JP5113127B2 - 生産計画を構成するための方法およびシステム - Google Patents

生産計画を構成するための方法およびシステム Download PDF

Info

Publication number
JP5113127B2
JP5113127B2 JP2009163427A JP2009163427A JP5113127B2 JP 5113127 B2 JP5113127 B2 JP 5113127B2 JP 2009163427 A JP2009163427 A JP 2009163427A JP 2009163427 A JP2009163427 A JP 2009163427A JP 5113127 B2 JP5113127 B2 JP 5113127B2
Authority
JP
Japan
Prior art keywords
plan
plant
diagnostic
planner
heuristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009163427A
Other languages
English (en)
Other versions
JP2010020773A (ja
JP2010020773A5 (ja
Inventor
クーン ルーカス
アール プライス ロバート
デクリアー ヨハン
ビン ドウ ミン
ジョウ ロン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Palo Alto Research Center Inc
Original Assignee
Palo Alto Research Center Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Palo Alto Research Center Inc filed Critical Palo Alto Research Center Inc
Publication of JP2010020773A publication Critical patent/JP2010020773A/ja
Publication of JP2010020773A5 publication Critical patent/JP2010020773A5/ja
Application granted granted Critical
Publication of JP5113127B2 publication Critical patent/JP5113127B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06313Resource planning in a project environment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/80Management or planning

