JP5100169B2 - 永久磁石式回転電機及び永久磁石電動機ドライブシステム - Google Patents

永久磁石式回転電機及び永久磁石電動機ドライブシステム Download PDF

Info

Publication number
JP5100169B2
JP5100169B2 JP2007079321A JP2007079321A JP5100169B2 JP 5100169 B2 JP5100169 B2 JP 5100169B2 JP 2007079321 A JP2007079321 A JP 2007079321A JP 2007079321 A JP2007079321 A JP 2007079321A JP 5100169 B2 JP5100169 B2 JP 5100169B2
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic flux
magnetic
coercive force
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007079321A
Other languages
English (en)
Other versions
JP2008245367A (ja
Inventor
政憲 新
和人 堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007079321A priority Critical patent/JP5100169B2/ja
Publication of JP2008245367A publication Critical patent/JP2008245367A/ja
Application granted granted Critical
Publication of JP5100169B2 publication Critical patent/JP5100169B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、永久磁石式回転電機及び永久磁石電動機ドライブシステムに関する。
現在、適用範囲が拡大している永久磁石式回転電機は大きく2種類のタイプに分けられる。回転子鉄心の外周に永久磁石を貼り付けた表面磁石型永久磁石回転電機と、特開平7−336919号公報(特許文献1)に記載されたような永久磁石を回転子鉄心の中に埋め込んだ埋め込み型永久磁石回転電機である。近年、可変速駆動用モータとしては、この埋め込み型永久磁石回転電機の適用が多くなっている。
図16に示す従来の埋め込み型永久磁石電動機は、内部に回転子1、その外周にエアギャップ23を介して固定子20を配置した構成である。回転子鉄心2の外周部に長方形の空洞を等配で極数の数だけ設けている。図16に示した回転子1は8極のものであり、回転子鉄心2に8個の空洞を設けて永久磁石4をそれぞれの空洞に挿入している。永久磁石4は回転子1の半径方向、又は永久磁石4の断面の長方形におけるエアギャップ面に対向する辺(図16では長辺)に直角方向に磁化されている。永久磁石4は負荷電流により減磁しないように保磁力の高いNdFeB永久磁石が主に適用されている。回転子鉄心2は空洞を打抜いた電磁鋼板を積層して形成してある。7は回転軸である。固定子20は、電機子巻線21を固定子鉄心22の内側に形成されたスロットに収容することで構成されている。そして固定子20の内周面と回転子1の外周面とは、エアギャップ23を介して対向させている。
可変速特性に優れて高出力の回転電機としては特開平11−27913号公報(特許文献2)、特開平11−136912号公報(特許文献3)に記載されているような永久磁石式リラクタンス型回転電機が知られている。
さらに、低速から高速までの広範囲で可変速運転を可能とし、低速回転域の高トルク化と中・高速回転域での高出力化、効率の向上を図った回転電機としては、特開2006−280195号公報(特許文献4)に記載されているような磁石磁束を可変とする永久磁石式回転電機が知られている。
一般に、永久磁石式回転電機では、永久磁石によって常に一定の鎖交磁束が発生しているので、永久磁石による誘導電圧は回転速度に比例して高くなる。低速から高速まで可変速運転する場合、高速回転では永久磁石による誘導電圧(逆起電圧)が極めて高くなる。永久磁石による誘導電圧がインバータの電子部品に印加し、電子部品の耐電圧以上になると部品が絶縁破壊する。そのため、永久磁石の磁束量が耐電圧以下になるように削減された設計が行うことが考えられるが、その場合には永久磁石式回転電機の低速域での出力及び効率が低下する。
低速から高速まで定出力に近い可変速運転を行う場合、永久磁石の鎖交磁束は一定であるので、高速回転域では回転電機の電圧が電源電圧上限に達して出力に必要な電流が流れなくなる。その結果、高速回転域では出力が大幅に低下し、さらには高速回転までの広範囲で駆動できなくなる。そこで最近では、可変速範囲を拡大する方法として、「『埋込磁石同期モータの設計と制御』、武田洋次・他、オーム社」(非特許文献1)に記載されているような弱め磁束制御が適用され始めている。電機子巻線の総鎖交磁束量はd軸電流による磁束と永久磁石による磁束とから成る。弱め磁束制御では、負のd軸電流による磁束を発生させることによってこの負のd軸電流による磁束で全鎖交磁束量を減少させる。また、弱め磁束制御においても高保磁力の永久磁石4は磁気特性(B−H特性)の動作点が可逆の範囲で変化するようにする。このため、永久磁石は弱め磁束制御の減磁界により不可逆的に減磁しないように高保磁力のNdFeB磁石を適用する。
弱め磁束制御を適用した運転では、負のd軸電流による磁束で鎖交磁束が減少するので、鎖交磁束の減少分が電圧上限値に対する電圧の余裕分を作る。そして、トルク成分となる電流を増加できるので高速域での出力が増加する。また、電圧余裕分だけ回転速度を上昇させることができ、可変速運転の範囲が拡大される。
しかし、弱め磁束制御をすると、出力には寄与しない負のd軸電流を常時流し続けるため銅損が増加して効率は悪化する。さらに、負のd軸電流による減磁界は高調波磁束を生じ、高調波磁束等で生じる電圧の増加は弱め磁束制御による電圧低減の限界を作る。これらより、埋め込み型永久磁石回転電機に弱め磁束制御を適用しても基底速度の3倍以上の可変速運転は困難である。さらに、前述の高調波磁束により鉄損が増加し、中・高速域で大幅に効率が低下する。また、高調波磁束による電磁力で振動を発生することもある。
ハイブリッド自動車用駆動モータに埋め込み型永久磁石電動機を適用した場合、エンジンのみで駆動される状態ではモータは連れ回される。中・高速回転ではモータの永久磁石による誘導電圧が上昇するので電源電圧以内に抑制するため、弱め磁束制御で負のd軸電流を流し続ける。しかし、この状態では、モータは損失のみを発生するので総合運転効率が悪化する。また、電車用駆動モータに埋め込み型永久磁石電動機を適用した場合、電車は惰行運転する状態があり、上の場合と同様に永久磁石による誘導電圧を電源電圧以下にするため弱め磁束制御で負のd軸電流を流し続ける。その場合、モータは損失のみを発生するので総合運転効率が悪化する。
これらの課題を解決するものとして、本願発明者等の発明に係る特許出願、特願2006−220557号には、保磁力と磁化方向厚みの積が小となる永久磁石と保磁力と磁化方向厚みの積が大となる永久磁石を用い、保磁力と磁化方向厚みの積が小となる永久磁石を運転条件に応じて脱、着磁して固定子との鎖交磁束量を増減する回転電機が提案されている。この形式の回転電機では、保磁力と磁化方向厚みの積が小となる磁石の専有部分が増大し、構造が複雑となり高速回転が困難となり、また、保磁力と磁化方向厚みの積が小となる永久磁石を、回転子中心軸を通る直線と平行な方向に磁石長手方向を設置するため、回転子内径を大きくしにくい等、製造性、信頼性、材料の削減の上で改善の余地がある。
特開平7−336919号公報 特開平11−27913号公報 特開平11−136912号公報 特開2006−280195号公報 「埋込磁石同期モータの設計と制御」、武田洋次・他、オーム社
本発明は、上述した技術的課題を解決するためになされたものであり、低速から高速まで広範囲な可変速運転を可能とし、提案されているものと比較して、より高速での運転を可能とし、低速回転域の高トルク化と中・高速回転域での高出力化、効率の向上、製造性向上、信頼性向上、材料の削減が図れる永久磁石式型回転電機及びそれを駆動する永久磁石電動機ドライブシステムを提供することを目的とする。
本発明の1つの特徴は、永久磁石を用いた永久磁石電動機と、前記永久磁石電動機を駆動するインバータと、前記永久磁石の磁束を制御するための磁化電流を流す磁化手段とを備え、前記永久磁石電動機は、低保磁力永久磁石と高保磁力永久磁石との2種類の永久磁石を回転子鉄心内に、当該回転子鉄心の径方向において前記両方の永久磁石の外側端縁間距離が広く内側端縁間距離が狭くなり、前記両方の永久磁石が当該回転子鉄心の内周側に凸となる形状に設置して1つの磁極を形成し、前記磁極を前記回転子鉄心内の外周部近くに等回転角度ずつ離れた複数箇所に形成して回転子を構成しており、前記磁化手段は、前記永久磁石電動機の前記複数の磁極各々において電機子巻線の電流が作る磁界により前記低保磁力永久磁石を磁化させて当該低保磁力永久磁石の磁束量を不可逆的に変化させる磁化電流を短時間だけ流す永久磁石電動機ドライブシステムである。
本発明の別の特徴は、永久磁石を用いた永久磁石電動機と、前記永久磁石電動機を駆動するインバータと、前記永久磁石の磁束を制御するための磁化電流を流す磁化手段とを備え、前記永久磁石電動機は、低保磁力永久磁石と高保磁力永久磁石との2種類の永久磁石を回転子鉄心内に、当該回転子鉄心の径方向において前記両方の永久磁石の外側端縁間距離が広く内側端縁間距離が狭くなり、前記両方の永久磁石が当該回転子鉄心の内周側に凸となる形状に設置して1つの磁極を形成し、前記磁極を前記回転子鉄心内の外周部近くに等回転角度ずつ離れた複数箇所に形成して回転子を構成しており、前記磁化手段は、前記永久磁石電動機の前記複数の磁極各々において電機子巻線の電流が作る磁界により前記低保磁力永久磁石を磁化させて当該低保磁力永久磁石の極性を反転させる磁化電流を短時間だけ流す永久磁石電動機ドライブシステムである。
本発明のまた別の特徴は、永久磁石を用いた永久磁石電動機と、前記永久磁石電動機を駆動するインバータと、前記永久磁石の磁束を制御するための磁化電流を流す磁化手段とを備え、前記永久磁石電動機は、低保磁力永久磁石と高保磁力永久磁石との2種類の永久磁石を回転子鉄心内に、当該回転子鉄心の径方向において前記両方の永久磁石の外側端縁間距離が広く内側端縁間距離が狭くなり、前記両方の永久磁石が当該回転子鉄心の内周側に凸となる形状に設置して1つの磁極を形成し、前記磁極を前記回転子鉄心内の外周部近くに等回転角度ずつ離れた複数箇所に形成して回転子を構成しており、前記磁化手段は、前記永久磁石電動機の前記複数の磁極各々において電機子巻線のd軸電流が作る磁界により前記低保磁力永久磁石を磁化させて当該低保磁力永久磁石の磁束量を不可逆的に変化させ、前記両方の永久磁石による電機子巻線の鎖交磁束量をほぼ0にする磁化電流を短時間だけ流す永久磁石電動機ドライブシステムである。
本発明のさらに別の特徴は、形状又は磁気特性の異なる2種類の永久磁石を用いて1つの磁極を形成し、複数の前記磁極で回転子を構成し、該回転子の外周にエアギャップを介して電機子を配置した永久磁石式回転電機であって、前記磁極を構成する永久磁石は、低保磁力永久磁石と高保磁力永久磁石との2種類の永久磁石を回転子鉄心内に、当該回転子鉄心の径方向において前記両方の永久磁石の外側端縁間距離が広く内側端縁間距離が狭くなり、前記両方の永久磁石が当該回転子鉄心の内周側に凸となる形状に設置して1つの磁極を形成し、前記磁極を回転子鉄心内の外周部近くに等回転角度ずつ離れた複数箇所に形成して回転子を構成した永久磁石式回転電機である。
本発明の永久磁石電動機ドライブシステムによれば、低速から高速まで広範囲な可変速運転が可能であり、従来提案のものと比較してより高速での運転が可能であり、かつ、低速回転域の高トルク化と中・高速回転域での高出力化、効率の向上、製造性の向上、信頼性の向上、材料の削減が図れる。
また、本発明の永久磁石式回転電機によれば、上記永久磁石電動機ドライブシステムに最適な永久磁石式回転電機を提供することができる。
以下、本発明の実施の形態を図に基づいて詳説する。尚、以下の各実施の形態では、8極の永久磁石式回転電機を例示しているが、他の極数でも同様に適用できる。
(第1の実施の形態)
[永久磁石式回転電機]本発明の第1の実施の形態の永久磁石式回転電機について、図1〜図5を用いて説明する。図1に示すように、本実施の形態における回転子1は、回転子鉄心2内に、保磁力と磁化方向厚みの積が小となる永久磁石3と、保磁力と磁化方向厚みの積が大となる永久磁石4とを埋め込んだ構成である。回転子鉄心2は珪素鋼板を積層して構成し、前述の永久磁石3,4は回転子鉄心2内に埋め込まれている。保磁力と磁化方向厚みの積が小となる永久磁石3はアルニコ磁石とし、回転子鉄心2の径方向断面に8個埋め込んである。この永久磁石3にはFeCrCo磁石を適用してもよいし、アルニコ磁石とフェライト磁石との複合磁石、あるいは、FeCrCo磁石とフェライト磁石との複合磁石を適用してもよい。保磁力と磁化方向厚みの積が大となる永久磁石4は、NdFeB磁石とし、回転子鉄心2の径方向断面に8個埋め込んである。
アルニコ永久磁石3とNdFeB永久磁石4との8組それぞれは、回転子1の内径側に凸の形状に設置し、両永久磁石3,4の磁化方向はともにほぼ磁石寸法の小さい方向にしてある。これらの永久磁石3,4の両端部には必要に応じて、磁石の磁束短絡と、応力緩和のための空洞5を設けてもよい。
図2に、本実施の形態で採用するアルニコ磁石(AlNiCo)、FeCrCo磁石、NdFeB磁石の磁気特性を示す。アルニコ磁石の保磁力(磁束密度が0になる磁界)は60〜120kA/mであり、NdFeB磁石の950kA/mの1/15〜1/8になる。また、FeCrCo磁石の保磁力は約60kA/mであり、NdFeB磁石の950kA/mの1/15になる。アルニコ磁石とFeCrCo磁石は、NdFeB磁石と比較してかなり低保磁力であることがわかる。本実施の形態では、保磁力と磁化方向厚みの積が小となる永久磁石3には、保磁力が120kA/mのアルニコ磁石を適用している。また、保磁力と磁化方向厚みの積が大となる永久磁石4には、保磁力が1000kA/mのNdFeB磁石を適用している。
図1と図3〜図5に示すように、同極に着磁されたアルニコ永久磁石3とNdFeB永久磁石4との中間を通る中心軸方向が主磁極でありd軸となり、逆極性となる隣りの磁極との間の補助磁極を通る中心軸方向がq軸となる。
[永久磁石電動機ドライブシステム]
図6は、本発明の第1の実施の形態の永久磁石式回転電機を電動機として回転駆動するための永久磁石電動機ドライブシステム100の制御ブロック図である。同図を説明する前に、永久磁石同期電動機(PM電動機)としての可変磁束電動機について説明する。可変磁束電動機101のイメージを図7に示す。ステータ側は従来の電動機と同様である。ロータ151側には永久磁石として、磁性体の磁束密度が固定の固定磁石FMGと、磁性体の磁束密度が可変の可変磁石VMGとがある。従来のPM電動機は、前者の固定磁石FMGのみであるのに対して、本可変磁束電動機1の特徴は、可変磁石VMGが備わっていることにある。
ここで固定磁石や可変磁石について、説明を加える。永久磁石とは、外部から電流などを流さない状態において磁化した状態を維持するものであって、いかなる条件においてもその磁束密度が厳密に変化しないというわけではない。従来のPM電動機であっても、インバータなどにより過大な電流を流すことで減磁したり、あるいは逆に着磁したりする。よって、永久磁石とは、その磁束量が一定不変なものではなく、通常の定格運転中に近い状態ではインバータ等から供給される電流によって磁束密度が概ね変化しないもののことを指す。一方、前述の磁束密度が可変である永久磁石、つまり、可変磁石とは、上記のような運転条件においてもインバータ等で流し得る電流によって磁束密度が変化するものを指す。
このような可変磁石VMGは、磁性体の材質や構造に依存してある程度の範囲で設計が可能である。例えば、最近のPM電動機は、残留磁束密度Brの高いネオジム(NdFeB)磁石を用いることが多い。この磁石の場合、残留磁束密度Brが1.2T程度と高いため、大きなトルクを小さい装置サイズにて出力可能であり、電動機の高出力小型化が求められるハイブリッド車(HEV)や電車には好適である。従来のPM電動機の場合、通常の電流によって減磁しないことが要件であるが、このネオジム磁石(NdFeB)は約1000kA/mの非常に高い保持力Hcを有しているので、PM電動機用に最適な磁性体である。PM電動機用には、残留磁束密度が大きく保磁力の大きい磁石が選定されるためである。
ここで、残留磁束密度が高く、保持力Hcの小さいアルニコAlNiCo(Hc=60〜120kA/m)やFeCrCo磁石(Hc=約60kA/m)といった磁性体を可変磁石とする。通常の電流量(インバータによって従来のPM電動機を駆動する際に流す程度の電流量という意味)によって、ネオジム磁石の磁束密度(磁束量)はほぼ一定であり、アルニコAlNiCo磁石などの可変磁石VMGの磁束密度(磁束量)は可変となる。厳密に言えば、固定磁石FMGとしているネオジム磁石も可逆領域で利用しているため、微小な範囲で磁束密度が変動するが、インバータ電流がなくなれば当初の値に戻る。他方、可変磁石VMGは不可逆領域まで利用するため、インバータ電流がなくなっても当初の値にならない。図7において、可変磁石VMGであるアルニコ磁石の磁束量も、d軸方向の量が変動するだけで、q軸方向はほぼ0である。
図8は、固定磁石FMGと可変磁石VMGのBH特性(磁束密度−磁化特性)を例示している。また、図9は、図8の第2象限のみを定量的に正しい関係にて示したものである。ネオジム磁石とアルニコ磁石の場合、それらの残留磁束密度Br1,Br2には有意差はないが、保磁力Hc1,Hc2については、ネオジム磁石(NdFeB)のHc2に対し、アルニコ磁石(AlNiCo)のHc1は1/15〜1/8、FeCrCo磁石のHc1は1/15になる。
従来の永久磁石電動機ドライブシステムにおいて、インバータの出力電流による磁化領域は、ネオジム磁石(NdFeB)の保磁力より十分に小さく、その磁化特性の可逆範囲で利用されている。しかしながら、可変磁石は、保磁力が上述のように小さいため、インバータの出力電流の範囲において、不可逆領域(電流を0にしても、電流印加前の磁束密度Bに戻らない)での利用が可能で、磁束密度(磁束量)を可変にすることができる。
可変磁束電動機1の動特性の等価簡易モデルを、(1)式に示す。同モデルは、d軸を磁石磁束方向、q軸をd軸に直行する方向として与えたdq軸回転座標系上のモデルである。
Figure 0005100169
ここに、R1は巻線抵抗、Ldはd軸インダクタンス、Lqはq軸インダクタンス、Φfixは固定磁石の磁束量、Φvarは可変磁石の磁束量、ω1はインバータ周波数である。
図6は、第1の実施の形態の永久磁石電動機ドライブシステム100の主回路100A及び制御回路100Bを示している。主回路100Aは、直流電源103、直流電力を交流電力に変換するインバータ104、このインバータ104の交流電力にて駆動される可変磁束永久磁石電動機101にて構成されている。そして、主回路100Aには、電動機電力を検出するための交流電流検出器102、電動機速度を検出するための速度検出器118が設置されている。
次に、制御回路100Bについて説明する。ここでの入力は、運転指令Run*とトルク指令Tm*である。運転指令生成部116は、運転指令Run*と保護判定部117で判断された保護信号PROTとを入力とし、運転状態フラグRunを生成出力する。基本的には、運転指令が入った場合(Run*=1)に、運転状態フラグRunを運転状態(Run=1)にし、運転指令が停止を指示した場合(Run*=0)には、運転状態フラグRunを停止状態(Run=0)にする。さらに、保護検知の場合(PROT=1)には、運転指令Run*=1であっても、運転状態は停止状態Run=0にする。
ゲート指令生成部115は、運転状態フラグRunを入力し、インバータ104に内在するスイッチング素子へのゲート指令Gstを生成出力する。このゲート指令生成部115では、運転状態フラグRunが停止(Run=0)から運転(Run=1)に変わる場合、即時にゲートスタート(Gst=1)とし、運転状態フラグRunが運転(Run=1)から停止(Run=0)に変わる場合、所定時間が経過した後に、ゲートオフ(Gst=0)にするように作用する。
磁束指令演算部112は、運転状態フラグRunとインバータ周波数ω1、すなわち、ロータ回転周波数ωRを入力として、磁束指令Φ*を、例えば次の(2)式のように生成して出力する。すなわち、運転停止(Run=0)の場合には、磁束指令Φ*を最小Φminにして、運転状態(Run=1)であって、かつ、回転周波数ωRが所定値より低い場合には、磁束指令Φ*を最大Φmaxとし、また、速度が所定値より高い場合、磁束指令Φ*を最小Φminとする。
Figure 0005100169
ここに、Φminは可変磁束電動機101として取り得る最小磁束量(>0)、Φmaxは可変磁束電動機101として取り得る最大磁束量、ωAは所定の回転周波数である。尚、磁束量のΦmin,Φmaxの設定については、後で可変磁束制御部13のところで説明する。
電流基準演算部111では、トルク指令Tm*と磁束指令Φ*とを入力として、d軸電流基準IdRとq軸電流基準IqRを次式(3),(4)のように演算する。
Figure 0005100169
同(3),(4)式は、電動機のリラクタンストルクを用いないことを想定し、電動機極数も0とした演算式である。d軸インダクタンスLdとq軸インダクタンスLqの差異ΔLがある突極形電動機であっても、差異のない非突極形の電動機であってもよい。
しかしながら、効率の最適化や所定電流での最大出力を考える場合、リラクタンストルクを考慮することが有効である。この場合、例えば、次式のように演算する。
Figure 0005100169
ここに、Kはd軸電流とq軸電流との比率であり、前述の効率最適化や最大出力等、用途によって変わる値である。最適化を図るためには関数形をとり、その引数としてトルク、速度等を用いる。また、簡易な近似やテーブル化して用いることもできる。また、(5)式の磁束指令Φ*は、後述する磁束推定値Φhを用いても、動作は可能である。
磁化要求生成部129の詳細な構成を図9に示す。この図9のブロックは、制御マイコンによって所定時間ごとに制御がなされる。磁束指令Φ*は、前回値の保持部131に入力され、その値が保持される。前回値の保持部131の出力は、前回に記憶した磁束指令Φ*であり、今回の磁束指令値Φ*と共に、変化判定部130に入力される。変化判定部130では、入力2つの変化があった場合には1を、変化がない場合には0を出力する。すなわち、磁束指令Φ*が変化した場合にのみ1が立つ。上記同様な回路を、磁束指令Φ*に代わり、運転状態フラグRunについても有し、前回値の保持部133に入力され、その値が保持される。前回値の保持部133の出力は、前回に記憶した運転状態フラグRunであり、今回の運転状態フラグRunと共に変化判定部134に入力される。2つの変化判定部130,134の出力が論理和演算部(OR)132に入力され、それらの論理和が磁化要求フラグFCreqとして出力される。
磁化要求生成部129の出力である磁化要求フラグFCreqは、磁束指令Φ*が変化した場合、あるいは、運転状態フラグRunが変化した場合に磁化要求(FCreq=1)となり、それ以外では要求なし(FCreq=0)となる。尚、運転状態フラグRunが変化する状態とは、インバータが始動するとき、停止するとき、保護で停止するときなどである。また、ここでは磁束指令Φ*を用いているが、後述する可変磁束制御部113の磁化電流指令Im*(磁化電流テーブル127の出力)の変化で磁化要求FCreqを生成してもよい。
可変磁束制御部113の詳細な構成を図10に示す。可変磁束制御部113は、磁束指令演算部112の出力である磁束指令Φ*を入力し、d軸電流基準IdRを補正するd軸磁化電流差分量ΔIdm*を出力する。この磁化電流差分量ΔIdm*の生成は、以下の演算処理による。
可変磁石VMGを磁化するためには、図8の可変磁石のBH特性に則り、所定の磁化電流指令Im*を求めればよい。特に、磁化電流指令Im*の大きさは、図8中のH1sat以上、すなわち、可変磁石の磁化飽和領域となるように設定する。
磁化飽和領域まで磁化電流を流すため、磁束指令演算部112で設定すべき磁束量ΦminやΦmaxは、可変磁石の磁束(磁束密度)がプラスないしはマイナスの最大(飽和)値に固定磁石分を加算した値として設定する。可変磁石VMGの磁束量の正の最大値をΦvarmax(負の最大値の絶対値は正の最大値と等しいとする)、固定磁石FMGの磁束量をΦfixとすれば、次式である。
Figure 0005100169
磁束指令Φ*を入力とし、対応する磁化電流を記憶した磁化電流テーブル127によって、磁束指令Φ*を得るための磁化電流指令Im*を出力する。
基本的に、磁石の磁化方向をd軸としているので、磁化電流指令Im*は、d軸電流指令Id*に与えるようにする。本実施の形態では、電流基準演算部111からの出力であるd軸電流基準IdRをd軸磁化電流指令差分ΔIdm*で補正し、d軸電流指令Id*とする構成にしているので、減算器126によってd軸磁化電流指令ΔIdm*を次式によって求める。
Figure 0005100169
尚、磁束切り替えの際には、d軸電流指令Id*に磁化電流Im*を直接与えるような構成とすることも可能である。
一方、磁化要求フラグFCreqは、磁束を切り替えたい要求の際に、少なくとも一瞬切り替え要求(FCreq=1)が立つ。磁束を確実に可変とするために、磁化要求フラグFCreqを最小オンパルス器128へと入力する。この出力である磁化完了フラグ(=1:磁化中、=0:磁化完了)は、一旦オン(=1)が入力された場合、所定の時間の間はオフ(=0)にならない機能を有する。所定時間を越えて入力がオン(=1)である場合には、それがオフとなると同時に出力もオフとなる。
切り替え器123には、磁化完了フラグが入力され、磁化中(磁化完了フラグ=1)の場合には減算器126の出力を、磁化完了(磁化完了フラグ=0)の場合には0を出力する。
電圧指令演算部110は、以上により生成されたdq軸電流指令Id*,Iq*に基づき、当該指令に一致する電流が流れるように電流制御器を含むdq軸電圧指令Vd*,Vq*を生成する。
そして電圧指令演算部110のdq軸電圧指令Vd*,Vq*を、座標変換部105にて3相電圧指令Vu*,Vv*,Vw*に変換し、この3相電圧指令によってPWM回路106がPWMにてゲート信号を生成し、インバータ104をPWM制御する。尚、座標変換部107は電流検出器102の交流検出電流Iu,Iwを2軸dq軸変換してdq軸電流検出値Id,Iqに変換して電圧指令演算部110に入力する。また、擬似微分器108は速度検出器118の信号からインバータ周波数ω1を求める。尚、電圧指令演算部110、座標変換部105,107、PWM回路106には、従来同様の公知技術が採用されている。
図11には、各信号の動作のタイミングチャートの一例が示してある。ここでは保護信号は立っていない状況(PROT=0)だが、運転状態フラグRunの変化及び磁束指令Φ*の変化にて磁化要求フラグが立ち、それを所定時間幅確保する磁化完了フラグが立ち、この磁化完了フラグの期間だけ、磁化電流指令Im*が値を持つ。
次に、このように構成された本発明の第1の実施の形態の永久磁石式回転電機及びそれを駆動する永久磁石電動機ドライブシステムの作用について説明する。一般的にアルニコ磁石はその厚みを考慮しても、NdFeB磁石の約1/8程度の磁界で着磁できる。そこで、本実施の形態では、固定子20の電機子巻線21に通電時間が極短時間(0.1ms〜10ms程度)となるパルス的な電流を流して磁界を形成し、アルニコ永久磁石3に磁界を作用させる。永久磁石3を磁化するための磁界を形成するパルス電流は固定子20の電機子巻線21のd軸電流成分とする。アルニコ永久磁石3を着磁する磁界はNdFeB永久磁石4の約1/8程度となるので、理想的にはアルニコ永久磁石3には十分な着磁磁界が作用し、NdFeB永久磁石4には着磁による不可逆減磁はない。
図3はアルニコ永久磁石3の磁束B3とNdFeB永久磁石4の磁束B4が磁極鉄心6及びエアギャップ面23で加え合せになるように着磁磁界を作用させたときの各永久磁石3,4の磁束B3,B4を示している。図3では永久磁石3,4による鎖交磁束は増加して増磁状態となる。着磁磁界は固定子20の電機子巻線21に極短時間のパルス的な電流を流して形成する。このとき通電する電流はd軸電流成分である。パルス電流はすぐに0になり、着磁磁界はなくなるが、アルニコ永久磁石3は不可逆的に変化して着磁方向に磁束を発生する。尚、図3、図4、図5での磁束分布は1極のみを示している。
図4では鎖交磁束を減少させるときの作用を示す。電機子巻線21に負のd軸電流を通電して形成する磁界Bdは図3と逆方向の磁束を発生する。
電機子巻線21の負のd軸電流により作られる磁界Bdは、回転子1の磁極6の中心からアルニコ永久磁石3とNdFeB永久磁石4に対して磁化方向とほぼ逆方向に作用している。各永久磁石3,4には図3の磁化方向とは逆方向の磁界が作用する。アルニコ永久磁石は、その保磁力と磁化方向厚みの積を小さくしているため前述の逆磁界Bdによりアルニコ永久磁石3の磁束B3は不可逆的に減少する。一方、NdFeB永久磁石4は保磁力と磁化方向厚みの積が大きいため逆磁界を受けても磁気特性は可逆範囲であり、前述の負のd軸電流による着磁磁界Bdが消えた後の磁化状態に変化はなく、磁束量も変らない。したがって、アルニコ永久磁石3のみが減磁することになり、鎖交磁束量を減少できる。
本実施の形態ではさらに大きな電流を通電させて強い逆磁界によりアルニコ永久磁石3の極性を反転させる。アルニコ永久磁石3の極性を反転させることにより、鎖交磁束を大幅に減少でき、特に鎖交磁束を0にできる。アルニコ永久磁石3の着磁磁界と磁石の厚みの積はNdFeB永久磁石4の約1/4なので、アルニコ永久磁石3のみ磁化できる磁界を作用させる。負のd軸電流により磁化(着磁)された後の状態を図5に示す。NdFeB永久磁石4の磁束B4と逆方向に発生するアルニコ永久磁石3の磁束B3とは相殺されて、各永久磁石3,4の磁束量が同じ場合ではエアギャップ磁束をほぼ0にできる。このとき、NdFeB永久磁石4の磁束は相殺されるとともにアルニコ永久磁石3との磁気回路を構成できるので、多くの磁束は回転子1内に分布する。このような作用により、エアギャップ磁束密度の磁束分布は一様に0に分布させることができる。
従来の回転電機は、電機子巻線21の負のd軸電流による磁束を発生させて回転子1の永久磁石4の磁束を相殺させると、合成の基本波磁束は50%程度までは低減できる。しかし、高調波磁束がかなり増加し、高調波電圧と高調波鉄損が生じて問題となっていた。また、鎖交磁束を0にすることは極めて困難であり、仮に基本波を0にできても高調波磁束は逆にかなり大きな値になる問題点があった。これに対して、本実施の形態の永久磁石閾回転電機の場合では、回転子1のおいて永久磁石3のみの磁束で一様に減少できるので高調波磁束は少なく、損失の増加はない。
アルニコ永久磁石3を着磁する程度の磁界であれば、NdFeB永久磁石4は可逆減磁状態であり、着磁後でもNdFeB永久磁石4は着磁前の状態の磁束を維持できる。
アルニコ永久磁石3とNdFeB永久磁石4との相互的な磁気の影響について述べる。図5の減磁状態では、NdFeB永久磁石4の磁界はアルニコ永久磁石3にバイアス的な磁界として作用し、負のd軸電流による磁界とNdFeB永久磁石4による磁界とがアルニコ永久磁石3に作用して磁化し易くなる。
また、アルニコ磁石の保磁力と磁化方向厚みの積がNdFeB磁石の無負荷時の動作点における磁界の強さと磁化方向厚みの積に等しいか、それ以上にすることにより鎖交磁束の増磁状態においてNdFeB磁石の磁界に打ち勝ち、磁束量を発生する
以上より、本発明の回転電機はd軸電流によりアルニコ磁石3の鎖交磁束量を最大から0まで大きく変化でき、また磁化方向も正逆方向の両方向にできる。すなわち、NdFeB磁石4の鎖交磁束を正方向とすると、アルニコ磁石3の鎖交磁束を正方向の最大値から0、さらには逆方向の最大値まで広範囲に調整することができる。
したがって、本実施の形態では、アルニコ永久磁石3をd軸電流で磁化させることによりアルニコ永久磁石3の磁束B3とNdFeB永久磁石4の磁束B4を合わせた全鎖交磁束量を広範囲に調整することができる。低速域では、アルニコ永久磁石3はNdFeB永久磁石4の鎖交磁束と同方向(前述の図3で示した増磁状態)で最大値になるようにd軸電流で磁化する。永久磁石3,4によるトルクは最大になるので、回転電機のトルク及び出力は最大にすることができる。中・高速域では、アルニコ永久磁石3の磁束量B3を低下させ(図5の減磁状態)、全鎖交磁束量を下げる。これにより回転電機の電圧は下がるので、電源電圧の上限値に対して余裕ができ、回転速度(周波数)をさらに高くすることが可能となる。最高速度を著しく高くするとき(可変速範囲をさらに拡大、例えば基底速度の5倍以上の可変速運転の範囲)はアルニコ永久磁石3はNdFeB永久磁石4の鎖交磁束と逆方向になるように磁化させる(アルニコ永久磁石3の磁束B3の向きは図5の状態で磁化は最大とする)。永久磁石3,4の全鎖交磁束は、NdFeB永久磁石4の磁束B4とアルニコ永久磁石3の磁束B3との鎖交磁束の差となり、最も小さくできる。回転電機の電圧も最小となるので回転速度(周波数)を最高値まで上げることができる。これらにより、本実施の形態の永久磁石式回転電機では、高出力で低速回転から高速回転まで広範囲の可変速運転が実現できる。また、本実施の形態の永久磁石式回転電機では、鎖交磁束を変化させるときの着磁電流は極短時間のみ流すので損失を著しく低減でき、広い運転範囲で高効率となる。
次に、本実施の形態において、トルク電流の影響について述べる。本実施の形態の永久磁石式回転電機が出力を発生するときは、固定子20の電機子巻線21にq軸電流を流すことにより、q軸電流と永久磁石3,4の磁束B3,B4との磁気作用でトルクを発生させる。このときq軸電流による磁界が発生する。しかし、アルニコ永久磁石3はq軸磁束と概ね直角な方向であることから、アルニコ永久磁石3の磁化方向とq軸電流による磁界とは概ね直交することになり、q軸電流による磁界の影響はわずかとなる。
次に、本実施の形態において、永久磁石3,4の両端部にある空洞5の役目について述べる。空洞5は、永久磁石3,4による遠心力が回転子鉄心2に作用した時の回転子鉄心2への応力集中と減磁界を緩和する。図1に示したように、永久磁石3,4の両端部に空洞5を設けることにより、回転子鉄心2は曲率のついた形状にでき、応力が緩和できる。また、空洞がない場合、電流による磁界が永久磁石3,4の角部に集中して減磁界が作用し、角部が不可逆減磁する。ところが、本実施の形態では永久磁石3,4の両端部に空洞5を設けているため、永久磁石3,4の端部の電流による減磁界が緩和できる。
さらに、本実施の形態の回転子1の構造的強度について説明する。保磁力と磁化方向厚みの積が小となる永久磁石3を、回転子1の中心軸を通る径方向に対して傾けた方向に磁石長手方向を設置している。このため、永久磁石3に働く遠心力を磁石厚み方向の狭幅の鉄心部だけでなくて磁石長手方向の広幅の鉄心部分でも支持でき、遠心力を分散支持することができる。これにより、本実施の形態では、永久磁石3を回転子鉄心2の外周部近くに設置することができ、トルクを増大できる等、磁石設置の設計に自由度が増し、高速回転に対する適切な裕度を確保することができ、従来より高速回転が可能となり、信頼性が向上し、材料の削減と製造性の向上も可能となる。また、回転子2の内径を図示のように大きくすることも可能となる。
このように、本発明の実施の形態の永久磁石式回転電機によれば、次のような効果が得られる。NdFeB永久磁石4の鎖交磁束B4を正方向とすると、アルニコ永久磁石3の鎖交磁束B3を正方向の最大値から0、さらには逆方向の最大値まで広範囲に調整することができる。したがって、本実施の形態の永久磁石式回転電機によれば、アルニコ永久磁石3をd軸電流で磁化させることによりアルニコ永久磁石3とNdFeB永久磁石4を合わせた全鎖交磁束量を広範囲に調整することができる。また、永久磁石3,4の全鎖交磁束量の調整は回転電機の電圧を広範囲に調整することを可能とし、また、着磁は極短時間のパルス的な電流で行うので、常時弱め磁束電流を流し続ける必要がなくて損失を大幅に低減できる。また、従来のように弱め磁束制御を行う必要がないので高調波磁束による高調波鉄損も発生しない。以上より、本実施の形態の永久磁石式回転電機によれば、高出力で低速から高速まで広範囲な可変速運転が可能であり、広い運転範囲において高効率も可能となる。
また、本実施の形態の永久磁石式回転電機によれば、永久磁石3による誘導電圧に関しては、アルニコ永久磁石3をd軸電流で着磁して永久磁石3,4による全鎖交磁束量を小さくできるので、永久磁石3の誘導電圧によるインバータ電子部品の破損がなくなり、信頼性が向上する。
また、本実施の形態の永久磁石式回転電機によれば、回転子1が無負荷で連れ回される状態では、アルニコ永久磁石3を負のd軸電流で着磁して永久磁石3,4の全鎖交磁束量を小さくでき、これより、誘導電圧は著しく低くなり、誘導電圧を下げるための弱め磁束電流を常時通電する必要がほとんどなくなり、総合効率が向上する。特に惰行運転時間が長くなる通勤電車に本発明の回転電機を搭載して駆動すると、総合運転効率は大幅に向上する。
さらに、本実施の形態の永久磁石式回転電機によれば、回転子の構造的強度について、保磁力と磁化方向厚みの積が小となる永久磁石3を回転子1の中心軸を通る径方向から傾けた方向に磁石長手方向が位置するように設置しているため、永久磁石3に働く遠心力を、磁石厚み方向の狭幅の鉄心部だけでなく、磁石長手方向の広幅の鉄心部分でも支持できて遠心力を分散支持することができ、永久磁石の位置を回転子鉄心2の外周部近くに設置してトルクを増大できる等、磁石設置の設計に自由度が増し、従来より高速回転が可能となり、高速回転に対する適切な裕度を確保することもできて信頼性が向上し、材料の削減と製造性の向上も図れる。また、図示のように回転子内径を大きくすることも可能となる。
(第2の実施の形態)本発明の第2の実施の形態の永久磁石式回転電機について、図12を用いて説明する。本実施の形態における回転子1は、回転子鉄心2内に、保磁力と磁化方向厚みの積が小となる永久磁石3と、保磁力と磁化方向厚みの積が大となる永久磁石4とを埋め込んだ構成であるが、永久磁石3として永久磁石4によりも断面積が大きい、したがって体積が大きいものを採用したことを特徴とする。尚、図12において、図1に示した第1の実施の形態と共通する要素に共通の符号を付して示してある。
本実施の形態の永久磁石式回転電機に対しても、第1の実施の形態と同様に図6に示した永久磁石電動機ドライブシステムにて駆動する。
本実施の形態にあっても、回転子鉄心2は珪素鋼板を積層して構成し、前述の永久磁石3,4は回転子鉄心2内に埋め込まれている。保磁力と磁化方向厚みの積が小となる永久磁石3はアルニコ磁石である。しかし、この永久磁石3にはFeCrCo磁石を適用してもよいし、アルニコ磁石とフェライト磁石との複合磁石、あるいは、FeCrCo磁石とフェライト磁石との複合磁石を適用してもよい。保磁力と磁化方向厚みの積が大となる永久磁石4はNdFeB磁石である。これらのアルニコ永久磁石3とNdFeB永久磁石4との8組それぞれは、回転子1の内径側に凸の形状に設置し、両永久磁石3,4の磁化方向はともにほぼ磁石寸法の小さい方向にしてある。これらの永久磁石3,4の両端部には必要に応じて、磁石の磁束短絡と、応力緩和のための空洞5を設けてもよい。
また、本発明では、主たる回転方向に対して、後方の磁石にNdFeB磁石4を配したが、こうすることにより、トルク発生時に回転方向に対して後方の磁石に発生する高磁界でも減磁界しにくくなりさらに信頼性が向上する。
(第3の実施の形態)本発明の第3の実施の形態としての永久磁石電動機ドライブシステム200について、図13〜図15を用いて説明する。本実施の形態の永久磁石電動機ドライブシステムは、上記第1の実施の形態のドライブシステムに代えて、第1の実施の形態の永久磁石式回転電機乃至第2の実施の形態の永久磁石式回転電機の駆動制御に適用できる。尚、図13において、図6に示した第1の実施の形態のドライブシステムと共通の要素には同一の符号を付して示してある。
本実施の形態の可変磁束永久磁石電動機ドライブシステム200は、図1に示した第1の実施の形態に対して、電圧指令演算部110の出力する電圧指令Vd*,Vq*と座標変換部107の出力するdq軸電流Id,Iqとロータ回転角周波数ω1を用いて磁束Φhを推定し、可変磁束制御部113に出力する磁束推定部109を追加的に備え、また可変磁束制御部113が図14の構成を備えたことを特徴とする。
磁束推定部109は、dq軸電圧指令Vd*,Vq*とdq軸電流Id,Iq、ロータ回転角周波数ω1(インバータ周波数)に基づき、次式によってd軸磁束量を推定する。
Figure 0005100169
磁束推定値Φhは、磁束指令演算部112からの磁束指令Φ*と共に可変磁束制御部113に入力される。
本実施の形態における可変磁束制御部113の詳細な構成を図14に示す。減算器119にて磁束指令Φ*と磁束推定値Φhとの偏差が演算され、同偏差はPI制御器120に入力される。また、磁束指令Φ*は磁化電流基準演算部121に入力される。磁化電流基準演算部121は、磁束指令Φ*に応じた磁束に磁化されるように、磁化電流指令Im*をテーブルを利用して算定し、あるいは関数式に当てはめて算定する。この特性は、前述のBH特性に基づき算定する。加算器122において、磁化電流基準演算部121の出力とPI制御部120の出力とを加算する。
この加算器122が磁化電流指令Im*になる。磁化するためには、この磁化電流指令Im*をd軸電流指令Id*として与える。よって、本実施の形態の構成上、Id*がIm*と一致するように、減算器126にて磁化電流指令Im*からd軸電流基準IdRを減算し、d軸磁化電流指令差分値ΔIdm*を算出する。これにより、図13における加算器114にてd軸電流基準IdRと加算されるため、d軸電流指令Id*が磁化電流Im*と一致する。
可変磁束制御部113における切り替え器123では、後述の磁化完了フラグに基づき、2つの入力を選択して、磁化電流指令Idm*として選択して出力する。磁化完了フラグ=0(磁化完了)の場合、d軸磁化電流指令差分ΔIdm*=0とする。また、磁化完了フラグ=1(磁化中)である場合、加算器122の出力をΔIdm*として出力する。
減算器119の出力である磁束指令Φ*と磁束推定値Φhとの偏差は、磁化完了判定部124へと入力される。この磁化完了判定部124では、例えば磁束偏差の絶対値が所定値αより小さい場合には1を出力し、αより大きい場合には0を出力する。フリップフロップ(RS−FF)125は、セットSへの入力に磁化要求フラグFCreqを、リセットR側に磁化完了判定部124の出力を入力する。このRS−FF125の出力が磁化完了フラグであり、PI制御部120と切り替え器123とに入力される。この磁化完了フラグが0であれば磁化完了、1であれば磁化中であることを示す。
また、磁束推定部109の出力である磁束推定値Φhは電流基準演算部111にも入力される。電流基準演算部111では、第1の実施の形態での演算式での磁束指令Φ*に代え、磁束推定値Φhによってdq軸電流基準IdR,IqRを次式にて求める。
Figure 0005100169
以上の構成により、本実施の形態は、次のような作用効果を奏する。磁化要求があった場合、磁化要求フラグ=1が少なくとも一瞬立つ。RS−FF125がセットされることで、磁化完了フラグ=1、すなわち磁化中になる。切り替え器123がPI制御器120及び磁化電流基準演算部121からの出力を磁化電流指令Im*として出力するようになる。この磁化電流基準演算部121は、磁束指令Φ*に磁化されるように、事前に把握しているBH特性に基づく磁化電流をフィードフォワード的に与えることになる。これにより、指令値の近傍まで瞬時に磁化することができ、磁化に要する時間が低減されるため、不要なトルクの発生や損失の発生を抑えることができる。尚、BH特性は、予め実験的に求めたものを用いることもできる。
しかしながら、前述のように、厳密に磁束を所定値に一致させることは困難である。そこで、本実施の形態では、図15に示すように、可変磁束制御部113におけるPI制御器120の作用により磁束の偏差が0に近づくように磁化電流Im*を補正していく。これにより、最終的には磁束指令Φ*と磁束推定値Φh(すなわち、推定誤差がなければ実磁束)とが一致することになる。このため、磁化処理における磁束量の繰り返しの精度が向上し、トルク精度が向上できる。
また、本実施の形態では、図15に示すように、可変磁束制御部113における磁化完了判定部124で、磁束偏差の絶対値が所定値α以内となったことで事実上磁束は一致し磁化が完了したとして出力を1にし、RS−FF125はこのリセット要求を受けて、出力である磁化完了フラグを0にする。よって、確実に磁束推定値がその指令である磁束指令Φ*に一致したことをもって磁化処理を完了することができる。これにより、本実施の形態によれば、磁化処理における磁束量の繰り返し精度が向上し、トルク精度の向上が期待できる。
また、本実施の形態によれば、dq軸電流基準IdR,IqRの生成に電圧電流より推定された磁束推定値Φhを用いるため、仮に磁化処理によって磁束量にばらつきが生じても実態に応じてdq軸電流指令が補正される。そしてこの指令に応じてdq軸電流が流れるため、可変磁束量のばらつきがトルクに与える影響を低減することが可能であり、トルク精度が向上する。
尚、本実施の形態では、磁束推定値に基づき構成しているが、磁束推定器には、LdやLqなどのモータインダクタンスが含まれる。これらの値は磁気飽和によって変動するが、特に可変磁束モータでは磁気飽和が可変磁束量によって大きく変動する。よって、可変磁束の推定値を入力として、モータインダクタンスを出力する関数あるいはテーブルを備えることは、磁束推定精度、ひいてはトルク精度の向上に有益である。
また、上述のようにテーブル化しても、インダクタンスの特性を精度良く把握することが困難な場合もある。その場合、磁束を推定する代わり、ホール素子などによって構成される磁束検出器を備え、検出された実磁束Φrを上記の磁束推定値Φhの代わりに用いることで、より一層の磁束推定精度の向上、ひいてはトルク精度の向上が図れる。
(第4の実施の形態)本発明の第4の実施の形態の永久磁石式回転電機について説明する。本実施の形態では、永久磁石は、保磁力と磁化方向厚みの積が小となる永久磁石3、保磁力と磁化方向厚の積が大となる永久磁石4とから構成する。そして、最高回転速度時において、永久磁石4が発生する逆起電圧が回転電機の電源であるインバータ電子部品の耐電圧以下になる構成とする。
永久磁石による逆起電圧は回転速度に比例して高くなる。この逆起電圧がインバータの電子部品に印加し、電子部品の耐電圧以上になると電子部品が絶縁破壊する。そのため、従来の永久磁石回転電機では設計時に耐電圧により永久磁石の逆起電圧が制限され、永久磁石の磁束量が削減され、モータの低速域での出力及び効率が低下していた。
これに対して、本実施の形態の永久磁石式回転電機では、高速回転時になると負のd軸電流により減磁方向の磁界で永久磁石を不可逆的に磁化させて永久磁石3の磁束を0近傍まで小さくする。これによって永久磁石3による逆起電圧はほぼ0にできるので、磁束量を調整できない永久磁石4による逆起電圧を最高回転速度で耐電圧以下にすればよい。すなわち、永久磁石4のみの磁束量を耐電圧以下になるまで小さくすることになる。一方、低速回転時では、最大の磁束量となるように磁化された永久磁石3と永久磁石4による鎖交磁束量は増加できる。さらには、実用上では、最高速域では永久磁石3が低速時とは逆方向に磁化されることになるので、総鎖交磁束量は永久磁石4のみの鎖交磁束よりも小さくなる。すなわち、本実施の形態の回転電機においては、高速時の逆起電圧は永久磁石4のみによる逆起電圧よりも小さくなり、実質的には耐電圧と許容最高回転数は十分な余裕ができる。
以上より、本実施の形態の永久磁石式回転電機では、低速回転時での高出力と高効率を維持しながら、高速回転時の逆起電圧を抑制でき、インバータを含めたシステムの信頼性を高めることができる。
本発明の第1の実施の形態の永久磁石式回転電機の断面図。 上記実施の形態において回転子に採用した低保磁力の永久磁石と高保磁力の永久磁石の磁気特性のグラフ。 上記実施の形態におけるd軸電流で永久磁石を不可逆的に磁化して増磁状態にしたときの永久磁石の磁束(鎖交磁束が最大)を示す断面図。 上記実施の形態における負のd軸電流による減磁磁界の磁束を示す断面図。 上記実施の形態における負のd軸電流による減磁磁界が作用した後の永久磁石の磁束(鎖交磁束が最小)を示す断面図。 本発明の第1の実施の形態の永久磁石電動機ドライブシステムのブロック図。 可変磁束永久磁石電動機の簡易モデル図。 上記実施の形態の永久磁石式回転電機のBH特性図。 上記実施の形態の永久磁石電動機ドライブシステムにおける磁化要求生成部の内部構成を示すブロック図。 上記実施の形態の永久磁石電動機ドライブシステムにおける可変磁束制御部の内部構成を示すブロック図。 上記実施の形態の永久磁石電動機ドライブシステムによる電動機制御のタイミングチャート。 本発明の第2の実施の形態の永久磁石式回転電機における回転子の断面図。 本発明の第3の実施の形態の永久磁石電動機ドライブシステムのブロック図。 上記実施の形態の永久磁石電動機ドライブシステムにおける可変磁束制御部の内部構成を示すブロック図。 上記実施の形態の永久磁石電動機ドライブシステムによる電動機制御のタイミングチャート。 従来の埋め込み型永久磁石電動機における回転子の断面図。
符号の説明
1… 回転子
2… 回転子鉄心
3… 保磁力と磁化方向厚みの積が小となる永久磁石
4… 保磁力と磁化方向厚みの積が大となる永久磁石
5… 空洞
6… 磁極鉄心
100,200…永久磁石電動機ドライブシステム
100A…主回路
100B…制御回路
101…永久磁石電動機
104…インバータ

Claims (15)

  1. 永久磁石を用いた永久磁石電動機と、前記永久磁石電動機を駆動するインバータと、前記永久磁石の磁束を制御するための磁化電流を流す磁化手段とを備え、
    前記永久磁石電動機は、低保磁力永久磁石と高保磁力永久磁石との2種類の永久磁石を回転子鉄心内に、当該回転子鉄心の径方向において前記両方の永久磁石の外側端縁間距離が広く内側端縁間距離が狭くなり、前記両方の永久磁石が当該回転子鉄心の内周側に凸となる形状に設置して1つの磁極を形成し、前記磁極を前記回転子鉄心内の外周部近くに等回転角度ずつ離れた複数箇所に形成して回転子を構成しており、
    前記磁化手段は、前記永久磁石電動機の前記複数の磁極各々において磁化電流を短時間だけ流し、これにより発生する電機子巻線の電流が作る磁界により、前記高保磁力永久磁石の磁束量は不可逆的に変化させないが、前記低保磁力永久磁石を磁化させて当該低保磁力永久磁石の磁束量を不可逆的に変化させることを特徴とする永久磁石電動機ドライブシステム。
  2. 永久磁石を用いた永久磁石電動機と、前記永久磁石電動機を駆動するインバータと、前記永久磁石の磁束を制御するための磁化電流を流す磁化手段とを備え、
    前記永久磁石電動機は、低保磁力永久磁石と高保磁力永久磁石との2種類の永久磁石を回転子鉄心内に、当該回転子鉄心の径方向において前記両方の永久磁石の外側端縁間距離が広く内側端縁間距離が狭くなり、前記両方の永久磁石が当該回転子鉄心の内周側に凸となる形状に設置して1つの磁極を形成し、前記磁極を前記回転子鉄心内の外周部近くに等回転角度ずつ離れた複数箇所に形成して回転子を構成しており、
    前記磁化手段は、前記永久磁石電動機の前記複数の磁極各々において磁化電流を短時間だけ流し、これにより発生する電機子巻線の電流が作る磁界により、前記高保磁力永久磁石の磁束量は不可逆的に変化させないが、前記低保磁力永久磁石を磁化させて当該低保磁力永久磁石の極性を反転させることを特徴とする永久磁石電動機ドライブシステム。
  3. 永久磁石を用いた永久磁石電動機と、前記永久磁石電動機を駆動するインバータと、前記永久磁石の磁束を制御するための磁化電流を流す磁化手段とを備え、
    前記永久磁石電動機は、低保磁力永久磁石と高保磁力永久磁石との2種類の永久磁石を回転子鉄心内に、当該回転子鉄心の径方向において前記両方の永久磁石の外側端縁間距離が広く内側端縁間距離が狭くなり、前記両方の永久磁石が当該回転子鉄心の内周側に凸となる形状に設置して1つの磁極を形成し、前記磁極を前記回転子鉄心内の外周部近くに等回転角度ずつ離れた複数箇所に形成して回転子を構成しており、
    前記磁化手段は、前記永久磁石電動機の前記複数の磁極各々において磁化電流を短時間だけ流し、これにより発生する電機子巻線の電流が作る磁界により、前記高保磁力永久磁石の磁束量は不可逆的に変化させないが、前記低保磁力永久磁石を磁化させて当該低保磁力永久磁石の磁束量を不可逆的に変化させ、前記両方の永久磁石による電機子巻線の鎖交磁束量をほぼ0にすることを特徴とする永久磁石電動機ドライブシステム。
  4. 請求項1に記載の永久磁石電動機ドライブシステムにおいて、
    前記永久磁石電動機は、前記回転子の各磁極を形成する低保磁力永久磁石と高保磁力永久磁石の磁束が加え合わせになり、かつ隣り合う磁極同士では相逆の極性となるように前記低保磁力永久磁石と高保磁力永久磁石を配置し、
    前記磁化手段は、前記電機子巻線の電流が作る磁界により前記低保磁力永久磁石を磁化させて両方の永久磁石による鎖交磁束量を不可逆的に減少させ、また減少後に前記電機子巻線の電流が作る磁界を前記磁界とは逆方向に発生させて前記低保磁力永久磁石を磁化させて両方の永久磁石による鎖交磁束量を不可逆的に増加させることを特徴とする永久磁石電動機ドライブシステム。
  5. 請求項2に記載の永久磁石電動機ドライブシステムにおいて、
    前記永久磁石電動機は、前記回転子の各磁極を形成する低保磁力永久磁石と高保磁力永久磁石の磁束が加え合わせになり、かつ隣り合う磁極同士では相逆の極性となるように前記低保磁力永久磁石と高保磁力永久磁石を配置し、
    前記磁化手段は、前記電機子巻線の電流が作る磁界により前記低保磁力永久磁石を磁化させてその極性を反転させ、また反転後に前記電機子巻線の電流が作る磁界を前記磁界とは逆方向に発生させてさらに前記低保磁力永久磁石の極性を反転させて元の極性にすることを特徴とする永久磁石電動機ドライブシステム。
  6. 前記磁化手段は、d軸電流による磁界で前記低保磁力永久磁石を磁化させてその磁束量を不可逆的に変化させるか、前記磁界で前記低保磁力永久磁石の極性を反転させ、さらにq軸電流によりトルクを制御することを特徴とする請求項1〜5のいずれかに記載の永久磁石電動機ドライブシステム。
  7. 前記磁化手段は、前記永久磁石電動機の運転時にd軸電流による磁界で前記低保磁力永久磁石を磁化させてその磁束量を不可逆的に変化させ、若しくは前記低保磁力永久磁石の極性を反転させる動作と、d軸電流で生じる磁束により電流と前記両方の永久磁石で生じる電機子巻線の鎖交磁束量をほぼ可逆的に変化させる動作とを選択的に実行することを特徴とする請求項1〜6のいずれかに記載の永久磁石電動機ドライブシステム。
  8. 前記磁化手段は、前記永久磁石電動機の最大トルク時には各磁極の前記両方の永久磁石の磁束が加え合わせになるように前記低保磁力永久磁石を磁化させ、トルクの小さな軽負荷時や中速回転域と高速回転域では、前記低保磁力永久磁石を電流による磁界で磁化させてその磁束を減少させるか、又はその極性を反転させることを特徴とする請求項1〜6のいずれかに記載の永久磁石電動機ドライブシステム。
  9. 前記永久磁石電動機は、前記複数の磁極各々において前記低保磁力永久磁石を前記高保磁力永久磁石からバイアス的な磁界が作用するように配置したことを特徴とする請求項1〜8のいずれかに記載の永久磁石電動機ドライブシステム。
  10. 請求項6又は8に記載の永久磁石電動機ドライブシステムにおいて、前記複数の磁極各々の中で前記低保磁力永久磁石は、前記高保磁力永久磁石の無負荷時の動作点における磁界の強さと磁化方向厚みの積にほぼ等しいか又はそれ以上としたことを特徴とする永久磁石電動機ドライブシステム。
  11. 形状又は磁気特性の異なる2種類の永久磁石を用いて1つの磁極を形成し、複数の前記磁極で回転子を構成し、該回転子の外周にエアギャップを介して電機子を配置した永久磁石式回転電機であって、
    前記磁極を構成する永久磁石は、低保磁力永久磁石と高保磁力永久磁石との2種類の永久磁石であり、
    前記低保磁力永久磁石と高保磁力永久磁石とは、回転子鉄心内に、当該回転子鉄心の径方向において前記両方の永久磁石の外側端縁間距離が広く内側端縁間距離が狭くなり、前記両方の永久磁石が当該回転子鉄心の内周側に凸となる形状に設置して1つの磁極を形成し、前記磁極を回転子鉄心内の外周部近くに等回転角度ずつ離れた複数箇所に形成して前記回転子を構成しており、
    前記低保磁力永久磁石は、電機子巻線に流される短時間の磁化電流が作る磁界により磁化されてその磁束量を不可逆的に変化するものであり、
    前記高保磁力永久磁石は、前記短時間の磁化電流が作る磁界により磁化されてその磁束量を不可逆的に変化しないものであることを特徴とする永久磁石式回転電機。
  12. 前記複数の磁極各々において、主たる回転方向に対して後方となる位置に前記高保磁力永久磁石を配置としたことを特徴とする請求項11に記載の永久磁石式回転電機。
  13. 請求項12に記載の永久磁石式回転電機において、前記高保磁力永久磁石として、Dy元素をほとんど含まないNdFeB系の永久磁石を用いたことを特徴とする永久磁石式回転電機。
  14. 請求項12又は13に記載の永久磁石式回転電機において、前記回転子が最高回転速度になったときの前記高保磁力永久磁石による逆起電圧は、電源インバータの電子部品の耐電圧以下にしたことを特徴とする永久磁石式回転電機。
  15. 請求項12〜14のいずれかに記載の永久磁石式回転電機において、前記回転子を前記電機子に挿入して組み立てる時は、前記低保磁力永久磁石による磁束と、前記高保磁力永久磁石による磁束とが前記磁極又はエアギャップ面で互いに逆方向となるようにしたことを特徴とする永久磁石式回転電機。
JP2007079321A 2007-03-26 2007-03-26 永久磁石式回転電機及び永久磁石電動機ドライブシステム Active JP5100169B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007079321A JP5100169B2 (ja) 2007-03-26 2007-03-26 永久磁石式回転電機及び永久磁石電動機ドライブシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007079321A JP5100169B2 (ja) 2007-03-26 2007-03-26 永久磁石式回転電機及び永久磁石電動機ドライブシステム

Publications (2)

Publication Number Publication Date
JP2008245367A JP2008245367A (ja) 2008-10-09
JP5100169B2 true JP5100169B2 (ja) 2012-12-19

Family

ID=39916043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007079321A Active JP5100169B2 (ja) 2007-03-26 2007-03-26 永久磁石式回転電機及び永久磁石電動機ドライブシステム

Country Status (1)

Country Link
JP (1) JP5100169B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021027700A (ja) * 2019-08-05 2021-02-22 国立大学法人北海道大学 可変磁力モータ

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5225046B2 (ja) * 2008-12-03 2013-07-03 株式会社東芝 可変磁束モータドライブシステム
JP5334295B2 (ja) * 2008-12-25 2013-11-06 東芝キヤリア株式会社 永久磁石電動機及び密閉型圧縮機
JP5305933B2 (ja) * 2009-01-15 2013-10-02 株式会社東芝 モータドライブシステム
JP5248382B2 (ja) * 2009-03-23 2013-07-31 株式会社東芝 永久磁石モータ、モータ制御システム、及び、洗濯機
JP5209557B2 (ja) * 2009-03-27 2013-06-12 株式会社東芝 永久磁石モータおよび洗濯機
JP4799653B2 (ja) * 2009-09-15 2011-10-26 株式会社東芝 ロータ位置検出装置
JP2011142752A (ja) * 2010-01-07 2011-07-21 Toshiba Corp ゲートドライブ回路
JP2011167055A (ja) * 2010-01-14 2011-08-25 Yaskawa Electric Corp 永久磁石形同期回転電機の回転子、当該永久磁石形同期回転電機、当該永久磁石形同期回転電機を用いた車両、昇降機、流体機械、または加工機
CA2828527C (en) 2011-02-28 2016-09-13 Uqm Technologies Inc. Brushless pm machine construction enabling low coercivity magnets
JP5714548B2 (ja) * 2011-12-22 2015-05-07 ヤマハ発動機株式会社 回転電気機械
CN107359716A (zh) * 2017-07-12 2017-11-17 中国北方车辆研究所 一种混合励磁电机转子
CN114513106B (zh) * 2022-01-24 2024-01-30 国网河南省电力公司电力科学研究院 一种基于pwm思想的永磁同步直线电机磁极结构设计方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3334149A1 (de) * 1983-09-21 1985-04-04 Siemens AG, 1000 Berlin und 8000 München Ueber einen umrichter gespeiste, dauermagneterregte maschine
JPH07336980A (ja) * 1994-06-01 1995-12-22 Nippondenso Co Ltd ブラシレスdcモータ
JPH08275599A (ja) * 1995-03-30 1996-10-18 Meidensha Corp 永久磁石同期電動機の制御方法
JP3607137B2 (ja) * 1999-10-21 2005-01-05 アイチエレック株式会社 永久磁石埋め込み回転子
JP5398103B2 (ja) * 2005-03-01 2014-01-29 株式会社東芝 永久磁石式回転電機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021027700A (ja) * 2019-08-05 2021-02-22 国立大学法人北海道大学 可変磁力モータ
JP7284503B2 (ja) 2019-08-05 2023-05-31 国立大学法人 岡山大学 可変磁力モータ

Also Published As

Publication number Publication date
JP2008245367A (ja) 2008-10-09

Similar Documents

Publication Publication Date Title
JP5100169B2 (ja) 永久磁石式回転電機及び永久磁石電動機ドライブシステム
JP5134846B2 (ja) 永久磁石電動機ドライブシステム
JP5161612B2 (ja) 永久磁石式回転電機、永久磁石式回転電機の組立方法及び永久磁石式回転電機の分解方法
JP4936820B2 (ja) 可変磁束ドライブシステム
WO2009104553A1 (ja) 永久磁石式回転電機、永久磁石式回転電機の組立方法、永久磁石式回転電機の分解方法及び永久磁石電動機ドライブシステム
EP2865078B1 (en) Variable magnetomotive force rotary electric machine and control device for variable magnetomotive force rotary electric machine
JP4640422B2 (ja) ランデルロータ型モータ
JP5812476B2 (ja) 永久磁石回転電機及びその運転方法
JP2011061933A (ja) 永久磁石式回転電機
Ibrahim et al. Design of hybrid variable flux motors for enhanced wide-speed performance
JP2005304204A (ja) 永久磁石型同期モータおよび駆動装置
JP2014007853A (ja) 電動機
JP5492178B2 (ja) 可変磁束ドライブシステム
Chen et al. FEA-based mathematical modeling and simulation for IPMSM Drive with Consideration of Saturation and Cross-Coupling Influence
JP5390314B2 (ja) 永久磁石式回転電機
JP5225046B2 (ja) 可変磁束モータドライブシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5100169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3