JP5116912B2 - Light emitting device using light emitting diode and method for manufacturing the same - Google Patents

Light emitting device using light emitting diode and method for manufacturing the same Download PDF

Info

Publication number
JP5116912B2
JP5116912B2 JP2000249758A JP2000249758A JP5116912B2 JP 5116912 B2 JP5116912 B2 JP 5116912B2 JP 2000249758 A JP2000249758 A JP 2000249758A JP 2000249758 A JP2000249758 A JP 2000249758A JP 5116912 B2 JP5116912 B2 JP 5116912B2
Authority
JP
Japan
Prior art keywords
light
led
package
fluorescent
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000249758A
Other languages
Japanese (ja)
Other versions
JP2001111117A (en
Inventor
クリストファー・エイチ・ロワリー
Original Assignee
フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー filed Critical フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー
Publication of JP2001111117A publication Critical patent/JP2001111117A/en
Application granted granted Critical
Publication of JP5116912B2 publication Critical patent/JP5116912B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/233Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating a spot light distribution, e.g. for substitution of reflector lamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/90Methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/12Combinations of only three kinds of elements
    • F21V13/14Combinations of only three kinds of elements the elements being filters or photoluminescent elements, reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • F21V9/45Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity by adjustment of photoluminescent elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S362/00Illumination
    • Y10S362/80Light emitting diode

Description

【0001】
【発明の属する技術分野】
本発明は、一般に、電球パッケージに関するものであり、とりわけ、光源として蛍光材料を利用した発光ダイオードを含む電球パッケージ型の発光装置、及びその製造方法に関するものである。
【0002】
【従来の技術】
一般的な電球パッケージは、ガラス・エンクロージャ内に白熱フィラメントを含む光源を利用している。しかし、これらのガラス・エンクロージャは脆く、それ自体、さほど強くない衝撃を受けるだけでも、簡単に壊れる可能性がある。更に、白熱フィラメント自体が脆く、使用中に漸次劣化する傾向があり、フィラメントによって生じる有効光出力は、時間の経過とともに低下する。フィラメントの脆さは年と共に増すので、最終的には、壊れて断線してしまうことになる。典型的な白熱電球は、平均寿命が500乃至4000時間であるが、これは、ある一群の電球の半分が、フィラメントの破損のためにその時間内に故障することを意味している。
【0003】
図1を参照すると、MR−16アウトライン・タイプの従来のハロゲン電球パッケージ10が示されている。ハロゲン電球パッケージには、ハロゲン電球によって生じる光を略均一な方向に向ける働きをする、リフレクタ14の中心に配置されたハロゲン電球12が含まれている。パッケージには、更に、電力を受信するため、1対の出力端子16及び18が含まれる。パッケージの前方開放面は、ダスト・カバー(不図示)によって保護することが可能である。図1のパッケージの欠点は、光源としてハロゲン電球を利用している点である。前述のように、ガラス・エンクロージャ及び白熱フィラメントの脆さのために、ハロゲン電球の動作寿命が制限される。
【0004】
上述の欠点に直面して、電球パッケージに可能性のある光源として発光ダイオードを利用することが検討されるようになった。発光ダイオード(LED)は、光スペクトルの特定領域にピーク波長を備える光を発生することが可能な周知の半導体素子である。従来、最も効率のよいLEDは、光スペクトルの赤領域にピーク波長を有する光、即ち、赤色光を放出する。しかし、最近になって、光スペクトルの青領域にピーク波長を有する光、即ち、青色光を効率よく放出することが可能な、窒化ガリウム(GaN)をベースにしたタイプのLEDが開発された。この新タイプのLEDによって、従来のLEDに比べて大幅に明るい出力光を得ることが可能になる。
【0005】
更に、青色光は、ピーク波長が赤色光より短いので、GaNベースのLEDによって発生する青色光をより容易に変換して、ピーク波長がより長い光を生じさせることが可能である。当該技術において周知のように、第1のピーク波長を備えた光(「一次光」)は、蛍光として知られるプロセスを利用して、ピーク波長がより長い光(「二次光」)に変換することが可能である。蛍光プロセスには、蛍光体材料の原子を励起するホトルミネッセント蛍光体材料によって一次光を吸収することと、二次光を放出することが必要とされる。蛍光プロセスを利用するLEDは、本明細書において、「蛍光体LED」と定義される。二次光のピーク波長は、蛍光体材料によって決まる。非変換一次光と二次光の合成光によって、蛍光体LEDの出力光が得られる。従って、出力光の特定のカラーは、一次光と二次光のスペクトル分布によって決まる。従って、電球パッケージは、GaNベースLEDに適した蛍光体材料を選択することによって、白色光を発生するように構成することが可能である。
【0006】
Vriens他に対する米国特許第5,813,753号には、エポキシ層に分散された蛍光体粒子を利用して、LEDによって放出される光のカラーを所望のカラーに変換する、光源としてLEDを備えた発光装置の記載がある。蛍光体粒子は、出力光の所望のカラーによって決まる、単一タイプの蛍光体材料、又は、異なる蛍光体材料の混合物として解説されている。Vriens他の特許に記載の蛍光体粒子を含むエポキシ層の利用に関する問題は、反復可能な均一なやり方で、蛍光体粒子を分配することの困難さである。こうした困難さのため、仕上がった一群の装置の性能にはばらつきがある、即ち、出力光のカラーが、仕上がった装置によって異なる可能性がある。
【0007】
【発明が解決しようとする課題】
以上の問題に鑑みて、本発明の目的は、規定のカラーの出力光を発生することが可能な光源として、蛍光体LEDを備える比較的単純で製造が容易である高性能の電球パッケージを提供することにあり、また、こうした電球パッケージの製造方法を提供することにある。
【0008】
【課題を解決するための手段】
LEDパッケージ及びLEDパッケージの製造方法には、アセンブリ前に、出力光のカラーに関してLEDパッケージの適正な性能を保証するため、光学特性を個別に検査することが可能な、蛍光物質を含む、あらかじめ製造された蛍光部材が利用されている。LEDパッケージには、パッケージの光源として機能する1つ以上のLEDダイが含まれている。あらかじめ製造された蛍光部材に含まれている蛍光物質、及び、LEDパッケージのLEDダイは、LEDパッケージによって生じる出力光が、自然白色光を再現するように淘汰的に選択されている。
【0009】
本発明の第1の実施形態の場合、LEDパッケージには、リード・フレームに取り付けられた個別リフレクタ・カップに個別に装着された、4つの3ボルト窒化ガリウム・ベースLEDダイが含まれている。この実施形態の場合、LEDパッケージは、工業規格MR−16ハロゲン・アウトライン・パッケージと互換性があるように構成されている。しかし、LEDパッケージは、MRC−11、MRC−16、PAR−36、PAR−38、PAR−56、及び、PAR−64といった他の工業規格パッケージに似るように構成することも可能である。実際のところ、LEDパッケージは、完全に異なる電球アウトライン・パッケージをなすように構成することが可能である。
【0010】
リード・フレームには、LEDダイに電力を供給する出力端子も取り付けられている。LEDダイは、特定の構成をなすように端子に電気的に接続されている。典型的な構成の1つでは、LEDダイは、直列に接続されているので、パッケージの全順方向電圧は、12ボルトになる。典型的な他の構成の場合、LEDダイは、6ボルト装置を形成するため、直列及び並列に接続される。LEDダイの正確な電気的構成、並びに、LEDダイの電圧は、本発明にとって重要ではない。更に、LEDパッケージに含まれるLEDダイの数も、本発明にとって重要ではない。
【0011】
LEDダイの上には、カプセル材料が堆積させられている。カプセル材料は、エポキシ又は他の適合する透明材料とすることが可能である。シリコン・ゲルは、高温にさらされるのに耐えることができ、劣化しないので、カプセル材料は、光学グレードのシリコン・ゲルが望ましい。更に、現在では、屈折率が1.5のシリコン・ゲルを利用可能であり、これによって、LEDダイによって発生する光が効率よく抽出されることになる。
【0012】
LEDパッケージの蛍光部材が、カプセル材料の上に固定される。この実施形態の場合、蛍光部材は、予め製造された光学的に透明な略平面のディスクである。しかし、蛍光部材は、LEDパッケージの仕様に従って、正方形又は矩形のような別の形状をなすように構成することも可能である。前述のようにして予め製造された蛍光部材に含まれる蛍光材料は、白色光を生じるように選択することが可能である。一例として、蛍光材料には、ガドリニウムをドープし、セリウムで活性化された、イットリウム・アルミニウム・ガーネット蛍光体粒子を含むことが可能である。
【0013】
LEDパッケージには、更に、蛍光部材に取り付けられたレンズと、レンズの上方に配置されたリフレクタが含まれている。レンズとリフレクタによって、LEDパッケージによって発生する光エネルギーの大部分が、確実に、略共通方向に沿って出力されることになる。
【0014】
本発明の第2の実施形態において、LEDパッケージのレンズは、凹レンズであり、蛍光部材は、凹レンズの内表面に形成される。蛍光部材自体、凹レンズの内表面の輪郭に形状適合する。この実施形態の場合、蛍光部材の光学特性は、レンズ及び取り付けられた蛍光部材を単一部品として検査して、検査することが可能である。
【0015】
本発明によるLEDパッケージの製造方法には、いくつかの透明な蛍光部材の形成が含まれている。第1の実施形態の場合、蛍光部材は、ディスクのように、略平面のプレートとすることが可能である。これらのプレートは、シリコン・ゴムのシートを所望の形状に切ることによって形成することが可能である。第2の実施形態の場合、蛍光部材は、凹面レンズの内表面に形状適合する非平面ディスクとすることが可能である。これらの非平面ディスクは、シリコン、ポリカーボネート、又は、アクリルのような光学的に透明な材料を、凹レンズの内表面上に成形できるようにすることによって、形成することが可能である。次に、光学特性について、蛍光部材の検査が行われる。一例として、蛍光部材は、標準的な単色光源を利用して、蛍光体を活性化し、次に、蛍光部材からの出力の特性を測定することによって検査可能である。次に、検査を受ける蛍光部材は、1組の光学特性に関して分類することが可能である。
【0016】
蛍光部材の検査が済むと、リード・フレームに1つ以上のGaNベースのLEDダイが取り付けられる。次に、透明なカプセル材料が、取り付けられたLEDダイの上に堆積させられる。カプセル材料は、熱安定性が高く、効率のよい光抽出にとって望ましい屈折率を備えた、光学グレードのシリコン・ゲルが望ましい。次に、事前定義された1組の光学特性を備えた蛍光部材が、カプセル材料上に配置される。次に、レンズが蛍光部材に取り付けられる。この工程は、第2の実施形態には適用することができない。次に、レンズの上方にリフレクタが取り付けられる。リフレクタの取り付けが済むと、リフレクタの縁にダスト・カバーを取り付けることによって、LEDパッケージが完成する。
【0017】
本発明の利点は、アセンブリの前に、蛍光部材の検査を行うことによって、仕上がった装置が特定の光学特性を備えることを保証することが可能になるので、望ましくない装置、即ち、所望の仕様を満たさない装置の製造に関連したコストが低下する。
【0018】
【発明の実施の形態】
図2を参照すると、第1の実施形態による典型的なLEDパッケージ20が示されている。図2は、LEDパッケージの略断面図である。LEDパッケージは、構造的に、従来のMR−16ハロゲン・パッケージに似るように構成されているので、LEDパッケージはMR−16パッケージとの互換性がある。しかし、LEDパッケージは、従来のMR−16パッケージの場合のように、ハロゲン電球ではなく、パッケージの光源として4つのLEDダイを利用している(図2で見えるのは、ダイ22及び24だけである)。LEDパッケージは、平均動作寿命が500乃至4000時間のハロゲン・パッケージに比べ、寿命が10,000時間以上である。更に、フィラメントの破損によって故障するハロゲン・パッケージとは異なり、LEDパッケージは、光出力の漸減によって劣化する。一般に、1,000時間の動作寿命の終了時において、LEDパッケージは、まだ、もとの光出力の50%を発生する。
【0019】
LEDパッケージ20には、円筒形ケーシング32の底部に取り付けられたリード・フレーム30が含まれている。一例として、リード・フレームは、鋼又は銅から構成することが可能である。このケーシングには、LEDパッケージによって生じた光の方向付けを行う正反射体も取り付けられている。次に図2及び3を参照すると、パッケージの4つのLED22、24、26、及び、28は、それぞれ、リフレクタ・カップ36、38、40、及び、42を介してリード・フレームに固定されている。LEDダイは、加えられた電気信号によって作動すると、青色光を放出する窒化ガリウム・ベースのLED(サファイア上のインジウムをドープした窒化ガリウム)であることが望ましい。リード・フレーム上におけるこのLEDダイ及びリフレクタ・カップの構成は、リード・フレームの平面図である図3に最も明瞭に示されている。LEDダイは、図2に最も明瞭に示されているように、リフレクタ・カップの空洞内に取り付けられている。リフレクタ・カップは、LEDダイに整合する熱膨張率(CTE)を備えた材料から製造するのが望ましい。一例として、リフレクタ・カップは、銀メッキしたモリブデンから製造することが可能である。リフレクタ・カップは、リード・フレームにスエージングされているので、LEDダイはリード・フレームに固定される。他の実施形態の場合、モリブデン・ディスク(図示せず)は、例えば、ハンダによって各LEDダイの下に取り付けられている。次に、LEDダイが取り付けられたモリブデン・ディスクは、リード・フレームに取り付けられる。この方法でも、所望のCTE整合が得られる。LEDダイは、リード・フレームにも取り付けられた、陽極端子44及び陰極端子46に電気的に接続されている。
【0020】
LEDパッケージ20に含めるように選択されたLEDダイ22、24、26、及び、28は、その最大定格駆動電流において、それぞれ、3ボルト未満の低順方向電圧による起動を可能にするタイプとすることが可能であり、従って、4つのLEDダイを直列に配線すると、公称12ボルトの全順方向電圧が生じることになる。図3には、この直列接続が例示されている。これによって、このパッケージは12ボルトの白熱パッケージに適合することになる。しかし、異なる直列電圧が必要とされる場合、LEDダイの他の構成を実施することも可能である。例えば、3つの4ボルトLEDダイを選択し、直列に配線して、12ボルトの同じ全順方向電圧を得ることも可能である。パッケージに含まれるLEDダイの正確なタイプ及び数と、LEDダイの接続構成は、製造すべき所望の装置に従って、変動する可能性がある。例えば、図4に示すように、4つの3ボルトLEDダイを直列/並列に配線すると、6ボルトの装置が得られる。LEDダイは、図2、図3、及び図4に示すように、ワイヤボンドによって電気的に接続することが可能である。図3に示すように、端子とLEDダイの間に駆動電流を伝送するため、2つ以上のワイヤを用いることが可能である。図2、図3、及び図4に示す電気接続は、ワイヤボンドによって施されるが、フリップ・チップ・ハンダ・バンピングのような、半導体産業において一般的な他の電気接続技法を代わりに利用することも可能である。
【0021】
LEDダイ22、24、26、及び、28は、測光パワーが有効範囲になるようなサイズであることが望ましい。これには、LEDダイのサイズが2.89平方ミリメートルになることを必要とする可能性があり、この結果、ダイにおける電流密度は70アンペア/平方センチメートルになる。例えば、これらのLEDダイの測光パワーは、5ルーメン(入力電力の1ワット当たり)であり、4つのダイのアセンブリに対する入力電力は、24ワット(2アンペアで12ボルト)である場合、全光出力パワーが5×24=120ルーメンの青色光になる。これを白色光に修正すると、白色光の典型的な出力は、1.9倍に上昇し、その結果、120×1.9=228ルーメンの最終白色光が得られることになる。
【0022】
図2を参照し直すと、LEDパッケージ20には、更に、LEDダイ上におけるカプセル材料の領域50が含まれている。LEDダイ22、24、26、及び、28から最大量の光を抽出するには、同様の屈折率を備えた光学グレードの材料が、LEDダイに接触していなければならない。サファイアLED基板は、一般に、2.5の屈折率を備えている。こうしたLEDは、一般に、屈折率が1.5の材料でカプセル封止(又はカプセル封じ)されている。スネルの法則を適用すると明らかなように、カプセル材料との界面の垂線に対する角度θが約0.644ラジアン(36.9度)の活性領域から放出される光だけが、LEDから脱出する。こうした場合、内部で発生した光の一部である1cosθ、即ち20%が抜け出ることになる。等しい量の光が、LEDダイの水平方向のエッジから放出される。LEDダイ22、24、26、又は28からのエッジ光は、LEDダイが取り付けられているリフレクタ・カップ36、38、40、又は42の反射空洞によって反射されて、順方向に送られる。
【0023】
屈折率の問題以外に、領域50のカプセル材料は、やはり、その動作中、LEDダイ22、24、26、及び、28によって生じる高温に耐えることができなければならない。LEDダイの表面温度は、容易に摂氏200度に達することが可能である。こうした状況下では、エポキシは、利用中、急速に熱劣化を被ることになり、漸次黄ばむようになって、LEDダイからの放射光の多くを吸収するので、装置が役に立たなくなる。以上の理由から、この領域に用いられるカプセル材料は、光学グレードのシリコン・ゲル材料から造られるのが望ましいが、エポキシのような、他のより望ましくない透明材料を利用することも可能である。シリコンは、優れた熱安定性を備えている。更に、光の抽出を最大にするため、屈折率が1.5のシリコン・ゲル材料を利用することも可能である。しかし、カプセル封止用のシリコン材料は、装置20の動作中、ボンド・ワイヤ48又はダイに応力を加えて、破壊することがないように、極めて柔らかくなければならない。これは、シリコンと装置本体(又はモリブデン・リフレクタ36、38、40、又は42)との膨張差によって生じる。一般に、これらのシリコン材料のCTEは、80PPM/単位長/゜Cである。金属本体(例えば、銅)のCTEは、約10乃至12PPM/単位長/゜Cであるため、装置のオン時とオフ時の膨張差は、8倍になり、この差によって、ボンド・ワイヤ又はダイに損傷を及ぼすのに十分なカプセル材料の移動を生じる可能性がある。
【0024】
カプセル材料の領域50に隣接して、蛍光材料を含む蛍光板52が配置されている。蛍光板52は、LEDパッケージのアセンブリ前に、光学特性を検査することが可能な事前製造部品である。蛍光板の検査は、蛍光板に含まれている蛍光体の均質性及び適正な蛍光体濃度に関連する。一例として、蛍光板は、軟質で、光学的に透明なシリコン・ゴムから造ることが可能である。しかし、蛍光板は、蛍光体を分散させた、ポリカーボネート又はアクリルのような他の光学的に透明な材料から造ることも可能である。蛍光板に含まれる蛍光体は、LEDパッケージ20によって発生する出力光の所望の波長特性によって決まる。一例として、蛍光板には、LEDダイ22、24、26、及び、28によって放出される青色放射光(波長が約460乃至480nm)の一部をより波長の長い放射光に変換するため、ガドリニウム(Gd)をドープし、セリウム(Ce)で活性化されたイットリウム・アルミニウム・ガーネット(YAG)蛍光体粒子(「Ce:YAG蛍光体粒子」)を含むことが可能である。Ce:YAG蛍光体粒子によって、蛍光板は、放出される青色光を吸収し、光エネルギーを約520nmの平均波長にアップシフトすることが可能になる。この結果生じる放出光は、480から620nmにわたる広帯域光である。この放出光と残りの青色光、即ち、非変換放出青色光との結合によって、自然白色光を再現する演色の最終放出光が生じることになる。
【0025】
上述の例の場合、蛍光板52は、サマリウム、プラセオジムといった他のいくつかの希土類金属を含めることによって修正を加え、LEDパッケージ20の演色を改良することが可能である。更に、他の蛍光体を加えることによって、他の波長の放出を生じさせ、LEDパッケージによって生じる出力光のスペクトル分布に修正を施すことも可能である。蛍光板に含まれている蛍光材料の正確なタイプは、本発明にとって重要ではない。
【0026】
例示の実施形態の場合、蛍光板52は、図3及び図4に示すように、リードフレーム30の形状に似た略平面のディスクである。しかし、LED22、24、26、及び、28が異なる形状に配置されて、リードフレームが非円形になる他の実施形態の場合、蛍光板は、リードフレーム、及び、取り付けられたLEDダイの形状に一致するように成形することが可能である。例えば、LEDパッケージのLEDダイが、矩形のリードフレーム上に矩形の形状に配置されている場合、蛍光板は、略平面の矩形プレートにすることが可能である。
【0027】
LEDパッケージ20には、更に、装置から放出される光を平行化して、リフレクタ34に均一に分配するため、蛍光板52に取り付けられたレンズ54が含まれている。レンズからの放射パターンは、レンズの上方に配置されたリフレクタに充満するように設計されている。一例として、レンズは、シリコンから造ることが可能である。あるいはまた、レンズは、ポリカーボネート又はアクリル材料から造ることが可能である。仕上がった装置を保護する働きをするダスト・カバー56がレンズの上方に配置され、リフレクタの縁に取り付けられる。
【0028】
次に図5を参照すると、第2の実施形態による典型的なLEDパッケージ60が示されている。図5のLEDパッケージには、図2におけるLEDパッケージの部品の大部分が含まれている。唯一の重要な相違は、LEDパッケージ20に含まれていたレンズ54及び蛍光板52が、凹面レンズ62及び成形された非平面蛍光ディスク64に置き換えられている点である。非平面蛍光ディスクは、凹面レンズの内表面に形成される。従って、レンズ及び成形非平面ディスクは、予め製造されるLEDパッケージの単一部品とされ得る。即ち、レンズ及び非平面ディスクは、パッケージの他の部品とは別個に、ユニットとして光学特性を検査することが可能な一体化部材になる。従って、この実施形態の場合、非平面蛍光ディスクの光学特性は、凹レンズの内表面に非平面蛍光ディスクが形成された後で、検査される。
【0029】
図2及び図5のLEDパッケージ20及び60は、MR−16タイプのアウトライン・パッケージとして例示し、解説してきたが、これらのLEDパッケージは、MRC−11、MRC−16、PAR−36、PAR−38、PAR−56、及び、PAR−64といった他のタイプの工業規格アウトライン・パッケージをなすように構成することも可能である。実際、LEDパッケージは、任意の構成をなすように配置された任意の数のLEDによって、完全に異なるアウトラインをなすように構成することが可能である。
【0030】
図6に関連して、図2及び図5のLEDパッケージ20及び60のようなLEDパッケージの製造方法について述べることにする。工程66において、光学的に透明ないくつかの蛍光部材が形成される。蛍光部材には、蛍光部材内に分散された蛍光体材料が含まれている。蛍光部材は、シリコン・ゴムから造られ、Ce:YAG蛍光体粒子を含んでいるのが望ましい。第1の実施形態の場合、蛍光部材は、整形されたプレートである。蛍光体材料を含む光学的に透明な材料のシートを製造すべきLEDパッケージの軸方向形状に一致する形状に切ることによって形成される。例えば、仕上がったプレートがディスク形状になるように形成することが可能である。第2の実施形態の場合、蛍光部材は、凹レンズの内表面に形状適合する非平面ディスクとして整形される。この実施形態の場合、蛍光部材は、蛍光材料が分散された、ポリカーボネート又はアクリルのような光学的に透明な材料を、凹レンズの輪郭を利用して、非平面ディスク形状をなすように成形することによって形成される。工程68において、蛍光部材は光学特性について検査を受ける。一例として、蛍光部材は、標準的な単色光源を利用して、蛍光体を活性化し、次に、蛍光部材からの出力を測定することによって、検査することが可能である。次に、検査された蛍光部材は、1組の光学特性に関して、「ビンに入れる」即ち分類することが可能である。同様の特性を示す蛍光部材を利用して、極めてよく似た光学特性の仕上がった装置が得られるようにすることが可能である。従って、色温度及び出力スペクトルに関して特定の顧客要求を満たす装置を生産することが可能である。光学特性は、装置の生産前に分かっているので、光学特性が所望の仕様を満たさない望ましくない装置は、回避されるので、生産コストが低下する。
【0031】
工程70において、1つ以上のGaNベースのLEDダイがリードフレームに取り付けられる。工程72において、LEDダイの上に、透明カプセル材料が堆積させられる。シリコン・ゲル材料は、熱特性が優れており、また、所望の屈折率を備えているので、カプセル材料として用いるのが好適である。次に、工程74において、特定の光学特性を有する検査を受けた蛍光部材が、カプセル材料の上に取り付けられる。透明なシリコン接着剤を利用して、蛍光部材をカプセル材料に取り付けることが可能である。あるいはまた、蛍光部材をカプセル材料にしっかりと押しつけることも可能である。次に、工程76において、蛍光部材にレンズが取り付けられる。カプセル材料に対する蛍光部材の取り付けと同様、レンズは、シリコン接着剤を利用するか、又は、レンズを蛍光部材にしっかりと押しつけることによって、蛍光部材に取り付けることが可能である。レンズ及び蛍光部材が単一の事前製造部品である第2の実施形態の場合、この工程は適用できない。工程78において、レンズの上に、リフレクタが取り付けられる。リフレクタの取り付けが済むと、工程80において、リフレクタの縁にダスト・カバーを取り付けることが可能になる。
【0032】
以上のように本発明の好適実施形態となる発光装置及びその製造方法について示したが、これはあくまでも例示的なものであり、当業者によって更に様々な変形変更が可能である。
【0033】
上述の実施形態に即して本発明を説明すると、本発明は、発光装置(20、60)を製造する方法にして、蛍光材料を含む光学部材(52、64)を形成する工程(66)と、前記発光装置の他の部品と共に前記光学部材を組み立てる前に、光学特性について、形成された前記光学部材を検査する工程(68)と、発光ダイオード(22、24、26、及び28)を含むアセンブリに対して前記光学部材を固定する工程が含まれており、前記光学部材を、前記発光ダイオードから放出される光の一部を変換することによって二次発光を生じさせ、前記発光ダイオードから放出される前記光の非変換部分と前記二次発光から構成される合成出力光が得られるように前記発光ダイオードに対して配置させることを特徴とする、発光装置(20、60)を製造する方法を提供する。
【0034】
好ましくは、前記光学部材(52、64)を形成する前記工程(66)は、前記蛍光材料を含む略平板状の透明板(52)を形成する工程である。
【0035】
好ましくは、平面の透明板(52)を形成する前記工程に、前記平面の透明板をディスク状プレートに整形する工程が含まれる。
【0036】
好ましくは、前記光学部材(52、64)を形成する工程(66)に、前記光学部材を前記発光素子のレンズ(62)の表面に対して形状適合させ、前記光学部材が前記レンズの一体化部品になるようにする工程が含まれる。
【0037】
好ましくは、前記アセンブリに前記光学部材(52、64)を固定する前記工程(74)の前に、更に前記アセンブリの前記発光ダイオード(22、24、26、及び28)にカプセル材料である光学グレードのシリコン・ゲルを付着させる工程が含まれる。
【0038】
更に本発明は、発光装置(20、60)であって、加えられる電気信号に応答して、第1のスペクトル分布を有する一次光を放出するための発光体(22、24、26、及び28)と、前記発光体に対して光学的に結合され、光学的に透明であり、蛍光体材料を含んでいて、前記一次光の一部が、前記蛍光体材料によって吸収されると、第2のスペクトル分布を有する二次光が放出されるようになっており、前記一次光と前記二次光が、前記装置によって発生する出力光のスペクトル分布を形成することになる、蛍光部材(52、64)と、前記蛍光部材を前記発光体に取り付けるための接続部材(50)が含まれていることを特徴とする発光装置(20、60)を提供する。
【0039】
好ましくは、前記蛍光部材(52、64)が、略平面のプレート(52)であって、該プレート(52)の面が、前記発光体から放出される前記一次光の方向に対して略垂直をなすように、前記発光体(22、24、26、及び28)に対して配置されている。
【0040】
好ましくは、前記略平面のプレート(52)が、ディスク状の構造に整形される。
【0041】
好ましくは、更に、前記蛍光部材(52、64)に一体化するように取り付けられたレンズ(62)が含まれていることと、前記蛍光部材が前記レンズの表面に対して形状適合することにより、前記蛍光部材と前記レンズが一体化ユニットになる。
【0042】
好ましくは、前記接続部材(50)に、前記発光体(22、24、26、及び28)をカプセル封止する光学グレードのシリコン・ゲルが含まれることと、前記光学グレードのシリコン・ゲルが、前記透明部材(52、64)と前記発光体の間に配置される。
【図面の簡単な説明】
【図1】MR−16アウトライン・タイプの従来のハロゲン電球に関する透視図である。
【図2】本発明の第1の実施形態によるLEDパッケージの断面図である。
【図3】取り付けられたLEDダイが動作電圧12ボルト構成をなすように電気的に接続されている、図2のLEDパッケージのリードフレームに関する平面図である。
【図4】取り付けられたLEDダイが動作電圧6ボルト構成をなすように電気的に接続されている、図2のLEDパッケージのリードフレームに関する平面図である。
【図5】本発明の第2の実施形態によるLEDパッケージの断面図である。
【図6】本発明によるLEDパッケージの製造方法に関する流れ図である。
【符号の説明】
20 発光装置
22 発光ダイオード
24 発光ダイオード
26 発光ダイオード
28 発光ダイオード
50 接続部材
52 光学部材
62 レンズ
64 光学部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates generally to a light bulb package, and more particularly to a light bulb package type light emitting device including a light emitting diode using a fluorescent material as a light source, and a method of manufacturing the same.
[0002]
[Prior art]
A typical light bulb package utilizes a light source that includes an incandescent filament in a glass enclosure. However, these glass enclosures are fragile and can themselves easily break even if they are subjected to a modest impact. Furthermore, the incandescent filament itself is fragile and tends to deteriorate gradually during use, and the effective light output produced by the filament decreases with time. As the fragility of the filament increases with age, it eventually breaks and breaks. Typical incandescent bulbs have an average lifetime of 500 to 4000 hours, which means that half of a group of bulbs will fail within that time due to filament breakage.
[0003]
Referring to FIG. 1, a conventional halogen bulb package 10 of the MR-16 outline type is shown. The halogen bulb package includes a halogen bulb 12 disposed in the center of the reflector 14 that serves to direct light generated by the halogen bulb in a substantially uniform direction. The package further includes a pair of output terminals 16 and 18 for receiving power. The front open surface of the package can be protected by a dust cover (not shown). The disadvantage of the package of FIG. 1 is that it uses a halogen bulb as the light source. As mentioned above, the brittleness of the glass enclosure and incandescent filament limits the operating life of halogen bulbs.
[0004]
In the face of the above drawbacks, the use of light emitting diodes as a potential light source for bulb packages has been considered. A light emitting diode (LED) is a well-known semiconductor element capable of generating light having a peak wavelength in a specific region of the light spectrum. Conventionally, the most efficient LEDs emit light having a peak wavelength in the red region of the light spectrum, i.e. red light. Recently, however, LEDs of the type based on gallium nitride (GaN) have been developed that can efficiently emit light having a peak wavelength in the blue region of the light spectrum, that is, blue light. This new type of LED makes it possible to obtain output light that is significantly brighter than conventional LEDs.
[0005]
Furthermore, since blue light has a shorter peak wavelength than red light, blue light generated by GaN-based LEDs can be more easily converted to produce light with a longer peak wavelength. As is well known in the art, light with a first peak wavelength (“primary light”) is converted to light with a longer peak wavelength (“secondary light”) using a process known as fluorescence. Is possible. The fluorescence process requires absorbing primary light and emitting secondary light by a photoluminescent phosphor material that excites the atoms of the phosphor material. An LED that utilizes a fluorescent process is defined herein as a “phosphor LED”. The peak wavelength of the secondary light depends on the phosphor material. The output light of the phosphor LED is obtained by the combined light of the non-converted primary light and the secondary light. Therefore, the specific color of the output light is determined by the spectral distribution of the primary light and the secondary light. Thus, the bulb package can be configured to generate white light by selecting a phosphor material suitable for a GaN-based LED.
[0006]
U.S. Pat. No. 5,813,753 to Vries et al. Includes an LED as a light source that utilizes phosphor particles dispersed in an epoxy layer to convert the color of light emitted by the LED to a desired color. There is a description of a light emitting device. The phosphor particles are described as a single type of phosphor material or a mixture of different phosphor materials, depending on the desired color of the output light. A problem with the use of epoxy layers containing phosphor particles as described in the Vries et al. Patent is the difficulty of dispensing the phosphor particles in a repeatable and uniform manner. Because of these difficulties, the performance of a group of finished devices varies, i.e., the color of the output light can vary from one finished device to another.
[0007]
[Problems to be solved by the invention]
In view of the above problems, an object of the present invention is to provide a relatively simple and easy-to-manufacture high-performance light bulb package that includes a phosphor LED as a light source capable of generating output light of a prescribed color. It is also to provide a method for manufacturing such a light bulb package.
[0008]
[Means for Solving the Problems]
The LED package and the LED package manufacturing method include a pre-manufactured product that includes a phosphor that can be individually inspected for optical properties to ensure proper performance of the LED package with respect to the color of the output light prior to assembly. The fluorescent member made is used. The LED package includes one or more LED dies that function as a light source for the package. The fluorescent material contained in the pre-manufactured fluorescent member and the LED die of the LED package are selected so that the output light generated by the LED package reproduces natural white light.
[0009]
For the first embodiment of the present invention, the LED package includes four 3 volt gallium nitride based LED dies that are individually attached to individual reflector cups attached to the lead frame. In this embodiment, the LED package is configured to be compatible with the industry standard MR-16 halogen outline package. However, the LED package can also be configured to resemble other industry standard packages such as MRC-11, MRC-16, PAR-36, PAR-38, PAR-56, and PAR-64. In fact, the LED package can be configured to form a completely different bulb outline package.
[0010]
An output terminal for supplying power to the LED die is also attached to the lead frame. The LED die is electrically connected to the terminal so as to have a specific configuration. In one typical configuration, the LED dies are connected in series, so the total forward voltage of the package is 12 volts. In another typical configuration, the LED dies are connected in series and in parallel to form a 6 volt device. The exact electrical configuration of the LED die, as well as the LED die voltage, is not critical to the present invention. Further, the number of LED dies included in the LED package is not critical to the present invention.
[0011]
A capsule material is deposited on the LED die. The encapsulant material can be epoxy or other suitable transparent material. Since silicon gels can withstand exposure to high temperatures and do not degrade, the encapsulant material is preferably an optical grade silicon gel. In addition, silicon gel with a refractive index of 1.5 is currently available, which effectively extracts the light generated by the LED die.
[0012]
The fluorescent member of the LED package is fixed on the encapsulant material. In this embodiment, the fluorescent member is an optically transparent substantially flat disk manufactured in advance. However, the fluorescent member may be configured to have another shape such as a square or a rectangle according to the specification of the LED package. The fluorescent material contained in the fluorescent member manufactured in advance as described above can be selected so as to generate white light. As an example, the fluorescent material may include yttrium aluminum garnet phosphor particles doped with gadolinium and activated with cerium.
[0013]
The LED package further includes a lens attached to the fluorescent member and a reflector disposed above the lens. The lens and reflector ensure that most of the light energy generated by the LED package is output along a substantially common direction.
[0014]
In the second embodiment of the present invention, the lens of the LED package is a concave lens, and the fluorescent member is formed on the inner surface of the concave lens. The fluorescent member itself conforms to the contour of the inner surface of the concave lens. In the case of this embodiment, the optical characteristics of the fluorescent member can be inspected by inspecting the lens and the attached fluorescent member as a single part.
[0015]
The method for manufacturing an LED package according to the present invention includes forming several transparent fluorescent members. In the case of the first embodiment, the fluorescent member can be a substantially flat plate like a disk. These plates can be formed by cutting a sheet of silicon rubber into the desired shape. In the case of the second embodiment, the fluorescent member can be a non-planar disk that conforms to the inner surface of the concave lens. These non-planar discs can be formed by allowing an optically transparent material such as silicon, polycarbonate, or acrylic to be molded onto the inner surface of the concave lens. Next, the fluorescent member is inspected for optical characteristics. As an example, the fluorescent member can be inspected by activating the phosphor using a standard monochromatic light source and then measuring the characteristics of the output from the fluorescent member. Next, the fluorescent member to be inspected can be classified with respect to a set of optical properties.
[0016]
Once the fluorescent member is inspected, one or more GaN-based LED dies are attached to the lead frame. A transparent encapsulant is then deposited on the attached LED die. The encapsulant material is preferably an optical grade silicone gel with high thermal stability and a refractive index that is desirable for efficient light extraction. Next, a fluorescent member with a predefined set of optical properties is placed on the capsule material. Next, a lens is attached to the fluorescent member. This process cannot be applied to the second embodiment. Next, a reflector is attached above the lens. When the reflector is attached, the LED package is completed by attaching a dust cover to the edge of the reflector.
[0017]
An advantage of the present invention is that it is possible to ensure that the finished device has specific optical properties by performing an inspection of the fluorescent member prior to assembly, so that the undesired device, i.e. the desired specification. The costs associated with manufacturing devices that do not meet are reduced.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Referring to FIG. 2, an exemplary LED package 20 according to the first embodiment is shown. FIG. 2 is a schematic cross-sectional view of the LED package. Since the LED package is structurally configured to resemble a conventional MR-16 halogen package, the LED package is compatible with the MR-16 package. However, the LED package uses four LED dies as the light source of the package rather than a halogen bulb as in the case of a conventional MR-16 package (see only dies 22 and 24 in FIG. 2). is there). LED packages have a lifetime of 10,000 hours or more compared to halogen packages with an average operating lifetime of 500 to 4000 hours. Furthermore, unlike halogen packages that fail due to filament breakage, LED packages degrade with decreasing light output. In general, at the end of the 1,000 hour operating life, the LED package still generates 50% of the original light output.
[0019]
The LED package 20 includes a lead frame 30 attached to the bottom of a cylindrical casing 32. As an example, the lead frame can be composed of steel or copper. Also attached to the casing is a regular reflector that directs the light produced by the LED package. 2 and 3, the four LEDs 22, 24, 26, and 28 of the package are secured to the lead frame via reflector cups 36, 38, 40, and 42, respectively. . The LED die is preferably a gallium nitride based LED (gallium nitride doped with indium on sapphire) that emits blue light when activated by an applied electrical signal. The configuration of this LED die and reflector cup on the lead frame is most clearly shown in FIG. 3, which is a plan view of the lead frame. The LED die is mounted in the cavity of the reflector cup as shown most clearly in FIG. The reflector cup is preferably manufactured from a material with a coefficient of thermal expansion (CTE) that matches the LED die. As an example, the reflector cup can be made from silver-plated molybdenum. Since the reflector cup is swaged to the lead frame, the LED die is secured to the lead frame. In other embodiments, a molybdenum disk (not shown) is attached under each LED die by, for example, solder. The molybdenum disk with the LED die attached is then attached to the lead frame. This method also provides the desired CTE matching. The LED die is electrically connected to an anode terminal 44 and a cathode terminal 46, which are also attached to the lead frame.
[0020]
The LED dies 22, 24, 26, and 28 selected to be included in the LED package 20 are each of the types that allow for startup with a low forward voltage of less than 3 volts at their maximum rated drive current. Therefore, wiring four LED dies in series will result in a nominal forward voltage of nominal 12 volts. FIG. 3 illustrates this series connection. This makes this package compatible with a 12 volt incandescent package. However, other configurations of the LED die can be implemented if different series voltages are required. For example, three 4-volt LED dies can be selected and wired in series to obtain the same total forward voltage of 12 volts. The exact type and number of LED dies included in the package and the LED die connection configuration may vary according to the desired equipment to be manufactured. For example, as shown in FIG. 4, wiring four 3 volt LED dies in series / parallel provides a 6 volt device. The LED dies can be electrically connected by wire bonds as shown in FIGS. 2, 3, and 4. As shown in FIG. 3, it is possible to use more than one wire to transmit drive current between the terminal and the LED die. The electrical connections shown in FIGS. 2, 3 and 4 are made by wirebonds, but instead utilize other electrical connection techniques common in the semiconductor industry, such as flip chip solder bumping. It is also possible.
[0021]
The LED dies 22, 24, 26, and 28 are desirably sized so that the photometric power is within the effective range. This may require the LED die size to be 2.89 square millimeters, resulting in a current density in the die of 70 amps / square centimeter. For example, the metering power of these LED dies is 5 lumens (per watt of input power), and the input power for a four-die assembly is 24 watts (2 volts, 12 volts), the total light output The power becomes 5 × 24 = 120 lumen blue light. Correcting this to white light increases the typical output of white light by a factor of 1.9, resulting in a final white light of 120 × 1.9 = 228 lumens.
[0022]
Referring back to FIG. 2, the LED package 20 further includes a region 50 of encapsulant material on the LED die. To extract the maximum amount of light from the LED dies 22, 24, 26, and 28, an optical grade material with a similar refractive index must be in contact with the LED die. Sapphire LED substrates generally have a refractive index of 2.5. Such LEDs are typically encapsulated (or encapsulated) with a material having a refractive index of 1.5. As is apparent when Snell's law is applied, only light emitted from the active region with an angle θ to the normal of the interface with the encapsulant of about 0.644 radians (36.9 degrees) escapes the LED. In such a case, 1 cos θ, that is, 20%, which is a part of the light generated inside, escapes. An equal amount of light is emitted from the horizontal edge of the LED die. Edge light from the LED die 22, 24, 26, or 28 is reflected by the reflective cavity of the reflector cup 36, 38, 40, or 42 to which the LED die is attached and is sent in the forward direction.
[0023]
Besides the refractive index problem, the encapsulant in region 50 must still be able to withstand the high temperatures caused by LED dies 22, 24, 26, and 28 during its operation. The surface temperature of the LED die can easily reach 200 degrees Celsius. Under these circumstances, the epoxy will quickly undergo thermal degradation during use and will gradually turn yellow, absorbing much of the emitted light from the LED die, making the device useless. For these reasons, the encapsulant used in this area is preferably made from an optical grade silicon gel material, but other less desirable transparent materials such as epoxies can also be utilized. Silicon has excellent thermal stability. In addition, a silicon gel material with a refractive index of 1.5 can be used to maximize light extraction. However, the encapsulating silicon material must be very soft so that it does not stress and break the bond wire 48 or die during operation of the device 20. This is caused by differential expansion between the silicon and the device body (or molybdenum reflector 36, 38, 40, or 42). Generally, the CTE of these silicon materials is 80 PPM / unit length / ° C. Since the CTE of the metal body (eg, copper) is about 10 to 12 PPM / unit length / ° C., the difference in expansion between when the device is on and when it is off is multiplied by 8 due to the bond wire or Encapsulant movement sufficient to damage the die can occur.
[0024]
A fluorescent plate 52 containing a fluorescent material is disposed adjacent to the region 50 of the capsule material. The fluorescent plate 52 is a pre-manufactured part that can be inspected for optical properties before assembly of the LED package. The inspection of the phosphor screen is related to the homogeneity of the phosphor contained in the phosphor plate and the proper phosphor concentration. As an example, the phosphor plate can be made of soft, optically transparent silicon rubber. However, the fluorescent plate can also be made from other optically transparent materials, such as polycarbonate or acrylic, in which the phosphor is dispersed. The phosphor contained in the phosphor plate is determined by the desired wavelength characteristic of the output light generated by the LED package 20. As an example, the phosphor plate includes gadolinium (in order to convert a portion of the blue radiation (wavelength of about 460 to 480 nm) emitted by the LED dies 22, 24, 26, and 28 into a longer wavelength radiation. It is possible to include yttrium aluminum garnet (YAG) phosphor particles ("Ce: YAG phosphor particles") doped with Gd) and activated with cerium (Ce). Ce: YAG phosphor particles allow the phosphor to absorb the emitted blue light and upshift the light energy to an average wavelength of about 520 nm. The resulting emitted light is broadband light ranging from 480 to 620 nm. The combination of the emitted light and the remaining blue light, i.e., non-converted emitted blue light, results in the final emitted light of color rendering that reproduces natural white light.
[0025]
In the above example, the phosphor plate 52 can be modified to improve the color rendering of the LED package 20 by including some other rare earth metal such as samarium or praseodymium. Furthermore, by adding other phosphors, it is possible to cause emission of other wavelengths and to modify the spectral distribution of the output light produced by the LED package. The exact type of fluorescent material contained in the fluorescent plate is not critical to the present invention.
[0026]
In the illustrated embodiment, the fluorescent plate 52 is a substantially planar disk resembling the shape of the lead frame 30, as shown in FIGS. However, in other embodiments where the LEDs 22, 24, 26, and 28 are arranged in different shapes and the lead frame is non-circular, the phosphor plate matches the shape of the lead frame and the attached LED die. It is possible to mold as follows. For example, when the LED die of the LED package is arranged in a rectangular shape on a rectangular lead frame, the fluorescent plate can be a substantially flat rectangular plate.
[0027]
The LED package 20 further includes a lens 54 attached to the fluorescent plate 52 to collimate the light emitted from the device and distribute it uniformly to the reflector 34. The radiation pattern from the lens is designed to fill a reflector located above the lens. As an example, the lens can be made of silicon. Alternatively, the lens can be made from a polycarbonate or acrylic material. A dust cover 56, which serves to protect the finished device, is placed above the lens and attached to the edge of the reflector.
[0028]
Referring now to FIG. 5, a typical LED package 60 according to the second embodiment is shown. The LED package in FIG. 5 includes most of the components of the LED package in FIG. The only significant difference is that the lens 54 and fluorescent plate 52 included in the LED package 20 are replaced with a concave lens 62 and a molded non-planar fluorescent disc 64. The non-planar fluorescent disk is formed on the inner surface of the concave lens. Thus, the lens and molded non-planar disc can be a single part of a prefabricated LED package. That is, the lens and the non-planar disk become an integrated member capable of inspecting optical characteristics as a unit separately from other parts of the package. Therefore, in this embodiment, the optical characteristics of the non-planar fluorescent disk are inspected after the non-planar fluorescent disk is formed on the inner surface of the concave lens.
[0029]
2 and 5 have been illustrated and described as MR-16 type outline packages, these LED packages are MRC-11, MRC-16, PAR-36, PAR- Other types of industry standard outline packages such as 38, PAR-56, and PAR-64 can also be configured. In fact, an LED package can be configured to have a completely different outline with any number of LEDs arranged in any configuration.
[0030]
With reference to FIG. 6, a method for manufacturing LED packages such as LED packages 20 and 60 of FIGS. 2 and 5 will be described. In step 66, a number of optically transparent fluorescent members are formed. The fluorescent member includes a phosphor material dispersed in the fluorescent member. The fluorescent member is preferably made of silicon rubber and contains Ce: YAG phosphor particles. In the case of the first embodiment, the fluorescent member is a shaped plate. It is formed by cutting a sheet of optically transparent material containing phosphor material into a shape that matches the axial shape of the LED package to be manufactured. For example, the finished plate can be formed into a disk shape. In the case of the second embodiment, the fluorescent member is shaped as a non-planar disk that conforms to the inner surface of the concave lens. In this embodiment, the fluorescent member is formed of an optically transparent material such as polycarbonate or acrylic in which a fluorescent material is dispersed so as to form a non-planar disk shape by utilizing the contour of the concave lens. Formed by. In step 68, the fluorescent member is inspected for optical properties. As an example, the fluorescent member can be inspected by activating the phosphor using a standard monochromatic light source and then measuring the output from the fluorescent member. The inspected fluorescent member can then be “bagged” or classified with respect to a set of optical properties. It is possible to obtain a finished device having very similar optical characteristics by using a fluorescent member exhibiting similar characteristics. It is therefore possible to produce devices that meet specific customer requirements with regard to color temperature and output spectrum. Since the optical properties are known prior to the production of the device, undesirable devices whose optical properties do not meet the desired specifications are avoided, thus reducing production costs.
[0031]
In step 70, one or more GaN-based LED dies are attached to the lead frame. In step 72, a transparent encapsulant material is deposited over the LED die. A silicon gel material is excellent in thermal characteristics and has a desired refractive index, and thus is preferably used as a capsule material. Next, in step 74, the inspected fluorescent member having specific optical properties is mounted on the capsule material. The fluorescent member can be attached to the encapsulant using a transparent silicone adhesive. Alternatively, the fluorescent member can be pressed firmly against the capsule material. Next, in step 76, a lens is attached to the fluorescent member. Similar to the attachment of the fluorescent member to the encapsulant, the lens can be attached to the fluorescent member using a silicon adhesive or by pressing the lens firmly against the fluorescent member. In the case of the second embodiment in which the lens and the fluorescent member are a single pre-manufactured part, this process is not applicable. In step 78, a reflector is attached over the lens. Once the reflector is installed, a dust cover can be attached to the edge of the reflector in step 80.
[0032]
As described above, the light emitting device and the manufacturing method thereof according to the preferred embodiment of the present invention have been described. However, this is merely an example, and various modifications and changes can be made by those skilled in the art.
[0033]
The present invention will be described with reference to the above-described embodiment. The present invention provides a method (66) of forming an optical member (52, 64) containing a fluorescent material by a method of manufacturing a light emitting device (20, 60). And (68) inspecting the formed optical member for optical properties before assembling the optical member with other components of the light emitting device, and light emitting diodes (22, 24, 26, and 28). Securing the optical member to an assembly that includes the optical member causing secondary light emission by converting a portion of the light emitted from the light emitting diode; from the light emitting diode; A light emitting device (20, 6), wherein the light emitting diode (20, 6) is arranged so as to obtain a combined output light composed of a non-converted portion of the emitted light and the secondary light emission. ) Provides a method for producing a.
[0034]
Preferably, the step (66) of forming the optical member (52, 64) is a step of forming a substantially flat transparent plate (52) containing the fluorescent material.
[0035]
Preferably, the step of forming the flat transparent plate (52) includes a step of shaping the flat transparent plate into a disk-shaped plate.
[0036]
Preferably, in the step (66) of forming the optical member (52, 64), the shape of the optical member is adapted to the surface of the lens (62) of the light emitting element, and the optical member is integrated with the lens. The process of becoming a part is included.
[0037]
Preferably, before the step (74) of fixing the optical member (52, 64) to the assembly, and further to the light emitting diode (22, 24, 26, and 28) of the assembly, an optical grade that is an encapsulating material. Depositing the silicon gel.
[0038]
The present invention further relates to a light emitting device (20, 60) for emitting primary light having a first spectral distribution in response to an applied electrical signal (22, 24, 26, and 28). ), And optically coupled to the light emitter, optically transparent, including a phosphor material, and when a portion of the primary light is absorbed by the phosphor material, the second Secondary light having the following spectral distribution is emitted, and the primary light and the secondary light form a spectral distribution of output light generated by the device, the fluorescent member (52, 64) and a connecting member (50) for attaching the fluorescent member to the light emitter, a light emitting device (20, 60) is provided.
[0039]
Preferably, the fluorescent member (52, 64) is a substantially flat plate (52), and the surface of the plate (52) is substantially perpendicular to the direction of the primary light emitted from the light emitter. The light emitters (22, 24, 26, and 28) are arranged so as to form
[0040]
Preferably, the substantially planar plate (52) is shaped into a disk-like structure.
[0041]
Preferably, it further includes a lens (62) attached so as to be integrated with the fluorescent member (52, 64), and that the fluorescent member conforms to the surface of the lens. The fluorescent member and the lens form an integrated unit.
[0042]
Preferably, the connecting member (50) includes an optical grade silicone gel that encapsulates the light emitters (22, 24, 26, and 28), and the optical grade silicone gel comprises: It arrange | positions between the said transparent member (52, 64) and the said light-emitting body.
[Brief description of the drawings]
FIG. 1 is a perspective view of a conventional halogen bulb of the MR-16 outline type.
FIG. 2 is a cross-sectional view of an LED package according to the first embodiment of the present invention.
3 is a top view of the lead frame of the LED package of FIG. 2 with the attached LED dies electrically connected to form a 12 volt operating voltage configuration.
4 is a plan view of the lead frame of the LED package of FIG. 2 with the attached LED dies electrically connected to form a 6 volt operating voltage configuration.
FIG. 5 is a cross-sectional view of an LED package according to a second embodiment of the present invention.
FIG. 6 is a flowchart for a method of manufacturing an LED package according to the present invention.
[Explanation of symbols]
20 Light emitting device
22 Light emitting diode
24 light emitting diode
26 Light Emitting Diode
28 Light Emitting Diode
50 Connecting members
52 Optical members
62 lenses
64 Optical members

Claims (3)

光材料を含む複数の光学部材の各々を、標準的な単色光源を利用して前記蛍光材料を活性化し、該蛍光材料からの出力の特性を測定することにより、検査し、
前記光学部材の各々を、前記出力の特性に基づいて複数分類し、
光を放射する発光素子アセンブリ設け、
前記出力の特性に基づいてされた前記光学部材から所定の光学部材を選択し、
された前記光学部材を前記アセンブリに固定する、方法であって、
前記出力の特性前記光の波長特性との合せは、白色光を再現するように選択されている
方法。
Each of the plurality of optical members, including a fluorescent material, the fluorescent material activated using the standard monochromatic light source, by measuring the characteristics of the output from the fluorescent material, inspected,
Each of the optical member, are classified into a plurality based on the characteristics of the output,
A light emitting element for emitting light is provided in the assembly;
Selecting a predetermined optical member from the optical member that is classified based on the characteristics of the output,
Fixing the optical member that is selected in the assembly, a method,
Set combined with the wavelength characteristics of the optical characteristic of the output is selected to reproduce the white light,
Method.
前記選択された光学部材は、ンズ要素が一体化されている、請求項に記載の方法。The selected optical member lenses elements are integrated, the method of claim 1. 前記レンズ要素は凹レンズであり前記光学部材は前記凹レンズの面に位置決めされている、請求項に記載の方法。The lens element is a concave surface lens, the optical member Ru Tei is positioned concave surface of the concave surface lens, the method according to claim 2.
JP2000249758A 1999-09-03 2000-08-21 Light emitting device using light emitting diode and method for manufacturing the same Expired - Lifetime JP5116912B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/390,006 US6504301B1 (en) 1999-09-03 1999-09-03 Non-incandescent lightbulb package using light emitting diodes
US390006 1999-09-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011096108A Division JP5580246B2 (en) 1999-09-03 2011-04-22 Method for manufacturing light emitting device using light emitting diode

Publications (2)

Publication Number Publication Date
JP2001111117A JP2001111117A (en) 2001-04-20
JP5116912B2 true JP5116912B2 (en) 2013-01-09

Family

ID=23540657

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2000249758A Expired - Lifetime JP5116912B2 (en) 1999-09-03 2000-08-21 Light emitting device using light emitting diode and method for manufacturing the same
JP2011096108A Expired - Lifetime JP5580246B2 (en) 1999-09-03 2011-04-22 Method for manufacturing light emitting device using light emitting diode

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2011096108A Expired - Lifetime JP5580246B2 (en) 1999-09-03 2011-04-22 Method for manufacturing light emitting device using light emitting diode

Country Status (3)

Country Link
US (1) US6504301B1 (en)
EP (1) EP1081771B1 (en)
JP (2) JP5116912B2 (en)

Families Citing this family (370)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6600175B1 (en) * 1996-03-26 2003-07-29 Advanced Technology Materials, Inc. Solid state white light emitter and display using same
US7014336B1 (en) * 1999-11-18 2006-03-21 Color Kinetics Incorporated Systems and methods for generating and modulating illumination conditions
US7064498B2 (en) * 1997-08-26 2006-06-20 Color Kinetics Incorporated Light-emitting diode based products
US6806659B1 (en) 1997-08-26 2004-10-19 Color Kinetics, Incorporated Multicolored LED lighting method and apparatus
US7352339B2 (en) * 1997-08-26 2008-04-01 Philips Solid-State Lighting Solutions Diffuse illumination systems and methods
US20030133292A1 (en) * 1999-11-18 2003-07-17 Mueller George G. Methods and apparatus for generating and modulating white light illumination conditions
US7482764B2 (en) * 1997-08-26 2009-01-27 Philips Solid-State Lighting Solutions, Inc. Light sources for illumination of liquids
US7038398B1 (en) * 1997-08-26 2006-05-02 Color Kinetics, Incorporated Kinetic illumination system and methods
US20020176259A1 (en) * 1999-11-18 2002-11-28 Ducharme Alfred D. Systems and methods for converting illumination
DE10006286C1 (en) * 2000-02-14 2001-10-18 3M Espe Ag Light wave converter device and its use in the dental field
PT1422975E (en) * 2000-04-24 2010-07-09 Philips Solid State Lighting Light-emitting diode based product
AUPR570501A0 (en) * 2001-06-15 2001-07-12 Q1 (Pacific) Limited Led lamp
JP4066620B2 (en) * 2000-07-21 2008-03-26 日亜化学工業株式会社 LIGHT EMITTING ELEMENT, DISPLAY DEVICE HAVING LIGHT EMITTING ELEMENT AND METHOD FOR MANUFACTURING DISPLAY DEVICE
TW490863B (en) * 2001-02-12 2002-06-11 Arima Optoelectronics Corp Manufacturing method of LED with uniform color temperature
JP4101468B2 (en) * 2001-04-09 2008-06-18 豊田合成株式会社 Method for manufacturing light emitting device
US6878972B2 (en) * 2001-06-08 2005-04-12 Agilent Technologies, Inc. Light-emitting diode with plastic reflector cup
JP2003110146A (en) * 2001-07-26 2003-04-11 Matsushita Electric Works Ltd Light-emitting device
ATE356532T1 (en) 2001-09-13 2007-03-15 Lucea Ag LED LIGHT PANEL AND CIRCUIT BOARD
WO2003038334A1 (en) * 2001-10-24 2003-05-08 Koenecke Dirk Luminous element
US6871983B2 (en) 2001-10-25 2005-03-29 Tir Systems Ltd. Solid state continuous sealed clean room light fixture
US7497596B2 (en) * 2001-12-29 2009-03-03 Mane Lou LED and LED lamp
US6711426B2 (en) * 2002-04-09 2004-03-23 Spectros Corporation Spectroscopy illuminator with improved delivery efficiency for high optical density and reduced thermal load
US20080009689A1 (en) * 2002-04-09 2008-01-10 Benaron David A Difference-weighted somatic spectroscopy
CA2427559A1 (en) * 2002-05-15 2003-11-15 Sumitomo Electric Industries, Ltd. White color light emitting device
US10340424B2 (en) 2002-08-30 2019-07-02 GE Lighting Solutions, LLC Light emitting diode component
US7800121B2 (en) * 2002-08-30 2010-09-21 Lumination Llc Light emitting diode component
US7224000B2 (en) 2002-08-30 2007-05-29 Lumination, Llc Light emitting diode component
ES2335878T3 (en) * 2002-08-30 2010-04-06 Lumination, Llc COVERED LED WITH IMPROVED EFFECTIVENESS.
US7264378B2 (en) * 2002-09-04 2007-09-04 Cree, Inc. Power surface mount light emitting die package
US7244965B2 (en) 2002-09-04 2007-07-17 Cree Inc, Power surface mount light emitting die package
US7775685B2 (en) 2003-05-27 2010-08-17 Cree, Inc. Power surface mount light emitting die package
JP4201167B2 (en) * 2002-09-26 2008-12-24 シチズン電子株式会社 Manufacturing method of white light emitting device
JP4280050B2 (en) 2002-10-07 2009-06-17 シチズン電子株式会社 White light emitting device
US6896381B2 (en) * 2002-10-11 2005-05-24 Light Prescriptions Innovators, Llc Compact folded-optics illumination lens
US7554258B2 (en) * 2002-10-22 2009-06-30 Osram Opto Semiconductors Gmbh Light source having an LED and a luminescence conversion body and method for producing the luminescence conversion body
US20040141321A1 (en) * 2002-11-20 2004-07-22 Color Kinetics, Incorporated Lighting and other perceivable effects for toys and other consumer products
US7042655B2 (en) * 2002-12-02 2006-05-09 Light Prescriptions Innovators, Llc Apparatus and method for use in fulfilling illumination prescription
MXPA05005658A (en) 2002-12-02 2005-08-16 3M Innovative Properties Co Illumination system using a plurality of light sources.
US7312560B2 (en) * 2003-01-27 2007-12-25 3M Innovative Properties Phosphor based light sources having a non-planar long pass reflector and method of making
US20040145312A1 (en) * 2003-01-27 2004-07-29 3M Innovative Properties Company Phosphor based light source having a flexible short pass reflector
US7245072B2 (en) * 2003-01-27 2007-07-17 3M Innovative Properties Company Phosphor based light sources having a polymeric long pass reflector
US7118438B2 (en) * 2003-01-27 2006-10-10 3M Innovative Properties Company Methods of making phosphor based light sources having an interference reflector
JP2006516828A (en) * 2003-01-27 2006-07-06 スリーエム イノベイティブ プロパティズ カンパニー Phosphorescent light source element and manufacturing method
US7091653B2 (en) 2003-01-27 2006-08-15 3M Innovative Properties Company Phosphor based light sources having a non-planar long pass reflector
US20040145289A1 (en) * 2003-01-27 2004-07-29 3M Innovative Properties Company Phosphor based light sources having a non-planar short pass reflector and method of making
US7091661B2 (en) * 2003-01-27 2006-08-15 3M Innovative Properties Company Phosphor based light sources having a reflective polarizer
US20040159900A1 (en) * 2003-01-27 2004-08-19 3M Innovative Properties Company Phosphor based light sources having front illumination
US7377671B2 (en) * 2003-02-04 2008-05-27 Light Prescriptions Innovators, Llc Etendue-squeezing illumination optics
EP2365095A1 (en) 2003-02-26 2011-09-14 Callida Genomics, Inc. Random array DNA analysis by hybridization
DE10308866A1 (en) * 2003-02-28 2004-09-09 Osram Opto Semiconductors Gmbh Lighting module and method for its production
EP1455398A3 (en) * 2003-03-03 2011-05-25 Toyoda Gosei Co., Ltd. Light emitting device comprising a phosphor layer and method of making same
US20040189555A1 (en) * 2003-03-26 2004-09-30 Capen Larry Stephen Use of track lighting switching power supplies to efficiently drive LED arrays
US20070020578A1 (en) * 2005-07-19 2007-01-25 Scott Robert R Dental curing light having a short wavelength LED and a fluorescing lens for converting wavelength light to curing wavelengths and related method
US7005679B2 (en) 2003-05-01 2006-02-28 Cree, Inc. Multiple component solid state white light
CN1802533B (en) * 2003-05-05 2010-11-24 吉尔科有限公司 LED-based light bulb
US7329029B2 (en) 2003-05-13 2008-02-12 Light Prescriptions Innovators, Llc Optical device for LED-based lamp
US8075147B2 (en) * 2003-05-13 2011-12-13 Light Prescriptions Innovators, Llc Optical device for LED-based lamp
US6921182B2 (en) * 2003-05-13 2005-07-26 Solaroasis Efficient LED lamp for enhancing commercial and home plant growth
US7021797B2 (en) * 2003-05-13 2006-04-04 Light Prescriptions Innovators, Llc Optical device for repositioning and redistributing an LED's light
JP4138586B2 (en) 2003-06-13 2008-08-27 スタンレー電気株式会社 LED lamp for light source and vehicle headlamp using the same
AT412928B (en) 2003-06-18 2005-08-25 Guenther Dipl Ing Dr Leising METHOD FOR PRODUCING A WHITE LED AND WHITE LED LIGHT SOURCE
US7145125B2 (en) * 2003-06-23 2006-12-05 Advanced Optical Technologies, Llc Integrating chamber cone light using LED sources
US7521667B2 (en) * 2003-06-23 2009-04-21 Advanced Optical Technologies, Llc Intelligent solid state lighting
US7462983B2 (en) * 2003-06-27 2008-12-09 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. White light emitting device
WO2005012951A2 (en) * 2003-07-28 2005-02-10 Light Prescriptions Innovators, Llc Three-dimensional simultaneous multiple-surface method and free-form illumination-optics designed therefrom
WO2005012952A2 (en) * 2003-07-29 2005-02-10 Light Prescriptions Innovators, Llc Circumferentially emitting luminaires and lens elements formed by transverse-axis profile-sweeps
US7009213B2 (en) * 2003-07-31 2006-03-07 Lumileds Lighting U.S., Llc Light emitting devices with improved light extraction efficiency
US7679096B1 (en) 2003-08-21 2010-03-16 Opto Technology, Inc. Integrated LED heat sink
EP1668960A2 (en) * 2003-09-08 2006-06-14 Nanocrystal Lighting Corporation Light efficient packaging configurations for led lamps using high refractive index encapsulants
US7029935B2 (en) * 2003-09-09 2006-04-18 Cree, Inc. Transmissive optical elements including transparent plastic shell having a phosphor dispersed therein, and methods of fabricating same
US7300173B2 (en) 2004-04-08 2007-11-27 Technology Assessment Group, Inc. Replacement illumination device for a miniature flashlight bulb
US7777430B2 (en) 2003-09-12 2010-08-17 Terralux, Inc. Light emitting diode replacement lamp
JP4140042B2 (en) 2003-09-17 2008-08-27 スタンレー電気株式会社 LED light source device using phosphor and vehicle headlamp using LED light source device
US7052152B2 (en) * 2003-10-03 2006-05-30 Philips Lumileds Lighting Company, Llc LCD backlight using two-dimensional array LEDs
JP4402425B2 (en) 2003-10-24 2010-01-20 スタンレー電気株式会社 Vehicle headlamp
DE10351349A1 (en) * 2003-10-31 2005-06-16 Osram Opto Semiconductors Gmbh Production of a luminescent diode chip applies a radiation decoupling surface and a semiconductor body with an epitaxial-grown sequence of semiconductor layers with an active zone
DE10351397A1 (en) * 2003-10-31 2005-06-16 Osram Opto Semiconductors Gmbh LED chip
US8632215B2 (en) 2003-11-04 2014-01-21 Terralux, Inc. Light emitting diode replacement lamp
JP4385741B2 (en) * 2003-11-25 2009-12-16 パナソニック電工株式会社 Light emitting device
EP1691425B1 (en) * 2003-11-25 2010-08-11 Panasonic Electric Works Co., Ltd. Light emitting device using light emitting diode chip
US20050116635A1 (en) * 2003-12-02 2005-06-02 Walson James E. Multiple LED source and method for assembling same
US7250611B2 (en) 2003-12-02 2007-07-31 3M Innovative Properties Company LED curing apparatus and method
WO2005078338A1 (en) 2004-02-17 2005-08-25 Kelly William M A utility lamp
US7517728B2 (en) 2004-03-31 2009-04-14 Cree, Inc. Semiconductor light emitting devices including a luminescent conversion element
US7837348B2 (en) 2004-05-05 2010-11-23 Rensselaer Polytechnic Institute Lighting system using multiple colored light emitting sources and diffuser element
WO2005107420A2 (en) * 2004-05-05 2005-11-17 Rensselaer Polytechnic Institute High efficiency light source using solid-state emitter and down-conversion material
US8227820B2 (en) 2005-02-09 2012-07-24 The Regents Of The University Of California Semiconductor light-emitting device
US7781789B2 (en) 2006-11-15 2010-08-24 The Regents Of The University Of California Transparent mirrorless light emitting diode
US7768023B2 (en) 2005-10-14 2010-08-03 The Regents Of The University Of California Photonic structures for efficient light extraction and conversion in multi-color light emitting devices
US8860051B2 (en) 2006-11-15 2014-10-14 The Regents Of The University Of California Textured phosphor conversion layer light emitting diode
US7070300B2 (en) 2004-06-04 2006-07-04 Philips Lumileds Lighting Company, Llc Remote wavelength conversion in an illumination device
US7553683B2 (en) * 2004-06-09 2009-06-30 Philips Lumiled Lighting Co., Llc Method of forming pre-fabricated wavelength converting elements for semiconductor light emitting devices
US7256057B2 (en) * 2004-09-11 2007-08-14 3M Innovative Properties Company Methods for producing phosphor based light sources
JP4823505B2 (en) * 2004-10-20 2011-11-24 シャープ株式会社 Semiconductor device and electronic equipment
US20060097385A1 (en) * 2004-10-25 2006-05-11 Negley Gerald H Solid metal block semiconductor light emitting device mounting substrates and packages including cavities and heat sinks, and methods of packaging same
JP2006128562A (en) 2004-11-01 2006-05-18 Nikon Corp Light emitting device
DE112005002889B4 (en) 2004-12-14 2015-07-23 Seoul Viosys Co., Ltd. Light emitting device with a plurality of light emitting cells and assembly assembly thereof
DE102004060475A1 (en) * 2004-12-16 2006-07-06 Hella Kgaa Hueck & Co. Head light for vehicles has light-converting luminescent material is designed as light-converting luminescent coating which exhibits given contour and a defined irradiancy is generated on the light-converting luminescent material coating
US20060139580A1 (en) * 2004-12-29 2006-06-29 Conner Arlie R Illumination system using multiple light sources with integrating tunnel and projection systems using same
US7564180B2 (en) 2005-01-10 2009-07-21 Cree, Inc. Light emission device and method utilizing multiple emitters and multiple phosphors
US8125137B2 (en) 2005-01-10 2012-02-28 Cree, Inc. Multi-chip light emitting device lamps for providing high-CRI warm white light and light fixtures including the same
JP4634810B2 (en) * 2005-01-20 2011-02-16 信越化学工業株式会社 Silicone sealed LED
EP1854154A2 (en) * 2005-02-16 2007-11-14 Koninklijke Philips Electronics N.V. Light emitting device comprising inorganic light emitting diode(s)
JP5373243B2 (en) * 2005-02-24 2013-12-18 株式会社朝日ラバー Light-emitting diode lens component and light-emitting diode light source device
WO2006095949A1 (en) 2005-03-11 2006-09-14 Seoul Semiconductor Co., Ltd. Led package having an array of light emitting cells coupled in series
US7316497B2 (en) * 2005-03-29 2008-01-08 3M Innovative Properties Company Fluorescent volume light source
KR101402190B1 (en) 2005-05-25 2014-06-03 코닌클리케 필립스 엔.브이. Electroluminescence device
WO2006131924A2 (en) 2005-06-07 2006-12-14 Oree, Advanced Illumination Solutions Inc. Illumination apparatus
US8272758B2 (en) 2005-06-07 2012-09-25 Oree, Inc. Illumination apparatus and methods of forming the same
US8215815B2 (en) * 2005-06-07 2012-07-10 Oree, Inc. Illumination apparatus and methods of forming the same
WO2006138626A2 (en) 2005-06-17 2006-12-28 The Regents Of The University Of California (AI,Ga,In)N AND ZnO DIRECT WAFER BONDED STRUCTURE FOR OPTOELECTRONIC APPLICATION AND ITS FABRICATION METHOD
CN101203965B (en) * 2005-06-23 2010-04-21 皇家飞利浦电子股份有限公司 A light-emitting device and method for its design
DE102005038698A1 (en) * 2005-07-08 2007-01-18 Tridonic Optoelectronics Gmbh Optoelectronic components with adhesion promoter
EP1905272B1 (en) 2005-07-14 2012-10-17 Philips Intellectual Property & Standards GmbH Electroluminescent device
WO2007016363A2 (en) * 2005-07-28 2007-02-08 Light Prescriptions Innovators, Llc Free-form lenticular optical elements and their application to condensers and headlamps
WO2007014371A2 (en) * 2005-07-28 2007-02-01 Light Prescriptions Innovators, Llc Etendue-conserving illumination-optics for backlights and frontlights
EP2236580A3 (en) 2005-09-30 2010-11-03 The Regents of the University of California Nitride and oxy-nitride cerium based phosphor materials for solid-state lighting applications
JP2009515344A (en) 2005-11-04 2009-04-09 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Light-emitting diode (LED) with high light extraction efficiency
US8514210B2 (en) 2005-11-18 2013-08-20 Cree, Inc. Systems and methods for calibrating solid state lighting panels using combined light output measurements
JP5249773B2 (en) 2005-11-18 2013-07-31 クリー インコーポレイテッド Solid state lighting panel with variable voltage boost current source
US7926300B2 (en) 2005-11-18 2011-04-19 Cree, Inc. Adaptive adjustment of light output of solid state lighting panels
WO2007067758A2 (en) * 2005-12-08 2007-06-14 The Regents Of The University Of California High efficiency light emitting diode (led)
TWI421438B (en) 2005-12-21 2014-01-01 克里公司 Lighting device
EP2372223A3 (en) 2005-12-21 2012-08-01 Cree, Inc. Lighting Device and Lighting Method
KR20090009772A (en) * 2005-12-22 2009-01-23 크리 엘이디 라이팅 솔루션즈, 인크. Lighting device
US20110103050A1 (en) * 2006-01-06 2011-05-05 Jeremy Hochman 360 Degree Viewable Light Emitting Apparatus
KR100746749B1 (en) * 2006-03-15 2007-08-09 (주)케이디티 Photoluminescent diffusion sheet
WO2007109588A2 (en) * 2006-03-17 2007-09-27 Production Resource Group, L.L.C. Multiple focus point light
US20070228331A1 (en) * 2006-03-28 2007-10-04 Haitko Deborah A Q silicone-containing composition, optoelectronic encapsulant thereof and device thereof
US7828460B2 (en) 2006-04-18 2010-11-09 Cree, Inc. Lighting device and lighting method
US9084328B2 (en) 2006-12-01 2015-07-14 Cree, Inc. Lighting device and lighting method
US7821194B2 (en) 2006-04-18 2010-10-26 Cree, Inc. Solid state lighting devices including light mixtures
US8513875B2 (en) 2006-04-18 2013-08-20 Cree, Inc. Lighting device and lighting method
US7997745B2 (en) 2006-04-20 2011-08-16 Cree, Inc. Lighting device and lighting method
US7777166B2 (en) 2006-04-21 2010-08-17 Cree, Inc. Solid state luminaires for general illumination including closed loop feedback control
US7648257B2 (en) 2006-04-21 2010-01-19 Cree, Inc. Light emitting diode packages
CN101484964A (en) 2006-05-02 2009-07-15 舒伯布尔斯公司 Method of light dispersion and preferential scattering of certain wavelengths of light for light-emitting diodes and bulbs constructed therefrom
WO2007130358A2 (en) 2006-05-02 2007-11-15 Superbulbs, Inc. Plastic led bulb
JP2009535784A (en) 2006-05-02 2009-10-01 スーパーバルブス・インコーポレイテッド Heat removal design for LED bulbs
KR101340682B1 (en) 2006-05-05 2013-12-12 크리, 인코포레이티드 Lighting device
JP2009538536A (en) 2006-05-26 2009-11-05 クリー エル イー ディー ライティング ソリューションズ インコーポレイテッド Solid state light emitting device and method of manufacturing the same
EP2029936B1 (en) 2006-05-31 2015-07-29 Cree, Inc. Lighting device and method of lighting
WO2007142947A2 (en) 2006-05-31 2007-12-13 Cree Led Lighting Solutions, Inc. Lighting device with color control, and method of lighting
US20070280622A1 (en) * 2006-06-02 2007-12-06 3M Innovative Properties Company Fluorescent light source having light recycling means
US20070279914A1 (en) * 2006-06-02 2007-12-06 3M Innovative Properties Company Fluorescent volume light source with reflector
CN101467270B (en) * 2006-06-14 2013-03-27 皇家飞利浦电子股份有限公司 Lighting device
US8947619B2 (en) 2006-07-06 2015-02-03 Intematix Corporation Photoluminescence color display comprising quantum dots material and a wavelength selective filter that allows passage of excitation radiation and prevents passage of light generated by photoluminescence materials
US20080074583A1 (en) * 2006-07-06 2008-03-27 Intematix Corporation Photo-luminescence color liquid crystal display
EP2064487A4 (en) * 2006-07-14 2010-09-01 Light Prescriptions Innovators Brightness-enhancing film
US7804147B2 (en) * 2006-07-31 2010-09-28 Cree, Inc. Light emitting diode package element with internal meniscus for bubble free lens placement
US20080029720A1 (en) 2006-08-03 2008-02-07 Intematix Corporation LED lighting arrangement including light emitting phosphor
EP2057409A2 (en) * 2006-08-10 2009-05-13 Light Prescriptions Innovators, LLC. Led light recycling for luminance enhancement and angular narrowing
WO2008022065A2 (en) * 2006-08-11 2008-02-21 Light Prescriptions Innovators, Llc Led luminance-enhancement and color-mixing by rotationally multiplexed beam-combining
US7842960B2 (en) * 2006-09-06 2010-11-30 Lumination Llc Light emitting packages and methods of making same
US7766508B2 (en) 2006-09-12 2010-08-03 Cree, Inc. LED lighting fixture
US7665862B2 (en) 2006-09-12 2010-02-23 Cree, Inc. LED lighting fixture
DE102006045704A1 (en) * 2006-09-27 2008-04-03 Osram Opto Semiconductors Gmbh Optical element and optoelectronic component with such an optical element
US7857457B2 (en) * 2006-09-29 2010-12-28 3M Innovative Properties Company Fluorescent volume light source having multiple fluorescent species
KR20080032882A (en) * 2006-10-11 2008-04-16 삼성전기주식회사 Light emitting diode package
US20100309646A1 (en) * 2006-10-19 2010-12-09 Panasonic Corporation Light-emitting device and display unit and lighting unit using the same
US20080151143A1 (en) * 2006-10-19 2008-06-26 Intematix Corporation Light emitting diode based backlighting for color liquid crystal displays
US20080099772A1 (en) * 2006-10-30 2008-05-01 Geoffrey Wen-Tai Shuy Light emitting diode matrix
US8029155B2 (en) 2006-11-07 2011-10-04 Cree, Inc. Lighting device and lighting method
TWI446569B (en) 2006-11-15 2014-07-21 Univ California Standing transparent mirrorless light emitting diode
US9441793B2 (en) 2006-12-01 2016-09-13 Cree, Inc. High efficiency lighting device including one or more solid state light emitters, and method of lighting
CN101611259B (en) 2006-12-07 2012-06-27 科锐公司 Lighting device and lighting method
JP2010512662A (en) 2006-12-11 2010-04-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Transparent light emitting diode
DE102006062066A1 (en) * 2006-12-29 2008-07-03 Osram Opto Semiconductors Gmbh Lens arrangement for light emitting diode display device, has lens with lens surface and optical axis, which penetrates lens surface of lens
US20080192458A1 (en) 2007-02-12 2008-08-14 Intematix Corporation Light emitting diode lighting system
US8258682B2 (en) 2007-02-12 2012-09-04 Cree, Inc. High thermal conductivity packaging for solid state light emitting apparatus and associated assembling methods
TWI560405B (en) 2007-02-22 2016-12-01 Cree Inc Lighting devices, methods of lighting, light filters and methods of filtering light
US7972030B2 (en) 2007-03-05 2011-07-05 Intematix Corporation Light emitting diode (LED) based lighting systems
US7824070B2 (en) 2007-03-22 2010-11-02 Cree, Inc. LED lighting fixture
US7618163B2 (en) * 2007-04-02 2009-11-17 Ruud Lighting, Inc. Light-directing LED apparatus
US8203260B2 (en) * 2007-04-13 2012-06-19 Intematix Corporation Color temperature tunable white light source
US7703943B2 (en) * 2007-05-07 2010-04-27 Intematix Corporation Color tunable light source
EP2142844B1 (en) 2007-05-08 2017-08-23 Cree, Inc. Lighting device and lighting method
BRPI0811561A2 (en) 2007-05-08 2015-06-16 Cree Led Lighting Solutions Lighting device and lighting method
CN101688644B (en) 2007-05-08 2011-06-15 科锐Led照明科技公司 Lighting device and lighting method
WO2008137975A1 (en) 2007-05-08 2008-11-13 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
JP2010527156A (en) 2007-05-08 2010-08-05 クリー エル イー ディー ライティング ソリューションズ インコーポレイテッド Lighting device and lighting method
US7700967B2 (en) * 2007-05-25 2010-04-20 Philips Lumileds Lighting Company Llc Illumination device with a wavelength converting element held by a support structure having an aperture
WO2008154172A1 (en) * 2007-06-08 2008-12-18 Superbulbs, Inc. Apparatus for cooling leds in a bulb
US7942556B2 (en) * 2007-06-18 2011-05-17 Xicato, Inc. Solid state illumination device
KR101623422B1 (en) 2007-06-27 2016-05-23 더 리전츠 오브 더 유니버시티 오브 캘리포니아 Optical designs for high-efficacy white-light emitting diodes
US8042971B2 (en) 2007-06-27 2011-10-25 Cree, Inc. Light emitting device (LED) lighting systems for emitting light in multiple directions and related methods
WO2009012287A1 (en) 2007-07-17 2009-01-22 Cree Led Lighting Solutions, Inc. Optical elements with internal optical features and methods of fabricating same
WO2009016563A1 (en) * 2007-08-02 2009-02-05 Koninklijke Philips Electronics N.V. Reflector and light output device
TW200926454A (en) * 2007-08-03 2009-06-16 Panasonic Corp Light-emitting device
US7863635B2 (en) 2007-08-07 2011-01-04 Cree, Inc. Semiconductor light emitting devices with applied wavelength conversion materials
US7940341B2 (en) * 2007-08-23 2011-05-10 Philips Lumileds Lighting Company Light source for a projector
US8450927B2 (en) 2007-09-14 2013-05-28 Switch Bulb Company, Inc. Phosphor-containing LED light bulb
US8783887B2 (en) 2007-10-01 2014-07-22 Intematix Corporation Color tunable light emitting device
WO2009045438A1 (en) 2007-10-03 2009-04-09 Superbulbs, Inc. Glass led light bulbs
CN101821544B (en) 2007-10-10 2012-11-28 科锐公司 Lighting device and method of making
JP5186875B2 (en) * 2007-10-12 2013-04-24 日亜化学工業株式会社 Lighting unit
US9086213B2 (en) 2007-10-17 2015-07-21 Xicato, Inc. Illumination device with light emitting diodes
US7915627B2 (en) 2007-10-17 2011-03-29 Intematix Corporation Light emitting device with phosphor wavelength conversion
US7984999B2 (en) * 2007-10-17 2011-07-26 Xicato, Inc. Illumination device with light emitting diodes and moveable light adjustment member
US8376577B2 (en) * 2007-11-05 2013-02-19 Xicato, Inc. Modular solid state lighting device
US8119028B2 (en) * 2007-11-14 2012-02-21 Cree, Inc. Cerium and europium doped single crystal phosphors
DE102007055003A1 (en) * 2007-11-14 2009-05-20 Carl Zeiss Surgical Gmbh Medical lighting unit
US8866410B2 (en) 2007-11-28 2014-10-21 Cree, Inc. Solid state lighting devices and methods of manufacturing the same
US8172447B2 (en) * 2007-12-19 2012-05-08 Oree, Inc. Discrete lighting elements and planar assembly thereof
US20090161369A1 (en) 2007-12-19 2009-06-25 Keren Regev Waveguide sheet and methods for manufacturing the same
US8147081B2 (en) * 2007-12-26 2012-04-03 Lumination Llc Directional linear light source
DE102008005120A1 (en) * 2008-01-18 2009-09-10 Osram Gesellschaft mit beschränkter Haftung LED module with a lens
EP2235428A2 (en) * 2008-01-22 2010-10-06 Koninklijke Philips Electronics N.V. Illumination device with led and a transmissive support comprising a luminescent material
US7942553B2 (en) * 2008-01-25 2011-05-17 Eveready Battery Company, Inc. Lighting device and optics package therefor
US9151884B2 (en) * 2008-02-01 2015-10-06 3M Innovative Properties Company Fluorescent volume light source with active chromphore
WO2009109974A2 (en) * 2008-03-05 2009-09-11 Oree, Advanced Illumination Solutions Inc. Illumination apparatus and methods of forming the same
US8740400B2 (en) 2008-03-07 2014-06-03 Intematix Corporation White light illumination system with narrow band green phosphor and multiple-wavelength excitation
US8567973B2 (en) * 2008-03-07 2013-10-29 Intematix Corporation Multiple-chip excitation systems for white light emitting diodes (LEDs)
US8067891B2 (en) * 2008-04-25 2011-11-29 Deng Jia H A/C LED bulb
US9258854B2 (en) * 2008-05-20 2016-02-09 Jia H. Deng LED PAR and R lamps
US8348475B2 (en) 2008-05-23 2013-01-08 Ruud Lighting, Inc. Lens with controlled backlight management
US9423096B2 (en) 2008-05-23 2016-08-23 Cree, Inc. LED lighting apparatus
US8388193B2 (en) 2008-05-23 2013-03-05 Ruud Lighting, Inc. Lens with TIR for off-axial light distribution
TWI497747B (en) * 2008-06-02 2015-08-21 Panasonic Corp Semiconductor light emitting apparatus and light source apparatus using the same
TWI469383B (en) * 2008-06-03 2015-01-11 A light emitting device and a manufacturing method thereof
JP5152502B2 (en) 2008-06-09 2013-02-27 スタンレー電気株式会社 Lamp
US7862212B2 (en) * 2008-06-12 2011-01-04 Pacific Speed Limited Light emitting diode lens structure and an illumination apparatus incorporating with the LED lens structure
US8240875B2 (en) 2008-06-25 2012-08-14 Cree, Inc. Solid state linear array modules for general illumination
US20090321758A1 (en) * 2008-06-25 2009-12-31 Wen-Huang Liu Led with improved external light extraction efficiency
US8301002B2 (en) * 2008-07-10 2012-10-30 Oree, Inc. Slim waveguide coupling apparatus and method
US8297786B2 (en) 2008-07-10 2012-10-30 Oree, Inc. Slim waveguide coupling apparatus and method
US20100027293A1 (en) * 2008-07-30 2010-02-04 Intematix Corporation Light Emitting Panel
US7841750B2 (en) 2008-08-01 2010-11-30 Ruud Lighting, Inc. Light-directing lensing member with improved angled light distribution
CN102112807B (en) * 2008-08-08 2014-04-23 吉可多公司 Color tunable light source
WO2010021676A1 (en) * 2008-08-18 2010-02-25 Superbulbs, Inc. Anti-reflective coatings for light bulbs
WO2010021675A1 (en) * 2008-08-18 2010-02-25 Superbulbs, Inc. Settable light bulbs
WO2010030332A1 (en) * 2008-09-11 2010-03-18 Superbulbs, Inc. End-of-life bulb circuitry
EP2331869B1 (en) 2008-09-23 2015-04-22 Koninklijke Philips N.V. Illumination device with electrical variable scattering element
US20100098377A1 (en) * 2008-10-16 2010-04-22 Noam Meir Light confinement using diffusers
US20100149815A1 (en) * 2008-10-17 2010-06-17 Luminus Devices, Inc. Remote lighting assemblies and methods
US8822954B2 (en) * 2008-10-23 2014-09-02 Intematix Corporation Phosphor based authentication system
US20100109025A1 (en) * 2008-11-05 2010-05-06 Koninklijke Philips Electronics N.V. Over the mold phosphor lens for an led
US8220971B2 (en) 2008-11-21 2012-07-17 Xicato, Inc. Light emitting diode module with three part color matching
US8390193B2 (en) * 2008-12-31 2013-03-05 Intematix Corporation Light emitting device with phosphor wavelength conversion
US20100208469A1 (en) * 2009-02-10 2010-08-19 Yosi Shani Illumination surfaces with reduced linear artifacts
KR101798216B1 (en) * 2009-03-19 2017-11-15 필립스 라이팅 홀딩 비.브이. Illumination device with remote luminescent material
US8624527B1 (en) 2009-03-27 2014-01-07 Oree, Inc. Independently controllable illumination device
CN102482576B (en) * 2009-04-09 2016-03-09 皇家飞利浦电子股份有限公司 For the lamp of laser application
SE533513C2 (en) * 2009-04-20 2010-10-12 Prismalence Ab Light source for lighting fixtures including a reflector.
US8328406B2 (en) * 2009-05-13 2012-12-11 Oree, Inc. Low-profile illumination device
JP4781451B2 (en) * 2009-05-19 2011-09-28 スタンレー電気株式会社 LED light source for vehicular lamp
US9255686B2 (en) 2009-05-29 2016-02-09 Cree, Inc. Multi-lens LED-array optic system
US8921876B2 (en) 2009-06-02 2014-12-30 Cree, Inc. Lighting devices with discrete lumiphor-bearing regions within or on a surface of remote elements
US8651692B2 (en) * 2009-06-18 2014-02-18 Intematix Corporation LED based lamp and light emitting signage
WO2010150202A2 (en) 2009-06-24 2010-12-29 Oree, Advanced Illumination Solutions Inc. Illumination apparatus with high conversion efficiency and methods of forming the same
US20110032699A1 (en) * 2009-08-10 2011-02-10 Honeywell International, Inc. Lighting assembly
JP2011065979A (en) * 2009-08-18 2011-03-31 Sharp Corp Light source device
US9293667B2 (en) * 2010-08-19 2016-03-22 Soraa, Inc. System and method for selected pump LEDs with multiple phosphors
US8310158B2 (en) * 2009-09-23 2012-11-13 Ecofit Lighting, LLC LED light engine apparatus
EP2480816A1 (en) 2009-09-25 2012-08-01 Cree, Inc. Lighting device with low glare and high light level uniformity
US8593040B2 (en) 2009-10-02 2013-11-26 Ge Lighting Solutions Llc LED lamp with surface area enhancing fins
US20110110095A1 (en) * 2009-10-09 2011-05-12 Intematix Corporation Solid-state lamps with passive cooling
US9435493B2 (en) 2009-10-27 2016-09-06 Cree, Inc. Hybrid reflector system for lighting device
US8779685B2 (en) * 2009-11-19 2014-07-15 Intematix Corporation High CRI white light emitting devices and drive circuitry
US8466611B2 (en) 2009-12-14 2013-06-18 Cree, Inc. Lighting device with shaped remote phosphor
US8330342B2 (en) * 2009-12-21 2012-12-11 Malek Bhairi Spherical light output LED lens and heat sink stem system
US20110149548A1 (en) * 2009-12-22 2011-06-23 Intematix Corporation Light emitting diode based linear lamps
US8258524B2 (en) * 2010-01-26 2012-09-04 Sharp Kabushiki Kaisha Light emitting diode device
US20110215348A1 (en) * 2010-02-03 2011-09-08 Soraa, Inc. Reflection Mode Package for Optical Devices Using Gallium and Nitrogen Containing Materials
US9631782B2 (en) * 2010-02-04 2017-04-25 Xicato, Inc. LED-based rectangular illumination device
EP2537899B1 (en) 2010-02-19 2014-11-26 Toray Industries, Inc. Phosphor-containing cured silicone, process for production of same, phosphor-containing silicone composition, precursor of the composition, sheet-shaped moldings, led package, light -emitting device, and process for production of led-mounted substrate
US9275979B2 (en) 2010-03-03 2016-03-01 Cree, Inc. Enhanced color rendering index emitter through phosphor separation
US8104908B2 (en) 2010-03-04 2012-01-31 Xicato, Inc. Efficient LED-based illumination module with high color rendering index
CA2797219A1 (en) 2010-04-26 2011-11-10 Xicato, Inc. Led-based illumination module attachment to a light fixture
CA2797486A1 (en) * 2010-05-04 2011-11-10 Xicato, Inc. Flexible electrical connection of an led-based illumination device to a light fixture
US8684559B2 (en) 2010-06-04 2014-04-01 Cree, Inc. Solid state light source emitting warm light with high CRI
US8888318B2 (en) 2010-06-11 2014-11-18 Intematix Corporation LED spotlight
US8807799B2 (en) 2010-06-11 2014-08-19 Intematix Corporation LED-based lamps
MX2012014938A (en) 2010-06-18 2013-02-26 Xicato Inc Led-based illumination module on -board diagnostics.
US8946998B2 (en) 2010-08-09 2015-02-03 Intematix Corporation LED-based light emitting systems and devices with color compensation
US8568009B2 (en) 2010-08-20 2013-10-29 Dicon Fiberoptics Inc. Compact high brightness LED aquarium light apparatus, using an extended point source LED array with light emitting diodes
US8523385B2 (en) * 2010-08-20 2013-09-03 DiCon Fibêroptics Inc. Compact high brightness LED grow light apparatus, using an extended point source LED array with light emitting diodes
US20120051045A1 (en) 2010-08-27 2012-03-01 Xicato, Inc. Led Based Illumination Module Color Matched To An Arbitrary Light Source
US8297767B2 (en) 2010-09-07 2012-10-30 Xicato, Inc. LED-based illumination modules with PTFE color converting surfaces
JP2012063321A (en) * 2010-09-17 2012-03-29 Hamamatsu Photonics Kk Reflectivity measurement device, reflectivity measurement method, film thickness measurement device, and film thickness measurement method
US9070851B2 (en) 2010-09-24 2015-06-30 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same
US8957585B2 (en) 2010-10-05 2015-02-17 Intermatix Corporation Solid-state light emitting devices with photoluminescence wavelength conversion
US8604678B2 (en) 2010-10-05 2013-12-10 Intematix Corporation Wavelength conversion component with a diffusing layer
US9546765B2 (en) 2010-10-05 2017-01-17 Intematix Corporation Diffuser component having scattering particles
US8614539B2 (en) 2010-10-05 2013-12-24 Intematix Corporation Wavelength conversion component with scattering particles
US8610341B2 (en) 2010-10-05 2013-12-17 Intematix Corporation Wavelength conversion component
US8610340B2 (en) 2010-10-05 2013-12-17 Intematix Corporation Solid-state light emitting devices and signage with photoluminescence wavelength conversion
EP2450612B1 (en) * 2010-11-08 2014-04-30 LG Innotek Co., Ltd. Lighting apparatus
US8556469B2 (en) 2010-12-06 2013-10-15 Cree, Inc. High efficiency total internal reflection optic for solid state lighting luminaires
SG190320A1 (en) * 2010-12-13 2013-07-31 Toray Industries Phosphor sheet, led and light emitting device using same and method for producing led
US8425065B2 (en) 2010-12-30 2013-04-23 Xicato, Inc. LED-based illumination modules with thin color converting layers
US11251164B2 (en) 2011-02-16 2022-02-15 Creeled, Inc. Multi-layer conversion material for down conversion in solid state lighting
US8226274B2 (en) 2011-03-01 2012-07-24 Switch Bulb Company, Inc. Liquid displacer in LED bulbs
US8899767B2 (en) 2011-03-31 2014-12-02 Xicato, Inc. Grid structure on a transmissive layer of an LED-based illumination module
US9004705B2 (en) 2011-04-13 2015-04-14 Intematix Corporation LED-based light sources for light emitting devices and lighting arrangements with photoluminescence wavelength conversion
US8596815B2 (en) 2011-04-15 2013-12-03 Dicon Fiberoptics Inc. Multiple wavelength LED array illuminator for fluorescence microscopy
US8979316B2 (en) 2011-05-11 2015-03-17 Dicon Fiberoptics Inc. Zoom spotlight using LED array
WO2013009221A2 (en) * 2011-07-14 2013-01-17 Gorlinskiy Bronislav Vladislavovich Light-emitting diode lamp
US8449129B2 (en) 2011-08-02 2013-05-28 Xicato, Inc. LED-based illumination device with color converting surfaces
US8403529B2 (en) 2011-08-02 2013-03-26 Xicato, Inc. LED-based illumination module with preferentially illuminated color converting surfaces
US8485692B2 (en) 2011-09-09 2013-07-16 Xicato, Inc. LED-based light source with sharply defined field angle
US8591069B2 (en) 2011-09-21 2013-11-26 Switch Bulb Company, Inc. LED light bulb with controlled color distribution using quantum dots
US8992051B2 (en) 2011-10-06 2015-03-31 Intematix Corporation Solid-state lamps with improved radial emission and thermal performance
US20130088848A1 (en) 2011-10-06 2013-04-11 Intematix Corporation Solid-state lamps with improved radial emission and thermal performance
US9365766B2 (en) 2011-10-13 2016-06-14 Intematix Corporation Wavelength conversion component having photo-luminescence material embedded into a hermetic material for remote wavelength conversion
US9115868B2 (en) 2011-10-13 2015-08-25 Intematix Corporation Wavelength conversion component with improved protective characteristics for remote wavelength conversion
US8591072B2 (en) 2011-11-16 2013-11-26 Oree, Inc. Illumination apparatus confining light by total internal reflection and methods of forming the same
US8858045B2 (en) 2011-12-05 2014-10-14 Xicato, Inc. Reflector attachment to an LED-based illumination module
KR101901228B1 (en) * 2011-12-20 2018-09-28 엘지이노텍 주식회사 Lighting device
WO2013108738A1 (en) * 2012-01-17 2013-07-25 京セラ株式会社 Light-emitting device
US8820951B2 (en) 2012-02-06 2014-09-02 Xicato, Inc. LED-based light source with hybrid spot and general lighting characteristics
US8779687B2 (en) 2012-02-13 2014-07-15 Xicato, Inc. Current routing to multiple LED circuits
TW201347242A (en) * 2012-02-27 2013-11-16 Mitsubishi Chem Corp Wavelength conversion unit and semiconductor light-emitting device using the wavelength conversion unit
US10408429B2 (en) 2012-02-29 2019-09-10 Ideal Industries Lighting Llc Lens for preferential-side distribution
US9541257B2 (en) 2012-02-29 2017-01-10 Cree, Inc. Lens for primarily-elongate light distribution
US9541258B2 (en) 2012-02-29 2017-01-10 Cree, Inc. Lens for wide lateral-angle distribution
RU2639565C2 (en) 2012-03-30 2017-12-21 Люмиледс Холдинг Б.В. Light-emitting device with wavelength-converting side coating
CN104247058B (en) 2012-04-26 2017-10-03 英特曼帝克司公司 Method and apparatus for implementing color consistency in being changed in remote wavelength
US9500355B2 (en) 2012-05-04 2016-11-22 GE Lighting Solutions, LLC Lamp with light emitting elements surrounding active cooling device
USD697664S1 (en) 2012-05-07 2014-01-14 Cree, Inc. LED lens
US8680785B2 (en) 2012-05-18 2014-03-25 Xicato, Inc. Variable master current mirror
US9857519B2 (en) 2012-07-03 2018-01-02 Oree Advanced Illumination Solutions Ltd. Planar remote phosphor illumination apparatus
US8994056B2 (en) 2012-07-13 2015-03-31 Intematix Corporation LED-based large area display
US8974077B2 (en) 2012-07-30 2015-03-10 Ultravision Technologies, Llc Heat sink for LED light source
US20140003044A1 (en) 2012-09-06 2014-01-02 Xicato, Inc. Integrated led based illumination device
WO2014043384A1 (en) * 2012-09-13 2014-03-20 Quarkstar Llc Light-emitting device with remote scattering element and total internal reflection extractor element
US8662352B1 (en) 2012-10-29 2014-03-04 Nordson Corporation Fluid dispenser and method for dispensing a fluid including a uniform distribution of composite materials
US8845380B2 (en) 2012-12-17 2014-09-30 Xicato, Inc. Automated color tuning of an LED based illumination device
WO2014098931A1 (en) * 2012-12-21 2014-06-26 Cree, Inc. Led lamp
US20140185269A1 (en) 2012-12-28 2014-07-03 Intermatix Corporation Solid-state lamps utilizing photoluminescence wavelength conversion components
US8870617B2 (en) 2013-01-03 2014-10-28 Xicato, Inc. Color tuning of a multi-color LED based illumination device
US9217543B2 (en) 2013-01-28 2015-12-22 Intematix Corporation Solid-state lamps with omnidirectional emission patterns
US9133990B2 (en) 2013-01-31 2015-09-15 Dicon Fiberoptics Inc. LED illuminator apparatus, using multiple luminescent materials dispensed onto an array of LEDs, for improved color rendering, color mixing, and color temperature control
US9235039B2 (en) 2013-02-15 2016-01-12 Dicon Fiberoptics Inc. Broad-spectrum illuminator for microscopy applications, using the emissions of luminescent materials
TWI627371B (en) 2013-03-15 2018-06-21 英特曼帝克司公司 Photoluminescence wavelength conversion components
USD718490S1 (en) 2013-03-15 2014-11-25 Cree, Inc. LED lens
US8770800B1 (en) 2013-03-15 2014-07-08 Xicato, Inc. LED-based light source reflector with shell elements
CN104241262B (en) 2013-06-14 2020-11-06 惠州科锐半导体照明有限公司 Light emitting device and display device
US9591726B2 (en) 2013-07-02 2017-03-07 Xicato, Inc. LED-based lighting control network communication
US9596737B2 (en) 2013-07-02 2017-03-14 Xicato, Inc. Multi-port LED-based lighting communications gateway
EP3047203A2 (en) 2013-09-17 2016-07-27 Xicato, Inc. Led based illumination device with integrated output window
JP5935067B2 (en) * 2013-10-10 2016-06-15 パナソニックIpマネジメント株式会社 Wavelength conversion plate and lighting device using the same
US20150159817A1 (en) * 2013-12-09 2015-06-11 Mark S. Olsson Led illumination devices and methods
US9425896B2 (en) 2013-12-31 2016-08-23 Xicato, Inc. Color modulated LED-based illumination
US9523479B2 (en) 2014-01-03 2016-12-20 Cree, Inc. LED lens
US9788379B2 (en) 2014-03-28 2017-10-10 Xicato, Inc. Deep dimming of an LED-based illumination device
US9781799B2 (en) 2014-05-05 2017-10-03 Xicato, Inc. LED-based illumination device reflector having sense and communication capability
US9318670B2 (en) 2014-05-21 2016-04-19 Intematix Corporation Materials for photoluminescence wavelength converted solid-state light emitting devices and arrangements
US10149439B2 (en) 2014-12-18 2018-12-11 Spectra Harvest Lighting, LLC LED grow light system
GB2535534B (en) * 2015-02-23 2018-11-14 Jaguar Land Rover Ltd Illumination device, method and system
US9930741B2 (en) 2015-02-27 2018-03-27 Xicato, Inc. Synchronized light control over a wireless network
US9960848B2 (en) 2015-02-27 2018-05-01 Xicato, Inc. Commissioning of devices on a lighting communications network
US9788397B2 (en) 2015-02-27 2017-10-10 Xicato, Inc. Lighting communication advertising packets
US9853730B2 (en) 2015-02-27 2017-12-26 Xicato, Inc. Lighting based authentication of a mobile electronic device
JP6511528B2 (en) 2015-03-23 2019-05-15 インテマティックス・コーポレーションIntematix Corporation Photoluminescent color display
WO2016164645A1 (en) 2015-04-08 2016-10-13 Xicato, Inc. Led-based illumination systems having sense and communication capability
US10009980B2 (en) 2015-05-18 2018-06-26 Xicato, Inc. Lighting communications gateway
US9750092B2 (en) 2015-10-01 2017-08-29 Xicato, Inc. Power management of an LED-based illumination device
US9478587B1 (en) 2015-12-22 2016-10-25 Dicon Fiberoptics Inc. Multi-layer circuit board for mounting multi-color LED chips into a uniform light emitter
WO2017164672A1 (en) * 2016-03-23 2017-09-28 엘지이노텍 주식회사 Optical module
CN205944139U (en) 2016-03-30 2017-02-08 首尔伟傲世有限公司 Ultraviolet ray light -emitting diode spare and contain this emitting diode module
US10468566B2 (en) 2017-04-10 2019-11-05 Ideal Industries Lighting Llc Hybrid lens for controlled light distribution
US20190049512A1 (en) * 2017-08-09 2019-02-14 Dominant Opto Technologies Sdn Bhd SYSTEMS AND METHODS FOR SIMPLIFYING INTEGRATION OF LEDs INTO MULTIPLE APPLICATIONS
US11333320B2 (en) * 2018-10-22 2022-05-17 American Sterilizer Company Retroreflector LED spectrum enhancement method and apparatus
US11032976B1 (en) 2020-03-16 2021-06-15 Hgci, Inc. Light fixture for indoor grow application and components thereof
USD933881S1 (en) 2020-03-16 2021-10-19 Hgci, Inc. Light fixture having heat sink
USD933872S1 (en) 2020-03-16 2021-10-19 Hgci, Inc. Light fixture
US11592166B2 (en) 2020-05-12 2023-02-28 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11628234B2 (en) 2020-06-01 2023-04-18 Know Labs, Inc. White light LED light bulbs for ambient lighting and pathogen inactivation
US11876042B2 (en) 2020-08-03 2024-01-16 Feit Electric Company, Inc. Omnidirectional flexible light emitting device

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3760237A (en) * 1972-06-21 1973-09-18 Gen Electric Solid state lamp assembly having conical light director
US3932881A (en) 1972-09-05 1976-01-13 Nippon Electric Co., Inc. Electroluminescent device including dichroic and infrared reflecting components
JPS5079379A (en) * 1973-11-13 1975-06-27
US4035686A (en) * 1976-02-13 1977-07-12 Atkins & Merrill, Incorported Narrow emission spectrum lamp using electroluminescent and photoluminescent materials
JPS5353983U (en) 1976-10-12 1978-05-09
JPH0727560B2 (en) * 1986-02-10 1995-03-29 株式会社日立製作所 Point pattern matching method
DE3804293A1 (en) 1988-02-12 1989-08-24 Philips Patentverwaltung Arrangement containing an electroluminescent or laser diode
JPH0348368U (en) * 1989-09-19 1991-05-09
US5208462A (en) 1991-12-19 1993-05-04 Allied-Signal Inc. Wide bandwidth solid state optical source
JPH0730154A (en) * 1993-07-07 1995-01-31 Omron Corp Optical semiconductor element and product with built-in optical semiconductor chip
JPH0927642A (en) * 1995-07-13 1997-01-28 Clarion Co Ltd Lighting device
DE29724848U1 (en) 1996-06-26 2004-09-30 Osram Opto Semiconductors Gmbh Light-emitting semiconductor component with luminescence conversion element
US5966393A (en) 1996-12-13 1999-10-12 The Regents Of The University Of California Hybrid light-emitting sources for efficient and cost effective white lighting and for full-color applications
JP3065263B2 (en) 1996-12-27 2000-07-17 日亜化学工業株式会社 Light emitting device and LED display using the same
US5895932A (en) 1997-01-24 1999-04-20 International Business Machines Corporation Hybrid organic-inorganic semiconductor light emitting diodes
JP3424061B2 (en) * 1997-01-31 2003-07-07 スタンレー電気株式会社 Light emitting diode manufacturing method
JPH10268814A (en) * 1997-03-25 1998-10-09 Nichia Chem Ind Ltd Led display unit and signal lamp using the same
JP3167641B2 (en) * 1997-03-31 2001-05-21 和泉電気株式会社 LED bulb
US5813753A (en) 1997-05-27 1998-09-29 Philips Electronics North America Corporation UV/blue led-phosphor device with efficient conversion of UV/blues light to visible light
EP0883195A1 (en) 1997-06-03 1998-12-09 BARR & STROUD LIMITED Head tracking system comprising LED with fluorescent coating
JPH1125704A (en) * 1997-06-27 1999-01-29 Omron Corp Light projector, and lighting device and image-pickup system using it
JP4271747B2 (en) 1997-07-07 2009-06-03 株式会社朝日ラバー Translucent coating material for light emitting diode and fluorescent color light source
JPH1139917A (en) 1997-07-22 1999-02-12 Hewlett Packard Co <Hp> High color rendering property light source
US5962971A (en) * 1997-08-29 1999-10-05 Chen; Hsing LED structure with ultraviolet-light emission chip and multilayered resins to generate various colored lights
JP3966954B2 (en) * 1997-09-01 2007-08-29 東芝電子エンジニアリング株式会社 Illumination device, reading device, projection device, purification device, and display device
JPH11145519A (en) * 1997-09-02 1999-05-28 Toshiba Corp Semiconductor light-emitting element, semiconductor light-emitting device, and image-display device
JPH11177149A (en) * 1997-12-10 1999-07-02 Hiyoshi Denshi Kk Electric lamp
DE29804149U1 (en) 1998-03-09 1998-06-18 Chen Hsing Light emitting diode (LED) with an improved structure
US5959316A (en) 1998-09-01 1999-09-28 Hewlett-Packard Company Multiple encapsulation of phosphor-LED devices
US6273589B1 (en) 1999-01-29 2001-08-14 Agilent Technologies, Inc. Solid state illumination source utilizing dichroic reflectors

Also Published As

Publication number Publication date
JP2001111117A (en) 2001-04-20
EP1081771A3 (en) 2002-03-13
JP5580246B2 (en) 2014-08-27
JP2011181510A (en) 2011-09-15
EP1081771A2 (en) 2001-03-07
EP1081771B1 (en) 2011-06-01
US6504301B1 (en) 2003-01-07

Similar Documents

Publication Publication Date Title
JP5116912B2 (en) Light emitting device using light emitting diode and method for manufacturing the same
US7842960B2 (en) Light emitting packages and methods of making same
US10305001B2 (en) High-power white LEDs
US7777412B2 (en) Phosphor converted LED with improved uniformity and having lower phosphor requirements
JP4254266B2 (en) LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
US7795052B2 (en) Chip coated light emitting diode package and manufacturing method thereof
US7828453B2 (en) Light emitting device and lamp-cover structure containing luminescent material
US8461610B2 (en) Semiconductor light emitting device having a reflective material with a side slant surface and method of manufacturing
US6890234B2 (en) LED cross-linkable phosphor coating
US6881980B1 (en) Package structure of light emitting diode
US20090321758A1 (en) Led with improved external light extraction efficiency
US7108386B2 (en) High-brightness LED-phosphor coupling
EP2479812A2 (en) Semiconductor light emitting device and manufacturing method
JP2008514030A (en) High power small area III-nitride LED
JP2004517502A (en) Light emitting diode and method of manufacturing the same
JP2006237264A (en) Light emitting device and lighting apparatus
KR100780182B1 (en) Chip coating type light emitting diode package and fabrication method thereof
TWI312586B (en) Method and apparatus for an led light engine
JP4820133B2 (en) Light emitting device
JP3941826B2 (en) LED luminaire manufacturing method
KR100882821B1 (en) Light emitting diode
JP2004095969A (en) Wavelength conversion element
JP2008124500A (en) Light-emitting device
JP5655253B2 (en) Light emitting device
KR20160064396A (en) Light emitting device package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100624

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100924

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100929

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101025

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111101

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20111202

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120416

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5116912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term