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Quality & Reliability (AREA)
  • Educational Administration (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、生産ゴール(production goal)を達成するための、多数のリソースを有するシステムにおける自動診断および生産に関する。
下記の特許文献1には、複数のモジュールを備え、再構成可能な生産システムのワークフローを自動的に計画しスケジューリングするためのシステムが開示されている。システムは、システムコントローラと、通常及び診断のワークユニットの同時生成を計画する計画機能、通常及び診断のワークユニットの同時生成をスケジューリングするスケジューリング機能を備える。
米国特許第7233405号明細書
従来の生産システム診断は、生産を停止させて、それに関連するシステム停止時間コストを招くことなく、有用な診断情報を適切に生み出すことが概してできず、したがって、長期システム生産性を達成するにあたって限られた有用性をもつに過ぎない。
本発明は、1つ以上の生産ゴールを達成するために生産プラントを動作させるための計画を構成するためのシステムであって、以前に実施された計画と、前記プラントからの少なくとも1つの対応する観測と、前記プラントのモデルとに少なくとも部分的に基づいて、現在のプラントコンディションを決定し、少なくとも1つの診断目標に基づいて、ヒューリスティックを定式化するように動作する診断エンジンと、前記ヒューリスティックを使用する部分計画探索を実行して、少なくとも1つの生産ゴールを達成すると同時に前記少なくとも1つの診断目標を容易にする、前記プラントで実施される前記計画を構成するために、前記診断エンジンと動作可能に結合されるプランナとを備える。
また、本発明は、1つ以上の生産ゴールを達成するために生産プラントを動作させるための計画を構成する方法であって、以前に実施された計画と、前記プラントからの少なくとも1つの対応する観測と、前記プラントのモデルとに少なくとも部分的に基づいて、現在のプラントコンディションを決定するステップと、少なくとも1つの診断目標に基づいて、ヒューリスティックを定式化するステップと、前記ヒューリスティックを使用する部分計画探索を実行するステップと、前記部分計画探索に基づいて、少なくとも1つの生産ゴールを達成すると同時に前記少なくとも1つの診断目標を容易にする、前記プラントで実施される計画を構成するステップとを含む。
このように、本発明は、1つ以上の生産ゴールを達成すると同時に診断情報獲得を容易にするように、生産プラントで実施され得る計画を構成するための、システムおよび方法を提供する。計画構成システムは、診断エンジンと、プランナとを備え、診断エンジンは、以前に実施された計画と、プラントからの1つ以上の対応する観測と、プラントのモデルとに少なくとも部分的に基づいて、現在のプラントコンディションを決定する。診断エンジンはさらに、少なくとも1つの診断目標(diagnostic objective)に基づいて、ヒューリスティックを定式化するように動作する。
システムの構成図である。 図1の生産システム内の例示的なモジュラ印刷システムプラントをさらに詳細に示す図である。 図1および図2の制御システム内の例示的なプランナおよび診断エンジンをさらに詳細に示す図である。 生産および診断計画を含む、生産システムのための計画空間(plan space)を示す図である。 生産システムで実施される計画を構成するための例示的な方法を示す図である。 探索を使用して、プラントで実施される計画を評価および生成する例示的な方法を示す図である。 システム状態を開始状態からゴール状態まで遷移させるための可能な計画を示す例示的な状態/アクション図である。
図1〜図3は、生産システム6が示されたシステム1を示しており、生産システム6は、生産ジョブ49をカスタマ4から受け取るプロデューサコンポーネント10と、プロデューサ10によってカスタマ4に提供される1つ以上の製品52を生産するために、1つ以上の計画54に従って始動および動作させ得る、複数のリソース21〜24を有するプラント20とを含み、ここで、製品の「生産」は、製品のパッケージングまたはラッピングを含む、製品、物体などの変形を含むことができる。図1は、生産システムと、プランナ、プラントモデル、診断エンジンを備える例示的なモデルベース制御システムと、オペレータインタフェースを示している。図2は、1つの例示的なプラント20をさらに詳細に示しており、図3は、例示的なモデルベース制御システム2に関してさらに詳細に示している。プロデューサ10は、カスタマジョブ49を満たすために出力製品52を実際に生産する1つ以上のプラント20を管理する。プロデューサ10は、ジョブおよび目標51をモデルベース制御システム2の多目標プランナ30に提供し、生産システム6は、プラント20で実施される計画54をプランナ30から受け取る。ジョブ51は、生産ゴールおよび診断ゴールの一方または両方を含むことができる。制御システム2はさらに、プラント20のモデルを有するプラントモデル50と、ビリーフモデル(belief model)42を有する診断エンジン40とを含む。診断エンジン40は、1つ以上の以前に実施された計画54、プラント20からの対応する観測56、およびモデル50に基づいて、プラントコンディション推定/更新コンポーネント44(図3)を介して、現在のプラントコンディション58を決定および更新する。診断エンジン40はまた、現在のプラントコンディション58およびモデル50に基づいて、1つ以上の可能な計画54についての予想情報獲得データ70をプランナ30に提供する。
モデルベース制御システム2およびそのコンポーネントは、ハードウェア、ソフトウェア、ファームウェア、プログラマブルロジック、またはそれらの組合せとして実施することができ、一体方式または分散方式で実施することができる。可能な一実施では、プランナ30、診断エンジン40、およびモデル50は、ソフトウェアコンポーネントであり、1つ以上のプロセッサ、データストア、メモリなどを含む1つ以上のコンピュータなど、1つ以上のハードウェアプラットフォーム上で動作する、コンピュータ実行可能命令およびコンピュータ可読データを含む、1組のサブコンポーネントまたはオブジェクトとして実施することができる。コンポーネント30、40、50およびそれらのサブコンポーネントは、同一コンピュータ上で動作させることができ、または本明細書で説明される機能および動作を提供するために互いに動作可能に結合された2つ以上の処理コンポーネントにおいて分散方式で動作させることができる。同様に、プロデューサ10は、単一のシステムコンポーネントにおいて、または多数の相互運用可能なコンポーネントにおいて分散方式で、任意の適切なハードウェア、ソフトウェア、ファームウェア、ロジック、またはそれらの組合せで実施することができる。制御システム2は、デバッグおよびテストをより容易にし、最新モジュールを任意の役割に結び付ける能力を促進し、多数のサーバ、コンピュータ、ハードウェアコンポーネントなどへの動作の分散を容易にするために、モジュラソフトウェアコンポーネント(例えば、モデル50、プランナ30、診断エンジン40、および/またはそれらのサブコンポーネント)を使用して実施することができる。
図1の実施形態は、制御システム2の他のコンポーネントが実施される、コンピュータまたは他のプラットフォームにおいて実施される、任意選択のオペレータインタフェース8も含む。例示的なオペレータインタフェース8は、オペレータ観測56aを診断エンジン40に提供するために、診断エンジン40に動作可能に結合され、診断エンジン40は、ある実施ではオペレータ観測56aに少なくとも部分的に基づいて、現在のプラントコンディション58を決定する。さらに、例示的なオペレータインタフェース8は、オペレータが診断ジョブ記述言語8aを使用して診断ジョブ8bを定義することを可能にし、診断エンジン40は、診断ジョブ60をプロデューサ10に提供する。この実施における診断エンジン40は、1つ以上の自己生成診断ジョブ60および/またはオペレータ定義診断ジョブ8bをプロデューサ10に選択的に提供するように動作し、それを受けて、プロデューサ10は、ジョブおよび目標51をプランナ30に提供する。
また図2および図3を参照すると、プランナ30は、少なくとも1つの出力目標34(図3)、およびプロデューサ10からの到着ジョブ51によって指示される生産ゴールに基づいて、プラント20で実施される1つ以上の計画54を生産システム6に提供する。プランナ30は、生産目標34aおよび診断目標34bを含む計画54を構成する際に、ジョブおよび目標51から導き出された1つ以上の出力目標34を選択的に考慮する。生産目標34aは、生産システム6から取得されたジョブおよび目標51に従って生成され、それらに従って更新され、診断目標34bは、診断エンジン40によって提供される現在のプラントコンディション58および予想情報獲得データ70から導き出され、それらに従って更新される。一実施における生産目標34aは、生産される製品52(図1)の順序のスケジューリングに関係することができ、生産の優先順位、在庫の最小化、ならびに大部分はコストおよびカスタマの必要に起因する他の考慮および制約を含むことができる。生産目標34aの例は、所定の製品出力ゴール(単純な生産基準)の達成、ならびに単純な時間効率のよい生産、コスト効率のよい生産、および堅牢な生産など、2次的な考慮の達成に関する、計画構成/生成の優先順位付けを含む。例えば、コスト効率のよい生産目標34aは、プロデューサ10から受け取ったジョブ51によって指示される生産ゴールを満たす計画のうちで最もコスト効率のよい計画54の構成/生成をもたらす。診断目標34bは、所定の生産関係タスクを実行し、プラント20の動作における保守および修理コストを最小化し、間欠的または持続的な障害を引き起こすリソース21〜24を識別するためなどの、生成された計画54における好ましいアクションシーケンスの決定に関する目標を含むことができる。
制御システム2は、1つ以上の生産目標または診断目標34を容易にするために、プランナ30によって選択可能なプラント20で実施される計画54を保存するために使用される計画データストアまたはデータベース36を任意選択で含むことができ、本明細書で使用される計画54の構成/生成は、1つ以上の事前保存された計画54をデータストア36から選択することを含むことができる。プランナ30は、情報獲得の可能性を改善するために、ジョブ待ち行列を選択的に並べ直すことができる。計画データストア36は、プランナ30に組み込まれるものとして示されているが、プランナ30と動作可能に結合される1つ以上の別個のコンポーネントにおいて提供することができ、プランナ30は、そこから1つ以上の(全体および/または部分)計画54を取得することができる。代替として、プランナ30は、所定の生産目標および/または診断目標34を容易にするために必要とされる状態およびアクションを決定するために、プラントモデル50と、プロデューサ10および診断エンジン40からの情報とを使用して、必要とされる1つ以上の計画54を合成(例えば、構成または生成)することができる。
プランナ30は、プラント20で実施される計画54を生成し、提供する。計画54は、ジョブ51に従って生産ゴールを達成しながら、1つ以上の生産目標および/または診断目標34を容易にするための一連のアクションを含み、その中には所定のアクションが1回以上出現し得る。アクションは、例えば、図2に示されるように、所定の基板を開始状態から終了状態までモジュラ印刷システム20の中を配送するために、プラント20のモデル50において定義された状態およびリソース21〜24に関して取られる。動作中、プランナ30は、診断目標34bと、診断エンジン40からの予想情報獲得データ70とに少なくとも部分的に基づいて、所定の生産ゴールを達成する計画54を生成または構成する。図示の実施形態におけるプランナ30は、プラント20で実施される計画54を生成する際に、診断エンジン40からの現在のプラントコンディション58を評価するゴールベース計画構成コンポーネント32を含む。コンポーネント32は、観測56と、システム障害の原因であることが疑われる1つ以上のプラントコンポーネント21〜24を指示する現在のプラントコンディション58とに基づいて、計画54を構成する際に障害コンポーネント21〜24またはそれらの組の識別を容易にすることもできる。
また図4を参照すると、これから開示されるインテリジェント計画構成技法は、生産計画102および診断計画104の両方を含む計画空間100内における、プラント20で実施される計画54の生成を有利に提供する。計画集合102および104の合併は、(例えば、図3の1つ以上の診断目標34bを容易にすることができる)診断値を有する生産計画106を含み、プランナ30は、診断目標34bに従って有用な診断情報を取得しながら生産ゴールを達成する計画106を優先的に構成するために、診断エンジン40からの情報を有利に利用する。
診断エンジン40は、プラント20の現在の状態を表すビリーフモデル42と、以前の計画54および対応するプラント観測56に基づいてプラント20の現在のコンディションをプランナ30に提供するコンポーネント44とを含む。コンポーネント44はまた、プラント観測56、プラントモデル50、および以前に実施された計画54に従って、ビリーフモデル42のプラントコンディションを推定し、更新する。インタフェース8からのオペレータ観測56aも、コンポーネント44による現在のプラントコンディションの推定および更新を補足するために使用することができる。推定/更新コンポーネント44は、プラント20(図1)の1つ以上のリソース21〜24または他のコンポーネントの確認されたまたは疑わしいコンディションについてプランナ30に通知するために、コンディション情報58を提供する。このコンディション情報58は、所定の生産ジョブまたはゴール51を実施するための計画54を提供する際に、生産目標34aおよび診断目標34bに鑑みて、プラントモデル50からのプラント20についての情報と一緒に、計画構成コンポーネント32によって検討することができる。診断エンジン40は、モデル50およびビリーフモデル42に基づいて、予想情報獲得データ70をプランナ30に提供するコンポーネント46も含む。予想情報獲得データ70は、オペレータインタフェース8からのオペレータ定義診断ジョブ8bに鑑みて、任意選択で決定することができる。
図2は、生産システム6における例示的なモジュラ印刷システムプラント20をさらに詳細に示しており、モジュラ印刷システムプラント20は、2つの供給源21a、21bの一方から印刷可能なシート基板を提供する材料供給コンポーネント21と、複数の印刷またはマーキングエンジン22と、出力仕上げステーション23と、(図2では点線の円で示される)複数の双方向基板輸送/配送コンポーネント24を含むモジュラ基板輸送システムと、輸送システム24と仕上げ23の間に配置される1つ以上の出力センサ26と、プラント20の様々なアクチュエータリソース21〜24を動作させるための制御信号を提供するコントローラ28とを含む。例示的な印刷システムプラント20は、4つの印刷エンジン22a、22b、22c、22dを含むが、そのようなマーキングエンジンはいくつ含まれてもよく、また印刷システムプラント20はさらに、個々の基板シートを供給21から(双方向両面印刷のために反転されるまたは反転されない)1つ以上のマーキングエンジン22を介して最終的に所定の印刷ジョブが出力製品52として提供される出力仕上げステーション23まで輸送するために、3つの双方向基板輸送経路25a、25b、25cを有する多経路輸送ハイウェイを、コントローラ28からの適切な配送信号によって動作可能な輸送コンポーネント24に提供する。さらに、印刷エンジン22の各々は、ローカル双方向配送および媒体反転を個別に提供することができ、またコントローラ28からの信号を介して動作可能な単色または多色印刷エンジンとすることができる。モデルベース制御システム2は、ある実施形態では、プラントコントローラ28に組み込むことができる。
ここで図1〜図3を参照すると、動作中、プランナ30は、例えば、計画を形成するための一連のアクションの区分的(piece−wise)決定によって、ならびに/または1つ以上の生産目標34aおよび診断目標34bに鑑みて到着ジョブ51から導き出される出力生産ゴールの記述に基づいて、印刷システムプラント20のコンポーネントリソース21〜24のための全体もしくは部分計画54をデータストア36から取得することによって、計画54を自動的に生成する。特に、所望の製品52を生産するために2つ以上の可能な計画54が使用できる場合など、どのように出力ゴールを達成できるか(例えば、どのように所望の製品52を作成し、変形し、パッケージし、ラップできるかなど)について、プラント20が柔軟性を有する場合、診断エンジン40は、最も情報提供的な観測56をもたらすことが期待される計画54を生成するために、プランナ30の計画構成動作を変更すること、または計画構成動作に影響を及ぼすことができる。構成された計画54は、この点に関して、(例えば、ジョブ時間の増加、または僅かな品質の低下など)短期生産目標34aを損なう計画をもたらすこともあり、またはもたらさないこともあるが、それにも関わらず、システムが学習するために、生産を停止させる必要はない。構成された計画54の実施から獲得される付加的情報は、障害コンポーネントリソース21〜24に対処するため、効果的な修理/保守をスケジュールするため、および/またはシステム状態をさらに診断するため(例えば、あるシステムリソース21〜24をセンサ26によって以前に検出された障害の発生源として確認もしくは除外するため)、プロデューサ10によって、ならびに/またはプランナ30および診断エンジン40によって使用することができる。このようにして、構成された計画54から収集された情報(例えば、プラント観測56)は、現在のビリーフモデル42の正確性をさらに改善するために、推定および更新コンポーネント44によって使用することができる。
さらに、プラント20が限定されたセンシング能力しか含まない場合(例えば、印刷エンジン22の下流の輸送システム24の出力にのみセンサ26を有する図2のシステムなど)、パッシブ診断は、システム20で起こり得るすべての障害を曖昧さなしに識別することができず、それに対して、ダイレクト診断法の試みは、システム休止時間と、生産性の観点からそれに関連するコストをもたらす。他方、本開示の制御システム2は、プラントコンディション58および/または予想情報獲得70に従って拡張診断情報を提供する計画54の構成および実施を介した、インテリジェントオンライン診断の選択的な利用を有利に容易にし、少なくとも1つの診断目標34bおよびプラントコンディション58に基づいた、プラント20で実施される1つ以上の専用診断計画54の生成をさらに有利に容易にすることができ、専用診断計画54および生産計画54は、現在のプラントコンディション58に従い、生産目標および診断目標34に基づいて、インテリジェントに交互実施される。特に、計画から獲得された情報70が、将来における生産性の著しい増大、障害リソース21〜24を識別する能力の増強、または他の長期生産性目標34aおよび/もしくは診断目標34bをもたらすことが予想される場合、プランナ30は、生産停止を伴うエクスプリシット診断計画54の実施を引き起こすことができる。
さらに、専用診断計画54を利用しなくても、制御システム2は、生産の最中に本開示のパーベイシブ診断態様によってオンラインで行うことができる診断の範囲を著しく(例えば、システムの純粋にパッシブな診断能力を超えて)拡大し、それによって、停止時間、サービス来訪(service visit)の数、および実際にはセンサによる完全なカバーを必要とせず動作するシステム20内のコンポーネント21〜24の不要な取替えコストを軽減することによって、診断情報の全体的コストを低下させる。プランナ30はさらに、プラント20で実施される計画54を生成する際に、生産目標34aと診断目標34bの間でトレードオフを行う場合、現在のプラントコンディション58を使用するように動作し、プラント20の障害リソース21〜24を分離するにあたって診断を実行する場合、コンディション58を考慮することもできる。
診断エンジン40のプラントコンディション推定および更新コンポーネント44は、限定されたセンサ26から取り出された観測56の形の情報から少なくとも部分的に、プラント20の内部コンポーネント21〜24のコンディションを推論し、一実施形態では、診断エンジン40は、プラント20の個々のリソース21〜24またはコンポーネントのコンディション(例えば、正常、消耗、故障)および現在の動作状態(例えば、オン、オフ、使用中、空きなど)の両方を表すプラントコンディション58を構成し、ビリーフモデル42は、リソースまたはコンポーネント21〜24のコンディションおよび/または状態の信頼性を表すために、しかるべく更新することができる。プロデューサ10が1つ以上の計画54の生産を開始すると、診断エンジン40は、実施計画54および対応する観測56のコピーを(任意のオペレータ入力観測56aとともに)受け取る。コンディション推定および更新コンポーネント44は、内部コンポーネント/リソース21〜24のコンディション58を推論および推定するために、プラントモデル50とともに観測56、56aを使用し、ビリーフモデル42をしかるべく更新する。推論されたプラントコンディション情報58は、障害中であることが知られている(もしくは高い確率で信じられる)1つ以上のリソース/コンポーネント21〜24の使用を回避する計画54を選択的に構成することなどによって、システム20の生産性を直接的に改善するために、プランナ30によって使用され、および/またはプロデューサ10は、障害リソース21〜24のそのような回避を達成するようにジョブ51をスケジュールする際に、コンディション情報58を利用することができる。例示的な診断エンジン40は、多数の冗長コンポーネント21〜24に利用負荷を拡散させて、耐久性(wear)さえ生み出し、または他の長期目標34を容易にするために、プランナ30によって使用され得る、診断目標34bを更新するための将来の予測情報も提供する。
さらに、将来の生産性を向上させるため、診断エンジン40は、様々な可能な生産計画54の予想情報獲得に関するデータ70をプランナ30に提供する。プランナ30は、それを受けて、最も診断的な(例えば、診断値が最も高い情報をもたらす可能性が最も高い)生産計画54を構成するために、このデータ70を使用することができる。このようにして、プランナ30は、生産中の情報を増大させるために慎重に生成または変更された生産計画54を使用する(例えば、「診断的」生産計画を使用する)ことによって、アクティブ診断法またはアクティブ監視を実施することができる。一実施では、プロデューサ10は、要求されたカスタマジョブ49および診断ジョブ60を並べたジョブ待ち行列を操作することができ、プロデューサ10は、コンポーネントコンディション更新58を診断エンジン40から受け取る。プロデューサ10は、カスタマジョブ49と診断ジョブ60の間で選択を行うため、生産計画54において生産効率と診断値とをトレードオフするため、また互いに互換性がある場合、カスタマジョブ49と専用診断ジョブ60を合併(例えば交互実施)するためにコンディション58を使用し、ジョブを合併する場合、それらのスケジューリングは、1つ以上の診断目標および生産目標34を容易にすることができる。診断エンジン40は、ある基準に関する計画54の質の向上を助けるために、予測情報もプランナ30に提供することができる。
また図5を参照すると、1つ以上の生産ゴールを達成ために、複数のリソース21〜24を有するプラント20を備えた生産システム6で実施される計画54を構成するための、例示的な方法200が示されている。
202において、診断目標34bが受け取られ、204において、プラントモデル50を使用して、以前に実施された計画54と、プラント20からの少なくとも1つの対応する観測56とに少なくとも部分的に基づいて、現在のプラントコンディション58が決定される。206において、現在のプラントコンディション58と、モデル50とに基づいて、予想情報獲得データ70が決定される。プランナ30は、208において、プラントコンディション58を診断エンジン40から受け取り、210において、生産ジョブおよび目標51をプロデューサ10から受け取る。212において、プランナ30は、診断目標34bと、予想情報獲得データ70とに少なくとも部分的に基づいて、計画54を構成する。214において、プランナ30は、構成された計画54を実施のためにプラント20に送り、216において、診断エンジン40は、計画54およびプラント観測56を受け取る。218において、診断エンジン40は、プラントコンディション58を更新し、また予想情報獲得データ70を更新し、その後で、さらなるジョブおよび目標51が提供され、プロセス200は、210から再び上述のように継続される。
212における計画構成は、現在のプラントコンディション58に少なくとも部分的に基づくことができ、現在のプラントコンディション58に少なくとも部分的に基づいて、生産目標34aと診断目標34bの間でトレードオフを行うことを含むことができる。さらに、212における計画構成は、現在のプラントコンディション58に少なくとも部分的に基づいて、プラント20内の障害リソース21〜24を分離するために、予測を実行することを含むことができる。プラント20で実施される専用診断計画54は、少なくとも1つの診断目標34bと、診断ジョブ60、8bと、現在のプラントコンディション58とに少なくとも部分的に基づいて、構成することができ、計画構成は、少なくとも1つの生産目標34aと、少なくとも1つの診断目標34bとに基づいて、専用診断および生産計画54の選択的な交互実施を提供することができる。方法200はまた、オペレータが診断ジョブ記述言語8aを使用して診断ジョブ8bを定義することを可能にすることと、オペレータ観測56aを受け取ることとを含むことができ、216における計画選択/生成は、オペレータ観測56aに少なくとも部分的に基づいている。
ここで図6および図7を参照すると、一実施形態では、診断生産計画54を構成する際に、ヒューリスティック探索が、プランナ30によって利用される。図6は、A探索を使用して、プラント20で実施される計画を評価および構成するための例示的な方法300を示している。一実施形態では、コンポーネント44が、プラントコンディションについてビリーフモデル42内のビリーフを確立および更新し、またプラントモデル50を更新する。コンポーネント44は、図6の302において、プラント20における各障害仮説について失敗または障害確率を導き出し、304において、ビリーフモデル42と現在のプラントコンディション58とに基づいて、上界および下界計画失敗確率ヒューリスティック(upper and lower plan failure probability bounding heuristic)を生成するために、動的プログラミングを利用する。306において、プランナ30は、好ましくはA探索手法を使用して、最も情報提供的な計画54を構成するために、ヒューリスティックを使用して部分計画54を評価する。その後、308において、診断エンジン40は、構成された計画54と、プラント20における構成された計画54の実施から取得された出力観測56とを使用して、ビリーフモデル42を更新する。
診断エンジン40は、システム20の診断にとって価値ある情報を取り出すために、プランナ30による探索に入力を有利に提供する。単一持続的障害のための診断値に関して最良の計画54は、成功または失敗について等しい確率を有する計画である。診断エンジン40は、プラント20で実施される計画54を構成するために部分計画54を評価する際に、この概念を使用して、プランナ30による探索を導くためのヒューリスティックを開発する。加えて、計画構成探索は、探索パフォーマンスを改善するために、刈り込み技法を利用することができる。制御システム2は、プランナ30における効率的なヒューリスティックターゲット探索を使用して、診断エンジン40におけるモデルベースの確率的推論と、所定の計画54の実施に関連する情報獲得の分解(decomposition of information gain)との組合せを通して、プラント20を制御する際に、効率的なオンラインアクティブまたはパーベイシブ診断を実施する。このアクティブ診断技法では、制御されるシステムプラント20から取得される診断情報の量および/または品質を最大化または増大させるために、計画54の形の特定の入力または制御アクションが、診断エンジン40の助けを借りて、プランナ30によって構成される。情報生産(アクティブまたはパーベイシブ診断)技法は、生産ゴールを達成する部分計画の組を、潜在的な情報獲得によって構成プロセスにおける任意の所定のポイントにランク付け、プランナ30は、他の可能な生産目標34aおよび診断目標34bに鑑みて、その点に関して最も有望な戦略を選択的に生成するように動作する。
プランナ30は、計画構成を支援するためのパーベイシブ診断を使用して、基板シートをシステム20を通して移動させて、所定の印刷ジョブについて要求された出力を生成する(例えば、生産ゴールを満たす)、アクションの列(計画54)を構成するように動作する。このシステム20における1つの特定の生産目標34aは、印刷エンジン22のいくつかが故障を起こし、または用紙処理モジュール24のいくつかが故障もしくは紙詰まりを起こしたとしても、印刷を継続することである。この印刷システム20では、仕上げ23の手前に出力タイプセンサ26が存在するだけであり、結果として、多くのアクションから成る計画54は、有益な観測56が行われ得る前に実施されなければならない。診断エンジン40は、実施された計画54および観測56に一致するように、そのビリーフモデル42および現在のコンディション58を更新する。診断エンジン40は、更新されたコンディション情報58および予想情報獲得データ70をプランナ30に転送する。
例示的なプランナ30では、計画54を見出し、構成するために、探索アルゴリズムを利用することができる。モデル50は、プラントシステム20を、プラント20が対応できるすべての可能なアクションAを有する状態機械として記述する。アクションは、システム状態に関する事前条件および事後条件によって定義される。そのため、アクションは、実行可能であるために、ある状態にあることをシステム20に要求し、実行された場合、システム状態を変更する。システム20は、可能なアクションの集合Aから取り出された一連のアクションa,a,...,aから成る計画p(54)によって制御される。アクションの実行は、システム状態を変化させる可能性があり、アクションが生産計画54の部分である場合は特に、システム状態の部分は、任意の所与の時間における製品52の状態を表すことができる。さらに、システム20の内部制約が、計画54の集合を、すべての可能な列の部分集合(例えば、上述の図4の計画空間100)に制限する。さらに、システム20における所定の計画pについてのアクションの実行は、ただ1つの観測可能な計画結果または観測O(例えば、センサ26からの観測56)をもたらすことができる。
観測結果56の1つのタイプは、異常として定義されて、ab(p)と表記され、その場合、計画54はその生産ゴールの達成に失敗する。別のタイプは、正常(非異常)結果であって、
と表記され、その場合、計画54は関連する生産ゴールを達成する。例示的な制御システム2では、プラント20についての情報は、ビリーフモデル42内に構成された、様々な可能な仮説についての診断エンジンのビリーフによって表すことができ、そのような仮説hは、例えば、
のような、システムアクションの各々に対する異常または正常の割り当てである。単一のプラントリソース/コンポーネントにおける障害の事例(単一障害事例)では、正確に1つのアクションが異常となる。すべてのアクションが正常である状況のための1つの仮説(「障害なし」仮説h)を除外した仮説の集合としてHsysを定義すると、すべての仮説は、各アクションへの異常性の割り当ての全体であり、すべては一意的で、相互に排他的(例えば、∀h,h∈ Hsys,h≠h)である。ビリーフモデル42内のシステムのビリーフは、仮説空間Hsys上の確率分布Pr(H)として表すことができ、ビリーフモデル42は、観測Oと計画Pが与えられた場合に未知の仮説Hに関する事後分布を取得するために、ベイズの公式Pr(H|O,P)=αPr(O|H,P)Pr(H)を使用して、過去の観測56から、診断エンジン40によって更新される。
計画pは、診断エンジンのビリーフ42に情報を与える(例えば、その不確実性を低下させる)場合、診断エンジン40およびプランナ30によって、情報提供的と見なされ、情報値は、システムビリーフPr(H)と実施された計画に左右される計画結果I(H;O|P=p)の間の相互情報として測定することができる。この相互情報は、確率分布によって暗示されるエントロピまたは不確実性の観点から定義することができ、一様確率分布は高い不確実性を有し、決定論的分布は低い不確実性を有する。診断的な情報値の文脈では、情報提供的な計画54は、システムのビリーフ42の不確実性を低下させ、したがって、予測が困難な結果を有する計画54は、最も情報提供的であり、一方、成功することが分かっている(または失敗することが分かっている)計画54の実施は、診断的な情報獲得をもたらさない。この点に関して、予想情報値に関して計画54を格付けするために、最適な(例えば「ターゲット」)不確実性Tを使用することができ、それによって、診断エンジン40は、計画54をしかるべく評価することができ、計画選択/生成に影響を与えて、情報提供的な計画54を優先的に選択/生成するために、予想情報獲得データ70をプランナ30に提供することができる。
持続的な単一障害の場合、結果についての最適な不確実性として、T=0.5という値を使用することができ、間欠的障害の場合の不確実性は、例示的な一実施では、約0.36≦T≦0.5の範囲内で最大化させることができる。所定量の不確実性Tを有する計画54を見出す際、診断エンジン40は、所与の計画p=[a,a,...,a]に関連する不確実性を予測するように動作し、計画内の一意的なアクションの集合は、A=U{a∈p}である。失敗が観測されたと仮定すると、以下の式(1)に示されるように、1つ以上のアクションが異常である場合に、計画54は異常ab(p)となる。
[数1]

