JP5099629B2 - 磁気浮上装置 - Google Patents

磁気浮上装置 Download PDF

Info

Publication number
JP5099629B2
JP5099629B2 JP2007275354A JP2007275354A JP5099629B2 JP 5099629 B2 JP5099629 B2 JP 5099629B2 JP 2007275354 A JP2007275354 A JP 2007275354A JP 2007275354 A JP2007275354 A JP 2007275354A JP 5099629 B2 JP5099629 B2 JP 5099629B2
Authority
JP
Japan
Prior art keywords
excitation voltage
value
magnetic levitation
unit
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007275354A
Other languages
English (en)
Other versions
JP2009106071A (ja
Inventor
明平 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Elevator and Building Systems Corp
Original Assignee
Toshiba Elevator Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Elevator Co Ltd filed Critical Toshiba Elevator Co Ltd
Priority to JP2007275354A priority Critical patent/JP5099629B2/ja
Priority to CN200810170723.0A priority patent/CN101417619B/zh
Priority to US12/256,117 priority patent/US7929268B2/en
Priority to MYPI20084230A priority patent/MY146295A/en
Publication of JP2009106071A publication Critical patent/JP2009106071A/ja
Application granted granted Critical
Publication of JP5099629B2 publication Critical patent/JP5099629B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • B60L13/06Means to sense or control vehicle position or attitude with respect to railway
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Description

