JP5124442B2 - ガス放電レーザ出力光のビームパラメータ制御 - Google Patents

ガス放電レーザ出力光のビームパラメータ制御 Download PDF

Info

Publication number
JP5124442B2
JP5124442B2 JP2008504252A JP2008504252A JP5124442B2 JP 5124442 B2 JP5124442 B2 JP 5124442B2 JP 2008504252 A JP2008504252 A JP 2008504252A JP 2008504252 A JP2008504252 A JP 2008504252A JP 5124442 B2 JP5124442 B2 JP 5124442B2
Authority
JP
Japan
Prior art keywords
laser
gas discharge
specific
pulse
blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008504252A
Other languages
English (en)
Other versions
JP2008535260A5 (ja
JP2008535260A (ja
Inventor
アルヴ ア ブゾーセル
イゴー ヴィー フォーメンコフ
ウィリアム エヌ パートロ
フェドー トリンティチョーク
ザット ハオ トン
Original Assignee
サイマー インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サイマー インコーポレイテッド filed Critical サイマー インコーポレイテッド
Publication of JP2008535260A publication Critical patent/JP2008535260A/ja
Publication of JP2008535260A5 publication Critical patent/JP2008535260A5/ja
Application granted granted Critical
Publication of JP5124442B2 publication Critical patent/JP5124442B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/134Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation in gas lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/09702Details of the driver electronics and electric discharge circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

本発明は、集積回路フォトリソグラフィのような用途に対して、例えば、何らかの比較的正確に定められた値の範囲内にガス放電レーザ出力光パルスビーム(単に、パルスレーザ出力ビームとも呼ばれる)パラメータ、例えば、波長、帯域幅、線量安定性が非常に正確に制御される用途において利用されるガス放電レーザに関連する。
関連出願
本出願は、代理人整理番号第2004−0119−01号である、2005年3月31日出願の「ガス放電レーザ出力光ビームパラメータ制御」という名称の米国特許出願出願番号第11/095,293号に対する優先権を請求するものである。
ヘリコプターのより高い高調波振動及びノイズを制御する技術が用いられており、適応ノイズ相殺が広く用いられている。本出願人は、ガス放電レーザ出力光パルスビームパルスパラメータ修正及び制御の分野における利用を提案するものである。
レーザ出力光パルスビームパルスの低い繰返し数で送風機速度を多少強烈に落とすと、初期のArFレーザの低い繰返し数の安定性を改善することができる。しかし、これは、送風機の速度を落とした状態で、送風機が、高いパルス繰返し数に対する例えば必要なアークなし送風機速度に対応するために再び回転を上げるまで、比較的高い繰返し数で再び発射することはできないので、好ましい作動状態ではない。
例えば、線狭化高パルス繰返し数、すなわち、3KHz及びそれを超えるガス放電レーザシステムにおける使用に対して、例えば集積回路フォトリソグラフィ用途における使用に対して、次世代レーザの線量安定性に関する要件は、近年、例えば所定の露光ウィンドウにわたる約00.25%の変動から所定の露光ウィンドウにわたる約00.10%へと大幅に厳しくなっており、これは、例えば、許容パルス間線量変動を例えば00.08%又はそれ未満に更に一層低減することができる例えば6KHzへのレーザパルス繰返し数の増加のためでもあるが、露光ウィンドウにわたる適正切な線量/パルス分布が得られるように平均するのに露光ウィンドウにおいてパルスが少ないために線量/パルスがより正確に制御されるように、少なくとも部分的には露光ウィンドウの小型化に関連するものである。本出願人は、この光のユーザ、例えばフォトリソグラフィのためのスキャナの製造業者によるこの益々重要になるレーザ出力光パルスビームパルスパラメータ仕様に対処する方法を提案する。
米国特許出願出願番号第11/095,293号
レーザ出力光パルスビームのスペクトル品質を微調整するようにされた線狭化ガス放電レーザシステム及び作動方法を開示し、システム及び方法は、発振キャビティと、レーザ媒体ガスを収容するチャンバハウジングを含む発振キャビティ内のレーザチャンバと、1つの端子がチャンバハウジングと1対のガス放電電極の第1の電極とに電気的に接続した少なくとも1つのピーキングコンデンサと、少なくとも1つのピーキングコンデンサの反対の端子に接続され、かつチャンバハウジングから絶縁されたガス放電電極の対の第2の電極と、少なくとも1つのピーキングコンデンサがチャンバハウジングに電気的に接続される電流戻り経路とを含むことができ、少なくとも1つのピーキングコンデンサの1つの端子と、ガス放電電極の対の第1の電極と、レーザ媒体ガスと、ガス放電電極の対の第2の電極と、電流戻り経路と、少なくとも1つのピーキングコンデンサの第2の端子とは、逆流誘導ループを形成し、この逆流誘導ループは、所定のレーザシステムに対してこの特定の逆流誘導ループに固有のインダクタンス値を有し、システム及び方法は、更に、特定の逆流誘導ループに対する特定の逆流誘導ループインダクタンス値を変えるための機構を含むスペクトル品質調整機構を含むことができる。使用される装置及び方法はまた、発振キャビティ内の線狭化モジュールを含み、特定の逆流ループインダクタンスの変化は、特定のガス放電レーザシステムに対するガス放電の持続時間と、特定のレーザシステムによって生成されたレーザ出力光パルスビームのスペクトル品質に及ぼす線狭化モジュールの影響とを調整することができる。このスペクトル品質は、帯域幅とすることができる。スペクトル品質調整機構は、特定のレーザシステムの逆流誘導ループのサイズを変える機構を含むことができる。装置及び方法は、少なくとも1つのピーキングコンデンサの反対の端子と電気的に接触している高電圧バスを更に含むことができ、スペクトル品質調整機構は、少なくとも1つのピーキングコンデンサの反対の端子からの高電圧バスの変位を制御する変位制御機構を含むことができる。スペクトル品質調整機構は、製造時に又はレーザシステム作動寿命中に現場で必要とされる場合に、特定のレーザシステムに対する特定のスペクトル品質を調節するように手動操作することができ、又はスペクトル品質測定システムの出力部を入力部として有するコントローラのフィードバック制御に基づいて、特定の逆流誘導ループインダクタンスを調節する能動制御システムを含むことができる。同じく開示するのは、特定のパルス繰返し数でレーザ出力光パルスビームパルスのパルスエネルギを制御するようにされた高繰返し数ガス放電レーザシステムであり、これは、レーザガス循環回転送風機と、所定のレーザ出力光パルスビームパルス繰返し数に対する適切なアークなし送風機速度の現在適用可能な範囲内で送風機を作動させる送風機回転速度コントローラと、パルス繰返し数と走査ウィンドウパルス数を表す信号とに基づいてアークなし送風機速度の現在適用可能な範囲内の出力送風機回転速度を供給するパルスエネルギコントローラとを含むことができる。送風機回転速度は、複数の露光ウィンドウ及びレーザパルス繰返し数関連フーリエ変換ヌル点のそれぞれの1つ内に送風機速度高調波関連線量移行を整列させ、及び/又は整数の外乱波形を露光ウィンドウ持続時間の期間内に置くように選択することができる。同じく開示するのは、特定のパルス繰返し数でレーザ出力光パルスビームパルスのパルスエネルギを制御するようにされた高繰返し数ガス放電レーザシステムであり、これは、レーザガス循環ファンと、少なくとも1つの先行レーザ出力光パルスビームパルスに対する測定レーザ出力光パルスビームパルスエネルギに少なくとも部分的に基づいてレーザ出力光パルスビーム出力パルスに対するパルスエネルギ制御信号を生成するパルスエネルギコントローラと、レーザ出力光パルスビームパルスに対する位相推定値を生成するガス循環ファン位相推定器を含むことができるパルスエネルギ制御信号補正機構と、位相推定値と選択高調波モードとに基づいてパルスに対する補正値を計算する補正コンピュータとを含むことができる。
本出願人は、ガス放電レーザの放電チャンバのインダクタンスは、適切に広い範囲にわたって単調にスペクトル帯域幅を増大させる方法でレーザパルスの時間的特性に影響を与える可能性があると判断している。このインダクタンスは、固有インダクタンスを有するループを形成する放電路の物理的要素によって形成される。ループは、並列ピーキングコンデンサ22のコンデンサ列の1つの端子21上の高電圧バス20から形成され、高電圧、例えば約2,000ボルトをカソード電極30に供給し、次に、放電自体を通じてアノード電極32に供給し、アノード電極32は、カソード30の反対側にあるアノード32を保持するアノード支持棒(図1から図3では図示せず)と、接地チャンバ上部又はヘッド44の間に接続した複数の電流戻り線34とを通じてコンデンサ列の接地端子24と電気的に接触しているチャンバ40本体42に接地されている。チャンバヘッドと接地端子24は、絶縁体46によってカソードから分離されている。
本出願人は、ピーキングコンデンサとチャンバヘッドによって形成された電流ループのインダクタンスは、レーザ帯域幅に大きな影響を与えると判断している。インダクタンスは、例えば、放電(〜平方根(LC))のピーク電流に直接的に影響を与える可能性があり、これは、次に、例えば、ArFレーザ、KrFレーザ、F2レーザ、XeClレーザ、又はXeFレーザ、又は同様のガス放電レーザにおいて、レーザ利得が、ガス放電レーザガス利得媒体内でいかに速く増大するかに影響を与える可能性がある。レーザ発振は、増大するのに線狭化モジュール(LNM)を通ってより多くの時間、すなわち、より多くの往復が必要であるので、レーザ利得の「ターン・オン」が遅いほど、例えば、スペクトルは狭窄化される可能性がある。「帯域幅」に及ぼすヘッドインダクタンスの影響の例を図5と図6に示している。
本発明の実施形態の態様に従って、本出願人は、微調整帯域幅(BW)制御が行われるようにヘッドインダクタンスを変えることを提案する。これは、出荷準備完了になる特定のレーザの帯域幅を微調整するために、例えば、レーザシステム製造時に時間と共に必要に応じて現場での定期的調節で定期的に行うことができ、又は例えば発射単位又はバースト単位で能動的に行うことができる。複数の実施形態がある可能性がある。例えば、本発明の実施形態の態様によれば、調節可能スペーサ、又は必要に応じて選択的に設置するか又は切り換えることができる長さの異なる調節可能スペーサを有して、ヘッドインダクタンスの変化に対応することができる。代替的に、スペーサ50は、ヘッドインダクタンスを能動的に変えて、例えば、ネジ回しにより手動で、又は図3に示すように帯域幅コントローラ70によって制御されたステッパモータ60で、自動的にバスプレート20のネジ切り穴に螺合させることを可能にする。
図1から図3は、本出願人の譲渡人「Cymer,Inc.」によって販売されているいくつかのレーザシステム、すなわち、約2.89nHのヘッドインダクタンスを有する図1に概略的に示す「NL 7000」、より大きな電流ループを有するように構成されるように約4.5nHのヘッドインダクタンスを有する図2に概略的に示す「ELS 7000K」、更に大きな電流ループを有する物理的構成を有するように約6.0μHのヘッドインダクタンスを有する図3に概略的に示す「ELS 7010」(「ELS 7010」ではまだ設けられていない能動空間コントローラの増設あり)のヘッド構成を概略的に示している。
能動インダクタンス制御は、他の形式の帯域幅制御、例えば、波面制御技術の代わりに又はそれに加えて用いることができると考えられる。本発明の実施形態の態様によれば、インダクタンスでのBWの単調な挙動は、本出願人の譲渡人の7000製品群に対しては、例えば、少なくとも上述のインダクタンス範囲内で達成することができる。2つの間に何らかのレベルの「直交性」を達成することが及ぼす、帯域幅のE95又は他のスペクトルエネルギ測定値、すなわち、スペクトルのうちのエネルギの一部がピーク強度の数パーセント、例えばピーク強度の半分、すなわち、最大値の半分での全幅(半値全幅(FWHM))でのスペクトルの帯域幅測定値を超えるピーク強度、例えば95%、すなわち、E95%又はE95を中心して含まれる部分に対する影響は、ある一定の用途において望ましい場合がある。例えば、集積回路製造に関するリソグラフィ用途においては、独立してE95及びFWHMを少なくともある程度制御する機能は、有用なものであると考えられる。
1次のオーダーに対しては、インダクタンスは、放電電流ループによって囲まれた面積に大雑把に比例する。図1から図3に概略的に示す3つの7000製品では、例えば、帯域幅制御と効率及び安定性間の設計上の交換条件の結果、異なるインダクタンスループが用いられる。異なるインダクタンスは、スペーサ50をコンデンサ22と高電圧VCpバスプレート20の間に追加することによって得られる。単一の構成におけるコンデンサ22と高電圧VCpバスプレート20の間の変化及び段階的又は円滑変化を自動的に再生するための手段であれば、望ましいレベルの帯域幅制御が達成されることになると考えられる。
図4及び図5は、異なるヘッドインダクタンスを有し、異なるレーザガス混合物での異なるレーザ、例えば、より高い帯域幅を生成するより高いフッ素含有量を有し、かつその逆も同様であるものに対して、それぞれ、レーザ出力のE95測定帯域幅とレーザ出力のFWHMでの測定帯域幅とに及ぼすインダクタンス変化の影響を示しており、本出願人は、この変動は、図4と図5に示す2つの測定点間では略線形であると考えている。図4は、比較的インダクタンスの低いレーザ、例えば左側の本出願人の譲渡人によって販売されているモデル7000から、インダクタンスがより高いレーザ、例えば図で右側の本出願人の譲渡人によって販売されているモデル7010までのE95のBWの変化を図形的に示している。図5は、FWHMでの帯域幅測定値に対して同じデータを示している。
本発明の実施形態の態様に従って、本出願人は、レーザシステム、例えば本出願人の譲渡人「Cymer,Inc.」によって製造されたXLA群のレーザのエネルギ線量安定性性能を評価しており、送風機、特にMO送風機、すなわち、主発振器−電力増幅器(MOPA)又は主発振器−電力発振器(MOPO)構成のレーザシステムの主発振器(MO)部分においては、それが、エネルギ誤差の大部分の原因であったと判断している。MO部分110は、PA又はPO部分(図示せず)における増幅のために比較的出力が低く、比較的厳しく制御されたビームパラメータ(例えば、中心波長及び帯域幅において)を作り出すことを担うものである。この構成は、MO110がレーザガス放電チャンバ40と共に一方の共振空洞を形成し、第2のレーザガス放電チャンバ(図示せず)と共に増幅部分(図示せず)を形成する他方の共振空洞が、マルチパスである非発振増幅器(PA)又は発振増幅器(PO)を形成する2チャンバレーザとすることができる。「XLA 105」レーザからの線量安定性データを示すエネルギ共振走査(ERS)は、線量誤差に対する繰返し数の反復可能なパターンが発生することを本出願人に示している。
本発明の実施形態の態様によれば、図6に概略的に示すように、レーザ制御システム70には、例えば、特定のレーザシステム作動パラメータ、例えば、作動レーザ出力光パルスビームパルス繰返し数に関する情報を与えることができる(また、ガス放電がMO内の電極30、32において、また、従ってPA又はPO内の電極間で発生する比率にも一般的に対応することになる)。別の情報は、例えば、集積回路フォトリソグラフィにおいて特定のスキャナ120の作動によって利用され、例えば、露光スリットのウィンドウサイズとすることができる。露光スリットサイズは、通常、露光スリット内でパルスで測定される(単一のバースト/露光スリット又はバースト内のパルス及びバースト/露光スリット)。レーザシステムパルス繰返し数は、レーザシステムコントローラ70により、当業者によって理解されるように、通常はこのようなシステムコントローラ70によって追跡される様々なパラメータ、例えば、望ましいパルス繰返し数設定値、MO110及び/又はPA/PO(図示せず)から出る光、例えば、半導体パルス電力システム104内で発生する高電圧共振充電器108又はピーキングコンデンサ22(図1から図3に図示)放電電圧ゼロ交差に対する、かつ信号126などとして半導体パルス電力システム104からレーザシステムコントローラ70に供給される充電電圧指令信号122繰返し数から判断することができる。スキャナ120露光スリットサイズ情報は、スキャナ120からレーザシステムコントローラ70に信号132によって供給することができる。また、スキャナは、コントローラ70がそのパラメータに使用することができる指令パルス繰返し数信号134を供給することができる。
次に、本発明の実施形態によるこの情報を使用して、より良く最適な線量性能を達成することができる。送風機106速度は、例えば、特定のパルス繰返し数及びウィンドウサイズの組合せに対して線量誤差に対する送風機106高調波の関わりを最小にするように、レーザシステムコントローラ70から受信した信号に従ってコントローラ100によって調整することができる。
線量誤差に最も介入する送風機高調波は、一般的に送風機106ブレード112通過周波数の第2高調波、例えば、当業技術で公知のように、チャンバ40においてレーザ放電ガス流路内で電極30、32間に滑らかな流れを達成するために当業技術で公知であって後縁絶縁整形板118と協働することができる前縁絶縁整形板116によって形成することができるような送風機106のブレード112がナイフエッジ流れ遮断114を通過する速度であると判断されている。
このブレード108通過周波数は、送風機モータ(図示せず)への信号で送風機モータコントローラによって設定されるが、図6で信号124として概略的に表されているように、送風機106RPM及び一般的に回転かご形送風機ファン106の円周部周りのブレード108枚数(又は、少なくとも平均枚数、時として当て嵌まる場合があるが、ファンが所定の区画に対して円周部周りのブレードの等しくない数及び/又はサイズ及び/又は形状で各区画において配置される場合)に依存する。
本発明の実施形態の態様によれば、リソグラフィスキャナ120は、例えば、レーザガス放電光パルスビームパルス繰返し数指令信号134と、所定の露光信号に対して使用するように想定されている走査ウィンドウサイズとをレーザシステムコントローラ70に伝達することができる。この情報に基づいて、レーザシステムコントローラ70は、次に、送風機106速度を計算して、送風機106速度に付随する特定の既知の外乱が例えば図9に示す露光ウィンドウのフーリエ変換(例えば、図10に示す)のゼロの1つに該当するように、送風機モータコントローラ100に供給することができる。また、新しい送風機106速度を選んで、繰返し数範囲が送風機106速度選択に制限されないように、常に最高の繰返し数(例えば、本出願人の譲渡人によって製作された代表的なArFの4000Hzチャンバの場合は、2900rpmから3800rpmの範囲)が得られるように最小アークなし送風機速度を常に超えるようにすることができる。すなわち、アノード32から接地チャンバ本体42(図1から図3に図示)までのアーク発生の経路が得られるように、デブリ、例えば、その後のガス放電において電極30、32間で放電領域に十分に近いところに残るレーザガス混合物成分のイオンによる1つのガス放電におけるアーク発生を防止するのに十分なガス移動が達成される。
従って、最適化に関係なく、スキャナ120は、それが望むあらゆる繰返し数で自由に発射することができる。フーリエ空間における露光ウィンドウは、多くのゼロを有するので、新しい送風機106速度を選択する自由度が大きいアルゴリズムを使用することができる。このようなアルゴリズムは、送風機モータ周波数移行を例えば繰返し数に適合させることを含むことができる。以下の方程式から送風機モータ周波数RPMを参照することを含むことができるアルゴリズムを採用することができる。
*60/(m*Nblades*RPM)=w/f
ここで、wは、パルス単位の露光ウィンドウ、fは、Hz単位のパルス繰返し数であり、Nbladesは、送風機円周部周りのブレード枚数、例えば23であり、mは、線量に対する外乱を抑制する必要がある高調波数であり、nは、正の整数、n=1,2,...である。アルゴリズムは、可能なRPM数として上述の方程式から計算し、次に、例えば、アルゴリズムが3350rpmに最も近いものを選択するような上述の方程式の可能な全ての解から2900rpmから3800rpmの一般的な送風機速度範囲が得られるように、問題のない送風機速度範囲の中心に最も近いものを選択することができる。代替的に、新しい送風機速度設定値まで送風機を回転させるために必要とされる時間を最小にするために、アルゴリズムは、a)問題のない送風機速度範囲、例えば、2900rpmと3800rpmの間に該当し、かつb)現在の送風機速度に最も近いものであるように新しい送風機速度を上述の方程式の解から精選することができる。
スキャナ120は、前回の送風機106速度からあまりかけ離れていない、すなわち、例えば、予露光バースト中(すなわち、較正、回復などに使用)、又はバースト間の間隔中でさえも調節が迅速に行われるような新しい送風機106速度を精選することができる。
本発明の実施形態の態様によれば、送風機高調波発振の整数の期間が1つの露光ウィンドウの持続時間に該当するように送風機速度を選択することにより、より大きな統合されたエネルギ線量安定性を達成することができる。時間領域とフーリエ領域は、同じデータ/信号/現象/アルゴリズムのような2つの異なる見方である。フーリエパワースペクトルの観点から対処されている問題を見るには、エネルギ/線量における周期的な外乱を検出する正しい分析ツールが必要である。フーリエパワースペクトルは、上述の外乱を検出する最良の方法である。
本発明の実施形態の態様に従って、例えば、より高電圧かつ堅牢性の改良点を組み込み、以前の低繰返し数パルスエネルギ安定性に関する問題を非現実的なものにする例えばより近年のチャンバデザインによって改良されたために、現在ではいずれにせよ必要とされていない古いArFレーザシステムのための低繰返し数レーザ作動に対する送風機速度の徹底的な低減を目指した提案と異なり、本出願人は、送風機が線量誤差の一因であることをそれ自体を明示することができる狭帯域での外乱に対応することを提案するのではない。むしろ、本出願人は、例えば、スキャナ120が送風機速度の最適化に関係なく所定の繰返し数でいつでも自由発射するようにするために、送風機速度のかなり小さな制御された調整を提案する。線量誤差は、特定のレーザ出力光パルスビームパルス繰返し数での送風機外乱及び露光ウィンドウサイズによって大きな影響を受ける可能性がある。一因になるサイズは、送風機及びチャンバ製造の変動を受ける可能性があり、線量性能のシステム間の変動の成分の1つであると考えられる。本出願人は、本出願において、例えば、チャンバ部分製造における公差などによるこのような製造上の差異に関係なく、レーザ単位で、かつ現場のレーザが時間と共に不均一に性能が変る時に、レーザ出力光パルスビームパルスパラメータをより厳しくするためにこのような変動を処理する方法及び装置を提案する。
本発明の実施形態の態様に従って、本出願人は、ウィンドウサイズと繰返し数に基づいて、送風機速度の比較的小さな調整を行うことによって送風機が一因であることを緩和することを提案する。レーザシステムコントローラは、そのために、ウィンドウと繰返し数の所定の組合せが得られるように線量性能を最適化することができる。例えば、送風機ファン回転速度のこのように最適化された設定により、レーザ制御システムが、最適化すべき露光ウィンドウ及び繰返し数を知っている限り、スキャナが所定の時間かつ所定の繰返し数でレーザを発射することが妨げられたりはしない。
例えば、図11のグラフで一例として示す本出願人の譲渡人によって販売されているようなもののような「XLA 105」レーザシステムの出力レーザ光パルスビームパルスに関連する研究の例においては、線量グラフにおける殆ど全てのピークは、パワースペクトル内の狭帯域の特徴に直接に辿ることができ、殆ど全ては、MO送風機ブレード通過周波数の第2高調波によるものである。
本出願人は、例えば、第2高調波がフーリエ空間における線量フィルタのヌル(例えば、図12の3715Hzの地点200)に該当する時、線量は、ピーク時(例えば、図12の3630Hz地点)よりも最大〜0.12%まで改善することを観察した。これを図13に示している。図13は、例えば、送風機速度3630の第2高調波であり、すなわち、実際にはナイキスト限界値を超える値に対してナイキスト限界値を下回っているように見えるような約1060Hz時のピークを示しており、これが、3715RPMまでの送風機速度において殆どゼロに低減される。
パルスエネルギ誤差は、加工物表面、例えば、レーザ集積回路フォトリソグラフィウェーハ露光スキャナ120内のウェーハ表面で又はその近くでパルスエネルギ誤差を測定する計器からレーザシステムコントローラ70に供給することができ、又は代替的に、レーザ出力光パルスビームパルスエネルギの測定値から、例えば、パルス単位でパルスエネルギ測定値を信号144としてコントローラ70に供給する適切なパルスエネルギモニタ142で推定することができる。
本発明の実施形態の態様に従って、本出願人は、例えば、送風機106位相情報の知識を利用するエネルギコントローラ200において、例えば、適応フィードフォワード制御信号によって送風機誘発誤差を補正することを提案する。実際には、本出願人の譲渡人「Cymer,Inc.」によって製造されるいくつかのレーザシステム群においては、ブレード108通過周波数(図6に示すように遮断部分を通過する)の典型的に第2高調波及び第4高調波、かつ時には第3の高調波が最大の影響を与え、かつ例えばこのような実施形態の実施例において望ましい場合がある。原則的には、波長制御に類似の方法を適用することができるが、これも、同じく送風機外乱からの顕著な影響を受ける。
本出願人は、例えば、送風機モータコントローラを利用して送風機モータ位相信号をハードウエアから抽出することによって取得することができ、例えばモータシャフト位相情報を有することができる本出願人の譲渡人の従来技術のレーザ製品によって採用されていたもののような送風機モータコントローラから、例えば、利用可能な情報を利用することにより、リアルタイム送風機106モータ(図示せず)位相情報を取得することを提案する。代替的に、位相を直接に測定することができるように、送風機モータ内に磁気又は光学的シャフト位置センサを組み込むことができる。
この情報を使用して、例えば、電圧制御信号154を高電圧共振充電器108に供給することにより、例えば、電極3032にわたる電圧を制御するために、例えば、レーザシステムコントローラ70内にこのような位相信号150に基づいてレーザ出力光パルスビームパルスエネルギ補正信号152を形成することができる。図7に概略的に示すように、レーザシステムコントローラ70内で実行することができるパルスエネルギコントローラ162は、例えば、送風機106速度に基づいて、パルスエネルギと正弦波との相関関係を最小にすることができるフィードフォワード正弦波信号のような制御信号を供給するようにアルゴリズムによって制御されるプロセッサを含むことができる。フィードフォワード信号の振幅及び位相は、適応ノイズ相殺と同様であるがそれよりも簡単に、送風機速度に基づいて、例えば、エネルギ及び正弦波信号から推定することができる。本出願人は、真のノイズ相殺において処理されるノイズのスペクトル全体とは対照的に、協働する個別の既知のモード数を例えば1から3、好ましくは1に限定することを提案する。
図8を参照すると、例えば、パルスエネルギコントローラ162と、位相推定器164と、電圧補正コンピュータ166とを含むことができる送風機誘発パルスエネルギ誤差補正コントローラ60が示されており、これは、例えば、レーザシステムコントローラ70が2つ又はそれよりも多くのプロセッサ及び拡散器168を使用する場合には、同じプロセッサ又はマイクロプロセッサ又はこれらの一方のレーザシステムコントローラ70内で使用されるマイクロプロセッサとすることができる。
エネルギコントローラ62は、レーザ出力光パルスビームパルスエネルギモニタ(図示せず)から、コントローラ162が受信することができる信号の中からパルスnのパルスエネルギEnを表す信号を受信することができ、かつ次の継続的なパルスn+1に対して例えば電圧Vn+1を出力することができる。当業技術で公知のように、この信号は、半導体パルス電力システム(図示せず)内の充電コンデンサをある一定の電圧に充電するための共振充電器(図示せず)に対するものとすることができ、そこからレーザチャンバ電極にわたって供給される電圧は、問題のない程度の誤差、及び先行するレーザ出力光パルスビームパルスの測定エネルギに少なくとも部分的に基づいて継続するパルスビームに対して電極間の電圧を修正することによりある程度パルス間で補正されるようにパルスエネルギコントローラが設計されるものである誤差内で既知であることが理解されるであろう。
本発明の実施形態の態様に従って、本出願人は、例えば、時間t「(Φ,t)」での位相の入力と、ブレード通過の周波数ω、すなわち、上述のように送風機モータRPMにブレード枚数を掛けたものと、パルスビームn+1の時間tn=1とに基づいて、位相推定器164内のパルスn+1の時の送風機モータ位相を最初に推定することにより、Vn+1信号に対する補正を追加することを提案する。位相推定器164は、以下の方程式からパルスn+1の時の位相を推定する。
ΔΦ=ωΔt
ここで、Δtは、tn+1−1である。
次に、電圧補正コンピュータは、以下の方程式に従って加算器168内のコントローラ162の出力部に印加されるVn+1に対して補正Vcを計算する。
−Vc=(dV/dE)*Re(An (i,Φn+1,m)
ここで、dV/dEは、当業技術で公知のように、レーザシステムコントローラ70によって利用される所定のレーザシステムのエネルギ曲線に対する電圧の勾配の現在値であり、Anは、図8に示すようなもののようなベクトルの現在の長さであり、Anは、A0=0として始まり、mは、モード、すなわち、使用されている高調波に基づくものであり、例えば、23枚のブレードの送風機回転ファンの第2高調波に対しては46である。また、Anは、以下の方程式を用いて、aの先行値、すなわち、An-1から計算される。
Figure 0005124442
ここで、γは、0と0.1の間の利得係数であり、wは、評価ウィンドウ内のレーザ出力光パルスビームパルスの選択数、例えば、図8に図形的に示すように7である。
本発明の実施形態の態様によれば、送風機モータ位相を表す何らかの信号は、送風機モータコントローラ(図6の100)から抽出することができるように想定されている。モータ位相と対応するタイミングは、例えば、送風機回転周波数の高倍数の位相、典型的に46=2*23ブレードを意味するように十分な精度で既知である必要がある。これは、モータ位相が〜2%の精度で分る必要があることを意味する。また、新しい位相読取値Φn+1が、全ての発射(レーザ出力光パルスビームパルス)に必要であるとは限らないように、速度は、非常にゆっくりと変化すると想定されている。複数回の発射、例えば、8回は、良好な位相信号精度を取得しやすくするように評価ウィンドウに貢献することができる。図8に図形的に示すように、これは、その結果ベクトルAn−An-1が、地点170に収束し、この地点でフィードフォワード信号の振幅及び位相が、送風機高調波mによって生成された外乱を完全に補正し、すなわち、測定レーザ光パルスエネルギと送風機高調波がゼロになって測定レーザ光パルスエネルギとフィードフォワード信号との相関関係がゼロになるような値になる。
l/w項は、結果を低域通過濾過するためのwパルスの補正ウィンドウサンプルを形成する。wに対して選択された値は、1とすることができるが、計算された得られる補正値は、ノイズが多すぎるであろうし、1つの値のみ、すなわち、j=nの時の値が計算されている。
説明したように、本発明の実施形態の態様によれば、送風機モータ位相の変化は、パルス単位であり、例えば、次のパルスの位相では、そのパルスに関する新しい補正信号に影響を与える状態でその補正信号がパルス単位での送風機モータ位相の変化によって示された送風機モータの挙動に従ってパルス単位で変る時に、送風機モータ位相の変化を利用して、チャンバ内の送風機モータによって誘発される音響ノイズから生じる補正を計算することができる。
上記は、本発明の実施形態の態様を説明するものであり、本発明の実施形態の態様により、線狭化ガス放電レーザシステムは、例えば、スペクトルの整数百分率値、例えばe95、又は最大値の何らかの百分率での全幅、例えばFWHMとすることができるレーザ出力光パルスビームのスペクトル品質を微調整で適応させることができることが当業者によって理解されるであろう。スペクトルのスペクトル品質を微調整するようにされた本発明のシステムは、当業者によって理解されるように、例えば、線狭化パッケージ又はモジュールの一部とすることができる後部反射体と、例えば発振キャビティを形成する部分反射出力カプラとを含むことができる。
空洞の特定の外形と共に、後部反射体と出力カプラは、例えば他の希ガス、例えばネオン又はヘリウムを有する例えばArF、KrF、XeCl、XeFのエキシマレーザ混合物又は同様のガス混合物、又は分子F2ガス混合物のようなレーザ媒体ガスを含む発振キャビティ内でレーザチャンバ内の放電によってレーザ発生を引き起こすように、レーザガス媒体が励起されると同時に、共振空洞を通るレーザ光パルスビームのいくつかのパスを形成する役目を少なくともある程度することができる。また、本発明のシステムは、少なくとも1つのピーキングコンデンサを含むことができ、その1つの端子は、チャンバハウジングと、少なくとも1つのピーキングコンデンサの反対の端子に接続され、かつチャンバハウジングから絶縁された1対のガス放電電極の第1の電極及びそのガス放電電極の対の第2の電極とに電気的に接続することができる。
正方向電圧又は負方向電圧、又はその一方の電圧の後に他方の電圧がきてその後に何らかの共鳴が発生する高電圧の時のガス放電は、何らかの期間にわたってレーザガス混合物を励起することができ、その期間中、レーザが発生する時のガス放電は、出力レーザ光パルスビームをフォーマット設定し、出力レーザ光パルスビームの一時的に分配された部分は、他よりも多いか又は少ない回数で線狭化パッケージ/モジュールを通過してしまうことができ、その結果、統合されたスペクトル純度のレーザ出力光パルスビームの一時的に分配された部分内での分配になる(例えば、E95又はFWHMによって測定された帯域幅)。
電流戻り経路が存在することができ、電流戻り経路により、少なくとも1つのピーキングコンデンサをチャンバハウジングと、少なくとも1つのピーキングコンデンサの1つの端子と、電極の対の第1の電極と、レーザ媒体ガスと、ガス放電電極の対の第2の電極とに電気的に接続することができ、電流戻り経路と少なくとも1つのピーキングコンデンサの第2の端子は、所定のレーザシステムに対して特定の逆流誘発ループに固有のインダクタンス値を有する電流誘発ループを形成することができる。すなわち、ループの特定の構成及びその構成要素、例えば製造時の材料の不純物及び他の要因による製造公差及び材料組成の変動、又は比較的少量は、ヘッドインダクタンスの比較的大きな百分率の変化、例えば、10から50%になる場合がある。
これは、本発明の実施形態の態様によれば、例えば、最初に大きな正又は負の電圧、例えば約20,000ボルト、次に反対の極性のほぼ等しい大きな電圧及び大きなレーザ媒体ガスを持続することができるその後の共鳴とすることができ、当業者に理解されるように、電極にわたって出現する高電圧の形状及び/又は持続時間を変えて1対の電極間の放電のある一定の態様を変えると本出願人によって判断されている。
本発明の実施形態の態様によるスペクトル品質調整機構は、特定の逆流インダクタンスループに対する特定の逆流誘発インダクタンスを変える機構を含むことができる。すなわち、例えば、製造時に問題のスペクトル品質パラメータ、例えば特定のデザインの特定のレーザシステムに対して例えばE95又はFWHMによって測定された帯域幅は、例えば、非常に正確であるが高価で嵩ばる分光分析計器、例えばLTB格子分光計を使用して試験することができる。次に、所定のレーザシステムの変動は、例えば、レーザシステム出力として測定されるスペクトルパラメータの最大値及び/又は所定のレーザシステムのこのような値の範囲を例えば出荷前に調整するように調整機構で調整することができる。更に、レーザ出力光パルスビーム品質に影響を与える他の変化、例えば、電極侵蝕及び得られる放電形状、光学素子劣化などのために、レーザ使用期間にわたって必要に応じて類似の調整を調整機構で行うことができる。
従って、特定のレーザシステムデザインの場合でさえも、レーザシステム間の変動は、製造時にかつレーザ使用期間にわたって微調整することができ、レーザシステム単位の小さな変動を考慮して、例えば、過剰でないという見地、例えば、最新の集積回路フォトリソグラフィ要件、例えば、マスク作業光学近接制御要件に対する最大許容値から最小許容値までのある一定の狭い範囲での維持の両方から、例えば、帯域幅のより厳しい制御に対する高まる追求の結果、今日の各このようなレーザに設けられた厳しいスペクトル品質要件を満たすことができるように助けることができる。
説明したように、空洞は、発振キャビティ内の線狭化モジュールを含むことができ、装置は、特定のガス放電レーザシステムに関するガス放電の持続時間を調整する特定の逆流ループインダクタンス、及び従ってシステム単位で特定のシステムデザイン、例えば「NL−7000」又は「ELS 7010」などで特定のレーザシステムによって生成されたレーザ出力光パルスビームのスペクトル品質に及ぼす線狭化モジュールの影響に対応して、レーザシステム単位でレーザ使用期間にわたって製造及び/又は材料分散などを補正することができる。スペクトル品質調整機構は、例えば、特定のレーザシステムに対して逆流誘導ループのサイズを変える機構を含むことができる。特定のレーザシステムは、デザイン的には、少なくとも1つのピーキングコンデンサの反対の端子と電気的に接触している高電圧バスを含むこともでき、スペクトル品質調整機構は、少なくとも1つのピーキングコンデンサの反対の端子からの高電圧バスの変位を制御する変位制御機構を含むことができる。これは、例えば手動作動機構、すなわち、ネジ切りしたネジの形態を取ることができ、作動時には、例えば、逆流誘導ループインダクタンスの物理的サイズを変えることにより、例えば、コンデンサ(列)端子と高電圧バスの間の変位量を変えることにより、製造時に又はレーザシステム使用期間中に現場で必要に応じて、例えば、特定のレーザシステムに対して特定のスペクトル品質を調整する役目をすることができる。
代替的に、本発明の実施形態の態様によれば、スペクトル品質調整機構は、能動制御システムを含んで、入力部としてスペクトル品質測定システムの出力部を有するコントローラのフィードバック制御に基づいて、特定の逆流誘導ループインダクタンスを調節することができる。
また、本発明の実施形態の態様によれば、特定のパルスビーム繰返し数かつ所定の露光ウィンドウパルスビーム数が得られるようにレーザ出力光パルスビームパルス線量安定性を制御するようにされた高速、例えば3kHz又はそれよりも大きいガス放電レーザシステムは、当業技術で公知であるようなかご形送風機ファンのようなレーザガス循環回転送風機と、例えば、所定のレーザに対して経験的に決めることができ、かつ一般的にアークなし作動を発生することができるファン回転速度を超えるように選択されたファン回転速度である特定のレーザ出力光パルスパルス繰返し数を得るための適切なアークなし送風機速度の現在適用可能な範囲内に送風機を作動させる送風機回転速度コントローラとを含むことができ、何らかの選択された余裕の幅が与えられると、すなわち、送風機速度が、特定のチャンバ構造及び流路及び特定のレーザ出力光パルスビームパルス繰返し数に対してチャンバ周りに十分なガス流量を生成し、ガス媒体を通る直前のガス放電によって引き起こされたレーザガス媒体のイオン化成分のようなデブリを除去するものであり、このデブリが、電極間の放電領域に十分に密封されたままである場合には、例えば、高電圧カソードから接地チャンバに掛けてアーク発生を引き起こし、従って、電極間のガス放電領域内の継続的なガス放電を重大に損ね、及び従って波長、帯域幅、線量、及び線量安定性のような様々な出力レーザ光パルスビームパルスパラメータを重大に損なう場合があることは、当業者によって理解されるであろう。また、この装置及び方法は、パルス繰返し数と露光ウィンドウパルス数を表す信号とに基づいて、アークなし送風機速度の現在適用可能な範囲内の出力送風機回転速度を達成するパルスエネルギコントローラを含むことができる。送風機回転速度は、複数の露光ウィンドウ及びレーザパルス繰返し数関連フーリエ変換ヌル点のそれぞれの1つ内に送風機速度高調波関連線量移行を整列させるように選択することができる。それぞれ図14と図10に示すようなピーク及びヌルは、送風機モータ回転速度のそれぞれの変化分で移動させても完全に整列させることはできないが、比較的近いアラインメントの効果、及びヌル208を有するピーク204の実質的な合算により、時間領域内で送風機モータ速度高調波誘導ピークの強度を大幅に低減することができることが理解されるであろう。送風機速度は、整数の外乱波形を露光ウィンドウの期間内に置くように選択することができる。
ここで図14を参照すると、一例として、ヘッドインダクタンス調整/修正機構500の別の実施形態が示されている。ヘッドインダクタンス調整機構500は、絶縁層505によって高電圧バス板504から絶縁することができるヘッドインダクタンス修正バス板502を含むことができる。高電圧バス板は、半導体パルス電力システム(図示せず)の上流側と電気的に接触することができ、半導体パルス電力システムの一部を一例として図15に概略的に示しており、本出願人によってコロナプレートとして公知である高電圧バス板504は、Lp-1、すなわち、前段階コンデンサ(コンデンサ列)Cp-1からピーキングコンデンサ(ピーキングコンデンサ520の列)に電荷を渡すように機能する圧縮回路の前段階可飽和誘導子スイッチと電気的に接触している。ピーキングコンデンサ520の反対の端子は、接地チャンバヘッド512と電気的に接続することができる。
また、ノード600には、カソード電極522を接続することができ、カソード電極522は、ネジ穴507を通じてネジ(図示せず)によってコロナプレート504に結合され、かつフィードスルーバス板509にその両端で接続された複数のスタンドオフ506によってノード600でコロナプレート504と電気的に接続することができ、フィードスルーバス板509は、次に、各々が主絶縁体(図示せず)を通じてカソード522に結合された複数の高電圧フィードスルーに電気的に接続されている。スタンドオフ506は、絶縁部508によってインダクタンスループバス板532に対して絶縁することができ、絶縁部508は、図14において、内部配置されたスタンドオフ506を示すために一部が切り取られた状態で示されている。
ピーキングコンデンサ列Cp-1のピーキングコンデンサ520は、コンデンサ520をインダクタンスループバス板502に電気的に接続する複数の撓みバネ530を通じて、かつインダクタンスループバス板502とフィードスルーバス板509とに電気的に接続した複数の撓みバネ532により、ノード600に電気的に接続することができる。このようにして、図5と同等の回路が形成される。従って、ヘッドインダクタンスLvは、例えば、利得変化がレーザシステム(図示せず)によるレーザパルスの放出のタイミング、従って、最終放出レーザパルスのスペクトルの最終帯域幅に及ぼす線狭化モジュールの全体的な影響を修正することができるので、電極522と524の間の放電のタイミングを変え、従って、レーザガス媒体内に形成された利得のタイミングのような事柄、従って、帯域幅を修正するために可変とすることができる。
この例示的な実施形態は、図16において部分概略図かつ部分断面で示されている。図16は、図15に示すような同等回路を形成するために、バネ532と、高電圧供給バス509と、コンデンサ列Cp内のコンデンサ520の高電圧端子との電気的相互接続インダクタンスループバス板502を通じた図14と比較して、図16に示すように左に若干拡張された例えば高電圧供給バス509を示す例示を目的とした一部修正された図14の構造体の部分断面端面図を示している。図14と図20で分るように、インダクタンスループバス板502は、適切なアクチュエータ、例えば、ステッパモータ(図14又は図26では図示せず)により、コロナプレート504に対して移動させ、図15のノード600間の電気的接触を用いて、コロナプレートをカソード(スタンドオフ506と高電圧バス509を通じて)と、コンデンサ520の高電圧端子(高電圧フィードスルーバス509と、バネ532と、インダクタンスループバス板502と、バネ530と、コンデンサ高電圧バス521とを通じて)とに接続することができる。バネ530、532は、インダクタンスループバス板502が図14及び図16に示すように上下動する時に撓みかつ延びて、従って電気接続し続けることができる。バネ530、532は、あらゆる適切な手段、例えば、ネジ542によってそれぞれのバス509、521に取り付けることができ、ネジ542はまた、少なくともある程度、それぞれのバス509、521をそれぞれ高電圧フィードスルー510とコンデンサ520の高電圧側に取り付ける役目をすることができる。
また、本発明の実施形態の態様によれば、特定のパルス繰返し数でレーザ出力光パルスビームパルスのパルスエネルギを制御するようにされた高繰返し数ガス放電レーザシステムは、レーザガス循環ファン、例えば、数RPMで回転し、かつ例えば帯域幅、中心波長、線量/パルスビーム、及びパルス間の線量安定性において例えば結果的に出力レーザ光パルスビームパルスの移行を発生させることができる高調波を有するレーザガス放電チャンバ内に音響外乱を生成することができるかご形回転送風機ファンと、少なくともある程度、1つの先行レーザ出力光パルスビームパルスの測定レーザ出力光パルスビームパルスエネルギに基づいてレーザ出力光パルスビーム出力パルスのパルスエネルギ制御信号を生成する別々のエネルギコントローラ、マイクロプロセッサ、又はマイクロコントローラのより大きなレーザシステムコントローラの一部とすることができるパルスエネルギコントローラと、レーザ出力光パルスビームパルスの位相推定値を生成するガス循環ファン位相推定器を含むことができるパルスエネルギ制御信号補正機構と、位相推定値と選択高調波モードに基づいてパルスに対する補正を計算する補正コンピュータとを含むことができることは、当業者によって理解されるであろう。
以上開示した本発明の実施形態の態様は、好ましい実施形態であることのみを意図したものであり、いかなる点においても、特定の好ましい実施形態だけに本発明の開示内容を特に限定することは意図していないことは、当業者によって理解されるであろう。開示した本発明の実施形態の開示した態様に対して、当業者によって理解されかつ認識されると考えられる多くの変更及び修正を行うことができる。特許請求の範囲は、範囲及び意味において、本発明の実施形態の開示した態様ばかりでなく、当業者に明らかになると考えられる均等物及び他の修正及び変更も包含するように想定されている。上述の本発明の実施形態の開示かつ主張した態様に対する変更及び修正に加えて、特許請求の範囲の内容を実施することができると考えられる。
本発明の実施形態の態様を例示するために利用されるレーザシステムの特定の族の逆流誘導ループの構成の例を示す部分概略図である。 本発明の実施形態の態様を例示するために利用されるレーザシステムの特定の族の逆流誘導ループの構成の別の例を示す部分概略図である。 本発明の実施形態の態様を例示するために利用されるレーザシステムの特定の族の逆流誘導ループの構成の更に別の例を示す部分概略図である。 強度スペクトルのピークに中心があるスペクトル強度曲線の選択百分率で測定された帯域幅に及ぼす逆流誘導ループのインダクタンスの変化の影響を図形的に示す図である。 スペクトルの最大強度の何らかの割合で取ったスペクトル強度曲線の選択幅によって測定された帯域幅に及ぼす逆流誘導ループのインダクタンスの変化の影響を図形的に示す図である。 本発明の実施形態の態様による制御システムの概略部分ブロック図である。 本発明の実施形態の態様による制御システムの概略ブロック図である。 図7の制御システムの作動結果を図形的に示す図である。 本発明の実施形態の態様による露光ウィンドウを形成する出力レーザ光パルスビームパルスのバーストの例を図式形式で示す図である。 図9に示すバーストのフーリエパワースペクトルを図形的に示す図である。 出力レーザ光パルスビームパルス繰返し数の範囲にわたる線量エネルギ誤差の図表である。 出力レーザ光パルスビームパルス繰返し数の範囲にわたる線量エネルギ誤差の別の図表である。 出力レーザ光パルスビームパルス繰返し数の値に対する線量エネルギ誤差のフーリエ変換の更に別の図表である。 圧縮ヘッドインダクタンスループにおけるインダクタンスを選択的に変える機構を有する本発明の実施形態の態様による圧縮ヘッドの一部分を示す図である。 図14に示す構造に対する同等回路の概略図である。 図14に示すものと実質的に同じ構造の端面図である。
符号の説明
30、32 電極
70 レーザ制御システム
120 スキャナ

Claims (6)

  1. レーザ出力光パルスビームのスペクトル品質を微調整するようにされた線狭化ガス放電レーザシステムであって、
    発振キャビティと、
    レーザ媒体ガスを収容するチャンバハウジングを含む前記発振キャビティ内のレーザチャンバと、
    1つの端子が前記チャンバハウジングと1対のガス放電電極の第1の電極とに電気的に接続された少なくとも1つのピーキングコンデンサと、
    前記少なくとも1つのピーキングコンデンサの反対の端子に接続され、かつ前記チャンバハウジングから絶縁された前記ガス放電電極の対の第2の電極と、
    前記少なくとも1つのピーキングコンデンサが前記チャンバハウジングに電気的に接続される電流戻り経路と、
    を含み、
    前記少なくとも1つのピーキングコンデンサの前記1つの端子、前記ガス放電電極の対の前記第1の電極、前記レーザ媒体ガス、該ガス放電電極の対の前記第2の電極、前記電流戻り経路、及び該少なくとも1つのピーキングコンデンサの第2の端子は、逆流誘導ループを形成し、該逆流誘導ループは、所定のレーザシステムに対して該特定の逆流誘導ループに固有のインダクタンス値を有し、
    前記特定の逆流誘導ループに対する前記特定の逆流誘導ループインダクタンス値を変えるための機構を含むスペクトル品質調整機構、
    を更に含み、
    前記スペクトル品質調整機構は、スペクトル品質測定システムの出力部を入力部として有するコントローラのフィードバック制御に基づいて特定の逆流誘導ループインダクタンスを調節する能動制御システムを含むことを特徴とするシステム。
  2. 前記発振キャビティ内の線狭化モジュール、
    を更に含み、
    前記特定の逆流ループインダクタンスの前記変化は、特定のガス放電レーザシステムに対するガス放電の持続時間と、該特定のレーザシステムによって生成されたレーザ出力光パルスビームのスペクトル品質に及ぼす前記線狭化モジュールの影響とを調整する、
    ことを特徴とする請求項1に記載の装置。
  3. 前記スペクトル品質は、帯域幅である、
    ことを更に含むことを特徴とする請求項1に記載の装置。
  4. 前記スペクトル品質調整機構は、特定のレーザシステムに対する前記逆流誘導ループのサイズを変える機構を含むことを更に含むことを特徴とする請求項1に記載の装置。
  5. 前記少なくとも1つのピーキングコンデンサの前記反対の端子に電気的に接触した高電圧バス、
    を更に含み、
    前記スペクトル品質調整機構は、前記少なくとも1つのピーキングコンデンサの前記反対の端子からの前記高電圧バスの変位を制御する変位制御機構を含む、
    ことを特徴とする請求項4に記載の装置。
  6. 前記スペクトル品質調整機構は、製造時に又はレーザシステム作動寿命中に現場で必要とされる場合に、特定のレーザシステムに対する前記特定のスペクトル品質を調節するように手動で作動される、
    ことを更に含むことを特徴とする請求項1に記載の装置。
JP2008504252A 2005-03-31 2006-03-27 ガス放電レーザ出力光のビームパラメータ制御 Expired - Fee Related JP5124442B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/095,293 2005-03-31
US11/095,293 US7471708B2 (en) 2005-03-31 2005-03-31 Gas discharge laser output light beam parameter control
PCT/US2006/011305 WO2006105101A2 (en) 2005-03-31 2006-03-27 Gas discharge laser output light beam parameter control

Publications (3)

Publication Number Publication Date
JP2008535260A JP2008535260A (ja) 2008-08-28
JP2008535260A5 JP2008535260A5 (ja) 2009-05-14
JP5124442B2 true JP5124442B2 (ja) 2013-01-23

Family

ID=37054019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008504252A Expired - Fee Related JP5124442B2 (ja) 2005-03-31 2006-03-27 ガス放電レーザ出力光のビームパラメータ制御

Country Status (4)

Country Link
US (1) US7471708B2 (ja)
EP (1) EP1867014B1 (ja)
JP (1) JP5124442B2 (ja)
WO (1) WO2006105101A2 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7778302B2 (en) * 2005-11-01 2010-08-17 Cymer, Inc. Laser system
US7920616B2 (en) * 2005-11-01 2011-04-05 Cymer, Inc. Laser system
JP5506194B2 (ja) * 2005-11-01 2014-05-28 サイマー インコーポレイテッド レーザシステム
US20090296758A1 (en) * 2005-11-01 2009-12-03 Cymer, Inc. Laser system
US7643529B2 (en) 2005-11-01 2010-01-05 Cymer, Inc. Laser system
US7630424B2 (en) * 2005-11-01 2009-12-08 Cymer, Inc. Laser system
US20090296755A1 (en) * 2005-11-01 2009-12-03 Cymer, Inc. Laser system
US7885309B2 (en) * 2005-11-01 2011-02-08 Cymer, Inc. Laser system
US7715459B2 (en) * 2005-11-01 2010-05-11 Cymer, Inc. Laser system
US7999915B2 (en) * 2005-11-01 2011-08-16 Cymer, Inc. Laser system
US7746913B2 (en) 2005-11-01 2010-06-29 Cymer, Inc. Laser system
KR101742715B1 (ko) * 2008-10-21 2017-06-01 사이머 엘엘씨 2 챔버 가스 방전 레이저의 레이저 제어 방법 및 장치
US7903701B2 (en) * 2009-03-27 2011-03-08 Electro Scientific Industries, Inc. Intracavity harmonic generation using a recycled intermediate harmonic
JP5755068B2 (ja) * 2011-07-27 2015-07-29 株式会社小松製作所 狭帯域化レーザのスペクトル幅調整装置
CN102810810A (zh) * 2012-03-02 2012-12-05 中国科学院光电研究院 单腔双电极放电腔及准分子激光器
US8811440B2 (en) * 2012-09-07 2014-08-19 Asml Netherlands B.V. System and method for seed laser mode stabilization
JP5832581B2 (ja) * 2014-04-28 2015-12-16 株式会社小松製作所 狭帯域化レーザのスペクトル幅調整装置
US9261794B1 (en) * 2014-12-09 2016-02-16 Cymer, Llc Compensation for a disturbance in an optical source
US9966725B1 (en) 2017-03-24 2018-05-08 Cymer, Llc Pulsed light beam spectral feature control
US11349273B2 (en) 2018-01-17 2022-05-31 Cymer, Llc Apparatus for tuning discharge performance in a laser chamber
WO2021071681A1 (en) * 2019-10-11 2021-04-15 Cymer, Llc Conductive member for discharge laser
CN116636100A (zh) * 2020-12-22 2023-08-22 西默有限公司 气体放电室鼓风机的能耗降低
CN113783098B (zh) * 2021-07-23 2023-02-28 北京科益虹源光电技术有限公司 一种激光器放电腔电极损耗可补偿结构
CN115357089A (zh) * 2021-11-08 2022-11-18 神盾股份有限公司 自动功率控制电路及方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US516847A (en) * 1894-03-20 Means for regulating alternating currents
US1892204A (en) * 1929-03-02 1932-12-27 Rca Corp Inductance coil
US1913978A (en) * 1929-06-14 1933-06-13 Rca Corp Inductance and capacity
US1836808A (en) * 1929-07-31 1931-12-15 Western Electric Co Inductance coil
US2410222A (en) * 1944-02-17 1946-10-29 Rca Corp Tuning means
US3582808A (en) * 1967-07-03 1971-06-01 Hoffman Electronics Corp Double-tuned circuit
US3633127A (en) * 1969-11-17 1972-01-04 Avco Corp Pulsed laser device with improved discharge circuit
US4112392A (en) * 1975-09-17 1978-09-05 Andersson Hans E B Method and apparatus for producing laser pulses with high reproducibility
DE3323614A1 (de) * 1983-06-30 1985-01-03 Kraftwerk Union AG, 4330 Mülheim Anregungskreis fuer ein te-hochenergielasersystem
US4611327A (en) * 1983-11-25 1986-09-09 Amoco Corporation Gas transport laser system
DE3705165A1 (de) * 1986-02-18 1987-08-20 Mitsubishi Electric Corp Mit entladungserregung arbeitende laservorrichtung fuer kurze impulse
JPH0754861B2 (ja) * 1986-05-14 1995-06-07 株式会社東芝 ガスレ−ザ発振装置
JPS62277782A (ja) * 1986-05-26 1987-12-02 Nec Corp パルスガスレ−ザ装置
JPS62192658U (ja) * 1986-05-27 1987-12-08
EP0495535B1 (en) * 1987-03-19 1995-07-26 Matsushita Electric Industrial Co., Ltd. Laser apparatus
JPH02103972A (ja) * 1988-10-13 1990-04-17 Toshiba Corp パルスレーザ発振装置
DD276952A1 (de) * 1988-11-11 1990-03-14 Akad Wissenschaften Ddr Verfahren zur schnellen laserimpulsenergiesteuerung im folgefrequenzbetrieb von gaslasern, insbesondere excimerlasern
US4972425A (en) * 1989-08-30 1990-11-20 Hughes Aircraft Company Laser frequency stabilization
JP2819865B2 (ja) * 1991-04-08 1998-11-05 日新電機株式会社 高電圧パルス発生装置
US6005880A (en) * 1997-02-14 1999-12-21 Lambda Physik Gmbh Precision variable delay using saturable inductors
US6020723A (en) * 1997-02-14 2000-02-01 Lambada Physik Gmbh Magnetic switch controlled power supply isolator and thyristor commutating circuit
US6128323A (en) * 1997-04-23 2000-10-03 Cymer, Inc. Reliable modular production quality narrow-band high REP rate excimer laser
US6330261B1 (en) * 1997-07-18 2001-12-11 Cymer, Inc. Reliable, modular, production quality narrow-band high rep rate ArF excimer laser
US6240112B1 (en) * 1997-12-15 2001-05-29 Cymer, Inc. High pulse rate pulse power system with liquid cooling
US6757315B1 (en) * 1999-02-10 2004-06-29 Lambda Physik Ag Corona preionization assembly for a gas laser
US6785316B1 (en) * 1999-08-17 2004-08-31 Lambda Physik Ag Excimer or molecular laser with optimized spectral purity
JP3552979B2 (ja) * 1999-09-16 2004-08-11 ウシオ電機株式会社 ArFエキシマレーザ装置
US6765946B2 (en) * 2000-01-25 2004-07-20 Cymer, Inc. Fan for gas discharge laser
US6392743B1 (en) * 2000-02-29 2002-05-21 Cymer, Inc. Control technique for microlithography lasers
WO2001084678A2 (en) * 2000-04-18 2001-11-08 Lambda Physik Ag Stabilization technique for high repetition rate gas discharge lasers
US6862307B2 (en) * 2000-05-15 2005-03-01 Lambda Physik Ag Electrical excitation circuit for a pulsed gas laser
US6914919B2 (en) * 2000-06-19 2005-07-05 Cymer, Inc. Six to ten KHz, or greater gas discharge laser system
JP3755577B2 (ja) * 2000-10-10 2006-03-15 ウシオ電機株式会社 露光用ArF、KrFエキシマレーザ装置及びフッ素レーザ装置
US6690704B2 (en) * 2001-04-09 2004-02-10 Cymer, Inc. Control system for a two chamber gas discharge laser

Also Published As

Publication number Publication date
EP1867014A4 (en) 2011-04-06
EP1867014A2 (en) 2007-12-19
WO2006105101A2 (en) 2006-10-05
EP1867014B1 (en) 2013-08-21
WO2006105101A3 (en) 2009-04-16
US20060227839A1 (en) 2006-10-12
US7471708B2 (en) 2008-12-30
JP2008535260A (ja) 2008-08-28

Similar Documents

Publication Publication Date Title
JP5124442B2 (ja) ガス放電レーザ出力光のビームパラメータ制御
KR101456859B1 (ko) 레이저 광의 대역폭을 안정화하고 튜닝하는 방법 및 장치
US6018537A (en) Reliable, modular, production quality narrow-band high rep rate F2 laser
US8102889B2 (en) Multi-chamber gas discharge laser bandwidth control through discharge timing
CN107925214B (zh) 用于光源的波长稳定化
EP1994549B1 (en) Active spectral control of duv light source
US6014398A (en) Narrow band excimer laser with gas additive
JP2008535260A5 (ja)
KR101935303B1 (ko) 광원에서의 교란의 보상 방법
WO1999060679A1 (en) Reliable modular production quality narrow-band high rep rate f2 laser
USRE38054E1 (en) Reliable, modular, production quality narrow-band high rep rate F2 laser
JP5264173B2 (ja) レーザ出力光パルスビームパラメータ遷移補正システム
JP2015111718A (ja) 2チャンバガス放電レーザにおけるレーザ制御の方法及び装置
JP6845255B2 (ja) レーザ装置
JP2007531312A (ja) ガス放電レーザチャンバの改善
US7751453B2 (en) Method and apparatus for laser control in a two chamber gas discharge laser
US20100098122A1 (en) Method and Apparatus for Laser Control in a Two Chamber Gas Discharge Laser
US20100098123A1 (en) Method and apparatus for laser control in a two chamber gas discharge laser
Saito et al. Ultra line-narrowed ArF excimer laser G42A for sub-90-nm lithography generation
JPH06169123A (ja) レーザ装置の出力制御装置
EP1821377A2 (en) Gas discharge laser system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111031

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120125

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5124442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees