロ[2.2.2]-5-オクテン-2,3-ジカルボン酸無水物等が挙げられる。
 前記芳香族カルボン酸無水物としては、例えばフタル酸無水物、イソフタル酸無水物、テレフタル酸無水物、トリメリット酸無水物、ピロメリット酸無水物等が挙げられる。
 その他、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物等の同一化合物内に脂肪族カルボン酸無水物、環状脂肪族カルボン酸無水物を持つ化合物等が挙げられる。
Examples of the carboxylic acid anhydrides include aliphatic carboxylic acid anhydrides, cycloaliphatic carboxylic acid anhydrides, and aromatic carboxylic acid anhydrides.
Examples of the aliphatic carboxylic acid anhydride include succinic acid anhydride, methyl succinic acid anhydride, ethyl succinic acid anhydride, 2,3-butanedicarboxylic acid anhydride, 2,4-pentanedicarboxylic acid anhydride, 3,5- Examples include heptane dicarboxylic acid anhydride, 1,2,3,4-butanetetracarboxylic dianhydride, maleic acid anhydride, dodecyl succinic acid anhydride and the like.
Cyclic aliphatic carboxylic acid anhydrides include hexahydrophthalic acid anhydride, methyl hexahydrophthalic acid anhydride, 1,3-cyclohexanedicarboxylic acid anhydride, hydrogenated nadic acid anhydride, hydrogenated methyl nadic acid anhydride, Bicyclo [2,2,2] octane-2,3-dicarboxylic anhydride, 1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, nadic acid Anhydride, methyl nadic anhydride, 4,5-dimethyl-4-cyclohexene-1,2-dicarboxylic anhydride, bicyclo [2.2 .2] -5-octene-2,3-dicarboxylic acid anhydride and the like.
Examples of the aromatic carboxylic anhydride include phthalic anhydride, isophthalic anhydride, terephthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like.
In addition, 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, 4- (2,5-dioxotetrahydrofuran-3-yl) -1, Examples thereof include compounds having an aliphatic carboxylic acid anhydride and a cyclic aliphatic carboxylic acid anhydride in the same compound such as 2,3,4-tetrahydronaphthalene-1,2-dicarboxylic acid anhydride.
 前記フェノール類としては、例えばビスフェノールA、ビスフェノールF、ビスフェノールS、4,4’-ビフェニルフェノール、テトラメチルビスフェノールA、ジメチルビスフェノールA、テトラメチルビスフェノールF、ジメチルビスフェノールF、テトラメチルビスフェノールS、ジメチルビスフェノールS、テトラメチル-4,4’-ビフェノール、ジメチル-4,4’-ビフェニルフェノール、1-(4-ヒドロキシフェニル)-2-[4-(1,1-ビス-(4-ヒドロキシフェニル)エチル)フェニル]プロパン、2,2’-メチレン-ビス(4-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデン-ビス(3-メチル-6-tert-ブチルフェノール)、トリスヒドロキシフェニルメタン、レゾルシノール、ハイドロキノン、ピロガロール、ジイソプロピリデン骨格を有するフェノール類;1,1-ジ-4-ヒドロキシフェニルフルオレン等のフルオレン骨格を有するフェノール類;フェノール化ポリブタジエン、フェノール、クレゾール類、エチルフェノール類、ブチルフェノール類、オクチルフェノール類、ビスフェノールA、ビスフェノールF、ビスフェノールS、ナフトール類等の各種フェノールを原料とするノボラック樹脂;キシリレン骨格含有フェノールノボラック樹脂、ジシクロペンタジエン骨格含有フェノールノボラック樹脂、ビフェニル骨格含有フェノールノボラック樹脂、フルオレン骨格含有フェノールノボラック樹脂、フラン骨格含有フェノールノボラック樹脂等の各種ノボラック樹脂等が挙げられる。 Examples of the phenols include bisphenol A, bisphenol F, bisphenol S, 4,4′-biphenylphenol, tetramethyl bisphenol A, dimethyl bisphenol A, tetramethyl bisphenol F, dimethyl bisphenol F, tetramethyl bisphenol S, dimethyl bisphenol S. Tetramethyl-4,4′-biphenol, dimethyl-4,4′-biphenylphenol, 1- (4-hydroxyphenyl) -2- [4- (1,1-bis- (4-hydroxyphenyl) ethyl) Phenyl] propane, 2,2′-methylene-bis (4-methyl-6-tert-butylphenol), 4,4′-butylidene-bis (3-methyl-6-tert-butylphenol), trishydroxyphenylmethane, resorci Phenols having a fluorene skeleton such as 1,1-di-4-hydroxyphenylfluorene; phenolic polybutadiene, phenol, cresols, ethylphenols, butylphenol , Octylphenols, bisphenol A, bisphenol F, bisphenol S, novolac resins made from various phenols such as naphthols; xylylene skeleton-containing phenol novolac resins, dicyclopentadiene skeleton-containing phenol novolac resins, biphenyl skeleton-containing phenol novolac resins, Examples include various novolak resins such as a fluorene skeleton-containing phenol novolac resin and a furan skeleton-containing phenol novolac resin.
 前記ヒドラジン類としては、例えばイソフタル酸ジヒドラジド、アジピン酸ジヒドラジド、セバチン酸ジヒドラジド、ドデカン二酸ジヒドラジド、2,6-ナフタレンジカルボン酸ジヒドラジド等が挙げられる。 Examples of the hydrazines include isophthalic acid dihydrazide, adipic acid dihydrazide, sebacic acid dihydrazide, dodecanedioic acid dihydrazide, and 2,6-naphthalenedicarboxylic acid dihydrazide.
 前記メルカプタン類としては、例えばトリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、トリス[(3-メルカプトプロピオニロキシ)-エチル]、イソシアヌレート1,4-ビス(3-メルカプトブチリルオキシ)ブタン、ペンタエリスリトール テトラキス(3-メルカプトブチレート)、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン等が挙げられる。 Examples of the mercaptans include trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), dipentaerythritol hexakis (3-mercaptopropionate), tris [(3 -Mercaptopropionyloxy) -ethyl], isocyanurate 1,4-bis (3-mercaptobutyryloxy) butane, pentaerythritol tetrakis (3-mercaptobutyrate), 1,3,5-tris (3-mercaptobutyl And oxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione.
 これらエポキシ樹脂硬化剤は1種又は2種以上を混合して併用しても良い。本発明のカルボン酸化合物(A)とこれ以外の前記したような硬化剤とを併用する場合は、全硬化剤中に占める該カルボン酸化合物(A)の割合が50重量%以上、好ましくは80重量%以上になるように使用量を調整する。 These epoxy resin curing agents may be used alone or in combination of two or more. When the carboxylic acid compound (A) of the present invention is used in combination with the other curing agents as described above, the proportion of the carboxylic acid compound (A) in the total curing agent is 50% by weight or more, preferably 80%. Adjust the usage so that it is at least wt%.
 次に、本発明のエポキシ樹脂組成物には、必要に応じて、カップリング剤、蛍光体、無機充填剤、高熱伝導性微粒子、難燃剤としてのリン化合物充填剤、バインダー樹脂等を添加することができる。
 使用できるカップリング剤としては、例えば3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビニルトリメトキシシラン、N-(2-(ビニルベンジルアミノ)エチル)3-アミノプロピルトリメトキシシラン塩酸塩、3-メタクリロキシプロピルトリメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルトリメトキシシラン等のシラン系カップリング剤;イソプロピル(N-エチルアミノエチルアミノ)チタネート、イソプロピルトリイソステアロイルチタネート、チタニウムジ(ジオクチルピロフォスフェート)オキシアセテート、テトライソプロピルジ(ジオクチルフォスファイト)チタネート、ネオアルコキシトリ(p-N-(β-アミノエチル)アミノフェニル)チタネート等のチタン系カップリング剤;Zr-アセチルアセトネート、Zr-メタクリレート、Zr-プロピオネート、ネオアルコキシジルコネート、ネオアルコキシトリスネオデカノイルジルコネート、ネオアルコキシトリス(ドデカノイル)ベンゼンスルフォニルジルコネート、ネオアルコキシトリス(エチレンジアミノエチル)ジルコネート、ネオアルコキシトリス(m-アミノフェニル)ジルコネート、アンモニウムジルコニウムカーボネート、Al-アセチルアセトネート、Al-メタクリレート、Al-プロピオネート等のジルコニウム、或いはアルミニウム系カップリング剤等が挙げられる。
 これらカップリング剤は1種又は2種以上を混合して用いても良い。
 カップリング剤を使用する事により基材との密着性の向上や、硬化物の硬度の向上が見込める。カップリング剤は、本発明のエポキシ樹脂組成分中において通常0.05~20重量部、好ましくは0.1~10重量部が必要に応じて含有される。
Next, a coupling agent, a phosphor, an inorganic filler, highly heat conductive fine particles, a phosphorus compound filler as a flame retardant, a binder resin, etc. are added to the epoxy resin composition of the present invention as necessary. Can do.
Examples of coupling agents that can be used include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 2- (3,4-epoxycyclohexyl) ethyl. Trimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltri Methoxysilane, vinyltrimethoxysilane, N- (2- (vinylbenzylamino) ethyl) 3-aminopropyltrimethoxysilane hydrochloride, 3-methacryloxypropyltrimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloro Silane coupling agents such as propyltrimethoxysilane; isopropyl (N-ethylaminoethylamino) titanate, isopropyl triisostearoyl titanate, titanium di (dioctyl pyrophosphate) oxyacetate, tetraisopropyl di (dioctyl phosphite) titanate, Titanium coupling agents such as neoalkoxytri (pN- (β-aminoethyl) aminophenyl) titanate; Zr-acetylacetonate, Zr-methacrylate, Zr-propionate, neoalkoxyzirconate, neoalkoxytrisneodeca Noyl zirconate, neoalkoxytris (dodecanoyl) benzenesulfonyl zirconate, neoalkoxytris (ethylenediaminoethyl) zirconate, neoalco Examples thereof include zirconium such as xylitol (m-aminophenyl) zirconate, ammonium zirconium carbonate, Al-acetylacetonate, Al-methacrylate, Al-propionate, and aluminum coupling agents.
These coupling agents may be used alone or in combination of two or more.
The use of a coupling agent can be expected to improve the adhesion to the substrate and the hardness of the cured product. The coupling agent is usually contained in an amount of 0.05 to 20 parts by weight, preferably 0.1 to 10 parts by weight, if necessary, in the epoxy resin composition of the present invention.
 使用できる蛍光体としては、YAG蛍光体、TAG蛍光体、オルトシリケート蛍光体、チオガレート蛍光体、硫化物蛍光体等の蛍光体が挙げられる。蛍光体を添加することによりエポキシ樹脂組成物に蛍光性を付与することができる。 Examples of phosphors that can be used include phosphors such as YAG phosphors, TAG phosphors, orthosilicate phosphors, thiogallate phosphors, and sulfide phosphors. Fluorescence can be imparted to the epoxy resin composition by adding a phosphor.
 使用できる無機充填剤としては、例えば結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられる。無機充填剤を添加することにより、耐熱性、耐光性を付与したり、粘度の調整等をしたりすることができる。これら無機充填剤の含有量は、本発明のエポキシ樹脂組成物中において0~90重量部を占める量が用いられる。 Examples of inorganic fillers that can be used include powders of crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc and the like. Or a bead obtained by spheroidizing these. By adding an inorganic filler, heat resistance and light resistance can be imparted, viscosity can be adjusted, and the like. The content of these inorganic fillers is used in an amount of 0 to 90 parts by weight in the epoxy resin composition of the present invention.
 使用できる高熱伝導性微粒子としては、例えば金、銀、銅、鉄、ニッケル、すず、アルミニウム、コバルト、インジウム等の金属粒子やこれらの合金、酸化アルミニウム、酸化マグネシウム、酸化チタン等の金属酸化物、窒化ホウ素、窒化アルミニウム等の金属窒化物、黒鉛、ダイヤモンド、カーボンブラック等の炭素化合物、樹脂粒子に金属層を被覆した金属被覆粒子等が挙げられる。高熱伝導性微粒子を添加することにより、エポキシ樹脂組成物の熱伝導性を向上させることができる。 Examples of the high thermal conductive fine particles that can be used include metal particles such as gold, silver, copper, iron, nickel, tin, aluminum, cobalt, and indium, and alloys thereof, metal oxides such as aluminum oxide, magnesium oxide, and titanium oxide, Examples thereof include metal nitrides such as boron nitride and aluminum nitride, carbon compounds such as graphite, diamond and carbon black, and metal-coated particles obtained by coating a resin layer with a metal layer. By adding the high thermal conductive fine particles, the thermal conductivity of the epoxy resin composition can be improved.
 使用できるリン含有化合物としては反応型のものでも添加型のものでもよい。リン含有化合物としては、例えばトリメチルホスフェート、トリエチルホスフェート、トリクレジルホスフェート、トリキシリレニルホスフェート、クレジルジフェニルホスフェート、クレジル-2,6-ジキシリレニルホスフェート、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)、4,4’-ビフェニル(ジキシリレニルホスフェート)等のリン酸エステル類、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のホスファン類、エポキシ樹脂と前記ホスファン類の活性水素とを反応させて得られるリン含有エポキシ化合物、赤リン等が挙げられるが、リン酸エステル類、ホスファン類またはリン含有エポキシ化合物が好ましく、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)、4,4’-ビフェニル(ジキシリレニルホスフェート)またはリン含有エポキシ化合物が好ましい。上記リン含有化合物の含有量は、リン含有化合物/エポキシ樹脂=0.1~0.6(重量比)が好ましい。0.1未満では難燃性が不十分であり、0.6を超えると硬化物の吸湿性、誘電特性に悪影響を及ぼす懸念がある。 The phosphorus-containing compound that can be used may be a reactive type or an additive type. Examples of phosphorus-containing compounds include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylylenyl phosphate, 1,3-phenylenebis (dixylyl). Phosphoric esters such as lenyl phosphate), 1,4-phenylenebis (dixylylenyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate), 9,10-dihydro-9-oxa-10 -Phosphanphenanthrene-10-oxide, 10 (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide, and other phosphanes, epoxy resin and active hydrogen of the phosphanes Phosphorus-containing ester obtained by reaction Xyl compounds, red phosphorus, and the like. Phosphoric esters, phosphanes, or phosphorus-containing epoxy compounds are preferable, and 1,3-phenylenebis (dixylenyl phosphate), 1,4-phenylenebis (dixylylene). Nyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate) or phosphorus-containing epoxy compounds are preferred. The content of the phosphorus-containing compound is preferably phosphorus-containing compound / epoxy resin = 0.1 to 0.6 (weight ratio). If it is less than 0.1, the flame retardancy is insufficient, and if it exceeds 0.6, there is a concern that it may adversely affect the hygroscopicity and dielectric properties of the cured product.
 使用できるバインダー樹脂としては、ブチラール系樹脂、アセタール系樹脂、アクリル系樹脂、エポキシ-ナイロン系樹脂、NBR-フェノール系樹脂、エポキシ-NBR系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、シリコーン系樹脂などが挙げられるが、これらに限定されるものではない。バインダー樹脂は、本発明のエポキシ樹脂組成分中において通常0.05~50重量部、好ましくは0.05~20重量部が必要に応じて含有される。 Binder resins that can be used include butyral resins, acetal resins, acrylic resins, epoxy-nylon resins, NBR-phenol resins, epoxy-NBR resins, polyamide resins, polyimide resins, and silicone resins. Although it is mentioned, it is not limited to these. The binder resin is usually contained in an amount of 0.05 to 50 parts by weight, preferably 0.05 to 20 parts by weight, if necessary, in the epoxy resin composition of the present invention.
 更に本発明の硬化性樹脂組成物には、ステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウム等の離型剤、染料、顔料等の着色剤、酸化防止剤、光安定剤、耐湿性向上剤、チキソトロピー付与剤、消泡剤、粘着付与剤、耐衝撃性改良剤、イオントラップ剤、帯電防止剤、滑剤、レベリング剤、表面張力低下剤、消泡剤、沈降防止剤、界面活性剤、紫外線吸収剤等の添加剤、各種熱硬化性樹脂、他の各種の樹脂を添加することができる。これらはそれ自体公知の方法により本発明のエポキシ樹脂組成物に添加される。 Further, the curable resin composition of the present invention includes a release agent such as stearic acid, palmitic acid, zinc stearate, calcium stearate, a coloring agent such as a dye and a pigment, an antioxidant, a light stabilizer, and a moisture resistance improver. , Thixotropy imparting agent, antifoaming agent, tackifier, impact resistance improving agent, ion trapping agent, antistatic agent, lubricant, leveling agent, surface tension reducing agent, antifoaming agent, antisettling agent, surfactant, ultraviolet ray Additives such as an absorbent, various thermosetting resins, and various other resins can be added. These are added to the epoxy resin composition of the present invention by a method known per se.
 本発明のエポキシ樹脂組成物は、必要に応じて溶剤を混合させてワニスやインクとして使用することもできる。溶剤は本発明のカルボン酸化合物(A)、エポキシ樹脂、硬化促進剤、その他添加剤等の各成分に対して高い溶解性を有し、これらと反応しないものであれば使用でき、その具体例としては、メタノール、エタノール、プロパノール、ブタノール等のアルコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、3-メトキシブタノール、3-メチル-3-メトキシブタノール等のグリコールエーテル類、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、エチルエトキシプロピオラート等のアルキレングリコールエーテルアセテート類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン等のケトン類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、2-ヒドロキシ-2-メチルプロピオン酸メチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、ヒドロキシ酢酸メチル、ヒドロキシ酢酸エチル、ヒドロキシ酢酸ブチル、乳酸メチル、乳酸エチル、乳酸ブチル、3-ヒドロキシプロピオン酸メチル、3-ヒドロキシプロピオン酸エチル、3-ヒドロキシプロピオン酸プロピル、3-ヒドロキシプロピオン酸ブチル、2-ヒドロキシ-3-メチルブタン酸プロピル、メトキシ酢酸エチル、メトキシ酢酸プロピル、エトキシ酢酸メチル、エトキシ酢酸エチル、エトキシ酢酸プロピル、エトキシ酢酸ブチル、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-メトキシプロピオン酸ブチル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル、2-エトキシプロピオン酸プロピル、2-エトキシプロピオン酸ブチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸プロピル、3-エトキシプロピオン酸ブチル等のエステル類、ジエチルエーテル、テトラヒドロフラン等のエーテル類等が挙げられる。その他、非プロトン性極性溶媒としてジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、アセトニトリル等も使用できる。
 これら溶剤は、本発明のエポキシ樹脂組成分中において通常2~90重量部が必要に応じて含有される。溶剤を用いてワニス又はインクとした場合の本発明のエポキシ樹脂組成物は、必要により、例えば0.05~2μmのフィルターを用いて精密濾過を行ってもよい。
The epoxy resin composition of the present invention can be used as a varnish or ink by mixing a solvent as necessary. The solvent can be used as long as it has a high solubility in each component such as the carboxylic acid compound (A), epoxy resin, curing accelerator, and other additives of the present invention and does not react with them. As alcohols such as methanol, ethanol, propanol, butanol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, 3-methoxybutanol, 3-methyl-3-methoxybutanol, etc. Glycol ethers, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate Alkylene glycol ether acetates such as 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate and ethyl ethoxypropiolate; aromatic hydrocarbons such as benzene, toluene and xylene; acetone, methyl ethyl ketone, methyl isobutyl Ketones such as ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone; methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl 2-hydroxy-2-methylpropionate, 2-hydroxy -2-ethyl ethyl propionate, methyl hydroxyacetate, ethyl hydroxyacetate, butyl hydroxyacetate, methyl lactate, ethyl lactate, butyl lactate, methyl 3-hydroxypropionate, ethyl 3-hydroxypropionate, 3- Propyl roxypropionate, butyl 3-hydroxypropionate, propyl 2-hydroxy-3-methylbutanoate, ethyl methoxyacetate, propyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, propyl ethoxyacetate, butyl ethoxyacetate, 2-methoxypropion Acid methyl, ethyl 2-methoxypropionate, propyl 2-methoxypropionate, butyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate, propyl 2-ethoxypropionate, 2-ethoxypropionic acid Butyl, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl 3-ethoxypropionate, 3-ethoxypropyl Examples thereof include esters such as ethyl lopionate, propyl 3-ethoxypropionate and butyl 3-ethoxypropionate, and ethers such as diethyl ether and tetrahydrofuran. In addition, dimethylformamide, dimethylacetamide, dimethylsulfoxide, acetonitrile and the like can be used as the aprotic polar solvent.
These solvents are usually contained in an amount of 2 to 90 parts by weight in the epoxy resin composition of the present invention as required. If necessary, the epoxy resin composition of the present invention in the case of using a solvent as a varnish or ink may be subjected to microfiltration using, for example, a 0.05 to 2 μm filter.
 次に本発明のエポキシ樹脂組成物を光半導体の封止材又はダイボンド材として用いる場合について詳細に説明する。 Next, the case where the epoxy resin composition of the present invention is used as an optical semiconductor sealing material or die bonding material will be described in detail.
 本発明のエポキシ樹脂組成物が高輝度白色LED等の光半導体の封止材、またはダイボンド材として用いる場合には、本発明のカルボン酸化合物(A)と、エポキシ樹脂の他、その他の硬化剤、硬化促進剤、カップリング材、酸化防止剤、光安定剤等の添加物を充分に混合することによりエポキシ樹脂組成物を調製し、封止材として、またはダイボンド材と封止材の両方に使用される。混合方法としては、ニーダー、三本ロール、万能ミキサー、プラネタリーミキサー、ホモミキサー、ホモディスパー、ビーズミル等を用いて常温または加温して混合する。 When the epoxy resin composition of the present invention is used as a sealing material for an optical semiconductor such as a high-intensity white LED, or a die bond material, in addition to the carboxylic acid compound (A) of the present invention and the epoxy resin, other curing agents Prepare an epoxy resin composition by thoroughly mixing additives such as curing accelerators, coupling materials, antioxidants, light stabilizers, etc., as a sealing material, or as both a die bond material and a sealing material used. As a mixing method, a kneader, a three-roll, a universal mixer, a planetary mixer, a homomixer, a homodisper, a bead mill or the like is used to mix at room temperature or warm.
 高輝度白色LED等の光半導体素子は、一般的にサファイア、スピネル、SiC、Si、ZnO等の基板上に積層させたGaAs、GaP、GaAlAs,GaAsP、AlGa、InP、GaN、InN、AlN、InGaN等の半導体チップを、接着剤(ダイボンド材)を用いてリードフレームや放熱板、パッケージに接着させてなる。電流を流すために金ワイヤ等のワイヤが接続されているタイプもある。その半導体チップを、熱や湿気から守り、かつレンズ機能の役割を果たすためにエポキシ樹脂等の封止材で封止されている。本発明のエポキシ樹脂組成物はこの封止材やダイボンド材として用いることができる。工程上からは本発明のエポキシ樹脂組成物をダイボンド材と封止材の両方に使用するのが好都合である。 Optical semiconductor elements such as high-intensity white LEDs are generally GaAs, GaP, GaAlAs, GaAsP, AlGa, InP, GaN, InN, AlN, InGaN laminated on a substrate of sapphire, spinel, SiC, Si, ZnO or the like. Such a semiconductor chip is bonded to a lead frame, a heat sink, or a package using an adhesive (die bond material). There is also a type in which a wire such as a gold wire is connected to pass an electric current. The semiconductor chip is sealed with a sealing material such as an epoxy resin in order to protect it from heat and moisture and play a role of a lens. The epoxy resin composition of the present invention can be used as this sealing material or die bond material. From the viewpoint of the process, it is advantageous to use the epoxy resin composition of the present invention for both the die bond material and the sealing material.
 半導体チップを、本発明のエポキシ樹脂組成物を用いて、基板に接着する方法としては、本発明のエポキシ樹脂組成物をディスペンサー、ポッティング、スクリーン印刷により塗布した後、半導体チップをのせて加熱硬化を行い、半導体チップを接着させることができる。加熱は、熱風循環式、赤外線、高周波等の方法が使用できる。
 加熱条件は例えば80~230℃で1分~24時間程度が好ましい。加熱硬化の際に発生する内部応力を低減する目的で、例えば80~120℃、30分~5時間予備硬化させた後に、120~180℃、30分~10時間の条件で後硬化させることができる。
As a method of adhering a semiconductor chip to a substrate using the epoxy resin composition of the present invention, the epoxy resin composition of the present invention is applied by a dispenser, potting, or screen printing, and then the semiconductor chip is placed and heat-cured. Yes, the semiconductor chip can be bonded. For the heating, methods such as hot air circulation, infrared rays and high frequency can be used.
For example, the heating conditions are preferably 80 to 230 ° C. for about 1 minute to 24 hours. For the purpose of reducing internal stress generated during heat-curing, for example, after pre-curing at 80 to 120 ° C. for 30 minutes to 5 hours, post-curing is performed at 120 to 180 ° C. for 30 minutes to 10 hours. it can.
 封止材の成形方式としては上記のように半導体チップが固定された基板を挿入した型枠内に封止材を注入した後に加熱硬化を行い成形する注入方式、金型上に封止材をあらかじめ注入し、そこに基板上に固定された半導体チップを浸漬させて加熱硬化をした後に金型から離形する圧縮成形方式等が用いられている。
 注入方法としては、ディスペンサー、トランスファー成形、射出成形等が挙げられる。
 加熱は、熱風循環式、赤外線、高周波等の方法が使用できる。
 加熱条件は例えば80~230℃で1分~24時間程度が好ましい。加熱硬化の際に発生する内部応力を低減する目的で、例えば80~120℃、30分~5時間予備硬化させた後に、120~180℃、30分~10時間の条件で後硬化させることができる。
As a molding method of the sealing material, as described above, an injection method in which the sealing material is injected into the mold frame in which the substrate on which the semiconductor chip is fixed is inserted and then heat-cured and molded, and the sealing material is formed on the mold. A compression molding method or the like in which a semiconductor chip fixed on a substrate is immersed therein and heat-cured and then released from a mold is used.
Examples of the injection method include dispenser, transfer molding, injection molding and the like.
For the heating, methods such as hot air circulation, infrared rays and high frequency can be used.
For example, the heating conditions are preferably 80 to 230 ° C. for about 1 minute to 24 hours. For the purpose of reducing internal stress generated during heat-curing, for example, after pre-curing at 80 to 120 ° C. for 30 minutes to 5 hours, post-curing is performed at 120 to 180 ° C. for 30 minutes to 10 hours. it can.
 本発明のカルボン酸化合物(A)は、特定の構造を有し、室温(25℃)で液状であり、エポキシ樹脂の硬化能に優れ、エポキシ樹脂を硬化させるのに通常採用される温度域での揮発性が極めて少ない。本発明のカルボン酸化合物(A)を含むエポキシ樹脂組成物は、通常のエポキシ樹脂組成物が使用される光学部品材料をはじめ各種用途に使用できる。
 光学用材料とは、可視光、赤外線、紫外線、X線、レーザーなどの光をその材料中を通過させる用途に用いる材料一般を示す。より具体的には、ランプタイプ、SMDタイプ等の光半導体封止材、光半導体ダイボンド材の他、以下のようなものが挙げられる。液晶ディスプレイ分野における基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルムなどの液晶用フィルムなどの液晶表示装置周辺材料である。また、次世代フラットパネルディスプレイとして期待されるカラーPDP(プラズマディスプレイ)の封止材、反射防止フィルム、光学補正フィルム、ハウジング材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またLED表示装置に使用されるLEDのモールド材、LEDの封止材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またプラズマアドレス液晶(PALC)ディスプレイにおける基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム、また有機EL(エレクトロルミネッセンス)ディスプレイにおける前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またフィールドエミッションディスプレイ(FED)における各種フィルム基板、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤である。光記録分野では、VD(ビデオディスク)、CD/CD-ROM、CD-R/RW、DVD-R/DVD-RAM、MO/MD、PD(相変化ディスク)、光カード用のディスク基板材料、ピックアップレンズ、保護フィルム、封止材、接着剤などである。
The carboxylic acid compound (A) of the present invention has a specific structure, is liquid at room temperature (25 ° C.), has excellent epoxy resin curability, and is usually employed in a temperature range for curing the epoxy resin. Is very volatile. The epoxy resin composition containing the carboxylic acid compound (A) of the present invention can be used for various applications including optical component materials in which ordinary epoxy resin compositions are used.
The optical material refers to general materials used for applications that allow light such as visible light, infrared light, ultraviolet light, X-rays, and lasers to pass through the material. More specifically, in addition to the optical semiconductor sealing material such as lamp type and SMD type, and the optical semiconductor die bond material, the following may be mentioned. It is a peripheral material for liquid crystal display devices such as a substrate material, a light guide plate, a prism sheet, a deflection plate, a retardation plate, a viewing angle correction film, an adhesive, and a film for a liquid crystal such as a polarizer protective film in the liquid crystal display field. In addition, color PDP (plasma display) sealing materials, antireflection films, optical correction films, housing materials, front glass protective films, front glass replacement materials, adhesives, and LED displays that are expected as next-generation flat panel displays LED molding materials, LED sealing materials, front glass protective films, front glass substitute materials, adhesives, and substrate materials for plasma addressed liquid crystal (PALC) displays, light guide plates, prism sheets, deflection plates , Phase difference plate, viewing angle correction film, adhesive, polarizer protective film, front glass protective film in organic EL (electroluminescence) display, front glass substitute material, adhesive, and various in field emission display (FED) Film substrate Front glass protective films, front glass substitute material, an adhesive. In the field of optical recording, VD (video disc), CD / CD-ROM, CD-R / RW, DVD-R / DVD-RAM, MO / MD, PD (phase change disc), disc substrate materials for optical cards, Pickup lenses, protective films, sealing materials, adhesives and the like.
 光学機器分野では、スチールカメラのレンズ用材料、ファインダプリズム、ターゲットプリズム、ファインダーカバー、受光センサー部である。また、ビデオカメラの撮影レンズ、ファインダーである。またプロジェクションテレビの投射レンズ、保護フィルム、封止材、接着剤などである。光センシング機器のレンズ用材料、封止材、接着剤、フィルムなどである。光部品分野では、光通信システムでの光スイッチ周辺のファイバー材料、レンズ、導波路、素子の封止材、接着剤などである。光コネクタ周辺の光ファイバー材料、フェルール、封止材、接着剤などである。光受動部品、光回路部品ではレンズ、導波路、LEDの封止材、CCDの封止材、接着剤などである。光電子集積回路(OEIC)周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。光ファイバー分野では、装飾ディスプレイ用照明・ライトガイドなど、工業用途のセンサー類、表示・標識類など、また通信インフラ用および家庭内のデジタル機器接続用の光ファイバーである。半導体集積回路周辺材料では、LSI、超LSI材料用のマイクロリソグラフィー用のレジスト材料である。自動車・輸送機分野では、自動車用のランプリフレクタ、ベアリングリテーナー、ギア部分、耐蝕コート、スイッチ部分、ヘッドランプ、エンジン内部品、電装部品、各種内外装品、駆動エンジン、ブレーキオイルタンク、自動車用防錆鋼板、インテリアパネル、内装材、保護・結束用ワイヤーハーネス、燃料ホース、自動車ランプ、ガラス代替品である。また、鉄道車輌用の複層ガラスである。また、航空機の構造材の靭性付与剤、エンジン周辺部材、保護・結束用ワイヤーハーネス、耐蝕コートである。建築分野では、内装・加工用材料、電気カバー、シート、ガラス中間膜、ガラス代替品、太陽電池周辺材料である。農業用では、ハウス被覆用フィルムである。次世代の光・電子機能有機材料としては、有機EL素子周辺材料、有機フォトリフラクティブ素子、光-光変換デバイスである光増幅素子、光演算素子、有機太陽電池周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。 In the field of optical equipment, they are steel camera lens materials, finder prisms, target prisms, finder covers, and light receiving sensor parts. It is also a photographic lens and viewfinder for video cameras. Projection lenses for projection televisions, protective films, sealing materials, adhesives, and the like. These include lens materials, sealing materials, adhesives, and films for optical sensing devices. In the field of optical components, they are fiber materials, lenses, waveguides, element sealing materials, adhesives and the like around optical switches in optical communication systems. Optical fiber materials, ferrules, sealing materials, adhesives, etc. around the optical connector. For optical passive components and optical circuit components, there are lenses, waveguides, LED sealing materials, CCD sealing materials, adhesives, and the like. These are substrate materials, fiber materials, device sealing materials, adhesives, etc. around an optoelectronic integrated circuit (OEIC). In the field of optical fiber, it is an optical fiber for lighting, light guides for decorative displays, sensors for industrial use, displays / signs, etc., and for communication infrastructure and home digital equipment connection. In the semiconductor integrated circuit peripheral material, it is a resist material for microlithography for LSI and VLSI material. In the field of automobiles and transport equipment, automotive lamp reflectors, bearing retainers, gear parts, anti-corrosion coatings, switch parts, headlamps, engine internal parts, electrical parts, various interior and exterior parts, drive engines, brake oil tanks, automobile protection Rusted steel plate, interior panel, interior material, wire harness for protection / bundling, fuel hose, automobile lamp, glass substitute. In addition, it is a multilayer glass for railway vehicles. Further, they are toughness imparting agents for aircraft structural materials, engine peripheral members, protective / bundling wire harnesses, and corrosion resistant coatings. In the construction field, it is interior / processing materials, electrical covers, sheets, glass interlayers, glass substitutes, and solar cell peripheral materials. For agriculture, it is a house covering film. Next generation optical / electronic functional organic materials include peripheral materials for organic EL elements, organic photorefractive elements, optical amplification elements that are light-to-light conversion devices, optical computing elements, substrate materials around organic solar cells, fiber materials, elements Sealing material, adhesive and the like.
 封止剤としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSIなど用のポッティング、ディッピング、トランスファーモールド封止、IC、LSI類のCOB、COF、TABなど用のといったポッティング封止、フリップチップなどの用のアンダーフィル、BGA、CSPなどのICパッケージ類実装時の封止(補強用アンダーフィル)などを挙げることができる。 As sealing agents, potting, dipping, transfer mold sealing for capacitors, transistors, diodes, light-emitting diodes, ICs, LSIs, potting sealings for ICs, LSIs such as COB, COF, TAB, flip chip For example, underfill for sealing, and sealing (reinforcing underfill) when mounting IC packages such as BGA and CSP.
 光学用材料の他の用途としては、エポキシ樹脂組成物が使用される一般の用途が挙げられ、例えば、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止剤の他、他樹脂等への添加剤等が挙げられる。接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。とりわけ、これから得られる硬化物の透明度が優れるので、高輝度の白色LED他の光半導体の封止用のエポキシ樹脂の硬化剤として極めて有用である。その他の用途としてはポリイミド樹脂などの原料や改質剤、可塑剤、潤滑油原料、基板用のシアネート樹脂組成物や、他樹脂等への添加剤、塗料用樹脂の原料、トナー用樹脂、医農薬中間体として有用である。 Other uses of optical materials include general uses in which epoxy resin compositions are used. For example, adhesives, paints, coating agents, molding materials (including sheets, films, FRP, etc.), insulating materials In addition to the sealant (including printed circuit boards and wire coatings), additives to other resins and the like can be mentioned. Examples of the adhesive include civil engineering, architectural, automotive, general office, and medical adhesives, and electronic material adhesives. Among these, adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, semiconductor adhesives such as underfills, BGA reinforcing underfills, anisotropic conductive films ( ACF) and an adhesive for mounting such as anisotropic conductive paste (ACP). In particular, since the transparency of the cured product obtained therefrom is excellent, it is extremely useful as a curing agent for epoxy resins for sealing high-luminance white LEDs and other optical semiconductors. Other uses include raw materials such as polyimide resins, modifiers, plasticizers, lubricating oil raw materials, cyanate resin compositions for substrates, additives to other resins, raw materials for paint resins, toner resins, medicines, etc. Useful as an agrochemical intermediate.
 以下、実施例を以って本発明をより具体的に説明するが、本発明がこれらの実施例に限定されるものではない。以下において、「部」は重量部を、「%」は重量%をそれぞれ意味する。また実施例における試験の測定方法は以下のとおりである。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In the following, “part” means part by weight, and “%” means weight%. Moreover, the measurement method of the test in an Example is as follows.
 ○エポキシ当量:JIS K-7236に記載の方法で測定した。
 ○酸価:京都電子工業(株)のAT-610型電位差滴定装置を用いて測定した。具体的には測定サンプルをメチルエチルケトン、エタノールに溶解させ、0.1mol/Lの水酸化ナトリウム水溶液で滴定をした。
 ○粘度:25℃においてE型粘度計を使用して測定した。
 ○重量平均分子量:島津製作所製GPC(ゲルパーミエーションクロマトグラフィー)を用いて測定した。カラムはガードカラム SHODEX GPC LF-G LF-804(3本)を用い、流速1.0ml/min、カラム温度40℃、使用溶剤THF(テトラヒドロフラン)、検出器RI(示差屈折検出器)を用いた。検量線はShodex製標準ポリスチレンを使用した。
 ○熱重量減少:島津製作所製TG/DTA6200を用い、30℃から20℃/分で昇温させ、120℃まで加熱し、120℃で60分保持した後の重量減少率を測定した。空気流量は200ml/minで行った。
 ○透過率:日立製作所社製U-3300を用い、400nmの光線透過率測定を行った。
○ Epoxy equivalent: Measured by the method described in JIS K-7236.
O Acid value: Measured using an AT-610 potentiometric titrator manufactured by Kyoto Electronics Industry Co., Ltd. Specifically, the measurement sample was dissolved in methyl ethyl ketone and ethanol and titrated with a 0.1 mol / L sodium hydroxide aqueous solution.
○ Viscosity: Measured using an E-type viscometer at 25 ° C.
-Weight average molecular weight: It measured using GPC (gel permeation chromatography) by Shimadzu Corporation. The column used was a guard column SHODEX GPC LF-G LF-804 (3), flow rate 1.0 ml / min, column temperature 40 ° C., solvent THF (tetrahydrofuran), detector RI (differential refraction detector). . The standard curve made from Shodex was used for the calibration curve.
○ Decrease in thermal weight: Using TG / DTA6200 manufactured by Shimadzu Corporation, the temperature was increased from 30 ° C. at 20 ° C./minute, heated to 120 ° C., and held at 120 ° C. for 60 minutes to measure the weight reduction rate. The air flow rate was 200 ml / min.
○ Transmittance: Using a U-3300 manufactured by Hitachi, Ltd., a light transmittance of 400 nm was measured.
 実施例中で用いているMH700Gは、新日本理化(株)製のメチルヘキサヒドロフタル酸無水物とヘキサヒドロフタル酸無水物の混合物であり、混合比はメチルヘキサヒドロフタル酸無水物が70重量%(68mol%)である。
 同様に、HNA-100は、新日本理化(株)製のメチルノルボルナン-2,3-ジカルボン酸無水物とノルボルナン-2,3-ジカルボン酸無水物の混合物であり、混合比はメチルノルボルナン-2,3-ジカルボン酸無水物が80wt%(79mol%)である。
MH700G used in the examples is a mixture of methylhexahydrophthalic anhydride and hexahydrophthalic anhydride manufactured by Shin Nippon Rika Co., Ltd., and the mixing ratio is 70 wt.% Of methylhexahydrophthalic anhydride. % (68 mol%).
Similarly, HNA-100 is a mixture of methylnorbornane-2,3-dicarboxylic acid anhydride and norbornane-2,3-dicarboxylic acid anhydride manufactured by Shin Nippon Chemical Co., Ltd., and the mixing ratio is methylnorbornane-2. , 3-dicarboxylic acid anhydride is 80 wt% (79 mol%).
合成例1(エポキシ基をもつケイ素化合物とそれ以外のケイ素化合物との縮合物の合成)
 2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン59.1部、分子量1700(GPC測定値)のシラノール基をもつポリジメチルジフェニルシロキサン130.6部、0.5%KOHメタノール溶液10.0部を反応容器に仕込み、75℃に昇温した。昇温後、還流下75℃にて8時間反応させた。反応後、メタノールを135部追加後、50%蒸留水メタノール溶液25.9部を60分かけて滴下し、還流下75℃にてさらに8時間反応させた。反応終了後、5%第1水素ナトリウムリン酸水溶液で中和後、80℃でメタノールの蒸留回収を行った。その後、洗浄のために、MIBK170部を添加後、水洗を3回繰り返した。次いで有機相を減圧下、100℃で溶媒を除去することによりエポキシ基を有するシロキサン化合物(B-1)162部を得た。得られた化合物のエポキシ当量は707g/eq.、重量平均分子量は2680、外観は無色透明であった。
Synthesis Example 1 (Synthesis of a condensate between a silicon compound having an epoxy group and another silicon compound)
29.1 parts of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 130.6 parts of polydimethyldiphenylsiloxane having a silanol group having a molecular weight of 1700 (measured by GPC), 10.0 parts of 0.5% KOH methanol solution Was charged into a reaction vessel and heated to 75 ° C. After raising the temperature, the reaction was carried out at 75 ° C. under reflux for 8 hours. After the reaction, 135 parts of methanol was added, 25.9 parts of 50% distilled water methanol solution was added dropwise over 60 minutes, and the mixture was further reacted at 75 ° C. for 8 hours under reflux. After completion of the reaction, the reaction mixture was neutralized with 5% aqueous sodium hydrogen phosphate solution, and methanol was recovered by distillation at 80 ° C. Thereafter, for washing, 170 parts of MIBK was added, and washing with water was repeated three times. Then, the solvent was removed from the organic phase at 100 ° C. under reduced pressure to obtain 162 parts of a siloxane compound (B-1) having an epoxy group. The epoxy equivalent of the obtained compound was 707 g / eq. The weight average molecular weight was 2680, and the appearance was colorless and transparent.
実施例1
 両末端カルビノール変性シリコーンX22-160AS(信越化学工業(株)製)50部、リカシッドMH(メチルヘキサヒドロフタル酸無水物、新日本理化(株)製)15.4部、トルエン10部を反応容器に仕込み、130℃に昇温し、3時間後にGPCを測定したところリカシッドMHのピークが消失していた。その後さらに2時間反応させた。反応終了後、減圧下で溶媒を除去することによりカルボン酸化合物(A-1)65.0部を得た。得られたカルボン酸化合物の重量平均分子量は1700であった。
Example 1
Reaction of 50 parts of carbinol-modified silicone X22-160AS (manufactured by Shin-Etsu Chemical Co., Ltd.), 15.4 parts of Ricacid MH (methylhexahydrophthalic anhydride, Shin Nippon Rika Co., Ltd.), and 10 parts of toluene When the vessel was charged, heated to 130 ° C., and GPC was measured after 3 hours, the peak of Ricacid MH disappeared. Thereafter, the reaction was further continued for 2 hours. After completion of the reaction, the solvent was removed under reduced pressure to obtain 65.0 parts of carboxylic acid compound (A-1). The weight average molecular weight of the obtained carboxylic acid compound was 1700.
実施例2
 両末端カルビノール変性シリコーンX22-160AS(信越化学工業(株)製)50部、リカシッドMH700G(メチルヘキサヒドロフタル酸無水物とヘキサヒドロフタル酸無水物の混合物、新日本理化(株)製)16.8部、トルエン10部を反応容器に仕込み、130℃に昇温し、3時間後にGPCを測定したところリカシッドMH700Gのピークが消失していた。その後さらに2時間反応させた。反応終了後、減圧下で溶媒を除去することによりカルボン酸化合物(A-2)66.8部を得た。得られたカルボン酸化合物の重量平均分子量は1700であった。
Example 2
50 parts of both ends carbinol-modified silicone X22-160AS (manufactured by Shin-Etsu Chemical Co., Ltd.), Ricacid MH700G (mixture of methylhexahydrophthalic anhydride and hexahydrophthalic anhydride, manufactured by Shin Nippon Rika Co., Ltd.) 16 .8 parts and 10 parts of toluene were charged into a reaction vessel, heated to 130 ° C., and GPC was measured after 3 hours. As a result, the peak of Ricacid MH700G disappeared. Thereafter, the reaction was further continued for 2 hours. After completion of the reaction, the solvent was removed under reduced pressure to obtain 66.8 parts of carboxylic acid compound (A-2). The weight average molecular weight of the obtained carboxylic acid compound was 1700.
実施例3
 両末端カルビノール変性シリコーンX22-160AS(信越化学工業(株)製)50部、HTMAn(1,2,4-シクロヘキサントリカルボン酸-1,2-無水物、三菱ガス化学(株)製)9.9部、リカシッドMH700G(メチルヘキサヒドロフタル酸無水物とヘキサヒドロフタル酸無水物の混合物、新日本理化(株)製)8.4部、トルエン10部を反応容器に仕込み、130℃に昇温し、3時間後にGPCを測定したところHTMAnおよびリカシッドMH700Gのピークが消失していた。その後さらに2時間反応させた。反応終了後、減圧下で溶媒を除去することによりカルボン酸化合物(A-3)68.2部を得た。得られたカルボン酸化合物の重量平均分子量は1900であった。
Example 3
8. 50 parts of both ends carbinol-modified silicone X22-160AS (manufactured by Shin-Etsu Chemical Co., Ltd.), HTAn (1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride, manufactured by Mitsubishi Gas Chemical Co., Ltd.) 9 parts, licacid MH700G (mixture of methylhexahydrophthalic anhydride and hexahydrophthalic anhydride, made by Shin Nippon Rika Co., Ltd.) 8.4 parts, 10 parts of toluene were charged in a reaction vessel, and the temperature was raised to 130 ° C. When GPC was measured after 3 hours, the peaks of HTAn and Ricacid MH700G disappeared. Thereafter, the reaction was further continued for 2 hours. After completion of the reaction, the solvent was removed under reduced pressure to obtain 68.2 parts of carboxylic acid compound (A-3). The weight average molecular weight of the obtained carboxylic acid compound was 1900.
実施例4
 両末端カルビノール変性シリコーンX22-160AS(信越化学工業(株)製)50部、リカシッドMH(メチルヘキサヒドロフタル酸無水物、新日本理化(株)製)9.2部、リカシッドBT-100(1,2,3,4-ブタンテトラカルボン酸二無水物、新日本理化(株)製)4.0部、トルエン10部を反応容器に仕込み、130℃に昇温し、3時間後にGPCを測定したところリカシッドMHおよびリカシッドBT-100のピークが消失していた。その後さらに2時間反応させた。反応終了後、減圧下で溶媒を除去することによりカルボン酸化合物(A-4)63.0部を得た。得られたカルボン酸化合物の重量平均分子量は4640であった。
Example 4
50 parts of both ends carbinol-modified silicone X22-160AS (manufactured by Shin-Etsu Chemical Co., Ltd.), ricacid MH (methylhexahydrophthalic anhydride, Shin Nippon Rika Co., Ltd.) 9.2 parts, ricacid BT-100 ( 4.0 parts of 1,2,3,4-butanetetracarboxylic dianhydride (manufactured by Shin Nippon Rika Co., Ltd.) and 10 parts of toluene were charged into a reaction vessel, heated to 130 ° C., and GPC was added after 3 hours. When measured, the peaks of Ricacid MH and Ricacid BT-100 disappeared. Thereafter, the reaction was further continued for 2 hours. After completion of the reaction, the solvent was removed under reduced pressure to obtain 63.0 parts of a carboxylic acid compound (A-4). The weight average molecular weight of the obtained carboxylic acid compound was 4640.
実施例5
 両末端カルビノール変性シリコーンX22-160AS(信越化学工業(株)製)50部、リカシッドHNA-100(ノルボルナン-2,3-ジカルボン酸無水物とメチルノルボルナン-2,3-ジカルボン酸無水物の混合物、新日本理化(株)製)17.0部、トルエン10部を反応容器に仕込み、130℃に昇温し、3時間後にGPCを測定したところリカシッドHNA-100のピークが消失していた。その後さらに2時間反応させた。反応終了後、減圧下で溶媒を除去することによりカルボン酸化合物(A-5)66.8部を得た。得られたカルボン酸化合物の重量平均分子量は1730であった。
Example 5
50 parts of both-end carbinol-modified silicone X22-160AS (manufactured by Shin-Etsu Chemical Co., Ltd.), Ricacid HNA-100 (a mixture of norbornane-2,3-dicarboxylic acid anhydride and methylnorbornane-2,3-dicarboxylic acid anhydride) (Manufactured by Shin Nippon Rika Co., Ltd.) 17.0 parts and 10 parts of toluene were charged in a reaction vessel, heated to 130 ° C., and GPC was measured after 3 hours. The peak of Ricacid HNA-100 disappeared. Thereafter, the reaction was further continued for 2 hours. After completion of the reaction, the solvent was removed under reduced pressure to obtain 66.8 parts of carboxylic acid compound (A-5). The obtained carboxylic acid compound had a weight average molecular weight of 1,730.
実施例6
 実施例1で得られたカルボン酸化合物(A-1)100部、エポキシ樹脂として合成例1で得られたエポキシ基を有するシロキサン化合物(B-1)108部を入れ、混合、20分間脱泡を行い、エポキシ樹脂組成物を得た。
Example 6
100 parts of the carboxylic acid compound (A-1) obtained in Example 1 and 108 parts of the siloxane compound (B-1) having an epoxy group obtained in Synthesis Example 1 were added as an epoxy resin, mixed, and defoamed for 20 minutes. And an epoxy resin composition was obtained.
実施例7
 実施例6において、カルボン酸化合物をA-1からA-2に変更した他は実施例6と同様に行いエポキシ樹脂組成物を得た。
Example 7
An epoxy resin composition was obtained in the same manner as in Example 6 except that the carboxylic acid compound was changed from A-1 to A-2 in Example 6.
実施例8
 実施例6において、カルボン酸化合物をA-1からA-3に変更した他は実施例6と同様に行いエポキシ樹脂組成物を得た。
Example 8
An epoxy resin composition was obtained in the same manner as in Example 6 except that the carboxylic acid compound was changed from A-1 to A-3 in Example 6.
実施例9
 実施例6において、カルボン酸化合物をA-1からA-4に変更した他は実施例6と同様に行いエポキシ樹脂組成物を得た。
Example 9
An epoxy resin composition was obtained in the same manner as in Example 6 except that the carboxylic acid compound was changed from A-1 to A-4 in Example 6.
実施例10
 実施例6において、カルボン酸化合物をA-1からA-5に変更した他は実施例6と同様に行いエポキシ樹脂組成物を得た。
Example 10
An epoxy resin composition was obtained in the same manner as in Example 6 except that the carboxylic acid compound was changed from A-1 to A-5 in Example 6.
実施例11
 実施例6のエポキシ樹脂を、ERL-4221(3,4-エポキシシクロヘキシルメチル-(3,4-エポキシ)シクロヘキシルカルボキシレート、ダウケミカル製)に変更した他は実施例6と同様に行いエポキシ樹脂組成物を得た。
Example 11
An epoxy resin composition was prepared in the same manner as in Example 6 except that the epoxy resin in Example 6 was changed to ERL-4221 (3,4-epoxycyclohexylmethyl- (3,4-epoxy) cyclohexylcarboxylate, manufactured by Dow Chemical). I got a thing.
比較例1
 エポキシ樹脂として合成例1で得られたエポキシ基を有するシロキサン化合物(B-1)841部、エポキシ樹脂硬化剤として液状カルボン酸無水物であるリカシッドMH700G(メチルヘキサヒドロフタル酸無水物とヘキサヒドロフタル酸無水物の混合物、新日本理化(株)製)100部、硬化促進剤としてPX-4MP(ホスホニウム塩系硬化促進剤、日本化学工業(株)製)0.8部を混合、20分間脱泡を行い、エポキシ樹脂組成物を得た。
Comparative Example 1
841 parts of the epoxy group-containing siloxane compound (B-1) obtained in Synthesis Example 1 as an epoxy resin, and Ricacid MH700G (methyl hexahydrophthalic anhydride and hexahydrophthalic acid) which is a liquid carboxylic acid anhydride as an epoxy resin curing agent 100 parts of a mixture of acid anhydrides (manufactured by Shin Nippon Rika Co., Ltd.) and 0.8 parts of PX-4MP (phosphonium salt-based curing accelerator, manufactured by Nippon Chemical Industry Co., Ltd.) as a curing accelerator are mixed for 20 minutes. Foaming was performed to obtain an epoxy resin composition.
比較例2
 比較例1のエポキシ樹脂を、ERL-4221(3,4-エポキシシクロヘキシルメチル-(3,4-エポキシ)シクロヘキシルカルボキシレート、ダウケミカル製)に変更した他は比較例1と同様に行いエポキシ樹脂組成物を得た。
Comparative Example 2
The epoxy resin composition was the same as in Comparative Example 1 except that the epoxy resin of Comparative Example 1 was changed to ERL-4221 (3,4-epoxycyclohexylmethyl- (3,4-epoxy) cyclohexylcarboxylate, manufactured by Dow Chemical). I got a thing.
エポキシ樹脂組成物を光半導体封止材として試用した例
 実施例6~11、比較例1~2で得られた硬化性樹脂組成物を、シリンジに充填し精密吐出装置を使用して、発光波長405nmを持つ発光素子を搭載した表面実装型LEDに注型し、120℃×3時間の予備硬化の後150℃×1時間で硬化させ、表面実装型LEDを封止した。
Example of trial use of epoxy resin composition as optical semiconductor encapsulant The curable resin compositions obtained in Examples 6 to 11 and Comparative Examples 1 and 2 were filled in a syringe, and the emission wavelength was measured using a precision discharge device. A surface-mounted LED mounted with a light-emitting element having a wavelength of 405 nm was cast, and pre-cured at 120 ° C. for 3 hours and then cured at 150 ° C. for 1 hour to seal the surface-mounted LED.
 ○物性試験
 実施例1~5で得られたカルボン酸化合物A-1~A-5と、比較例として液状カルボン酸無水物であるリカシッドMH700Gの性状を表1にまとめた。
Physical Properties Test Table 1 summarizes the properties of the carboxylic acid compounds A-1 to A-5 obtained in Examples 1 to 5 and Ricacid MH700G, which is a liquid carboxylic acid anhydride, as a comparative example.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 MH700G;メチルヘキサヒドロフタル酸無水物とヘキサヒドロフタル酸無水物の混合物、新日本理化(株)製 MH700G: A mixture of methylhexahydrophthalic anhydride and hexahydrophthalic anhydride, manufactured by Shin Nippon Rika Co., Ltd.
 ○評価試験
 実施例6~11、比較例1~2で得られたエポキシ樹脂組成物の配合比とその硬化物の透過率、硬化物揮発に伴う硬化物の凹み、表面タックの結果を表2に示す。表2における試験は以下のように行った。
○ Evaluation test Table 2 shows the compounding ratio of the epoxy resin compositions obtained in Examples 6 to 11 and Comparative Examples 1 and 2, the transmittance of the cured product, the dent of the cured product accompanying the volatilization of the cured product, and the results of surface tack. Shown in The test in Table 2 was performed as follows.
(1)硬化物透過率;
 実施例6~11、比較例1~2で得られたエポキシ樹脂組成物を真空脱泡20分間実施後、30mm×20mm×高さ1mmになるように耐熱テープでダムを作成したガラス基板上に静かに注型した。その注型物を、120℃×3時間の予備硬化の後150℃×1時間で硬化させ、厚さ1mmの透過率用試験片を得た。
(2)凹み試験;
 実施例6~11、比較例1~2で得られたエポキシ樹脂組成物を真空脱泡20分間実施後、シリンジに充填し精密吐出装置を使用して、発光波長405nmを持つ発光素子を搭載した表面実装型LEDに開口部が平面になるように注型した。120℃×3時間の予備硬化の後、150℃×1時間で硬化し、表面実装型LEDを封止した。このように封止した後の硬化剤の揮発に伴う樹脂表面の凹みの有無を目視で評価した。表中、○;凹みが認められない、△;凹みが多少認められる、×;凹みが多く認められる
(3)表面タック;
 前記硬化物透過率用試験と同様の試験片を作成し、その試験片の表面タック性(表面のベタツキ)を指触にて確認した。表中、○;ベタツキがない、×;ベタツキがある
(1) cured product transmittance;
The epoxy resin compositions obtained in Examples 6 to 11 and Comparative Examples 1 and 2 were subjected to vacuum defoaming for 20 minutes, and then on a glass substrate on which a dam was formed with heat-resistant tape so as to be 30 mm × 20 mm × height 1 mm. I cast it gently. The cast was cured at 120 ° C. for 1 hour after pre-curing at 120 ° C. for 3 hours to obtain a test piece for transmittance having a thickness of 1 mm.
(2) dent test;
The epoxy resin compositions obtained in Examples 6 to 11 and Comparative Examples 1 and 2 were vacuum degassed for 20 minutes, filled into a syringe, and mounted with a light emitting element having an emission wavelength of 405 nm using a precision discharge device. The surface-mounted LED was cast so that the opening was flat. After pre-curing at 120 ° C. for 3 hours, curing was performed at 150 ° C. for 1 hour to seal the surface-mounted LED. The presence or absence of dents on the resin surface accompanying the volatilization of the curing agent after sealing in this way was visually evaluated. In the table, ◯: no dent is observed, Δ: some dent is observed, x: many dents are observed (3) surface tack;
A test piece similar to the cured product transmittance test was prepared, and the surface tackiness (stickiness of the surface) of the test piece was confirmed by finger touch. In the table, ○: no stickiness, x: stickiness
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表1に示す結果から明らかなように、比較例のリカシッドMH700Gは120℃の条件で大幅に熱重量減少が見られるのに対し、実施例1~5のカルボン酸化合物A-1~A-5では液状でありながら重量減少は殆ど見られなかった。また表2に示す結果から明らかなように、比較例1~2では硬化物の凹みが多く認められるのに対し、実施例6~11では凹みは殆ど認められず、さらには硬化物の透過率も優れ、表面のベタツキがないものであった。 As is apparent from the results shown in Table 1, the ricacid MH700G of the comparative example shows a significant decrease in thermogravimetricity at 120 ° C., whereas the carboxylic acid compounds A-1 to A-5 of Examples 1 to 5 In the case of liquid, the weight was hardly decreased. Further, as is clear from the results shown in Table 2, in Comparative Examples 1 and 2, there are many dents in the cured product, while in Examples 6 to 11, almost no dents are observed, and further, the transmittance of the cured product. And the surface was not sticky.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2008年12月19日付けで出願された日本特許出願(特願2008-324305)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application (Japanese Patent Application No. 2008-324305) filed on December 19, 2008, and is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.

Claims (8)

  1.  下記式(1)で表されるシリコーン化合物(a)と、分子内に1個以上のカルボン酸無水物基をもつ化合物とを付加反応させることにより得られるカルボン酸化合物であって、上記分子内に1個以上のカルボン酸無水物基を持つ化合物は、下記式(3)~(5)で表される化合物(c)から選ばれる少なくとも一種であるカルボン酸化合物(A)。
    Figure JPOXMLDOC01-appb-C000001

    (式(1)において、Rはエーテル基を含んでも良い炭素総数1~10のアルキレン基を、Rはメチル基又はフェニル基を、nは平均値で1~100をそれぞれ表す。)
    Figure JPOXMLDOC01-appb-C000002
    A carboxylic acid compound obtained by addition reaction of a silicone compound (a) represented by the following formula (1) and a compound having one or more carboxylic anhydride groups in the molecule, The compound having at least one carboxylic acid anhydride group is at least one carboxylic acid compound (A) selected from the compounds (c) represented by the following formulas (3) to (5).
    Figure JPOXMLDOC01-appb-C000001

    (In Formula (1), R 1 represents an alkylene group having 1 to 10 carbon atoms which may contain an ether group, R 2 represents a methyl group or a phenyl group, and n represents an average value of 1 to 100)
    Figure JPOXMLDOC01-appb-C000002
  2.  下記式(1)で表されるシリコーン化合物(a)と、分子内に1個以上のカルボン酸無水物基をもつ化合物とを付加反応させることにより得られるカルボン酸化合物であって、上記分子内に1個以上のカルボン酸無水物基を持つ化合物が、下記式(3)で表される化合物であるカルボン酸化合物(A)。
    Figure JPOXMLDOC01-appb-C000003

    (式(1)において、Rはエーテル基を含んでも良い炭素総数1~10のアルキレン基を、Rはメチル基又はフェニル基を、nは平均値で1~100をそれぞれ表す。)
    Figure JPOXMLDOC01-appb-C000004
    A carboxylic acid compound obtained by addition reaction of a silicone compound (a) represented by the following formula (1) and a compound having one or more carboxylic anhydride groups in the molecule, A carboxylic acid compound (A) in which the compound having one or more carboxylic acid anhydride groups is a compound represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000003

    (In Formula (1), R 1 represents an alkylene group having 1 to 10 carbon atoms which may contain an ether group, R 2 represents a methyl group or a phenyl group, and n represents an average value of 1 to 100)
    Figure JPOXMLDOC01-appb-C000004
  3.  請求項1または2に記載のカルボン酸化合物(A)と硬化促進剤を含有するエポキシ樹脂硬化剤。 An epoxy resin curing agent containing the carboxylic acid compound (A) according to claim 1 or 2 and a curing accelerator.
  4.  請求項1または2に記載のカルボン酸化合物(A)又は請求項3記載のエポキシ樹脂硬化剤とエポキシ樹脂を含有するエポキシ樹脂組成物。 An epoxy resin composition comprising the carboxylic acid compound (A) according to claim 1 or 2, or an epoxy resin curing agent according to claim 3 and an epoxy resin.
  5.  エポキシ樹脂のエポキシ当量が400~1500g/eq.、重量平均分子量が1500~10000である請求項4に記載のエポキシ樹脂組成物。 The epoxy equivalent of the epoxy resin is 400-1500 g / eq. The epoxy resin composition according to claim 4, wherein the weight average molecular weight is 1500 to 10,000.
  6.  エポキシ樹脂組成物の用途が光半導体封止材用である請求項5に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 5, wherein the epoxy resin composition is used for an optical semiconductor encapsulant.
  7.  エポキシ樹脂組成物の用途が光半導体ダイボンド材用である請求項5に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 5, wherein the use of the epoxy resin composition is for an optical semiconductor die bond material.
  8.  請求項4~7のいずれか一項に記載のエポキシ樹脂組成物の硬化物。 A cured product of the epoxy resin composition according to any one of claims 4 to 7.
PCT/JP2009/071028 2008-12-19 2009-12-17 Carboxylic acid compound and epoxy resin composition containing same WO2010071168A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010542997A JP5580212B2 (en) 2008-12-19 2009-12-17 Carboxylic acid compound and epoxy resin composition containing the same
SG2011043742A SG172173A1 (en) 2008-12-19 2009-12-17 Carboxylic acid compound and epoxy resin composition containing same
CN2009801514654A CN102257039B (en) 2008-12-19 2009-12-17 Carboxylic acid compound and epoxy resin composition containing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-324305 2008-12-19
JP2008324305 2008-12-19

Publications (1)

Publication Number Publication Date
WO2010071168A1 true WO2010071168A1 (en) 2010-06-24

Family

ID=42268838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071028 WO2010071168A1 (en) 2008-12-19 2009-12-17 Carboxylic acid compound and epoxy resin composition containing same

Country Status (6)

Country Link
JP (1) JP5580212B2 (en)
KR (1) KR20110101139A (en)
CN (1) CN102257039B (en)
SG (1) SG172173A1 (en)
TW (1) TWI435896B (en)
WO (1) WO2010071168A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189553A (en) * 2009-02-18 2010-09-02 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, manufacturing method thereof, and optical semiconductor apparatus
JP2011063799A (en) * 2009-08-21 2011-03-31 Jsr Corp Sealing composition for optical semiconductor
WO2011043400A1 (en) * 2009-10-06 2011-04-14 日本化薬株式会社 Polycarboxylic acid composition, process for preparation thereof, and curable resin compositions containing the polycarboxylic acid composition
JP2012077219A (en) * 2010-10-04 2012-04-19 Nippon Steel Chem Co Ltd Curable resin composition which contains epoxy silicone resin
JP2012084641A (en) * 2010-10-08 2012-04-26 Everlight Usa Inc Silicone-containing sealing material
JP2012092172A (en) * 2010-10-25 2012-05-17 Jsr Corp Composition for sealing optical semiconductor, and light-emitting element
WO2012137837A1 (en) * 2011-04-07 2012-10-11 日本化薬株式会社 Polycarboxylic acid resin and composition thereof
JP2013040343A (en) * 2012-10-23 2013-02-28 Hitachi Chemical Co Ltd Method for manufacturing reflector, and led device
WO2013035740A1 (en) * 2011-09-09 2013-03-14 日本化薬株式会社 Curable resin composition for sealing optical semiconductor element and cured product thereof
WO2013047620A1 (en) * 2011-09-27 2013-04-04 日本化薬株式会社 Curable resin composition for sealing optical semiconductor element, and cured material of same
WO2014136693A1 (en) * 2013-03-05 2014-09-12 日本化薬株式会社 Polycarboxylic acid composition, curing agent composition for epoxy resins, and epoxy resin composition and cured product thereof
WO2014157552A1 (en) * 2013-03-28 2014-10-02 日本化薬株式会社 Optical semiconductor encapsulating epoxy resin composition, cured product thereof and optical semiconductor device
JP2018519375A (en) * 2015-05-27 2018-07-19 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Carboxylic acid functional siloxane of defined structure

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361016A (en) * 1986-08-29 1988-03-17 New Japan Chem Co Ltd Curing agent composition for epoxy resin
JPS6362363A (en) * 1986-09-03 1988-03-18 Nitto Electric Ind Co Ltd Optical semiconductor device
JPH04174545A (en) * 1990-01-29 1992-06-22 Nitto Denko Corp Semiconductor device, semiconductor sealing epoxy resin composition used for the same and its manufacture
JPH06100762A (en) * 1992-09-21 1994-04-12 Nippon Kayaku Co Ltd Epoxy resin composition
JPH08120086A (en) * 1994-10-21 1996-05-14 Nippon Paint Co Ltd Novel organopolysiloxane compound and its preparation
JPH08120085A (en) * 1994-10-21 1996-05-14 Nippon Paint Co Ltd Reactive emulsifier, aqueous silicone-modified resin, aqueous coating material, and coating film
JPH09194597A (en) * 1996-01-11 1997-07-29 Dow Corning Corp Organosiloxane compound and composition containing the same
JP2001172390A (en) * 1999-12-16 2001-06-26 Chisso Corp Modified organopolysiloxane and its production method
JP2002060492A (en) * 2000-08-22 2002-02-26 Chisso Corp Modified polyorganosiloxane and its manufacturing method
JP2005194388A (en) * 2004-01-07 2005-07-21 Shin Etsu Chem Co Ltd Silicone and its production process
WO2007135909A1 (en) * 2006-05-18 2007-11-29 Nippon Kayaku Kabushiki Kaisha Thermosetting resin composition and cured product thereof
JP2007332295A (en) * 2006-06-16 2007-12-27 Dow Corning Toray Co Ltd Gelling agent, gelatinous composition and cosmetic
JP2008266285A (en) * 2006-10-24 2008-11-06 Shiseido Co Ltd Organosiloxane derivative

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361016A (en) * 1986-08-29 1988-03-17 New Japan Chem Co Ltd Curing agent composition for epoxy resin
JPS6362363A (en) * 1986-09-03 1988-03-18 Nitto Electric Ind Co Ltd Optical semiconductor device
JPH04174545A (en) * 1990-01-29 1992-06-22 Nitto Denko Corp Semiconductor device, semiconductor sealing epoxy resin composition used for the same and its manufacture
JPH06100762A (en) * 1992-09-21 1994-04-12 Nippon Kayaku Co Ltd Epoxy resin composition
JPH08120086A (en) * 1994-10-21 1996-05-14 Nippon Paint Co Ltd Novel organopolysiloxane compound and its preparation
JPH08120085A (en) * 1994-10-21 1996-05-14 Nippon Paint Co Ltd Reactive emulsifier, aqueous silicone-modified resin, aqueous coating material, and coating film
JPH09194597A (en) * 1996-01-11 1997-07-29 Dow Corning Corp Organosiloxane compound and composition containing the same
JP2001172390A (en) * 1999-12-16 2001-06-26 Chisso Corp Modified organopolysiloxane and its production method
JP2002060492A (en) * 2000-08-22 2002-02-26 Chisso Corp Modified polyorganosiloxane and its manufacturing method
JP2005194388A (en) * 2004-01-07 2005-07-21 Shin Etsu Chem Co Ltd Silicone and its production process
WO2007135909A1 (en) * 2006-05-18 2007-11-29 Nippon Kayaku Kabushiki Kaisha Thermosetting resin composition and cured product thereof
JP2007332295A (en) * 2006-06-16 2007-12-27 Dow Corning Toray Co Ltd Gelling agent, gelatinous composition and cosmetic
JP2008266285A (en) * 2006-10-24 2008-11-06 Shiseido Co Ltd Organosiloxane derivative

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189553A (en) * 2009-02-18 2010-09-02 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, manufacturing method thereof, and optical semiconductor apparatus
JP2011063799A (en) * 2009-08-21 2011-03-31 Jsr Corp Sealing composition for optical semiconductor
JP5574447B2 (en) * 2009-10-06 2014-08-20 日本化薬株式会社 Polyvalent carboxylic acid composition and method for producing the same, and curable resin composition containing the polyvalent carboxylic acid composition
WO2011043400A1 (en) * 2009-10-06 2011-04-14 日本化薬株式会社 Polycarboxylic acid composition, process for preparation thereof, and curable resin compositions containing the polycarboxylic acid composition
JP2012077219A (en) * 2010-10-04 2012-04-19 Nippon Steel Chem Co Ltd Curable resin composition which contains epoxy silicone resin
JP2012084641A (en) * 2010-10-08 2012-04-26 Everlight Usa Inc Silicone-containing sealing material
JP2012092172A (en) * 2010-10-25 2012-05-17 Jsr Corp Composition for sealing optical semiconductor, and light-emitting element
JP5948317B2 (en) * 2011-04-07 2016-07-06 日本化薬株式会社 Polyvalent carboxylic acid resin and composition thereof
WO2012137837A1 (en) * 2011-04-07 2012-10-11 日本化薬株式会社 Polycarboxylic acid resin and composition thereof
JPWO2013035740A1 (en) * 2011-09-09 2015-03-23 日本化薬株式会社 Curable resin composition for optical semiconductor element sealing and cured product thereof
CN103781815A (en) * 2011-09-09 2014-05-07 日本化药株式会社 Curable resin composition for sealing optical semiconductor element and cured product thereof
WO2013035740A1 (en) * 2011-09-09 2013-03-14 日本化薬株式会社 Curable resin composition for sealing optical semiconductor element and cured product thereof
JP2013071950A (en) * 2011-09-27 2013-04-22 Nippon Kayaku Co Ltd Curable resin composition and cured product thereof
WO2013047620A1 (en) * 2011-09-27 2013-04-04 日本化薬株式会社 Curable resin composition for sealing optical semiconductor element, and cured material of same
JP2013040343A (en) * 2012-10-23 2013-02-28 Hitachi Chemical Co Ltd Method for manufacturing reflector, and led device
WO2014136693A1 (en) * 2013-03-05 2014-09-12 日本化薬株式会社 Polycarboxylic acid composition, curing agent composition for epoxy resins, and epoxy resin composition and cured product thereof
JPWO2014136693A1 (en) * 2013-03-05 2017-02-09 日本化薬株式会社 Polyvalent carboxylic acid composition, curing agent composition for epoxy resin, epoxy resin composition and cured product thereof
WO2014157552A1 (en) * 2013-03-28 2014-10-02 日本化薬株式会社 Optical semiconductor encapsulating epoxy resin composition, cured product thereof and optical semiconductor device
JP2018519375A (en) * 2015-05-27 2018-07-19 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Carboxylic acid functional siloxane of defined structure

Also Published As

Publication number Publication date
CN102257039B (en) 2013-08-28
CN102257039A (en) 2011-11-23
TW201033254A (en) 2010-09-16
JP5580212B2 (en) 2014-08-27
TWI435896B (en) 2014-05-01
KR20110101139A (en) 2011-09-15
SG172173A1 (en) 2011-07-28
JPWO2010071168A1 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
JP5580212B2 (en) Carboxylic acid compound and epoxy resin composition containing the same
JP5713898B2 (en) Polyvalent carboxylic acid, composition thereof, curable resin composition, cured product, and method for producing polyvalent carboxylic acid
JP5948317B2 (en) Polyvalent carboxylic acid resin and composition thereof
JP5878862B2 (en) Curable resin composition and cured product thereof
JP5574447B2 (en) Polyvalent carboxylic acid composition and method for producing the same, and curable resin composition containing the polyvalent carboxylic acid composition
WO2016013257A1 (en) Polycarboxylic acid, polycarboxylic acid composition, epoxy resin composition and heat-curable resin composition each containing said polycarboxylic acid, cured products of said compositions, and optical semiconductor device
JP5768047B2 (en) Curable resin composition and cured product thereof
JP6058684B2 (en) Polyvalent carboxylic acid resin and epoxy resin composition
JP5775869B2 (en) Polyvalent carboxylic acid composition, curing agent composition, and curable resin composition containing the polyvalent carboxylic acid composition or the curing agent composition as a curing agent for epoxy resin
WO2011065044A1 (en) Curable resin composition and cured product thereof
JP6143359B2 (en) Silicone-modified epoxy resin and composition thereof
JP6671222B2 (en) Epoxy resin, epoxy resin composition containing the same and cured product thereof
JP6239587B2 (en) Polyvalent carboxylic acid composition, curing agent composition for epoxy resin, epoxy resin composition and cured product thereof
JP6501359B2 (en) Curable resin composition containing a sulfur-based antioxidant, epoxy resin composition and cured product thereof
JP6377445B2 (en) Epoxy resin composition and cured product thereof
JP6478808B2 (en) Polyvalent carboxylic acid, polyvalent carboxylic acid composition containing the same, and epoxy resin composition
JP6767816B2 (en) Polycarboxylic acid and polyvalent carboxylic acid composition containing it, epoxy resin composition, cured products thereof, and optical semiconductor device
JP2017088797A (en) Polycarboxylic acid resin and polycarboxylic acid resin composition comprising the same, epoxy resin composition, thermosetting resin composition, cured product of the same, and semiconductor device
JP6376692B2 (en) Carboxylic anhydride group-containing cyclic siloxane compound, epoxy resin composition containing the same, and cured product thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980151465.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833471

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010542997

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117012295

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09833471

Country of ref document: EP

Kind code of ref document: A1