ここで、a∈Aであり、は計画である。異常である計画54のアクションの予測確率は、すべての関連する仮説に割り当てられた確率の関数であり、計画pの結果の不確実性に影響を与える仮説の集合は、Hで表され、以下の式(2)で定義される。
[数2]
仮説に関する分布と、所定の計画pの説明的な仮説の集合Hが与えられると、計画pが失敗する確率を計算することが可能である。すべての仮説h∈Hは、計画p内のものでもある少なくとも1つの異常アクションを含むので、仮説hが真であることは、ab(p)を含意する。
[数3]
仮説は定義により相互に排他的であるので、計画失敗確率Pr(ab(p))は、以下の式(4)のように、計画が失敗することを含意する仮説のすべての確率の総和として定義することができる。
[数4]
情報提供的でもありながら、生産ゴールを達成する計画を見出すため、プランナ30は、確率Tの観点から計画54を評価し、これと現在のプラントコンディション58を使用して、正の失敗確率を有しながら、生産ゴールを達成する計画54を優先的に構成する。短期的には、これはシステム20の生産性をより低下させる可能性があるが、獲得した情報が、長期的な生産性の向上を可能にする。さらに、プランナ30は、個々には最も情報提供的でなくても、一緒にすれば最も情報提供的となり得る、プラント20で実施される一連の計画54を構成することができる。
上述したように、本開示の範囲内においては、有用な診断情報をもたらしながら、所定の生産ゴールを達成する適切な計画から区分的選択/生成を行うプランナ30において、任意の形態の探索が利用できる。すべての可能なアクション列を生成するために、単純な力づく探索が利用でき、以下の式(5)のように、情報提供的でありながら、生産ゴールを達成する計画54をもたらすために、結果リストをフィルタリングすることができる。
[数5]

しかし、計画空間Pが非常に大きい場合、リアルタイム制御アプリケーションでは、これは非現実的なこともある。例示的なシステム2で利用される別の可能な手法は、初期状態Iから中間状態S,S,...,Sに進む部分計画の集合PI→S1,PI→S2,...,PI→Snを使用するAターゲット探索を利用することなどによって、構造を共用する計画54の集合またはファミリをプランナ30がそれによって考えるヒューリスティックを、診断エンジン40が確立することである。この手法では、ステップ毎に、プランナ30は、最良の(例えば、最も情報提供的な)方法で生産ゴールを達成する可能性が最も高くなるよう計画の拡張を試みるために、Aターゲット探索を使用する。この点に関して理想的な計画pは、システム20を状態Sにするプレフィックス(prefix)PI→Snで開始し、状態Sからゴール状態Gに到るサフィックス(suffix)計画PSn→Gを続行する。このA技法は、診断エンジン40によって提供されるヒューリスティック関数f(S)を使用して拡張するために、部分計画PI→Snを選択し、ヒューリスティック関数f(S)は、以下の式(6)によって、計画プレフィックスPI→Snの品質(g(S)と書かれる)に、サフィックスPSn→Gの予測品質(h(S)と書かれる)を加算したものとして全経路品質を推定する。
[数6]
ヒューリスティック関数f(S)が全計画の真の品質を決して過大に推定しない場合、ヒューリスティックf(S)は、容認可能であると言われ、プランナ30によるAターゲット探索は、最適な計画54を返すべきである。この点に関して、過少な推定は、不確実性にも関わらず、A探索手法を最適なものにし、それによって、品質が高いことが知られている完全な計画にかかわる前に、不確実な計画が探索されることを保証する。結果として、ヒューリスティック関数がより正確になるほど、Aターゲット探索は、高度に情報提供的な計画54により多くの焦点をおく。したがって、示された実施形態では、プランナ30は、プラントモデル50におけるシステムアーキテクチャおよびダイナミクスの記述に少なくとも部分的に基づいて、診断エンジン40によって導き出されたヒューリスティック関数を利用する。
図7は、プラント20においてシステム状態を開始状態Sからゴール状態Gまで遷移させるための可能な計画を表す、例示的な状態/アクション図400を示している。システム状態ノード402は、開始状態S 402s、ゴール状態G 402g、およびノードA〜Dにそれぞれ対応する4つの中間状態402a〜402dを含む。この例のための所定の計画54は、最終的にゴールG 402gに到達する図400の以下のアクション404によって進行する。そのような生産ゴールを満たす1つの可能な計画54は、図7に示されるように、アクション404sa、404ac、および404cgを通る状態列[S,A,C,G]によってシステムを動かす。説明目的で、この計画54が、システムリソース21〜24の1つにおける単一持続的障害に起因する、ノードAとノードCの間の障害アクション404ac(アクションaA,C)によって引き起こされる異常結果をもたらすと仮定すると、診断エンジン40は、計画54および結果の障害観測56から、計画経路沿いのアクション404sa、404ac、および404cgのすべては、(さらなる情報なしに)障害を起こしていることが疑われると決定する。単一持続的障害が仮定されるので、疑わしいアクション{{aS,A},{aA,C},{aC,G}}に対応する3つの正の確率の仮説が存在する。付加的な情報が存在しない場合、診断エンジン40は最初、3つの疑わしいアクションに等しい確率{1/3}、{1/3}、{1/3}を割り当てる。
診断エンジン40は、この例では、図7において右から左にヒューリスティックを構築することによって、任意の計画サフィックスによって計画に与えることができる、不確実性のヒューリスティック境界を構成するために、グラフ構造および確率推定を使用する。特に、例示的な診断エンジン40は、図7に示されるように、下界および上界[L,U]をノード402に割り当て、一実施では、これらの境界値は、プランナ30に送られる。説明的な一例として、図7において状態Dからゴール状態Gに到るアクションaD,Gは、失敗した観測された計画54の部分ではなく、したがって、候補仮説ではなく、このアクションは、仮定された単一持続的システム障害の発生源であることに関してゼロ確率を有する。結果として、任意のプレフィックス計画54を延長して、アクションaD,Gを有する状態Dで終わらせても、アクションaD,Gは異常であることに関してゼロ確率を有するので、延長された計画54の失敗確率は増加しない。この例では、DからGへの他の可能な計画54は存在しないので、状態Dで終わる任意の計画の上界および下界はともにゼロであり、したがって、図7では、ノードDは、[0,0]とラベル付けされる。状態Bを通過する計画54は、疑わしいアクション404を使用せず、ゼロ下界を有する状態Dで終わる、アクションaB,D 404bdによって完成することができるので、状態B 402bも同様に、ゼロの下界を有する。状態Bは、状態C 402cに到る疑わしくないアクションaB,C 404bcによって完成することができ、状態C 402cは、異常であることに関して1/3の確率を有する上界および下界の両方を有するので、この例の状態Bは、1/3の上界を有する。診断エンジン40は、サフィックスサブ計画が異常である確率の境界を決定するために、この解析を再帰的に継続し、これらを情報獲得データ70の部分としてプランナ30に送る。
プランナ30は、ターゲット確率Tを達成する、またはそれに最もよく接近する計画54を識別し、構成するために、これらの境界を前方Aターゲット探索とともに使用する。1つの可能な計画54は、開始ノードS 402sから開始し、異常であることが観測された計画54の部分である第1のアクションaS,Aを含む。アクションaS,A 404saが部分計画に追加される場合、それ自体が候補であるので、それは失敗の可能性に1/3の確率を追加しなければならない。aS,Aの後、システム20は状態Aにあり、計画54は、ゴール状態G 402gに到達するためにアクション404adおよび404dgを含むことによって、Dを経由して完成することができる。アクションaA,D自体は、以前に観測された障害のある計画に含まれないので、異常であることに関してゼロ確率を有する。したがって、ヒューリスティック境界を使用することで、状態ノードD 402dを経由する完成は、異常であることに関してゼロ確率を追加する。ノードA 402aから、計画54は、代替として、最初に観測された計画54でのように、ノードCを経由して完成することができる。対応するアクションaA,C 404acは、1/3の失敗確率をそのような計画に追加し、ヒューリスティック境界に基づいて、ノードC 402cを経由する完成は、異常であることに関して別の1/3の確率を追加しなければならない。
ヒューリスティックは、システム20を状態ノード列[S,A,C,G]または[S,A,D,G]を経由して動かす可能な計画54についての全計画異常性確率の予測を可能にする。全計画の下界は、aS,Aからの1/3と完成aA,D、aD,Gからの0との和によって決定される1/3であり、上界は、aS,Aからの1/3とaA,C、aC,Gの各々からの1/3との和に等しい3/3である。この計画が[aA,C,aC,G]経由で計算される場合、確率1となって、全計画54は失敗し、したがって、そのような計画完成を構成することからは何も学べない。代わりに、計画54がサフィックス[aA,D,aD,G]経由で完成される場合、全計画の失敗確率は1/3であり、それは最適な情報提供的確率T=0.5により近い。この場合、プランナ30は、プラント20で実施される計画54[S,A,D,G]を構成する。計画54は、成功しても、または成功しなくてもよく、いずれの場合でも、診断的な観点から何かを学ぶことができる。例えば、計画[S,A,D,G]が失敗した場合、診断エンジン40は、(単一持続的障害のシナリオを仮定した場合)アクションaS,Aが失敗アクションであったことを学び、計画54が成功した場合、エンジン40は、アクション404saを障害容疑ありとして排除することによって、ビリーフモデル42をさらに改良することができる。
境界の間に任意の所与の値の計画54が存在することの保証はないことに留意されたい。診断エンジン40は、すべてのゴール状態から開始してヒューリスティック境界を再帰的に計算し、ゴール状態は空集合のサフィックス計画pG→G=φを有し、したがって、L=0の設定下界と、U=0の設定上界を有する。新しい各状態Sについて、診断エンジン40は、すべての可能な後続状態SUC(S)の境界と、Sと後続状態Sの間の接続アクションaSmSnの失敗確率とに少なくとも部分的に基づいて、対応する境界を計算する。状態Sの後続状態Sは、状態Sから開始する単一ステップで到達し得る任意の状態である。単一障害が仮定される場合、アクションaSmSnを連結することによって計画pI→Smに追加される失敗確率は、


である場合、計画pI→Smから独立である。診断エンジン40は、Sをその直接の後続状態に連結するアクション確率と、これらの後続状態の下界によって、Sの下界を決定し、診断エンジン40は、LSm=minSn∈SUC(Sm)[Pr(ab(aSm,Sn))+LSn]と類似した方法であるUSm=maxSn∈SUC(Sm)[Pr(ab(aSm,Sn))+USn]で上界を計算する。
プランナ30による情報提供的生産計画の探索は、初期開始状態S 402sから開始し、ゴール状態402gへと順方向に再帰的に作業する。初期状態Sで開始する空計画の異常性確率は、ゼロと最良完成の和である。プランナ30は、現在の状態までの計画確率と最良完成ルートの異常性確率の和として異常性確率を計算する。プランナ30は最初は完成について確信がないので、異常性の確率は、下界および上界と、その間の値を含む区間である。結果として、全異常性確率も、以下の式(7)で示される区間である。
[数7]
(7) I(pI→Sn)=[Pr(ab(pI→Sn))+LSn,Pr(ab(pI→Sn))+USn)]
最も情報提供的な計画54は、全失敗確率がTである計画であり、持続的な単一障害が仮定される好ましい実施では、T=0.5である。計画の全異常性確率に関する境界を表す区間I(pI→Sn)が与えられた場合、したがって、プランナ30は、以下の式(8)に従って、異常性確率がTにどれだけ近いかを表す区間を構成することができる。
[数8]

式(8)のこの絶対値は、Tの周りの範囲を折り畳んでおり、計画54の推定全異常性確率がターゲット確率Tを跨ぐ場合、区間


はゼロを跨ぎ、区間はゼロからI(pI→Sn)の絶対最大値にわたる。例示的なプランナ30は、予想情報獲得データ70の部分として、診断エンジン40によって提供される探索ヒューリスティック


を使用するが、ターゲット探索が相対的に高い情報値を有する計画54を構成することを可能にする他のヒューリスティックも、開示の範囲内で企図されている。例示的な関数Fは、いくつかの有利な特性を有する。例えば、予測全計画異常性確率がLとUの間に存在する場合、Fはゼロである。また、異常性確率が正確にターゲット確率Tを達成する計画54が存在できる。さらに、すべての場合で、F(pI→Sn)は、状態Sを通過する任意の最も近い計画が、ターゲット異常性確率Tに正確になり得ることを表す。
プランナ30は、(例えば、プランナ30、データストア36、もしくはシステム2内の他のどこか、またはプランナ30によってアクセス可能な外部データストアに保存された)部分計画の集合全体


から探索することができる。部分計画毎に、プランナ30は、F(pI→Sn)を評価し、最低値を用いて計画を拡張する。F(pI→Sn)は過少推定であるので、この推定を使用するA探索は、生産ゴールを達成する最も情報提供的な計画を返す。
プランナ30は、選択的な刈り込みを使用して、ターゲット計画探索の効率を改善することができる。探索ヒューリスティックは、同じ値、すなわちゼロを返すことができ、それは選択を行う際にプランナ30に僅かなガイダンスしか提供しない。プランナ30は、探索を集束させることができる。第1の集束手法では、プランナ30は、探索空間の優勢な部分を刈り込む。例えば、ターゲット値Tを跨がない異常性確率区間を有する所定の部分計画I(pI→Sn)を、プランナ30によって識別することができる。この区間内の最良の可能な計画は、ターゲット値Tに最も近い、区間の2つの境界の一方の上にある。例えば、


および


を異常性確率区間I(pI→Sn)の下界および上界とする。プランナ30は、そのような場合、最良計画の値


を以下の式(9)に従って決定する。
[数9]

計画PI→Siは、


である場合、すべての計画PI→Sjより優勢である。プランナ30は、いくつかの計画または好ましくはすべての優勢な計画をA探索空間から刈り込む(さらなる考察から除外する)ようにしかるべく動作する。
プランナ30は、他の集束技法を使用することもできる。ヒューリスティック値は、どの状態ノードが次に拡張されるかを決定するが、2つ以上のノードが同じヒューリスティック値を受け取ることも可能である。したがって、プランナ30は、規則を利用して、どのノードを最初に拡張すべきかを決定することができる。これに関する1つの適切な規則は、単にノードを無作為に選ぶことである。
開示のこの態様によれば、プランナ30におけるさらなる改善は、(上記の式(9)の)


は、プレフィックスとしての部分計画PI→Snで開始する全計画PI→Gについての保証された下界を表すという事実を使用して、実施することができる。上界および下界は実現可能であるが、区間の内点はどれも存在することを保証されない。したがって、プランナ30は、2つの部分計画のどちらが最も近い実現可能解であるかを決定するために、有利にVを比較することができる。2つの部分計画がこのパラメータについても同一である場合、情報獲得は同じであり、したがって、プランナ30は、失敗する可能性がより低い部分計画を選択し、それによって、短期生産性を促進する。プランナ30は、順次決定手順において、これら2つの手法を組み合わせることができる。PI→S1およびPI→S2が、同じ最小値、すなわち


を有する2つの部分計画である場合、プランナ30は、以下の規則リストに基づいて適用する第1の規則を選択することによって、均衡を破ることができる。






7 それ以外ならば、無作為に選ぶ。
プランナ30は、生産中に観測された障害の発生源の決定を助けるための計画54の生成ばかりでなく、コンポーネント32bを介して、プラント20内の既知の障害リソース21〜24の選択的回避も容易にすることができる。
8b オペレータ定義診断ジョブ、 10 プロデューサ、 30 多目標プランナ、 34a 生産目標、 40 診断エンジン、 51 ジョブ&目標、 52 製品、 60 診断ジョブ。

Claims (12)

  1. 生産プラントを操作して1つ以上の生産ゴールを達成するため計画を構成するシステムであって、
    少なくとも1つのプロセッサと
    前記少なくとも1つのプロセッサを使用して実行される診断エンジンであって、
    以前に実施された計画と、前記プラントからの少なくとも1つの対応する観測と、前記プラントのプラントモデルとに少なくとも部分的に基づいて、現在のプラントコンディションを決定し、
    間欠的または持続的な障害を発生させるリソースの識別に関連する少なくとも1つの診断目標に基づいて、ヒューリスティックを定式化し、
    前記以前に実施された計画と、前記プラントからの少なくとも1つの対応する観測と、前記プラントモデルとに少なくとも部分的に基づいて、前記プラントの前記現在の状態を表すビリーフモデルを更新する
    ことができる診断エンジンと、
    前記少なくとも1つのプロセッサを使用して実行され、前記診断エンジンに機能的に結合されるプランナであって、前記ヒューリスティックを使用する部分計画探索を行って、少なくとも1つの生産ゴールを達成すると同時に前記少なくとも1つの診断目標を容易にする、前記プラントで実施される前記計画を構成すプランナと、
    を備えることを特徴とするシステム。
  2. 請求項1に記載のシステムにおいて
    前記診断エンジンが、前記現在のプラントコンディションに少なくとも部分的に基づいて、前記ヒューリスティックを定式化する際に、前記プラントにおける複数の障害仮説に対する失敗確率を求めることができる、システム。
  3. 請求項1に記載のシステムにおいて
    前記診断エンジンが、前記現在のプラントコンディションに少なくとも部分的に基づいて、前記ヒューリスティックを上界および下界計画失敗確率ヒューリスティックとして定式化することができる、システム。
  4. 請求項3に記載のシステムにおいて
    前記プランナが、探索空間の刈り込み(プルーニング)を実行して、前記計画の構成する際の前記部分計画探索を加速させることができる、システム。
  5. 請求項3に記載のシステムにおいて、
    前記プランナが、ターゲット値Tに最も近い計画失敗確率を有する計画を選択的に構成することができる、システム。
  6. 請求項1に記載のシステムであって、
    前記プランナが、前記ヒューリスティックに従って部分計画を評価し、前記少なくとも1つの診断目標に基づいて情報提供的な計画を優先的に構成することができる、システム。
  7. 生産プラントを操作して1つ以上の生産ゴールを達成するため計画を構成する方法であって、
    少なくとも1つのプロセッサを使用し、以前に実施された計画と、前記プラントからの少なくとも1つの対応する観測と、前記プラントのプラントモデルとに少なくとも部分的に基づいて、現在のプラントコンディションを決定するステップと、
    前記少なくとも1つのプロセッサを使用し、間欠的または持続的な障害を発生させるリソースの識別に関連する少なくとも1つの診断目標に基づいて、ヒューリスティックを定式化するステップと、
    前記少なくとも1つのプロセッサを使用し、前記以前に実施された計画と、前記プラントからの少なくとも1つの対応する観測と、前記プラントモデルとに少なくとも部分的に基づいて、前記プラントの前記現在の状態を表すビリーフモデルを更新するステップと、
    前記少なくとも1つのプロセッサを使用し、前記ヒューリスティックを使用する部分計画探索を実行するステップと、
    前記少なくとも1つのプロセッサを使用し、前記部分計画探索に基づいて、少なくとも1つの生産ゴールを達成すると同時に前記少なくとも1つの診断目標を容易にする、前記プラントで実施される前記計画を構成するステップと、
    前記少なくとも1つのプロセッサを使用し、アクション失敗確率と前記現在のプラントコンディションとに基づき計画失敗確率を計算するステップと
    前記少なくとも1つのプロセッサを使用し、前記現在のプラントコンディションと前記プラントモデルとに少なくとも部分的に基づいて1つ以上の可能な計画のための情報獲得基準を生成するステップと、
    を含み、
    前記少なくとも1つのプロセッサが、前記計画失敗確率に少なくとも部分的に基づいて前記ヒューリスティックを定式化し、
    前記少なくとも1つのプロセッサが、前記情報獲得基準を使用して前記計画を構成する、
    ことを特徴とする方法。
  8. 請求項7に記載の方法において
    前記ヒューリスティックを定式化するステップが、前記現在のプラントコンディションに少なくとも部分的に基づいて、前記プラントにおける複数の障害仮説に対する失敗確率を求めるステップを含む、方法。
  9. 請求項7に記載の方法において
    前記ヒューリスティックが上界および下界計画失敗確率ヒューリスティックとして定式化される、方法。
  10. 請求項7に記載の方法において、
    前記部分計画探索を実行するステップが、前記ヒューリスティックに従って部分計画を評価し、前記少なくとも1つの診断目標に基づいて情報提供的な計画を優先的に構成するステップを含む、方法。
  11. 請求項1に記載のシステムにおいて、
    前記診断エンジンが、前記少なくとも1つの診断目標と部分計画の現在の状態とを使用して前記部分計画探索を実行する、システム。
  12. 請求項1に記載のシステムにおいて、
    前記診断エンジンが、前記現在のプラントコンディションに少なくとも部分的に基づいて、前記ヒューリスティックを定式化する、システム。
JP2009163427A 2008-07-10 2009-07-10 生産計画を構成するための方法およびシステム Expired - Fee Related JP5113127B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/170,577 2008-07-10
US12/170,577 US8219437B2 (en) 2008-07-10 2008-07-10 Methods and systems for constructing production plans

Publications (3)

Publication Number Publication Date
JP2010020773A JP2010020773A (ja) 2010-01-28
JP2010020773A5 JP2010020773A5 (ja) 2012-08-23
JP5113127B2 true JP5113127B2 (ja) 2013-01-09

Family

ID=41017183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009163427A Expired - Fee Related JP5113127B2 (ja) 2008-07-10 2009-07-10 生産計画を構成するための方法およびシステム

Country Status (3)

Country Link
US (1) US8219437B2 (ja)
EP (1) EP2144197A1 (ja)
JP (1) JP5113127B2 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8265777B2 (en) * 2009-06-02 2012-09-11 Palo Alto Research Center Incorporated Pervasive model adaptation: the integration of planning and information gathering in dynamic production systems
US8364629B2 (en) 2009-07-02 2013-01-29 Palo Alto Research Center Incorporated Depth-first search for target value problems
US8392455B2 (en) * 2009-07-02 2013-03-05 Palo Alto Research Center Incorporated Multi-interval heuristics for accelerating target-value search
US20110040399A1 (en) * 2009-08-14 2011-02-17 Honeywell International Inc. Apparatus and method for integrating planning, scheduling, and control for enterprise optimization
US8655472B2 (en) * 2010-01-12 2014-02-18 Ebara Corporation Scheduler, substrate processing apparatus, and method of transferring substrates in substrate processing apparatus
US9281690B2 (en) * 2010-12-21 2016-03-08 Palo Alto Research Center Incorporated Tactical smart grids
CN102862137A (zh) 2011-07-07 2013-01-09 杭州巨星工具有限公司 双向机械矫正器
DE102013209917A1 (de) * 2013-05-28 2014-12-04 Siemens Aktiengesellschaft System und Verfahren zum Berechnen einer Produktivität einer industriellen Anlage
KR101547120B1 (ko) 2014-02-06 2015-08-25 한국과학기술원 생산일정 예측 및 관리를 위한 계층적 이산사건 시뮬레이션 방법
US9733629B2 (en) 2014-07-21 2017-08-15 Honeywell International Inc. Cascaded model predictive control (MPC) approach for plantwide control and optimization
US10379503B2 (en) 2014-07-21 2019-08-13 Honeywell International Inc. Apparatus and method for calculating proxy limits to support cascaded model predictive control (MPC)
US20160365162A1 (en) * 2015-06-12 2016-12-15 General Electric Company System to control asset decommissioning and reconcile constraints
JP6337869B2 (ja) * 2015-11-05 2018-06-06 横河電機株式会社 プラントモデル作成装置、プラントモデル作成方法、およびプラントモデル作成プログラム
EP3316193B1 (en) * 2016-11-01 2023-04-12 Hitachi, Ltd. Production support system
US10466684B2 (en) 2017-05-25 2019-11-05 Honeywell International Inc. Apparatus and method for adjustable identification of controller feasibility regions to support cascaded model predictive control (MPC)
US11181882B2 (en) * 2017-06-19 2021-11-23 The Boeing Company Dynamic modification of production plans responsive to manufacturing deviations
US10908562B2 (en) 2017-10-23 2021-02-02 Honeywell International Inc. Apparatus and method for using advanced process control to define real-time or near real-time operating envelope
JP7411489B2 (ja) * 2020-04-08 2024-01-11 株式会社日立製作所 生産知識管理システム、生産知識管理方法及び生産知識管理プログラム

Family Cites Families (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864503A (ja) * 1981-10-14 1983-04-16 Hitachi Ltd 装置の異常状態に対する原因推定方法
US5006992A (en) * 1987-09-30 1991-04-09 Du Pont De Nemours And Company Process control system with reconfigurable expert rules and control modules
US5070468A (en) * 1988-07-20 1991-12-03 Mitsubishi Jukogyo Kabushiki Kaisha Plant fault diagnosis system
JPH0660826B2 (ja) * 1989-02-07 1994-08-10 動力炉・核燃料開発事業団 プラントの異常診断方法
US5315502A (en) * 1989-06-09 1994-05-24 Mitsubishi Denki Kabushiki Kaisha Plant operation support apparatus and method using expert systems
JP3224226B2 (ja) * 1989-09-22 2001-10-29 株式会社リコー 故障診断エキスパートシステム
US5581459A (en) * 1990-09-26 1996-12-03 Hitachi, Ltd. Plant operation support system
US5214577A (en) * 1990-10-24 1993-05-25 Osaka Gas Co., Ltd. Automatic test generation for model-based real-time fault diagnostic systems
JP3043897B2 (ja) * 1991-05-15 2000-05-22 株式会社東芝 プラント運転支援装置
US5268834A (en) * 1991-06-24 1993-12-07 Massachusetts Institute Of Technology Stable adaptive neural network controller
US5586021A (en) * 1992-03-24 1996-12-17 Texas Instruments Incorporated Method and system for production planning
CA2118885C (en) * 1993-04-29 2005-05-24 Conrad K. Teran Process control system
JP3169036B2 (ja) * 1993-06-04 2001-05-21 株式会社日立製作所 プラント監視診断システム、プラント監視診断方法および非破壊検査診断方法
US5486995A (en) * 1994-03-17 1996-01-23 Dow Benelux N.V. System for real time optimization
WO1995025295A1 (en) * 1994-03-17 1995-09-21 Dow Benelux N.V. System for real time optimization and profit depiction
JP3188812B2 (ja) * 1994-06-30 2001-07-16 横河電機株式会社 設備診断システム
US5701395A (en) * 1994-12-19 1997-12-23 Motorola, Inc. Method of programming a polynomial processor
JPH08277046A (ja) * 1995-04-10 1996-10-22 Canon Inc 給紙搬送装置及び該給紙搬送装置を備えた記録装置
CN1105341C (zh) * 1996-01-11 2003-04-09 株式会社东芝 一种对设备的异常源进行推断的设备异常诊断方法及装置
JPH09190219A (ja) * 1996-01-11 1997-07-22 Toshiba Corp プラント異常診断装置
US6012152A (en) * 1996-11-27 2000-01-04 Telefonaktiebolaget Lm Ericsson (Publ) Software fault management system
US7043414B2 (en) * 1997-06-20 2006-05-09 Brown Peter G System and method for simulating, modeling and scheduling of solution preparation in batch process manufacturing facilities
US6272483B1 (en) * 1997-10-31 2001-08-07 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Cost-optimizing allocation system and method
US6052969A (en) 1998-02-20 2000-04-25 F. R. Drake Patty loader and method
US6415276B1 (en) * 1998-08-14 2002-07-02 University Of New Mexico Bayesian belief networks for industrial processes
US6326758B1 (en) * 1999-12-15 2001-12-04 Reliance Electric Technologies, Llc Integrated diagnostics and control systems
US6725208B1 (en) 1998-10-06 2004-04-20 Pavilion Technologies, Inc. Bayesian neural networks for optimization and control
US6113256A (en) * 1998-11-09 2000-09-05 General Electric Company System and method for providing raw mix proportioning control in a cement plant with a fuzzy logic supervisory controller
US7346404B2 (en) * 2001-03-01 2008-03-18 Fisher-Rosemount Systems, Inc. Data sharing in a process plant
US6947797B2 (en) * 1999-04-02 2005-09-20 General Electric Company Method and system for diagnosing machine malfunctions
US6535865B1 (en) * 1999-07-14 2003-03-18 Hewlett Packard Company Automated diagnosis of printer systems using Bayesian networks
US6651048B1 (en) * 1999-10-22 2003-11-18 International Business Machines Corporation Interactive mining of most interesting rules with population constraints
US7464147B1 (en) * 1999-11-10 2008-12-09 International Business Machines Corporation Managing a cluster of networked resources and resource groups using rule - base constraints in a scalable clustering environment
US6411908B1 (en) * 2000-04-27 2002-06-25 Machinery Prognosis, Inc. Condition-based prognosis for machinery
US6917839B2 (en) 2000-06-09 2005-07-12 Intellectual Assets Llc Surveillance system and method having an operating mode partitioned fault classification model
US6263277B1 (en) * 2000-08-07 2001-07-17 Alpine Electronics, Inc. Route searching method
US6643592B1 (en) * 2000-10-05 2003-11-04 General Electric Company System and method for fault diagnosis
US6853930B2 (en) * 2001-02-27 2005-02-08 Hitachi, Ltd. System for aiding the preparation of operation and maintenance plans for a power generation installation
JP4564715B2 (ja) * 2001-03-01 2010-10-20 フィッシャー−ローズマウント システムズ, インコーポレイテッド ワークオーダ/パーツオーダの自動的生成および追跡
US6795798B2 (en) * 2001-03-01 2004-09-21 Fisher-Rosemount Systems, Inc. Remote analysis of process control plant data
US6795799B2 (en) * 2001-03-07 2004-09-21 Qualtech Systems, Inc. Remote diagnosis server
US6560552B2 (en) * 2001-03-20 2003-05-06 Johnson Controls Technology Company Dynamically configurable process for diagnosing faults in rotating machines
US6965887B2 (en) * 2001-03-21 2005-11-15 Resolutionebs, Inc. Rule processing methods for automating a decision and assessing satisfiability of rule-based decision diagrams
US6735549B2 (en) * 2001-03-28 2004-05-11 Westinghouse Electric Co. Llc Predictive maintenance display system
DE60223253T2 (de) * 2001-05-25 2008-11-27 Parametric Optimization Solutions Ltd. Verbesserte prozesssteuerung
US6865562B2 (en) * 2001-06-04 2005-03-08 Xerox Corporation Adaptive constraint problem solving method and system
US6847854B2 (en) * 2001-08-10 2005-01-25 Rockwell Automation Technologies, Inc. System and method for dynamic multi-objective optimization of machine selection, integration and utilization
US20090204237A1 (en) * 2001-08-10 2009-08-13 Rockwell Automation Technologies, Inc. System and method for dynamic multi-objective optimization of machine selection, integration and utilization
US9729639B2 (en) * 2001-08-10 2017-08-08 Rockwell Automation Technologies, Inc. System and method for dynamic multi-objective optimization of machine selection, integration and utilization
US8914300B2 (en) * 2001-08-10 2014-12-16 Rockwell Automation Technologies, Inc. System and method for dynamic multi-objective optimization of machine selection, integration and utilization
US20090210081A1 (en) * 2001-08-10 2009-08-20 Rockwell Automation Technologies, Inc. System and method for dynamic multi-objective optimization of machine selection, integration and utilization
US8417360B2 (en) 2001-08-10 2013-04-09 Rockwell Automation Technologies, Inc. System and method for dynamic multi-objective optimization of machine selection, integration and utilization
US7469185B2 (en) * 2002-02-04 2008-12-23 Ocimum Biosolutions, Inc. Primary rat hepatocyte toxicity modeling
US7062478B1 (en) * 2002-03-20 2006-06-13 Resolutionebs, Inc. Method and apparatus using automated rule processing to configure a product or service
US7230736B2 (en) 2002-10-30 2007-06-12 Palo Alto Research Center, Incorporated Planning and scheduling reconfigurable systems with alternative capabilities
US7233405B2 (en) * 2002-10-30 2007-06-19 Palo Alto Research Center, Incorporated Planning and scheduling reconfigurable systems with regular and diagnostic jobs
US8315898B2 (en) 2002-10-30 2012-11-20 Palo Alto Research Center, Incorporated Planning and scheduling reconfigurable systems around off-line resources
US7574334B2 (en) * 2003-02-11 2009-08-11 Sri International Formal methods for modeling and analysis of hybrid systems
US7139629B2 (en) 2003-04-28 2006-11-21 Palo Alto Research Center Incorporated Planning and scheduling for failure recovery system and method
US6895292B2 (en) * 2003-04-28 2005-05-17 Palo Alto Research Center Inc. Predictive and preemptive planning and scheduling for different job priorities system and method
US7194320B2 (en) * 2003-06-05 2007-03-20 Neuco, Inc. Method for implementing indirect controller
US7206771B2 (en) * 2003-11-11 2007-04-17 International Business Machines Corporation Automated knowledge system for equipment repair based on component failure history
US7451003B2 (en) * 2004-03-04 2008-11-11 Falconeer Technologies Llc Method and system of monitoring, sensor validation and predictive fault analysis
US7260501B2 (en) 2004-04-21 2007-08-21 University Of Connecticut Intelligent model-based diagnostics for system monitoring, diagnosis and maintenance
US7216018B2 (en) * 2004-05-14 2007-05-08 Massachusetts Institute Of Technology Active control vibration isolation using dynamic manifold
US6898475B1 (en) 2004-05-27 2005-05-24 Palo Alto Research Center Inc. System and method utilizing temporal constraints to coordinate multiple planning sessions
US7043321B2 (en) 2004-05-27 2006-05-09 Palo Alto Research Center Incorporated Exception handling in manufacturing systems combining on-line planning and predetermined rules
US7356383B2 (en) * 2005-02-10 2008-04-08 General Electric Company Methods and apparatus for optimizing combined cycle/combined process facilities
US7499777B2 (en) 2005-04-08 2009-03-03 Caterpillar Inc. Diagnostic and prognostic method and system
US20070043607A1 (en) * 2005-08-22 2007-02-22 Raytheon Company Method to incorporate user feedback into planning with explanation
US7162393B1 (en) * 2005-09-01 2007-01-09 Sun Microsystems, Inc. Detecting degradation of components during reliability-evaluation studies
GB2430771A (en) 2005-09-30 2007-04-04 Motorola Inc Content access rights management
US7711674B2 (en) * 2005-11-01 2010-05-04 Fuji Xerox Co., Ltd. System and method for automatic design of components in libraries
US7533073B2 (en) * 2005-12-05 2009-05-12 Raytheon Company Methods and apparatus for heuristic search to optimize metrics in generating a plan having a series of actions
JP4618185B2 (ja) * 2006-04-07 2011-01-26 富士ゼロックス株式会社 故障診断システム及び故障診断プログラム
JP4711077B2 (ja) * 2006-06-09 2011-06-29 富士ゼロックス株式会社 故障診断システム、画像形成装置および故障診断プログラム
US20080010230A1 (en) * 2006-07-06 2008-01-10 Smith Curtis L Hybrid assessment tool, and systems and methods of quantifying risk
US20080039969A1 (en) * 2006-08-14 2008-02-14 Husky Injection Molding Systems Ltd. Control schema of molding-system process, amongst other things
US20080071716A1 (en) * 2006-08-31 2008-03-20 Kay Schwendimann Anderson Apparatus and method of planning through generation of multiple efficient plans
US7467841B2 (en) * 2006-09-07 2008-12-23 Kabushiki Kaisha Toshiba Maintenance scheduling system, maintenance scheduling method and image forming apparatus
US8145335B2 (en) 2006-12-19 2012-03-27 Palo Alto Research Center Incorporated Exception handling
US7725857B2 (en) * 2007-04-19 2010-05-25 International Business Machines Corporation Method for optimizing organizational floor layout and operations
US7689309B2 (en) * 2007-07-03 2010-03-30 Delphi Technologies, Inc. Method for generating an electro-hydraulic model for control design
US8038076B2 (en) * 2008-01-22 2011-10-18 Delphi Technologies, Inc. System and method for dynamic solenoid response adjust control
US8078552B2 (en) 2008-03-08 2011-12-13 Tokyo Electron Limited Autonomous adaptive system and method for improving semiconductor manufacturing quality
US8725667B2 (en) 2008-03-08 2014-05-13 Tokyo Electron Limited Method and system for detection of tool performance degradation and mismatch
US8396582B2 (en) 2008-03-08 2013-03-12 Tokyo Electron Limited Method and apparatus for self-learning and self-improving a semiconductor manufacturing tool
US7937175B2 (en) * 2008-07-10 2011-05-03 Palo Alto Research Center Incorporated Methods and systems for pervasive diagnostics
US20100222897A1 (en) * 2009-03-02 2010-09-02 Toyota Motor Engineering & Manufacturing North America, Inc. Distributed fault diagnosis

Also Published As

Publication number Publication date
US20100010845A1 (en) 2010-01-14
JP2010020773A (ja) 2010-01-28
US8219437B2 (en) 2012-07-10
EP2144197A1 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
JP5113127B2 (ja) 生産計画を構成するための方法およびシステム
JP5107974B2 (ja) パーベイシブ診断法のための方法およびシステム
JP5204052B2 (ja) 目標値経路識別のための方法およびシステム
JP5266153B2 (ja) 生産リソースの持続的失敗確率および間欠的失敗確率を継続的に推定するための方法およびシステム
US20100010657A1 (en) Methods and systems for active diagnosis through logic-based planning
JP5406448B2 (ja) 例外処理
EP2233997B1 (en) Methods and systems for fault diagnosis in observation rich systems
JP2019200792A (ja) マルチエージェントシステムにおけるロボットの動作方法、ロボット及びマルチエージェントシステム
Gini Multi-robot allocation of tasks with temporal and ordering constraints
EP2270677A2 (en) Depth-first search for target value problems
JP5330316B2 (ja) パーベイシブ・モデル適応:動的生産システムにおける計画と情報収集の統合
Guiza et al. Monitoring of human-intensive assembly processes based on incomplete and indirect shopfloor observations
JP6016128B2 (ja) 可用性モデル生成支援装置、可用性モデル生成支援方法、およびプログラム
JP2005259052A (ja) プログラム及び車両運用計画作成装置
Aryadi et al. Multi-Agent Pickup and Delivery in Transformable Production
Müller et al. HTN-style planning in relational POMDPs using first-order FSCs
Badr et al. Integrating transportation scheduling with production scheduling for FMS: An agent-based approach
CN113759710A (zh) 用于规划技术系统的操作的装置和方法
Kuhn et al. Pervasive diagnosis
Kuhn Self-diagnosing Agent: Tight Integration of Operational Planning and Active Diagnosis
Houhamdi et al. Monitoring and diagnosis of multi-agent plan: centralized approach
MacDonald Robotic Motion Planning in Uncertain Environments via Active Sensing

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120710

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120711

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5113127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees