JP5121983B1 - 凝集剤注入方法及び注入装置 - Google Patents

凝集剤注入方法及び注入装置 Download PDF

Info

Publication number
JP5121983B1
JP5121983B1 JP2011149690A JP2011149690A JP5121983B1 JP 5121983 B1 JP5121983 B1 JP 5121983B1 JP 2011149690 A JP2011149690 A JP 2011149690A JP 2011149690 A JP2011149690 A JP 2011149690A JP 5121983 B1 JP5121983 B1 JP 5121983B1
Authority
JP
Japan
Prior art keywords
flocculant
water
injection
treated
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011149690A
Other languages
English (en)
Other versions
JP2013013870A (ja
Inventor
和夫 服部
治美 能登
裕司 高橋
紀子 森垣
悟 土井
正雄 富井
行雄 越川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISOMURA HOSUI KIKO KABUSHIKI KAISHA
Original Assignee
ISOMURA HOSUI KIKO KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISOMURA HOSUI KIKO KABUSHIKI KAISHA filed Critical ISOMURA HOSUI KIKO KABUSHIKI KAISHA
Priority to JP2011149690A priority Critical patent/JP5121983B1/ja
Application granted granted Critical
Publication of JP5121983B1 publication Critical patent/JP5121983B1/ja
Publication of JP2013013870A publication Critical patent/JP2013013870A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】凝集処理操作における電気エネルギーを低減する。
【解決手段】凝集剤貯槽、凝集剤移送定量ポンプ、浄化処理終了後の処理水を給水源とする給水装置、インジェクター及びノズル装着注入配管からなる装置を使用することにより、被処理水への分散性及び被処理水との混和効率を大幅に向上させ、凝集剤量及び電気エネルギー使用量の削減するとともに、浄化処理終了後の処理水の給水圧を利用することによる経済性、効率性、安全性を図る。
【選択図】図1

Description

本発明は、浄水場において常用されている凝集処理について、凝集剤と被処理水との混和効率を飛躍的に高め、水運用の経済性と水道水の安全性をさらに向上させるための新しい凝集剤注入方法及びその方法に使用する装置に関するものである。
一般に、浄水場では河川や貯水池などの水源から原水を取水し、凝集、フロック形成、沈殿、ろ過および消毒の単位プロセスを経て、被処理水から懸濁質とコロイド質を除去し、細菌等を無害化し、水道水として供給している。
上記した浄水処理においては、凝集沈澱処理とろ過処理とを組み合わせて行う方法が広く採用されている。
浄水場の一般的な水処理フローでは、混和池で凝集剤等の水処理薬剤が注入され、急速攪拌機等で混和された後、後段のフロック形成池、薬品沈澱池、急速ろ過池を経て、最終的に消毒処理後、家庭などに給水されている。
最終処理水の濁度は、強い塩素耐性を持つクリプトスポリジウム等への対応として厚生労働省が非特許文献1で指導している0.1度以下にまで制御される。
平成8年、埼玉県内のある浄水場において、クリプトスポリジウムによる集団感染症が発生した。クリプトスポリジウムは水道水の安全性、衛生性の要である塩素消毒に対して強い耐性を示すため、厚生労働省は砂ろ過水の濁度を0.1度以下に厳格に管理するよう水道事業者などに通知した(非特許文献1参照)。水道事業者などは本通知を受けて、砂ろ過水の厳格な濁度管理を目的に凝集剤の厳格な注入管理を実施している。
一般に被処理水である原水に凝集剤を注入する場合、凝集剤がクリプトスポリジウムなどの懸濁質を沈澱除去できるまでに凝集するためには、凝集剤と被処理水との急速な攪拌操作による混和が重要である。このため、一般的には機械攪拌装置による強制的な攪拌操作を行っているが(特許文献1参照)、このために消費する電気エネルギー量は極めて多く、この消費エネルギーを削減することが、水道事業者にとって大きな課題となっている。
現行水道法における水道水の濁度基準は2度であるが、上記したようにクリプトスポリジウム問題が発生した後、厚生労働省は砂ろ過水濁度を0.1度以下に管理することを指導している。これを受けて水道事業者は前凝集処理を補完するために、砂ろ過前に凝集剤を注入する、いわゆる後凝集処理を導入し始めている。
後凝集処理はクリプトスポリジウム問題の発生以前からも、「白水」や「赤水」対策として採用される例はあり、微小プランクトンの漏出防止を目的に導入する例もあった(特許文献2参照)。後凝集処理工程における凝集剤の一般的な注入方法は、沈澱処理水に凝集剤の原液を滴下する自然流下方式であり、この注入方式は前凝集工程でも同様である。ところが、上記した自然流下方式は、凝集剤の急速な分散や混和効率が低く、必ずしも確実に適応できているとは言えないのが現状である。
そこで、凝集剤の注入点に機械攪拌装置を設置して混和効率を強制的に高める方法も考えられる。しかしながら、電気エネルギーの大量消費者である水道事業に対して、新たな電気エネルギーを必要とする機械攪拌方式は環境問題より考えて推奨できる方法とは言い難い。
また、凝集剤を原水に一様に均等分散させることを目的に、ディフューザー管を用い、凝集剤を浄化処理終了後の処理水で50倍程度に希釈して原水に注入する事例がある。
しかしながら、希釈による分散のみでは凝集剤が効果的に作用する撹拌強度を得ることが困難であり、このため、大きな電気エネルギーを消費する機械攪拌装置による混和や長大な直線区間が必要となるベンチュリーフリューム等の縮流部を利用した渦流による混和などの措置がさらに必要となる。(非特許文献2、非特許文献3)
後凝集処理においては、制御可能な注入率の下限は凝集剤として2mg/L程度であることが望ましいとされている。しかしながら、実際には、実用的な注入率として5〜10mg/Lの範囲で注入している例が多いとされている。このような過剰注入により、ろ過池への懸濁物負荷が増大してろ層の洗浄頻度が増加するので、浄水効率が低下する問題がある。したがって、注入率のさらなる低減化を可能とする新たな注入方法の開発が、水道事業者の間で期待されているところである。
特開平7−112103号公報 特開平4−11905号公報
厚生労働省告示「水道におけるクリプトスポリジウム等対策指針」 (平成19年) 大阪市水道局「柴島浄水場第4混和池における硫酸アルミニウムの 分散状況調査について」(昭和58年) 大阪市水道局「柴島浄水場第2急速ろ過系における硫酸アルミニウ ム注入方法の改良」(昭和42年)
前述のとおり、凝集操作では凝集剤を被処理水に注入した後、急速に混和する必要があるため、機械攪拌装置による方式が一般に採用されている。機械攪拌装置は大きな電気エネルギーを消費する問題を有している。このため、撹拌操作時における電気エネルギーの低減化が課題となっている。
また、後凝集処理において、制御可能な注入率の下限値は2mg/L程度が望ましいとされているが、実際の現場では、実用的には5〜10mg/Lの範囲で注入している例が多いとされている。このような凝集剤の過剰注入により、ろ層の目詰まりが頻発し、ろ層の洗浄頻度が増加するため、浄水効率が低下することから、処理性を確保するという観点からの最適注入率の特定とその具体的な方法を見出すことも課題となっている。
本発明の凝集剤注入方法及び装置は、浄水場構内の給水圧を利用したインジェクター方式を採用することで電気エネルギーの消費を最大限削減した環境配慮型の凝集剤注入方法及び装置とするとともに、被処理水との急速な混和を可能とするために、従来の原液滴下による自然流下方式に替えて、ノズルを介した凝集剤希釈液の噴霧注入方式を採用したものである。
すなわち、本発明は、凝集剤貯槽、凝集剤移送定量ポンプ、浄化処理終了後の処理水を給水源とする給水装置、インジェクター及びノズル装着注入配管を含む注入装置を採用するものであり、従来の原液滴下による自然流下方式に比べて水との混和効率を大幅に向上
させた凝集剤注入方法及び装置である。
これまでインジェクターを利用した噴霧による凝集剤注入方法は他に実施例がないため、ノズルの形状選定、必要給水圧、構内水と凝集剤の混合比率に関する室内実験を繰り返すことで、最終的な凝集剤注入方法及び装置を完成したものである。
以下に、その内容を具体的に説明する
本発明の凝集剤注入方法は、浄化処理終了後の処理水の水圧を駆動力とするインジェクターを利用し、被処理水が流出する堰部位に対して凝集剤希釈液の噴霧注入方式を採用することにより、被処理水への分散効果を高めると共に、被処理水との急速な混和を可能としている(請求項1の発明)。また、堰部の被処理水が落下する位置エネルギーによって得られる撹拌により、電気エネルギーの消費を最大限削減した環境配慮型の混和方式とする方法である。
すなわち、本発明は、凝集剤貯槽、凝集剤移送定量ポンプ、浄化処理終了後の処理水を給水源とする給水装置、インジェクター及びノズル装着注入配管を組み合わせて使用する注入方法であり、従来の自然流下方式や希釈によるディフューザー方式に比べて被処理水との分散及び混和効率を大幅に向上させて凝集剤注入率、電気エネルギー使用量を削減する方法である。
本発明の凝集剤注入方法は、被処理水の越流部における水面上又は被処理水中に希釈された凝集剤を噴霧するものであり(請求項2の発明)、噴霧注入方式の採用と注入部位として被処理水が堰より落下している部位を選択することにより、混和効率の向上を図るものである。
凝集剤は被処理水に対して急速に混和する必要がある。このため、機械攪拌装置の攪拌強度(G値)は100/秒以上に設計されている。本発明の堰落下部への凝集剤の注入方法では、落下部位でのG値が水頭差0.5mで機械攪拌装置と同等の100/秒程度の攪拌強度を得ることができるので、電気エネルギーの大幅削減が可能である(請求項2、請求項3の発明)。
水道で常用されている凝集剤は、ポリ塩化アルミニウム(PAC)、硫酸アルミニウム、ポリシリカ鉄(PSI)であるが、本装置はいずれの凝集剤にも応用可能である。処理量が少なく、かつ凝集剤注入率が2mg/L程度と低い場合、原液注入においては注入量が微量となるため、注入ムラが発生しやすく、処理性が低下する問題が発生する。
しかし、本発明の凝集剤注入方法は、凝集剤を浄化処理終了後の処理水により2倍〜1000倍に希釈して注入する方法であるため、注入量そのものが増加し、注入ムラが発生しない。この効果は、実証実験により1000倍までの希釈においても凝集性能を損なうことが無いことで実証されている。前凝集処理の希釈倍率は、希釈に必要な水量を削減するために2倍から50倍が望ましい。また、後凝集処理の希釈倍率は注入ムラを避けるために100倍から1000倍が望ましい(請求項4の発明)。
凝集剤注入装置では、凝集剤の析出物による目詰まり事故が発生しやすい。とりわけ、凝集剤を希釈して使用する方式では、析出物による事故が頻繁に発生する可能性が高い。このため、定期的な分解清掃が必要である。本発明の凝集剤注入方法においても凝集剤の析出物による目詰まりの可能性がある。目詰まりがインジェクターからノズルにかけて発生すると注入停止事故につながり、水道水の安定供給が確保できない重大な問題が発生する。このため、析出物を重点的に洗浄除去することが必要である。
本方法では、浄化処理終了後の処理水により凝集剤を希釈注入する方法であることから、一定間隔で浄化処理終了後の処理水のみを通水することで上記部位の洗浄が可能である。このため、分解清掃することなく析出物を容易に洗浄除去できるので、安定した注入管理が可能である(請求項5の発明)。
この洗浄処理は、凝集剤の希釈倍率より考えて、前凝集処理の場合、1月に1回程度、配管滞留時間の3倍量時間程度の洗浄、後凝集処理の場合、10日に1回程度、配管滞留時間の3倍量時間程度の洗浄が望ましい。
本発明の凝集剤注入方法はこれまで他で採用された実例がないため、噴霧装置の形状選定、必要水圧、凝集剤の希釈混和比率に関する室内実験、さらに、それらの室内実験結果に基づき実際の浄水場での実証実験を繰り返すことで、最終的な凝集剤の注入方法及び装置を完成したものである。
本発明の凝集剤注入方法は、被処理水との分散性及び混和効率を大きく向上させることが可能である。このことは、必要凝集剤量の削減(実証実験より3割から4割の削減効果)を可能とし、また堰部の水流が落下する際の位置エネルギーによって得られる撹拌により混和をしていることから、電気エネルギーの大幅削減が期待できる。
後凝集処理では制御可能な注入率の下限は凝集剤として2mg/L程度、実用的には5〜10mg/Lの範囲で注入している例が多いとされている。しかしながら、分散性及び混和効率が飛躍的に向上した本発明においては、図5−1と図5−2に示すように、注入率の下限は0.25mg/Lにまで低減可能であることが実証できた。このことにより、ろ過池への懸濁物負荷が大幅に減少するので、浄水場の経済的、効率的、安定的な運用が可能となる。
図1は一般的な浄水場における浄水プロセス及び本発明の凝集剤注入装置の 設置箇所を示すものである。 図2は従来の自然流下方式による注入法(図2−1)と本発明の注入法(図 2−2)を示すものである。 図3は本発明の注入装置全体を示すものである。 図4は神奈川県内のある浄水場での実証実験結果であり、注入方式別の注入 率をパラメーターとした損失水頭の上昇速度を示すものである。 図5−1と図5−2は神奈川県内のある浄水場での実証実験結果であり、ク リプトスポリジウムに相当する3〜7μm粒子数の注入方式別減少率を示す ものである。
以下に、添付図面を参照しながら、本発明に係る凝集剤注入方法及び装置について、その実施の形態について説明する。
本発明は、浄水場構内の給水圧を利用したインジェクター方式を採用することで電気エネルギーの消費を最大限削減した環境配慮型の凝集剤注入方法及び装置であり、被処理水との急速な混和を可能とするために、従来の原液滴下による自然流下方式に替えて、インジェクターを用い、ノズルを介して注入する凝集剤希釈液の噴霧注入方式を採用したものである。
また、凝集剤の噴霧部位を被処理水の越流部とすることにより、凝集剤のより効果的な混和状態を可能とするものである
本発明の凝集剤注入装置は、図1に示す浄水プロセスの前凝集工程である混和池及び/
又は後凝集工程である沈澱池とろ過池との間に設置され、いずれの場所においても被処理水が越流により攪拌される場所に設置されることにより混和効率の向上が図られている。
本発明の注入方式を採用する場合は、混和効率の向上により図1に示す混和池で従来使用されている攪拌装置の省略又は電動機出力を低減することが可能である。
例えば、越流部である堰落下部への凝集剤の注入方法では、落下部位でのG値が水頭差0.5mで機械攪拌装置と同等の100/秒程度の攪拌強度を得ることができる。
本発明の注入方法では凝集剤はインジェクターを用いて浄化処理終了後の処理水により希釈された状態で使用され、図2−2に示されるように、被処理水の水面上又は被処理水中に噴霧される。
この噴霧方式を採用することにより、従来例(図2−1)の自然流下方式に比べ、混和効率が格段に向上し、さらに、噴霧場所として被処理水が攪拌される場所を選択することにより凝集剤の使用量を大幅に低減することが可能となった。
本発明の注入方法で使用する装置は図3に示すとおりであり、凝集剤の希釈に浄化処理終了後の処理水の給水圧を利用したインジェクター方式を採用することで電気エネルギーの消費を最大限削減することが可能となり、また、凝集剤の水中への分散が容易となり凝集剤の混和効率の向上にも寄与している。
さらに、従来の凝集剤原液を注入する場合は注入量が微量となるため、注入ムラが発生しやすく、処理性が低下する問題が発生するが、本発明では凝集剤を浄化処理終了後の処理水により2倍〜1000倍に希釈して注入する方法であるため、注入量そのものが増加し、注入ムラが発生しない。
この効果は、後で示す実証実験により、1000倍までの希釈においても凝集性能を損なうことが無いことで実証されている。前凝集処理の希釈倍率は、希釈に必要な水量を削減するために2倍から50倍が望ましい。また、後凝集処理の希釈倍率は注入ムラを避けるために100倍から1000倍が望ましい。
また、凝集剤注入装置では、凝集剤の析出物による目詰まり事故が発生しやすい。とりわけ、凝集剤を希釈して使用する方式では、析出物による事故が頻繁に発生する可能性が高い。このため、析出物を重点的に洗浄除去することが必要となる。
本発明の凝集剤注入方法では、噴霧装置の噴霧注入配管やノズル部分は、浄化処理終了後の処理水のみを定期的に流すことで簡単に洗浄浄化することが可能であり、析出物による浄水効率の低下を防止することができる。
この洗浄処理は、凝集剤の希釈倍率より考えて、前凝集処理の場合、1月に1回程度、配管滞留時間の3倍量時間程度の洗浄、後凝集処理の場合、10日に1回程度、配管滞留時間の3倍量時間程度の洗浄が望ましい。さらに洗浄効率を高めるために超音波洗浄器を付加することも可能である。
[実施例1]
神奈川県内の浄水場で、従来の自然流下方式による凝集剤の注入方法と本発明の凝集剤注入方法との比較を一定期間行なった。使用した凝集剤はポリ塩化アルミニウム(PAC)であり、実施時期は9月〜12月の3ヶ月間である。
その結果は、「図4 注入方式と損失水頭上昇速度の比較」に示すとおりである。損失水頭の上昇速度は、砂層での濁質の抑留量が多いほど早くなる傾向にあり、各注入方式でのポリ塩化アルミニウム(PAC)の混和効率の程度を表している。
この図4が示す結果は以下のとおりである。
従来の自然流下方式による凝集剤の注入方法では、ポリ塩化アルミニウム(PAC)注
入率1mg/Lの場合、損失水頭の上昇速度は約0.16m/dである。これに対し、本発明の噴霧による処理方式では、同等の損失水頭の上昇速度を得るには注入率0.6〜0.7mg/Lですみ、少量の凝集剤添加で同等の効果が得られることを示しており、本発明の混和効率の高さを明確に示すものである。
このことは、本発明の噴霧による処理方式を採用した場合は、従来の自然流下方式による凝集剤の注入方法に比べ、60〜70%程度のポリ塩化アルミニウム(PAC)注入率で同等の濁質除去効果が得られることを意味し、従来の自然流下方式と比べた本発明の噴霧による処理方式の効果は明らかである。
この効果の差は、従来の自然流下方式が連続注入ではなく注入にムラがあること、さらに、本発明の噴霧を用いた方式とは混和効率で違いがあることにも起因するものと考えられる。
[実施例2]
実施例1と同じ浄水場で、同一期間、凝集剤の注入方式と注入効果との関係を、ポリ塩化アルミニウム(PAC)注入による微粒子数の減少の程度を測定することによって確認した。ここで使用する「減少率」は、次式に従って算出した。

減少率(%)=[対照系の測定値−実験系の測定値]÷[対照系の測定値]×100

測定する微粒子は、クリプトスポリジウムの大きさに相当する3〜7μmの粒子を対象とした。図5−1と図5−2は注入方式別の3〜7μmの粒子数の減少率を示すものである。
図5−1に示すように、従来の自然流下方式による凝集剤の注入方法では、ポリ塩化アルミニウム(PAC)の注入率1mg/Lで減少率が80%程度であったものが、注入率を0.5mg/L、0.25mg/Lと減らすと減少率が0%に低下し、微粒子を除去することができなくなった。
これに対し、本発明の噴霧による処理方式を採用した場合は、図5−2に示すように、水面噴霧、水中噴霧の両方式とも、ポリ塩化アルミニウム(PAC)の注入率1mg/L、0.5mg/L、0.25mg/Lのいずれの場合も減少率は50%を維持しており、安定した微粒子除去効果が得られた。
本発明の注入方法では、注入率が0.25mg/Lの低い場合であっても、優れた微粒子除去効果を有することが示されている。
これらの結果からも、本発明の注入方法が、従来の自然流下方式による凝集剤の注入方法に比べて高い微粒子除去効果を有することがうかがえる。
以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。
本発明は、凝集剤貯槽、凝集剤移送定量ポンプ、浄化処理終了後の処理水を給水源とする給水装置、インジェクター及びノズル装着注入配管を含む凝集剤注入装置とその装置を用いる凝集剤注入方法であり、従来の凝集剤注入方法及び装置に比べて、被処理水への分散性及び被処理水との混和効率を大幅に向上させた方法である。
被処理水との急速な混和を得るために、凝集剤の噴霧部位を被処理水の越流部とすると同時に希釈凝集剤の噴霧注入方式を採用している。この結果、撹拌に必要な電気エネルギーの消費を削減した環境配慮型の注入方式となる。凝集剤注入率や電気エネルギーの削減
など経済性の向上、析出物の発生による注入事故を回避できるなど運転の安定性を飛躍的に向上させることが可能である。
1 凝集剤貯槽
2 凝集剤注入装置
3 浄化処理終了後の処理水を給水源とする給水装置
4 手動弁
5 凝集剤供給管
6 凝集剤移送定量ポンプ
7 検流器
8 圧力計
9 背圧弁
10 インジェクター
11 減圧弁
12 凝集剤注入管
13 ノズル噴霧装置
14 被処理水越流部

Claims (5)

  1. 浄水場における凝集処理工程で用いられる凝集剤の注入方法において、浄化処理終了後の処理水と凝集剤とをインジェクターに導入し、凝集剤の希釈、混合を行うと同時に、該希釈された凝集剤溶液を噴霧ノズルが装着された噴霧装置から、被処理水の越流部であって、被処理水の水面上又は被処理水中に噴霧することを特徴とする浄水場における凝集剤の注入方法。
  2. 上記凝集処理工程が混和池に設置された前凝集処理工程及び/又は沈殿池とろ過池の間に設置された後凝集処理工程であることを特徴とする請求項1に記載の凝集剤の注入方法。
  3. 上記凝集剤がポリ塩化アルミニウム(PAC)、硫酸アルミニウム、ポリシリカ鉄であり、被処理水の処理水量、濁度の変動に対応して注入量が変動する混和池に設置された前凝集処理工程及び/又は沈殿池とろ過池の間に設置された後凝集処理工程において、その変動に対応して希釈倍率を2倍から1000倍に変化させることを特徴とする請求項1又は2に記載の凝集剤注入方法。
  4. 凝集剤注入系に一定の間隔で浄化処理終了後の処理水のみを流すことによりインジェクターから噴霧ノズルまでを洗浄する工程を有することを特徴とする請求項1〜のいずれかに記載の凝集剤の注入方法。
  5. 請求項1〜4のいずれかに記載の凝集剤の注入方法に用いる注入装置であって、凝集剤貯槽、凝集剤移送定量ポンプ、浄化処理終了後の処理水を給水源とする給水装置、インジェクター及びノズル装着注入配管を含むことを特徴とする注入装置。
JP2011149690A 2011-07-06 2011-07-06 凝集剤注入方法及び注入装置 Active JP5121983B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011149690A JP5121983B1 (ja) 2011-07-06 2011-07-06 凝集剤注入方法及び注入装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011149690A JP5121983B1 (ja) 2011-07-06 2011-07-06 凝集剤注入方法及び注入装置

Publications (2)

Publication Number Publication Date
JP5121983B1 true JP5121983B1 (ja) 2013-01-16
JP2013013870A JP2013013870A (ja) 2013-01-24

Family

ID=47687086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011149690A Active JP5121983B1 (ja) 2011-07-06 2011-07-06 凝集剤注入方法及び注入装置

Country Status (1)

Country Link
JP (1) JP5121983B1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104973707A (zh) * 2014-07-30 2015-10-14 上海市政工程设计研究总院(集团)有限公司 一种季节性高浊原水处理工艺
CN113929237A (zh) * 2021-11-22 2022-01-14 科腾环保科技(嘉兴)股份有限公司 一种电镀重金属废水零排放回用处理装置及工艺

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6142793B2 (ja) 2013-12-20 2017-06-07 Tdk株式会社 希土類磁石
JP6142792B2 (ja) 2013-12-20 2017-06-07 Tdk株式会社 希土類磁石
JP6142794B2 (ja) * 2013-12-20 2017-06-07 Tdk株式会社 希土類磁石
JP6861951B2 (ja) * 2018-04-27 2021-04-21 株式会社石垣 越流式凝集混和装置
JP6611069B1 (ja) * 2019-04-17 2019-11-27 Jfeアクアサービス機器株式会社 液体注入ノズル
JP2021053602A (ja) * 2019-10-01 2021-04-08 日本ソリッド株式会社 汚濁水の処理方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225458Y2 (ja) * 1985-03-15 1990-07-12
JPH06269767A (ja) * 1993-03-16 1994-09-27 Wako Giken:Kk 湖,沼,池,河川等の浄水方法及び装置
JP2779146B2 (ja) * 1995-09-28 1998-07-23 壽工業株式会社 非常用浄水装置
JP3055282U (ja) * 1997-10-16 1999-01-12 ▲すすむ▼ 高島 浄化装置
JP2000093706A (ja) * 1998-09-25 2000-04-04 Japan Organo Co Ltd 凝集沈澱処理設備
JP2002320975A (ja) * 2001-04-27 2002-11-05 Sumitomo Heavy Ind Ltd 水処理装置及び方法
JP2002336605A (ja) * 2001-05-14 2002-11-26 Japan Water Works Association 水処理システムおよびフロック形成管
JP2003200007A (ja) * 2002-01-11 2003-07-15 Hitachi Plant Eng & Constr Co Ltd 水処理装置
JP2007077772A (ja) * 2005-09-16 2007-03-29 Sun Mobius Inc:Kk 粉塵の凝集捕獲方法並びに凝集捕獲装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104973707A (zh) * 2014-07-30 2015-10-14 上海市政工程设计研究总院(集团)有限公司 一种季节性高浊原水处理工艺
CN104973707B (zh) * 2014-07-30 2018-04-20 上海市政工程设计研究总院(集团)有限公司 一种季节性高浊原水处理工艺
CN113929237A (zh) * 2021-11-22 2022-01-14 科腾环保科技(嘉兴)股份有限公司 一种电镀重金属废水零排放回用处理装置及工艺

Also Published As

Publication number Publication date
JP2013013870A (ja) 2013-01-24

Similar Documents

Publication Publication Date Title
JP5121983B1 (ja) 凝集剤注入方法及び注入装置
US10463992B2 (en) High-rate sedimentation tank and water treatment apparatus including the same
JP2011143330A (ja) 廃水処理方法及び廃水処理装置
Ahmadi et al. Removal of oil from biodiesel wastewater by electrocoagulation method
KR20140042975A (ko) 자성물질을 함유한 고분자 비드를 이용한 고속 응집 방법 및 장치
KR100989889B1 (ko) 상수 및 하폐수 처리용 혼화장치
CN107265597B (zh) 处理低浊地表水的方法、设备及系统
KR100990438B1 (ko) 응집 침전 장치
KR100795228B1 (ko) 약품 혼화장치 및 이를 구비한 혼화지
JP2012152708A (ja) 凝集磁気分離装置
KR100962069B1 (ko) 직접 여과를 위한 응집 전처리장치
CN204384990U (zh) 一种循环冷却水石灰软化澄清过滤处理系统
CN209081511U (zh) 污水处理用絮凝剂搅拌混合装置
AU2013207086A1 (en) Coagulation/flocculation apparatus for the treatment of a hydraulic flow, and implementation process
JP5755589B2 (ja) 凝集物の形成方法
CN204996183U (zh) 一种钢铁废水处理设备进水装置
CN205115213U (zh) 一种用于污水环境的过滤杀菌净化装置
JP2014004508A (ja) 水処理装置及び凝集物形成方法
CN206580675U (zh) 一种工业废水处理设备
JPH11300389A (ja) 水処理方法および装置
CN205892932U (zh) 一体化净水器
JP5068279B2 (ja) 軟化装置およびその運転方法
CN202643468U (zh) 一种新型的废水循环处理机
Nadya et al. Design and Development of New Debris Strainer in Water Treatment Plant
CN109179601A (zh) 基于混凝沉淀过滤处理的含煤废水净化系统及净化工艺

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5121983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250