本発明は、常電導吸引式磁気浮上により浮上体を非接触で支持する磁気浮上装置に関する。
常電導吸引式磁気浮上装置は、騒音や発塵がなく、HSST(High Speed Surface Transport:超高速地表輸送機)やトランスラピッド等の鉄道や半導体工場でのクリーンルーム内搬送システムで、既に実用化が図られている。また、このような磁気浮上装置をエレベータの乗りかごの案内装置に適用することや(特許文献1参照)、ドアへ適用することが試みられている(特許文献2参照)。
この磁気浮上装置は、電磁石を強磁性部材に対向させ、電磁石の励磁によって強磁性部材との間に生じる吸引力を利用して浮上体を浮上させる。このため、基本的に磁気浮上系が不安定であり、それを安定化させるための対策が必要となる。一般的には、ギャップセンサにより浮上体のギャップ長を検出し、それを駆動系へフィードバック制御することで安定化を図っている。
しかし、ギャップセンサにてギャップ長を検出する場合、ギャップセンサから安定した信号を得ることが必要となる。その際、強磁性部材に付随して敷設されるセンサターゲットを適切に管理しないと、センサ信号にギャップ長検出時のノイズが重畳し、浮上制御に影響を与える。このため、浮上体や強磁性部材を支持する構造物に振動が発生することが避けられなかった。
前記センサターゲットとは、例えばエレベータであれば、乗りかごを支えるガイドレールである。乗りかごに磁気浮上装置を設置し、乗りかごをガイドレールから浮上させて移動させる。その際、ガイドレールの継ぎ目でギャップセンサの信号が乱れ、乗りかごを加振してしまうことがある。
このように、磁気浮上系の安定化を図るためには、センサターゲットの適切な管理が必要であり、そのためのコストが余分にかかるといった問題があった。また、浮上体に対する共振防止対策が必要となるために、システムが大型化・複雑化するといった問題があった。
こうした問題を解決するため、ギャップセンサを必要としない様々な手法が提案されている。
例えば、電磁石の励磁電流からオブザーバ(状態観測器)によりギャップ長を推定する方法(非特許文献3参照)や、磁気浮上により生じる電磁石の励磁電圧と励磁電流の位相差にギャップ情報を含ませ、これを励磁電圧にフィードバックする方法(非特許文献4参照)がある。
また、電磁石の励磁電流値をヒステリシスコンパレータで基準値と比較し、励磁電流が基準値より大きい場合には励磁電圧を負に、小さい場合には励磁電圧を正に切替えることで、スイッチング周波数をギャップ長に比例させる方法(非特許文献5参照)がある。
しかし、こうした解決策であっても、オブザーバを使用する場合にあっては、オブザーバが浮上状態における磁気浮上系の線型モデルから導出されるため、浮上状態にないときのギャップ長を推定することができない。よって、浮上開始時の制御が困難となり、また、浮上体が他の構造物に一旦接触した場合に、再び浮上状態に復帰できない等の問題がある。
また、ギャップ情報を含む物理量で電磁石の励磁電圧を制御する場合には、浮上制御系が非線型系になる。このため、安定判別が困難であり、浮上体に質量の変化や励磁による温度上昇で電磁石コイルに電気抵抗の変動があると、浮上状態を維持できなくなるなどの問題がある。
こうした問題に対処するため、電磁石の励磁電流からオブザーバによりギャップ長を推定するセンサレス化方法において、浮上体が浮上状態にない場合に、浮上体の接触を検出してオブザーバの積分器を初期化すると共に、浮上体の接触状態から幾何学的に接触時のギャップ長を推定し、このギャップ長推定値に基づいてオブザーバの積分器に初期値を与えることで、浮上状態への復帰を行う手法がある(特許文献6参照)。
しかしながら、この手法をゼロパワー制御(特許文献7参照)に適用した場合に、以下のような問題が生じる。
すなわち、浮上体が定常浮上状態にあるときは、電磁石の励磁電流がゼロに収束しているため、何ら問題はない。ところが、浮上体に大きな外力が長時間加えられた場合に、電磁石のコイルに過渡的な制御電流が流れ続け、コイルの温度が上昇することになる。この温度の上昇に伴い、コイルの電気抵抗が大きくなり、励磁電流からギャップ長を推定するオブザーバの出力誤差が大きくなる。その結果、次第に浮上状態の維持が困難になり、浮上体が接触してしまう。
なお、浮上体が接触した場合には、浮上状態への復帰制御が試みられる。しかし、浮上状態に復帰しても、そのときのギャップ長の推定値の誤差が大きいために、再び浮上体は接触し、接触状態と浮上状態が交互に繰返されることになる。
こうした状態では、電磁石には大きな制御電流が流れ続けるため、電磁石のコイル抵抗値がさらに上昇し、最終的には浮上体が接触したままで、励磁電流が流れ続けることになる。その流れ続ける励磁電流が大きいと、浮上状態の信頼性が損なわれるばかりでなく、電磁石が発火する可能性がある。
一方、このようなセンサレスの磁気浮上制御において、電磁石のコイル抵抗値を測定しながら浮上制御を行い、その測定される抵抗値に基づいて、オブザーバのパラメータを変更する方法が提案されている(特許文献8参照)。
また、電磁石に過渡的な励磁電流が流れ続ける場合に、コイル抵抗値の増加に加え、オフセット電圧が温度の上昇に伴って変動する問題がある。このオフセット電圧の変動は、前記コイル抵抗値の変動と同様に、ギャップ長を推定するオブザーバの出力誤差を大きくする。
このような問題に対しては、オブザーバの速度推定値をゼロにするための励磁電圧にオフセット補償量を加算することで、オブザーバの出力誤差を抑制することができる(特許文献9参照)。
さらに、上述の対策を用いたとしても、オブザーバ中で用いるコイルの抵抗値については、これを励磁電圧と励磁電流の直流成分から算出するため、励磁電圧にオフセット電圧が混入すると、正確な抵抗値が測定できなといった問題がある。
この問題を回避するため、コイル電流目標値にゼロ値または非ゼロ値の2値を設定し、目標値がゼロの場合にオフセット電圧を推定してコイル抵抗値をより正確に測定する方法が提案されている(特許文献10参照)。
しかし、これらの対策を用いたとしても、実際の浮上状態に急激な変動が生じた場合に、センサレス磁気浮上制御では、浮上状態の推定値に若干の遅れが避けられない。このため、予想外の速さで浮上状態が変動すると、システムの安定性が補償できないといった問題が残る。
特に、構造物の共振回避を目的として、センサレス磁気浮上制御を輸送システムや交通システムに適用する場合に、その信頼性が低いことが問題となる。
特願平11−192224号公報 特願2001−003549号公報 水野,他:「変位センサレス磁気軸受の実用化に関する研究」,電気学会論文集D分冊,116,No.1,35(1996) 森山:「差動帰還形パワーアンプを用いたAC磁気浮上」1997年電気学会全国大会予稿集,No.1215 水野,他:「ヒステリシスアンプを利用したセルフセンシング磁気浮上」,計測自動制御学会論文集,32,No.7,1043(1996) 特願2002−002646号公報 特開昭61−102105号公報 特願2003−344670号公報 特願2005−144646号公報 特願2006−077199号公報
上述したように、従来の磁気浮上装置にあっては、浮上体の安定な浮上状態を実現するために、ギャップセンサおよびセンサターゲットを必要とした。しかし、ギャップセンサを使用すると、そのセンサ信号のノイズ成分によって構造物が振動することがあり、それを抑制するための手段が必要であった。このため、装置が大型化して複雑になり、コストアップを招くなどの問題があった。
また、こうした問題を避けるために、ギャップセンサを用いずにギャップ長を推定してフィードバック制御を行った場合(センサレス磁気浮上制御)、ギャップ長の推定による時間遅れのため、浮上制御の信頼性がギャップセンサを使用する場合に比べて低くなるといった問題があった。
本発明は、かかる事情に基づきなされたもので、ギャップセンサのノイズによる影響を低減して、常に安定した浮上制御を行うことのできる磁気浮上装置を提供することを目的とする。
本発明の磁気浮上装置は、強磁性部材で構成されるガイドと、このガイドに空隙を介して対向し、当該空隙中において磁路を共有する電磁石と永久磁石で構成される磁石ユニットと、前記ガイドに作用する前記磁石ユニットの吸引力によって非接触で支持される浮上体と、前記電磁石のコイルに流れる電流値を検出する電流値検出手段と、前記浮上体の浮上時におけるギャップ長を検出するギャップセンサと、前記電流値検出手段によって検出されるコイル電流値に基づいて、前記電磁石に印加すべき励磁電圧値を演算する第1の励磁電圧演算手段と、前記ギャップセンサによって検出されるギャップ長に基づいて、前記電磁石に印加すべき励磁電圧値を演算する第2の励磁電圧演算手段と、前記第1の励磁電圧演算手段の出力値と前記第2の励磁電圧演算手段の出力値とを混合して前記浮上体の浮上制御に必要な励磁電圧値を生成出力すると共に、その混合比を前記ギャップ長に応じて調整する励磁電圧調整手段とを具備したことを特徴とする。
本発明によれば、ギャップセンサのノイズによる影響を低減して、常に安定した浮上制御を行うことができる。
まず、本発明の基本的な原理について説明する。
図1は本発明の原理を説明するための磁気浮上装置の基本構成を示す図であり、一質点系の磁気浮上装置の全体構成が符号1で示されている。
磁気浮上装置1は、永久磁石103および電磁石105で構成される磁石ユニット107と、磁石ユニット107と負荷荷重109からなる浮上体111と、図示せぬ構造部材で地上に対して固定されるガイド113とを備える。
また、この磁気浮上装量1は、磁石ユニット107の吸引力を制御して、浮上体111を安定に非接触支持するための吸引力制御部115と、この吸引力制御部115の出力に基づいて電磁石105を励磁するためのドライバ116とを備える。
なお、130は補助支持部である。この補助支持部130は、コの字形状の断面を持ち、下部内側上面に磁石ユニット107が固定されると共に、例えば図示せぬリニアガイド等の上下方向に力が作用しない案内部で地上側から案内される防振台のテーブルを兼ねている。
ここで、磁石ユニット107の磁気的吸引力で浮上体111を非接触で支持するため、ガイド113は強磁性部材で構成されている。
電磁石105は鉄心117a,117bにコイル119,119’を巻装して構成され、永久磁石103の両磁極端部にそれぞれ鉄心117a,117bが配置されている。コイル119,119’は電磁石105の励磁によってガイド113〜鉄心117a〜永久磁石103〜鉄心117b〜ガイド113で形成される磁路の磁束が強まる(弱まる)ように直列に接続されている。
また、吸引力制御部115は、励磁電圧演算手段125を備えている。励磁電圧演算手段125は、ギャップセンサ121で得られるギャップ長と電流センサ123で得られるコイル電流値に基づいて電磁石105を励磁する電圧を演算する。ドライバ116は、この励磁電圧演算手段125によって演算された励磁電圧に基づいて、リード線128を介してコイル119,119’に励磁電流を供給している。
このとき、磁気浮上装置1の磁気浮上系は、磁石ユニット107の吸引力が浮上体111の重量と等しくなるときのギャップ長zの近傍で線型近似でき、以下の微分方程式で記述される。
Figure 0005099629
は磁石ユニット107の吸引力、mは浮上体111の質量、Rはコイル119,119’とリード線128を直列に接続したときの電気抵抗(以下、コイル抵抗と称す)、zはギャップ長、iは電磁石105の励磁電流、φは磁石ユニット107の主磁束、eは電磁石105の励磁電圧である。
Δは定常浮上状態(z=z,i=iz0(定常浮上状態でコイル電流がゼロの場合はi=Δi))からの偏差を表わす。記号“・”は1階微分、“・・”は2階微分を表わす。偏微分∂/∂h(h=z,i)は、定常浮上状態(z=z,iz=iz0)における被偏微分関数のそれぞれの偏微分値である。Lz0は、以下のように表させる。
Figure 0005099629
また、前記式1の浮上系モデルは、下記のような状態方程式となる。
Figure 0005099629
ただし、状態ベクトルx、システム行列A、制御行列bおよび外乱行列dは、以下のように表される。なお、uは外力である。
Figure 0005099629
ここで、式4中の各パラメータは、以下のようになる。
Figure 0005099629
式3中のxの各要素が浮上系の状態量である。Cは出力行列であり、励磁電圧eの計算に用いる状態量の検出方法により決定される。磁気浮上装置1では、ギャップセンサ121と電流センサ123を使用しており、ギャップセンサ121の信号を微分して速度を得る場合に、Cは単位行列となる。ここで、Fをxの比例ゲイン、Kを積分ゲインとして励磁電圧eを例えば、
Figure 0005099629
で与えれば、浮上体111はゼロパワー制御で浮上する。
なお、ゼロパワー制御については、例えば特許文献7に開示されているため、ここでは詳しい説明を省略する。また、励磁電圧演算手段125において、前記式6が演算されることは言うまでもない。
また、磁気浮上装置1において、ギャップセンサ121を使用せずに、例えば特許文献10に見られる同一次元状態観測器(以下、オブザーバと称す)を用い、励磁電流Δiからギャップ長偏差Δzおよびその速度d(Δz)/dtを推定して、磁気浮上系の安定化を図ることができる。
このように、ギャップセンサを用いない磁気浮上制御のことを「センサレス磁気浮上制御」と呼ぶ。このセンサレス磁気浮上制御にオブザーバを適用する場合には、線型制御理論によれば、オブザーバは以下のような式で表される。
Figure 0005099629
Figure 0005099629
このとき、励磁電圧演算手段125においては、例えば、
Figure 0005099629
が演算され、磁気浮上系の安定化が達成される。
一般に、常電導吸引式磁気浮上系は不安定なため、状態観測器の推定値に誤差があると安定化が非常に困難となる。しかし、前記式8から明らかなように、予めオブザーバが動作を開始するときのx0、すなわち、ギャップ長偏差Δz、その速度d(Δz)/dtおよび励磁電流Δiの値が既知であれば、オブザーバの初期値x^(^の記号はxの上に付加されているものと見なす)をできるだけxに等しく設定することで、推定当初から誤差が少ない状態で、励磁電流Δiからギャップ長偏差Δzおよびその速度d(Δz)/dtを推定することができる。
ここで、推定当初の誤差が大きいと、前記式9で異常な励磁電圧が演算されるため、浮上状態の安定化ができなくなる。
また、前記式1の浮上系モデルが実際の浮上系に対して誤差を有すると、ギャップ長偏差Δzおよびその速度d(Δz)/dt関わる推定値に大きな誤差が生じる。さらに、真値への収束に時間遅れが生じて、浮上体の安定化ができなくなる。
一方、前記式6で励磁電圧を演算する場合には、ギャップセンサの信号が励磁電圧の演算に使用されるため、ギャップセンサ信号にノイズが混入すると、励磁電圧にもノイズが重畳することになる。
以下、本発明の実施形態について、図面を参照して詳しく説明する。
(第1の実施形態)
図2は本発明の第1の実施形態に係る磁気浮上装置の構成を示す図であり、その全体構成が1’で示されている。
この磁気浮上装置1’にあっては、磁気浮上装置1の吸引力制御部115が次のように構成されている。
すなわち、吸引力制御部115には、励磁電圧演算部131、姿勢推定部133、センサレス励磁電圧演算部135、励磁電圧調整部137、抵抗測定部139が備えられている。
励磁電圧演算部131は、ギャップセンサ121を用いた通常の磁気浮上制御を実現するための演算部であり、前記式6に従って電磁石105の励磁電圧を演算する。
姿勢推定部133は、抵抗測定部139によって得られる電磁石105のコイル抵抗値と電流センサ123によって検出される電磁石105のコイル電流値に基づいて、浮上体111のギャップ長を推定すると共に、強磁性部材であるガイド113に対する浮上体111の姿勢および姿勢変化速度を推定する。
センサレス励磁電圧演算部135は、ギャップセンサ121を用いない磁気浮上制御(センサレス磁気浮上制御)を実現するための演算部であり、前記式8に従って電磁石105を励磁電圧を演算する。
励磁電圧調整部137は、通常の磁気浮上制御とセンサレス磁気浮上制御とを切り替えるための制御部として存在する。この励磁電圧調整部137は、励磁電圧演算部131の出力値とセンサレス励磁電圧演算部135の出力値とを混合して浮上体111の浮上制御に必要な励磁電圧を生成出力すると共に、その混合比を浮上体111のギャップ長に応じて調整する。
抵抗測定部139は、電流センサ123にて検出される電磁石105のコイル電流値に基づいて、電磁石105のコイル抵抗値を演算する。
ここで、抵抗測定部139によりコイル119,119’の抵抗値が常時計測されている。姿勢推定部133およびセンサレス励磁電圧演算部135には、そのコイル抵抗値に関する適応制御が施されている。これにより、温度変動に起因するコイル抵抗値の変化がセンサレス磁気浮上制御の安定性を損なわないように構成されている。
姿勢推定部133は、励磁電流Δiから浮上体111の浮上状態つまりギャップ長偏差Δzおよびその速度d(Δz)/dtを推定するものであり、例えば前記式7のオブザーバで構成される。この姿勢推定部133から出力される励磁電流Δi、ギャップ長偏差Δz、速度d(Δz)/dtは、それぞれセンサレス励磁電圧演算部135に入力される。また、このセンサレス励磁電圧演算部135の出力は、励磁電圧調整部137に与えられる。
図3は励磁電圧調整部137の構成を示すブロック図である。
図3に示すように、励磁電圧調整部137は、重み乗算器141、重み乗算器143、加算器145、減算器149および絶対値演算部151で構成されている。
重み乗算器141は、励磁電圧演算部131の出力値に所定のゲインを乗じる。重み乗算器143は、センサレス励磁電圧演算部135の出力値に所定のゲインを乗じる。加算器145は、重み乗算器141,143の出力値を加算する。減算器149は、ギャップセンサ121の出力値からギャップ長設定器147の出力値を減算する。絶対値演算部151は、減算器149の減算結果の絶対値を演算する。
このような構成において、吸引力制御部115は、浮上体111のギャップ長に応じて通常の磁気浮上制御とセンサレス磁気浮上制御を切り替える。
具体的には、励磁電圧演算部131の出力値にゲインを乗じた値とセンサレス励磁電圧演算部135の出力値にゲインを乗じた値とを加算して、浮上体111の浮上制御に必要な励磁電圧値を生成出力する。その際、ギャップセンサ121から得られるギャップ長の検出値とギャップ長設定器147に設定された値との偏差の絶対値に基づいて、重み乗算器141のゲインと重み乗算器143のゲインの和が1になるように、両者のゲインを相対的に増減させる。
ここで、前記偏差の絶対値が小さいほど(つまり、ギャップ長が大きいほど)、重み乗算器143のゲインを大きくする。逆に、前記偏差の絶対値が大きいほど(つまり、ギャップ長が小さいほど)、重み乗算器141のゲインを大きくする。
この様子を図4に示す。
図中の点線は重み乗算器141のゲイン、実線は重み乗算器143のゲインの変化を表している。重み乗算器141のゲインは、励磁電圧演算部131の出力値に乗じられる。重み乗算器143のゲインは、センサレス励磁電圧演算部135の出力値に乗じられる。
また、zはギャップセンサ121から得られるギャップ長の検出値、zは設定値であり、│z−z│はzとzとの偏差の絶対値である。er1,er2は制御切替えの基準値であり、er1<er2である。
図4に示すように、ギャップ長が大きく、│z−z│の値が基準値er1以下の場合には、重み乗算器143のゲインが“1”、重み乗算器141のゲインが“0”に設定される。
一方、何らかの要因で浮上体111の浮上力が低下し、│z−z│の値が基準値er1を超えると、重み乗算器143のゲインが“1”から“0”に徐々に減少する。これに伴い、重み乗算器141のゲインが“0”から“1”に徐々に増加する。そして、│z−z│の値が基準値er2に達した時点で、重み乗算器143のゲインが“0”、重み乗算器141のゲインが“1”に設定される。
このように、浮上体111が所定のギャップ長で浮上している状態では、センサレス励磁電圧演算部135の出力値に対する重み付けを大きくする。これにより、ギャップセンサ121のノイズによる影響を低減でき、浮上体111を振動させずに安定した浮上状態を維持できる。
一方、磁石ユニット107がガイド113の下面に吸着した状態や、補助支持部130がガイド113の上面に載った状態から浮上体111を浮上させる場合、あるいは、過大な外乱により浮上体111とガイド113が接触した場合には、ギャップ長が所定値以下となる。このような場合には、励磁電圧演算部131の出力値に対する重み付けを大きくする。これにより、ギャップセンサ121によって検出される正確なギャップ長を用いて、速やかに浮上状態の安定化を図ることができる。浮上体111が通常の浮上状態に復帰すると、センサレス磁気浮上制御に切り替えられる。
以上のように、本実施形態によれば、ギャップセンサを用いた磁気浮上制御とギャップセンサを用いない通常の磁気浮上制御をギャップ長に応じて適宜使い分けることで、センサノイズによる振動現象を回避でき、また、浮上復帰時の安定性を確保することができる。
(第2の実施形態)
次に、本発明の第2の実施形態について説明する。
第2の実施形態では、浮上体の運動座標系の各モード毎に励磁電圧、励磁電流を演算することを特徴とする。ここでは、本発明の磁気浮上装置をエレベータに適用した場合を例にして説明する。
図5は本発明の第2の実施形態に係る磁気浮上装置の構成を示す図であり、この磁気浮上装置をエレベータに適用した場合の構成が全体として符号10で示されている。また、図6はその磁気浮上装置のフレーム部の構成を示す斜視図、図7はその磁気浮上装置の磁石ユニット周辺の構成を示す斜視図、図8はその磁気浮上装置の磁石ユニットの構成を示す立面図である。
図5に示すように、エレベータシャフト12の内面にガイドレール14,14’と、移動体16と、4つの案内ユニット18a〜18dが構成されている。ガイドレール14,14’は、強磁性部材で構成され、エレベータシャフト12内に所定の取り付け方法で敷設されている。
移動体16は、上述した磁気浮上装置の浮上体に相当する。この移動体16は、ガイドレール14,14’に沿って、例えばロープ15の巻上げ機等の図示せぬ駆動機構を介して上下方向に移動する。案内ユニット18a〜18dは、移動体16に取り付けられており、この移動体16をガイドレール14,14’に対して非接触で案内する。
移動体16には、乗りかご20と案内ユニット18a〜18dが取り付けられる。移動体16は、案内ユニット18a〜18dの所定の位置関係を保持可能な強度を有するフレーム部22を備えている。図6に示すように、このフレーム部22の四隅には、ガイドレール14,14’と対向する案内ユニット18a〜18dが所定の方法で取り付けられている。
案内ユニット18は、図7に示すように、非磁性材料(例えばアルミやステンレス)もしくはプラスチック製の台座24にx方向ギャップセンサ26(26b,26b’)、y方向ギャップセンサ28(28b,28b’)および磁石ユニット30を所定の方法で取り付けて構成されている。ギャップセンサ26,28は、案内ユニット18とガイドレール14,14’間のギャップ長を検出する。
磁石ユニット30は、中央鉄心32、永久磁石34,34’、電磁石36,36’で構成されており、図8にも示されているように、永久磁石34,34’の同極同士が中央鉄心32を介して向かい合う状態で全体としてE字形状に組み立てられている。
電磁石36,36’は、L字形状の鉄心38(38’)をコイル40(40’)に挿入後、鉄心38(38’)の先端部に平板形状の鉄心42を取り付けて構成されている。中央鉄心32および電磁石36,36’の先端部には、個体潤滑部材43が取付けられている。この個体潤滑部材43は、電磁石36,36’が励磁されていない時に永久磁石34,34’の吸引力で磁石ユニット30がガイドレール14(14’)に吸着して固着することを防止し、かつ、吸着状態でも移動体16の昇降に支障が出ないようにするために設けられている。この個体潤滑部材43としては、例えばテフロン(登録商標)や黒鉛あるいは二硫化モリブデン等を含有する材料がある。
以下では、簡単のために、主要部分を示す番号に案内ユニット18a〜18dのアルファベット(a〜d)を付して説明する。
磁石ユニット30bでは、コイル40b,40b’を個別に励磁することでガイドレール14’に作用する吸引力をy方向とx方向に関して独立に制御することができる。この制御方式については、特許文献1に記載されているため、ここでは詳しい説明を省略する。
案内ユニット18a〜18dの各吸引力は、上述した吸引力制御部として用いられる制御装置44により制御され、乗りかご20およびフレーム部22がガイドレール14,14’に対して非接触に案内される。
なお、制御装置44は図5の例では分割されているが、例えば図9に示すように、全体として1つに構成されていても良い。
図9は同実施形態における制御装置内の構成を示すブロック図、図10はその制御装置内のモード制御電圧演算回路の構成を示すブロック図である。なお、ブロック図において、矢印線は信号経路を、棒線はコイル40周辺の電力経路を示している。
この制御装置44は、センサ部61と、演算回路62と、パワーアンプ63a,63a’〜63d,63d’とで構成されており、これらで4つの磁石ユニット30a〜30dの吸引力をx軸,y軸について独立に制御している。
センサ部61は、乗りかご20に取付けられて磁石ユニット30a〜30dによって形成される磁気回路中の起磁力あるいは磁気抵抗、もしくは、移動体16の運動の変化を検出する。
演算回路62は、このセンサ部61からの信号に基づいて移動体16を非接触案内させるべく、各コイル40a,40a’〜40d,40d’を励磁するための印加電圧を演算する吸引力制御部として用いられる。パワーアンプ63a,63a’〜63d,63d’は、この演算回路62の出力に基づいて各コイル40に電力を供給する励磁部として用いられる。
また、電源46は、パワーアンプ63a,63a’〜63d,63d’に電力を供給すると同時に定電圧発生装置48にも電力を供給している。なお、この電源46は、照明やドアの開閉のために図示せぬ電源線でエレベータシャフト12外から供給される交流をパワーアンプへの電力供給に適した直流に変換する機能を有している。
定電圧発生装置48は、パワーアンプ63への大電流の供給などにより電源46の電圧が変動しても常に一定の電圧で演算回路62およびギャップセンサ26a,26a’〜26d,26d’,28a,28a’〜28d,28d’に電力を供給する。これにより、演算回路62およびギャップセンサ26a,26a’〜26d,26d’,28a,28a’〜28d,28d’は常に正常に動作する。
センサ部61は、x方向のギャップセンサ26a,26a’〜26d,26d’,28aと,y方向の28a’〜28d,28d’と、各コイル40の励磁電流を検出する電流検出器66a,66a’〜66d,66d’とで構成されている。
なお、ギャップセンサ26a,26a’〜26d,26d’,28a,28a’〜28d,28d’は、各々のオフセット電圧を調整して、乗りかご20がガイドレール14,14’に対して所定の位置関係で案内されている場合のギャップ長を基準として、当該ギャップ長からの偏差を出力するように校正されている。
加えて、各案内ユニット18に取付けられている2つのx方向のギャップセンサ出力と2つのy方向のギャップセンサ出力のそれぞれを平均する平均化部27が備えられている。これにより、x,yの各方向における磁石ユニット30とガイドレール14,14’間のギャップ長偏差Δxa,Δya〜Δxd,Δydが得られることは言うまでもない。
演算回路62は、図5に示される運動座標系の各モード毎に移動体16の案内制御を行っている。ここで、前記各モードとは、移動体16の重心のy座標に沿った前後動を表すyモード(前後動モード)、x座標に沿った左右動を表すxモード(左右動モード)、移動体16の重心回りのローリングを表すθモード(ロールモード)、移動体16の重心回りのピッチングを表すξモード(ピッチモード)、移動体16の重心回りのヨーイングを表すψモード(ヨーモード)である。
また、これらのモードに加え、演算回路62は、ζモード(全吸引モード)、δモード(ねじれモード)、γモード(歪モード)についても案内制御を行っている。すなわち、磁石ユニット30a〜30dがガイドレール14,14’に及ぼす「全吸引力」、磁石ユニット30a〜30dがフレーム部22に及ぼすz軸周りの「ねじれトルク」、磁石ユニット30a,30dがフレーム部22に、磁石ユニット30b,30cがフレーム部22に及ぼす回転トルクでフレーム部22をz軸に対して左右対称に歪ませる「歪力」に関する3つのモードである。
以上のような8つのモードに対し、磁石ユニット30a〜30dのコイル電流をゼロに収束させることで、積荷の重量に関わらず永久磁石34の吸引力だけで移動体を安定に支持する、いわゆる「ゼロパワー制御」にて案内制御を行っている。
演算回路62は、浮上体である移動体16の運動の自由度に寄与する吸引力を発生させる励磁電流の線形結合で表させるモード別励磁電流を演算する機能と、同じく励磁電圧の線形結合で表させるモード別励磁電圧を演算する機能を備える。具体的には、次のように構成される。
すなわち、図9に示すように、演算回路62は、抵抗測定部64と、ギャップ長偏差座標変換回路74と、電流偏差座標変換回路83と、制御電圧演算回路84、制御電圧座標逆変換回路85とで構成されている。
抵抗測定部64は、各コイル40a,40a’〜40d,40d’の励磁電流検出値と演算回路62の各パワーアンプ63a,63a’〜63d,63d’への励磁電圧信号ea,ea’〜ed,ed’および前記目標値設定部74の出力値に基づいて、それぞれのコイルの電気抵抗値を出力する。
ギャップ長偏差座標変換回路74は、ギャップ長偏差信号Δya,Δya’〜Δyd,Δyd’により移動体16の重心のy方向の運動に関わる位置偏差Δy、x方向の運動に関わる位置偏差Δx、同重心のまわりのローリングに関わる角度偏差Δθ、移動体16のピッチングに関わる角度偏差Δξ、同重心のまわりのヨーイングに関わる角度偏差Δψ、フレーム部22に応力をかけるζ,δ,γに関する各偏差Δζ,Δδ,Δγを演算する。
電流偏差座標変換回路83は、モード励磁電流演算部として、電流偏差信号Δia,Δia’〜Δid,Δid’により移動体16の重心のy方向の運動に関わる電流偏差Δiy、x方向の運動に関わる電気偏差Δix、同重心のまわりのローリングに関わる電流偏差Δiθ、移動体16のピッチングに関わる電流偏差Δiξ、同重心のまわりのヨーイングに関わる電流偏差Δiψ、フレーム部22に応力をかけるζ,δ,γに関する電流偏差Δiζ,Δiδ,Δiγを演算する。
ここで、ゼロパワー制御が適用される場合、各電流検出器の検出値を座標変換した演算結果iy〜iγは、そのまま各モードにおけるゼロ目標値からの電流偏差Δiy〜Δiγとなることは言うまでもない。
制御電圧演算回路84は、モード励磁電圧演算部として用いられる。この制御電圧演算回路84は、前記抵抗測定部64、前記ギャップ長偏差座標変換回路74および前記電流偏差座標変換回路83の出力Δy〜Δγ,Δiy〜Δiγにより、y,x,θ,ξ,ψ,ζ,δ,γの各モードにおいて移動体16を安定に磁気浮上させるモード別電磁石制御電圧ey,ex,eθ,eξ,eψ,eζ,eδ,eγを演算する。
制御電圧座標逆変換回路85は、制御電圧演算回路84の出力ey,ex,eθ,eξ,eψ,eζ,eδ,eγにより、前記磁石ユニット30a〜30dのそれぞれの電磁石励磁電圧ea,ea’〜ed,ed’を演算する。この制御電圧座標逆変換回路85の演算結果つまりea,ea’〜ed,ed’は、パワーアンプ63a,63a’〜63d,63d’に与えられる。
なお、後述の説明のため、図9の電流偏差座標変換回路83、制御電圧演算回路84および制御電圧座標逆変換回路85を浮上制御演算部65とする。
さらに、制御電圧演算回路84は、前後動モード制御電圧演算回路86a、左右動モード制御電圧演算回路86b、ロールモード制御電圧演算回路86c、ピッチモード制御電圧演算回路86d、ヨーモード制御電圧演算回路86e、全吸引モード制御電圧演算回路88a、ねじれモード制御電圧演算回路88b、歪モード制御電圧演算回路88cで構成されている。
前後動モード制御電圧演算回路86aは、ΔyおよびΔiyよりyモードの電磁石制御電圧eyを演算する。左右動モード制御電圧演算回路86bは、ΔxおよびΔixよりxモードの電磁石制御電圧exを演算する。ロールモード制御電圧演算回路86cは、ΔθおよびΔiθよりθモードの電磁石制御電圧eθを演算する。ピッチモード制御電圧演算回路86dは、ΔξおよびΔiξよりξモードの電磁石制御電圧eξを演算する。ヨーモード制御電圧演算回路86eは、ΔψおよびΔiψよりψモードの電磁石制御電圧eψを演算する。
全吸引モード制御電圧演算回路88aは、Δiζによりζモードの電磁石制御電圧eζを演算する。ねじれモード制御電圧演算回路88bは、Δiδによりδモードの電磁石制御電圧eδを演算する。歪モード制御電圧演算回路88cは、Δiγによりγモードの電磁石制御電圧eγを演算する。
これら各モードの制御電圧演算回路のうち、y,x,θ,ξ,ψのモードについては同様の構成を備えている。
すなわち、前後動モード制御電圧演算回路86aは、図10に示すように、抵抗値平均化部90、励磁電圧演算部97、励磁電圧調整部99、擬似微分器102、抵抗値アンバランス補正部92、モード姿勢推定部98、目標値設定部100および加算器101で構成されている。
抵抗値平均化部90は、抵抗測定部64で測定されたコイル40a,40a’〜40d,40d’の抵抗値の平均値を演算する。
抵抗値アンバランス補正部92は、当該前後動モード以外の7つのモード別励磁電流(Δix〜Δiγ)に抵抗測定部64の出力に基づいて、各コイル抵抗値の線形結合で得られるモード別抵抗補正ゲインを乗算すると共にそれら7つの乗算結果の総和を出力する。
モード姿勢推定部98は、前記式7に基づいて、電流偏差座標変換回路83から得られるyモード励磁電流値iyから移動体16の位置偏差推定値Δyと、Δyの変化速度(図中・で表示)と、yモード電流推定値Δiyを出力する。
擬似微分器102は、ギャップ長偏差座標変換回路74からのyモードにおける位置偏差を時間微分してその変化速度を出力する。これにより、yモードにおける位置偏差,その速度および電流偏差の情報が取得でき、前記式6に基づいてギャップセンサを用いる磁気浮上が可能となる。
励磁電圧演算部97は、減算器93、ゲイン補償器91、積分補償器94、加算器95、減算器96で構成されている。減算器93は、yモード電流推定値Δiyを目標値設定部100の出力より減じる。ゲイン補償器91は、Δy,Δyの変化速度(図中・で表示),Δiyもしくは推定値(図中^で表示)に適当なフィードバックゲインを乗じる。
積分補償器94は、減算器93の出力値を積分し適当なフィードバックゲインを乗じる。加算器95は、ゲイン補償器91の出力値の総和を演算する。減算器96は、加算器95の出力値を積分補償器94の出力値より減じてy(前後動)モードにおける第1のモード別励磁電圧ey1を出力する。
ゲイン補償器91および積分補償器94のフィードバックゲインは、抵抗値平均化部90の出力値に基づいて所定の方法で必要に応じて演算される。これにより、温度変化等に起因するコイル抵抗値の変動が補償され、常に一定の乗り心地を得ることができる。
励磁電圧調整部99は、位置成分励磁電圧調整部99’,速度成分励磁電圧調整部99''および電流成分励磁電圧調整部99'''を備えており、それぞれが前述した第1の実施形態における電圧調整部137と同様に構成されている。これにより、励磁電圧演算部97ではセンサレス磁気浮上からギャップセンサを使用する磁気浮上への移行状態に応じて第1のモード別励磁電圧ey1が出力される。
加算器101は、前記第1のモード別励磁電圧ey1と前記抵抗値アンバランス補正部92の出力を加算し、その加算結果を第2のモード別励磁電圧eyとして出力する。
なお、抵抗値アンバランス補正部92および加算器101の作用については、特願平2004−151832号公報に記述されているので、ここではその詳しい説明は省略する。
本実施形態では、モード姿勢推定部98およびモード励磁電圧演算部97が第1の励磁電圧演算部として機能している。また、位置偏差,その速度および電流偏差の情報が励磁電圧調整部99を介して励磁電圧演算部97に導入されるため、励磁電圧演算部97は第2の励磁電圧演算部としても機能できることは言うまでもない。
左右動モード制御電圧演算回路86b、ロールモード制御電圧演算回路86c、ピッチモード制御演算回路86dおよびヨーモード制御演算回路86eについても、前記上下動モード制御電圧演算回路86aと同様の構成であり、対応する入出力信号を信号名で示し、その説明は省略するものとする。
一方、ζ,δおよびγの3つの各モード制御電圧演算回路88a〜88cはすべて同じ構成である。また、上下動モード制御電圧演算回路86aと同じ構成要素を有するので、同一部分に同一符号を付すと共に、区別するために、’を付して図11にその構成を示す。
次に、以上のように構成された磁気浮上装置の動作について説明する。
装置が停止状態にあるときは、磁石ユニット30a,30dの中央鉄心32の先端が、固体潤滑部材43を介してガイドレール14の対向面に、電磁石36a’,36d’の先端が固体潤滑部材43を介してガイドレール14の対向面にそれぞれ吸着している。このときに固体潤滑部材43の働きにより、移動体16の昇降が妨げられることはない。
この状態で、本装置を起動させると、yモードおよびxモードにおいて励磁電圧調整部99の動作によりギャップセンサを用いた磁気浮上制御が行なわれる。制御装置44は、浮上制御演算部65の働きにより、永久磁石34が発生する磁束と同じ向きまたは逆向きの磁束を各電磁石36a,36a’〜36d,36d’に発生させる。また、制御装置44は、磁石ユニット30a〜30dとガイドレール14,14’との間に所定の空隙長を維持させるべく各コイル40に流す電流を制御する。
これによって、図8に示すように、永久磁石34〜鉄心38,42〜空隙G〜ガイドレール14(14’)〜空隙G”〜中央鉄心32〜永久磁石34の経路からなる磁気回路Mcおよび永久磁石34’〜鉄心38、42〜空隙G’〜ガイドレール14(14’)〜空隙G”〜中央鉄心32〜永久磁石34の経路からなる磁気回路Mc’が形成される。
このとき、空隙G,G’,G”におけるギャップ長は、永久磁石34の起磁力による各磁石ユニット30a〜30dの磁気的吸引力が移動体16の重心に作用するy軸方向前後力、同x方向左右力、移動体16の重心を通るx軸回りのトルク、同y軸回りのトルクおよび同z軸回りのトルクと丁度釣合うような長さになる。
制御装置44は、この釣合いを維持すべく移動体16に外力が作用すると、電磁石36a,36a’〜36d,36d’の励磁電流制御を行う。これによって、いわゆるゼロパワー制御がなされる。
ここで、装置が吸着状態にあるときは磁気浮上システムの浮上状態を表す式4が満足されないので、モード姿勢推定部98による位置偏差、速度偏差および電流偏差の各推定値は実際の値とは異なったものとなる。しかし、yモードおよびxモードにおいて、励磁電圧調整部99の動作によりギャップセンサを用いた磁気浮上制御が行なわれるため、移動体16は確実に浮上する。
また、ゼロパワー制御で非接触案内されている移動体16が図示せぬ巻上げ機によってガイドレール14,14’に沿って昇降動作を開始すると、磁石ユニット30がガイドレール14,14’の継目を通過し、センサ信号に乱れが生じる。しかし、浮上状態にあるときは、励磁電圧調整部99の動作により、移動体16の非接触案内にセンサレス磁気浮上制御が適用されている。したがって、継目に起因するノイズがギャップセンサ出力に重畳しても移動体16に揺れが生じることはない。
また、人員や積荷の偏った移動、もしくは地震等に起因するロープの揺れ等が原因で移動体16に過大な外力が加えられたとする。このような場合、磁石ユニット30a〜30dの電磁石の温度が上昇し、電磁石コイルの電気抵抗が変動する。
特に、電力消費を極端に抑制できるゼロパワー制御が用いられている場合には、過大な外力で大きな励磁電流が流れると、各電磁石コイルやパワーアンプが急激に発熱し、ギャップ長一定制御などの他の制御方式よりも抵抗値の変動が大きくなる。こうなると、各運動モードで位置偏差推定値とその速度推定値の誤差が増大し、乗り心地が極端に悪化する。
しかし、本実施形態によれば、抵抗測定部64の作用によりコイル40の抵抗値が正確に測定される。したがって、抵抗測定部64の出力値で調整されるモード姿勢推定部97や抵抗値アンバランス補正部92,92’のパラメータが正確に調整されると共に、ゲイン補償器91,91’、積分補償器94,94’で抵抗値をパラメータとしたゲイン設定が可能である。よって、オフセット電圧やコイル抵抗値の変動に対して非接触案内の安定性が維持されるばかりでなく、良好で一定な乗り心地を持続させることができる。
本装置が運転を終えて停止する場合には、目標値設定部74において、yモードおよびxモードの目標値をゼロから徐々に負の値とする。これにより、移動体16は、y軸、x軸方向に徐々に移動する。最終的に磁石ユニット30a,30dの中央鉄心32の先端が固体潤滑部材43を介してガイドレール14の対向面に吸着し、電磁石36a’,36d’の先端が固体潤滑部材43を介してガイドレール14の対向面に吸着する。
この状態で装置を停止させると、目標値設定部74の出力がすべてゼロにリセットされると共に移動体16がガイドレールに吸着する。
このように、浮上状態から吸着状態に至る段階では、励磁電圧調整部99の動作によって、移動体16の非接触案内制御がセンサレス磁気浮上制御から徐々にギャップセンサを用いる浮上制御に移行する。このため、急激な吸着動作や不完全な吸着で人員や積荷に衝撃を与えることがない。
(第3の実施形態)
次に、本発明の第3の実施形態について説明する。
前記第1および第2の実施形態では、磁石ユニットが浮上体側に取付けられていたが、これは磁石ユニットの取付け位置をなんら限定するものでなく、図12に示すように、磁石ユニットを地上側に配置しても良い。なお、説明の簡単化のために、以下、第1および第2の実施形態と共通する部分には同一の符号を用いて説明する。
図12は本発明の第3の実施形態に係る磁気浮上装置の構成を示す図であり、その全体の構成が符号300で示されている。
磁気浮上装置300は、補助支持部302、磁石ユニット107、ガイド304、防振台テーブル306、リニアガイド308、吸引力制御部115、パワーアンプ313、ギャップセンサ121および電流センサ123を備えている。
補助支持部302は、断面がコ字形状をなし、例えばアルミ部材などの非磁性体で形成される。この補助支持部302は地上に設置されており、磁石ユニット107は補助支持部302の上部下面に下向きに取付けられている。
ガイド304は、磁石ユニット107に対向する断面がコ字形状をなし、例えば鉄などの強磁性部材で形成されている。防振台テーブル306は、このガイド304を底部上面に備えており、全体としてコ字形状に形成されている。この防振台テーブル306が浮上体に相当する。リニアガイド308は、防振台テーブル306の側面に取付けられ、地上に対して垂直方向にのみ動きの自由度を防振台テーブル306に付与している。
吸引力制御部115は、磁石ユニット107の吸引力を制御して、浮上体である防振テーブル306を非接触で支持するための制御を行う。パワーアンプ313は、吸引力制御部115の出力に基づいて、磁石ユニット107を励磁するための図示せぬ電源に接続されている。
ギャップセンサ121は、磁石ユニット107とガイド304との間のギャップ長を防振台テーブル306と補助支持部302間の距離を測定することで検出している。電流センサ123は、磁石ユニット107の励磁電流を検出する。
ここで、吸引力制御部115は、以下のような構成を有する。
すなわち、吸引力制御部115は、抵抗測定部139、姿勢推定部133、センサレス励磁電圧演算部135、励磁電圧演算部131および励磁電圧調整部137’を備えている。
抵抗測定部139は、磁石ユニット107への励磁電流および励磁電圧からリード線128およびコイル119,119’の直列抵抗値を測定する。
姿勢推定部133は、抵抗測定部139の出力および磁石ユニット107への励磁電流、励磁電圧から防振テーブル306の浮上状態、つまり、ギャップ長偏差、その変化速度を推定する。
センサレス励磁電圧演算部135は、姿勢推定部133の出力に基づいて防振テーブル306を磁気浮上させるために必要な励磁電圧を演算する。
励磁電圧演算部131は、ギャップセンサ121で得られるギャップ長および電流センサ123で得られるコイル電流値に基づいて励磁電圧を演算する。
励磁電圧調整部としての励磁電圧調整部137’は、励磁電圧演算部131およびセンサレス励磁電圧演算部135に基づいて防振テーブル306を磁気浮上させるためにコイル119,119’に印加すべき励磁電圧を演算する。
ここで、励磁電圧調整部137’は、図3に示した励磁電圧調整部137とは異なり、図13に示すように、抵抗測定部139の出力値を加味する部分が新たに導入されている。
この励磁電圧調整部137’は、重み乗算器141、重み乗算器143、加算器145、減算器149、絶対値演算部151、抵抗変動率演算部315、絶対値演算部151’、ゲイン乗算器317、加算器319で構成されている。
重み乗算器141は、励磁電圧演算部131の出力値に所定のゲインを乗じる。重み乗算器143は、センサレス励磁電圧演算部135の出力値に所定のゲインを乗じる。加算器145は、重み乗算器141,143の出力を加算する。減算器149は、ギャップセンサ121の出力からギャップ長設定器147の出力を減算する。絶対値演算部151は、減算器149の減算結果の絶対値を演算する。
また、抵抗変動率演算部315は、抵抗測定部139の検出値Rを時間微分する擬似微分器321、その出力を検出値Rで除算して変動率rを求める除算器323で構成されている。絶対値演算部151’は、抵抗変動率演算部315によって得られる変動率rの絶対値を演算する。ゲイン乗算器317は、絶対値演算部151’の出力値にゲインαを乗じる。加算器319は、ゲイン乗算器317の出力値と絶対値演算部151の出力値とを加算する。
このような構成において、励磁電圧調整部137’は、浮上体としての防振テーブル306のギャップ長とコイル抵抗値に応じて、励磁電圧演算部131の出力値とセンサレス励磁電圧演算部135の出力値の重み付けを変えて出力する。
具体的には、ギャップセンサ121から得られるギャップ長の検出値とギャップ長設定器147に設定された値との偏差の絶対値と、抵抗測定部139から得られるコイル抵抗の変動率の絶対値に所定のゲインを乗じた値との加算値Tに基づいて、重み乗算器141のゲインと重み乗算器143のゲインの和が1になるように、両者のゲインを相対的に増減させる。
この場合、前記加算値が小さいほど(ギャップ長が大きいか、コイル抵抗の変動率が小さいほど)、重み乗算器143のゲインを大きくする。逆に、前記加算値Tが大きいほど(ギャップ長が小さいか、コイル抵抗の変動率が大きいほど)、重み乗算器141のゲインを大きくする。
この様子を図14に示す。
図中の点線は重み乗算器141のゲイン、実線は重み乗算器143のゲインの変化を表している。重み乗算器141のゲインは、励磁電圧演算部131の出力値に乗じられる。重み乗算器143のゲインは、センサレス励磁電圧演算部135の出力値に乗じられる。
また、zはギャップ長の検出値、zは設定値であり、│z−z│はzとzとの偏差の絶対値である。rはコイル抵抗の変動率、│r│はその変動率の絶対値である。αはその変動率に乗じられるゲインである。er3,er4は制御切替えの基準値であり、er3<er4である。
図14に示すように、T=│z−z│+α│r│の値が基準値er3からer4に変化すると、それに伴って、重み乗算器141のゲインが“0”から“1”へ増加する。一方、重み乗算器143のゲインは“1”から“0”に減少する。
これにより、浮上体111が所定のギャップ長で浮上している状態では、センサレス励磁電圧演算部135の出力値に対する重み付けが大きくなり、センサレス磁気浮上制御が適用される。一方、ギャップ長が所定の範囲外になると、そのときのギャップ長に応じて、励磁電圧演算部131の出力値に対する重み付けが大きくなり、ギャップセンサ121を用いた磁気浮上制御に移行する。この場合、コイル抵抗の変動率が大きいほど、ギャップセンサ121を用いた磁気浮上制御への移行が早くなる。
通常、コイル119,119’の抵抗が急激に変動し、抵抗測定部139での検出速度が追いつかない場合、センサレス磁気浮上制御では、姿勢推定部133が正常に動作できなくなり、不安定になる問題がある。
本実施形態によれば、このような急激なコイル抵抗値変動が発生しても、ギャップセンサを用いた磁気浮上制御への移行が行なわれるので、浮上状態の安定化を図ることができる。よって、装置の信頼性を向上させることができる。
また、磁石ユニット107を地上側に配置したことにより、可動部である防振テーブル306からの配線がなくなり、装置の信頼性が向上するといった利点がある。
なお、前記各実施形態では、磁気浮上を行う制御装置(吸引力制御部115)がアナログ的な構成として説明されているが、本発明は、アナログの制御方式に限定されるものではなく、デジタル制御にて構成することも可能である。
また、励磁部の構成としてパワーアンプを用いているが、これはドライバの方式を何ら限定するものではなく、例えばPWM(Pulse Width Modulation)形のものであって何ら差し支えない。
さらに、励磁電圧調整部として重み乗算器を用いているが、これはセンサレス磁気浮上からギャップセンサを用いる磁気浮上への移行もしくは逆の移行部を何ら限定するものでない。例えば、条件付スイッチングやファジィ制御によって移行させてもなんら差し支えない。
この他、本発明の要旨を逸脱しない範囲で種々変更可能である。要するに、本発明は前記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、前記各実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の形態を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を省略してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
図1は本発明の原理を説明するための磁気浮上装置の基本構成を示す図である。 図2は本発明の第1の実施形態に係る磁気浮上装置の構成を示す図である。 図3は同実施形態における磁気浮上装置の吸引力制御部の詳細な構成を示すブロック図である。 図4は同実施形態における磁気浮上装置の励磁電圧調整部の動作を示す図である。 図5は本発明の第2の実施形態に係る磁気浮上装置の構成を示す図である。 図6は同実施形態における磁気浮上装置のフレーム部の構成を示す斜視図である。 図7は同実施形態における磁気浮上装置の磁石ユニット周辺の構成を示す斜視図である。 図8は同実施形態における磁気浮上装置の磁石ユニットの構成を示す立面図である。 図9は同実施形態における磁気浮上装置の制御装置の詳しい構成を示すブロック図である。 図10は同実施形態における磁気浮上装置の制御装置内のモード制御電圧演算回路の構成を示すブロック図である。 図11は同実施形態における磁気浮上装置の制御装置内の他のモード制御電圧演算回路の構成を示すブロック図である。 図12は本発明の第3の実施形態に係る磁気浮上装置の構成を示す図である。 図13は同実施形態における磁気浮上装置の吸引力制御部の詳細な構成を示すブロック図である。 図14は同実施形態における磁気浮上装置の励磁電圧調整部の動作を示す図である。
符号の説明
1,1’,10,300…磁気浮上装置、103,34…永久磁石、105,36,36’…電磁石、107,30…磁石ユニット、109…負荷重量、111…浮上体、113,304…ガイド、115…吸引力制御部、116…ドライバ、117a,117b,32,38…鉄心、119,119’,40…コイル、121…ギャップセンサ、123…電流センサ、125,131,135,97…励磁電圧演算部、141,143…重み乗算器,147…ギャップ長設定部,151,151’…絶対値演算部、133,98…姿勢推定部、137,99,137’…励磁電圧調整部、128…リード線、130,302…補助支持部、139,64…抵抗測定部、14,14’…ガイドレール、16…移動体、18…案内ユニット、20…乗りかご、44…制御装置、46…電源、48…定電圧発生装置、62…演算回路、63,313…パワーアンプ、65…浮上制御演算部、66…電流検出器、74…ギャップ長偏差座標変換回路、83…電流偏差座標変換回路、84…制御電圧演算回路、85…制御電圧座標逆変換回路、92,92’…抵抗値アンバランス補正部、91,91’…ゲイン補償器、93,93’,96,96’…減算器、94…積分補償器、306…防振テーブル、308…リニアガイド。315…抵抗変動率演算部,321…擬似微分器,323…除算器、317…ゲイン乗算器。

Claims (9)

  1. 強磁性部材で構成されるガイドと、
    このガイドに空隙を介して対向し、当該空隙中において磁路を共有する電磁石と永久磁石で構成される磁石ユニットと、
    前記ガイドに作用する前記磁石ユニットの吸引力によって非接触で支持される浮上体と、
    前記電磁石のコイルに流れる電流値を検出する電流値検出手段と、
    前記浮上体の浮上時におけるギャップ長を検出するギャップセンサと、
    前記電流値検出手段によって検出されるコイル電流値に基づいて、前記電磁石に印加すべき励磁電圧値を演算する第1の励磁電圧演算手段と、
    前記ギャップセンサによって検出されるギャップ長に基づいて、前記電磁石に印加すべき励磁電圧値を演算する第2の励磁電圧演算手段と、
    前記第1の励磁電圧演算手段の出力値と前記第2の励磁電圧演算手段の出力値とを混合して前記浮上体の浮上制御に必要な励磁電圧値を生成出力すると共に、その混合比を前記ギャップ長に応じて調整する励磁電圧調整手段と
    を具備したことを特徴とする磁気浮上装置。
  2. 前記電流値検出手段によって検出されるコイル電流値に基づいて、前記電磁石のコイル抵抗値を演算する抵抗測定手段を備え、
    前記励磁電圧調整手段は、前記抵抗測定手段によって測定されたコイル抵抗値を加味して前記混合比を調整することを特徴とする請求項1記載の磁気浮上装置。
  3. 前記励磁電圧調整手段は、
    前記第1の励磁電圧演算手段の出力値に第1のゲインを乗じた値と前記第2の励磁電圧演算手段の出力値に第2のゲインを乗じた値を加算して、前記浮上体の浮上制御に必要な励磁電圧値を生成出力すると共に、
    前記第1のゲインと前記第2のゲインを前記ギャップ長に応じて相対的に増減することを特徴とする請求項1記載の磁気浮上装置。
  4. 前記励磁電圧調整手段は、
    前記第1の励磁電圧演算手段の出力値に第1のゲインを乗じた値と前記第2の励磁電圧演算手段の出力値に第2のゲインを乗じた値を加算して、前記浮上体の浮上制御に必要な励磁電圧値を生成出力すると共に、
    前記第1のゲインと前記第2のゲインを前記ギャップ長と前記コイル抵抗値に応じて相対的に増減することを特徴とする請求項2記載の磁気浮上装置。
  5. 前記電流値検出手段によって検出されるコイル電流値に基づいて、前記電磁石のコイル抵抗値を演算する抵抗測定手段と、
    この抵抗測定手段によって得られるコイル抵抗値と前記電流値検出手段によって検出されるコイル電流値に基づいて、前記浮上体のギャップ長を推定する推定手段とを備え、
    前記第1の励磁電圧演算手段は、前記推定手段によって推定されたギャップ長に基づいて前記電磁石に印加すべき励磁電圧値を演算することを特徴とする請求項1記載の磁気浮上装置。
  6. 前記推定手段は、
    前記抵抗測定手段によって得られるコイル抵抗値と前記電流値検出手段によって検出されるコイル電流値に基づいて、前記強磁性部材に対する前記浮上体の姿勢および姿勢変化速度を推定することを特徴とする請求項5項記載の磁気浮上装置。
  7. 前記浮上体の運動の自由度に寄与する吸引力を発生させるための励磁電圧を所定のモード毎に演算するモード励磁電圧演算手段と、
    前記浮上体の運動の自由度に寄与する吸引力を発生させるための励磁電流を所定のモード毎に演算するモード励磁電流演算手段とを備え、
    前記推定手段は、前記モード励磁電流演算手段および前記モード励磁電圧演算手段の出力に基づいて、前記強磁性部材に対する前記浮上体の姿勢およびその姿勢の時間変化を前記浮上体の運動の自由度毎に推定することを特徴とする請求項5項記載の磁気浮上装置。
  8. 前記浮上体は、前記磁石ユニットを備えていることを特徴とする請求項1項記載の磁気浮上装置。
  9. 前記浮上体は、前記強磁性体部材を備えていることを特徴とする請求項1項記載の磁気浮上装置。
JP2007275354A 2007-10-23 2007-10-23 磁気浮上装置 Expired - Fee Related JP5099629B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007275354A JP5099629B2 (ja) 2007-10-23 2007-10-23 磁気浮上装置
CN200810170723.0A CN101417619B (zh) 2007-10-23 2008-10-22 磁悬浮装置
US12/256,117 US7929268B2 (en) 2007-10-23 2008-10-22 Magnetic levitation apparatus
MYPI20084230A MY146295A (en) 2007-10-23 2008-10-23 Magnetic levitation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007275354A JP5099629B2 (ja) 2007-10-23 2007-10-23 磁気浮上装置

Publications (2)

Publication Number Publication Date
JP2009106071A JP2009106071A (ja) 2009-05-14
JP5099629B2 true JP5099629B2 (ja) 2012-12-19

Family

ID=40563256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007275354A Expired - Fee Related JP5099629B2 (ja) 2007-10-23 2007-10-23 磁気浮上装置

Country Status (4)

Country Link
US (1) US7929268B2 (ja)
JP (1) JP5099629B2 (ja)
CN (1) CN101417619B (ja)
MY (1) MY146295A (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4500767B2 (ja) * 2003-06-20 2010-07-14 オーチス エレベータ カンパニー 反発磁力を用いたエレベーターのアクティブサスペンション
JP5196367B2 (ja) * 2008-01-04 2013-05-15 東芝エレベータ株式会社 磁気ガイド装置
JP2012514162A (ja) * 2009-01-21 2012-06-21 福州市規劃設計研究院 磁気浮上型防振構造体
JP5483692B2 (ja) * 2009-12-14 2014-05-07 東芝エレベータ株式会社 磁気浮上装置
JP5546970B2 (ja) * 2010-06-29 2014-07-09 東芝エレベータ株式会社 磁気ガイド制御装置
US8302535B2 (en) 2010-08-09 2012-11-06 Chase Thomas B Train yard classification system
WO2012048748A1 (en) * 2010-10-14 2012-04-19 Kone Corporation Extending roller guides
JP2012125067A (ja) * 2010-12-09 2012-06-28 Toshiba Elevator Co Ltd 磁気浮上装置
JP5772359B2 (ja) * 2011-08-02 2015-09-02 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
CN104516379A (zh) * 2013-09-30 2015-04-15 珠海格力节能环保制冷技术研究中心有限公司 磁悬浮系统的偏置电压调节方法和装置
CN103954841B (zh) * 2014-04-11 2017-01-11 西南交通大学 一种中低速磁浮列车悬浮电磁铁电阻参数在线检测方法
TWI552611B (zh) * 2014-12-26 2016-10-01 廣達電腦股份有限公司 音樂播放裝置
RU2611858C1 (ru) * 2015-09-24 2017-03-01 Акционерное Общество "Нииэфа Им. Д.В. Ефремова" Регулируемый магнитный подвес транспортного средства с коррекцией подъемной силы
CN105667339A (zh) * 2016-04-02 2016-06-15 成都浮星科技有限公司 一种磁悬浮运载工具
JP7275098B2 (ja) * 2017-07-06 2023-05-17 スカイトラン インコーポレイテッド 予定磁気式飛行経路に対する車両の経路補正
ES2733901A1 (es) * 2018-05-22 2019-12-03 Zeleros Global S L Sistema y metodo de levitacion magnetica por atraccion
CN110544329B (zh) * 2019-09-11 2021-09-17 中车株洲电力机车有限公司 一种磁浮列车车轨共振的判定方法、系统及存储介质
ES2827898A1 (es) * 2019-10-08 2021-05-24 Zeleros Global S L Sistema matricial de suspension electromagnetica para vehiculos de transporte

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2967822B2 (ja) 1984-10-23 1999-10-25 株式会社東芝 浮上式搬送装置
JP2732562B2 (ja) * 1986-05-14 1998-03-30 株式会社東芝 浮上式搬送装置
EP0549912B1 (en) * 1992-01-03 1997-11-05 British Nuclear Fuels PLC Apparatus for the electromagnetic control of the suspension of an object
JP3152775B2 (ja) * 1992-12-07 2001-04-03 株式会社東芝 磁気浮上装置
JPH0779507A (ja) * 1993-07-13 1995-03-20 Seiko Seiki Co Ltd 搬送装置
US5647477A (en) * 1994-09-19 1997-07-15 Kabushiki Kaisha Toshiba Magnetic non-contact transport system
US6208497B1 (en) * 1997-06-26 2001-03-27 Venture Scientifics, Llc System and method for servo control of nonlinear electromagnetic actuators
JP4270657B2 (ja) * 1999-07-06 2009-06-03 東芝エレベータ株式会社 エレベータ案内装置
JP4097848B2 (ja) * 1999-07-06 2008-06-11 東芝エレベータ株式会社 エレベータ案内装置
JP2002303079A (ja) 2001-01-11 2002-10-18 Toshiba Corp 仕切体支持装置
JP3871570B2 (ja) 2002-01-09 2007-01-24 株式会社東芝 磁気浮上装置
JP4216683B2 (ja) 2003-10-02 2009-01-28 株式会社東芝 磁気浮上装置
DE102004012746A1 (de) * 2004-03-15 2005-10-06 Thyssenkrupp Transrapid Gmbh Magnetanordnung für ein Magnetschwebefahrzeug
JP4146392B2 (ja) 2004-05-21 2008-09-10 東芝エレベータ株式会社 磁気浮上装置
JP4744928B2 (ja) 2005-05-17 2011-08-10 東芝エレベータ株式会社 磁気浮上装置
JP4499673B2 (ja) * 2006-02-22 2010-07-07 東芝エレベータ株式会社 磁気浮上装置
JP4509053B2 (ja) * 2006-03-20 2010-07-21 東芝エレベータ株式会社 磁気浮上装置

Also Published As

Publication number Publication date
US7929268B2 (en) 2011-04-19
CN101417619A (zh) 2009-04-29
US20090103227A1 (en) 2009-04-23
MY146295A (en) 2012-07-31
JP2009106071A (ja) 2009-05-14
CN101417619B (zh) 2011-05-04

Similar Documents

Publication Publication Date Title
JP5099629B2 (ja) 磁気浮上装置
JP4499673B2 (ja) 磁気浮上装置
JP4509053B2 (ja) 磁気浮上装置
JP4587519B2 (ja) エレベータ案内装置
CN113839540B (zh) 用于运行运输装置的方法和运输装置
JP4097848B2 (ja) エレベータ案内装置
JP4744928B2 (ja) 磁気浮上装置
US7841451B2 (en) Non-contact running type elevator
US20090065309A1 (en) Magnetic guide apparatus
JP5611790B2 (ja) 磁気浮上装置
JP5483692B2 (ja) 磁気浮上装置
JP2012125067A (ja) 磁気浮上装置
JP4146392B2 (ja) 磁気浮上装置
JP4216683B2 (ja) 磁気浮上装置
JP3448734B2 (ja) 磁気浮上システムに用いられる制御装置
JP2013049512A (ja) 磁気ガイド制御装置
JP5546970B2 (ja) 磁気ガイド制御装置
JP2005127858A (ja) 秤量装置
JP2005036839A (ja) 磁気支持装置
JP5936918B2 (ja) 磁気浮上装置
JP2004233152A (ja) 秤量装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100317

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees