JP5094802B2 - Optical element wafer manufacturing method - Google Patents

Optical element wafer manufacturing method Download PDF

Info

Publication number
JP5094802B2
JP5094802B2 JP2009199032A JP2009199032A JP5094802B2 JP 5094802 B2 JP5094802 B2 JP 5094802B2 JP 2009199032 A JP2009199032 A JP 2009199032A JP 2009199032 A JP2009199032 A JP 2009199032A JP 5094802 B2 JP5094802 B2 JP 5094802B2
Authority
JP
Japan
Prior art keywords
optical element
replica
lens
wafer
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009199032A
Other languages
Japanese (ja)
Other versions
JP2010102312A (en
Inventor
秀行 栗本
祐司 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009199032A priority Critical patent/JP5094802B2/en
Priority to US12/585,769 priority patent/US20100079642A1/en
Priority to CN2009102044287A priority patent/CN101685169B/en
Publication of JP2010102312A publication Critical patent/JP2010102312A/en
Application granted granted Critical
Publication of JP5094802B2 publication Critical patent/JP5094802B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0085Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing wafer level optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14687Wafer level processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05541Structure
    • H01L2224/05548Bonding area integrally formed with a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details

Description

本発明は、入射光を集光する複数の光学素子としての複数のレンズが設けられたレンズウエハや光学機能素子ウエハなどの光学素子ウエハおよびその製造方法に関する。本発明は、光学素子ウエハから一括切断されて個片化した光学素子および、光学素子ウエハを複数積層した光学素子ウエハモジュールから一括切断されて個片化した光学素子モジュールに関する。本発明は、光学素子または光学素子モジュールと、被写体からの画像光を光電変換して撮像する複数の撮像素子が設けられた撮像素子ウエハとが一体化されたセンサウエハモジュールなどの電子素子ウエハモジュールおよび、この電子素子ウエハモジュールから一括切断されて個片化されたり、この光学素子または光学素子モジュールを電子素子とモジュール化した電子素子モジュールに関する。本発明は、この電子素子モジュールとしてのセンサモジュールを画像入力デバイスとして撮像部に用いた例えばデジタルビデオカメラおよびデジタルスチルカメラなどのデジタルカメラや、画像入力カメラ、スキャナ装置、ファクシミリ装置、カメラ付き携帯電話装置、テレビジョン電話装置などの電子情報機器に関する。   The present invention relates to an optical element wafer such as a lens wafer or an optical functional element wafer provided with a plurality of lenses as a plurality of optical elements that collect incident light, and a method for manufacturing the same. The present invention relates to an optical element cut into pieces by batch cutting from an optical element wafer, and an optical element module cut into pieces from an optical element wafer module in which a plurality of optical element wafers are stacked. The present invention relates to an electronic element wafer module such as a sensor wafer module in which an optical element or an optical element module is integrated with an imaging element wafer provided with a plurality of imaging elements that photoelectrically convert image light from a subject. The present invention also relates to an electronic element module in which the electronic element wafer module is collectively cut into individual pieces, or the optical element or the optical element module is modularized with an electronic element. The present invention uses a digital camera such as a digital video camera and a digital still camera, an image input camera, a scanner device, a facsimile device, and a camera-equipped mobile phone using the sensor module as the electronic element module as an image input device in an image pickup unit. The present invention relates to electronic information equipment such as devices and television telephone devices.

この種の従来の光学素子ウエハとして、複数の凸レンズがマトリクス状に配置されたレンズウエハが、撮像素子ウエハの各撮像素子に対してそれぞれ集光させるために位置決めされてカメラモジュールとして貼り付けられて一体化されている。   As a conventional optical element wafer of this type, a lens wafer in which a plurality of convex lenses are arranged in a matrix is positioned and focused on each image sensor of the image sensor wafer and pasted as a camera module. It is integrated.

この光学素子ウエハとしての凸レンズウエハの製造方法について、特許文献1に開示されている。   A method for manufacturing a convex lens wafer as an optical element wafer is disclosed in Patent Document 1.

図9は、特許文献1に開示されている従来の凸レンズウエハの製造方法を説明するための模式図である。   FIG. 9 is a schematic diagram for explaining a conventional method of manufacturing a convex lens wafer disclosed in Patent Document 1. In FIG.

図9において、従来の基準格子製造装置100では、平板状転写マスタ101の微細凹凸形状パターン102と、レプリカベース103の成形用平面104との間に光硬化性樹脂105を介在させ、微細凹凸形状パターン102を光硬化性樹脂105に押圧させた状態で、光硬化性樹脂105の下方から紫外線光源106により紫外線を照射して光硬化性樹脂105を硬化させる。これにより、光硬化性樹脂105の上面には、微細凹凸形状パターン102を転写した微細凹凸形状パターンが完成する。このように、従来の基準格子製造装置100を用いた微細凹凸形状パターン102の形成方法では、基準格子の大きさに拘わりなく、微細凹凸形状パターン102を高精度でかつ効率よく加工することが可能となる。   In FIG. 9, in the conventional reference grid manufacturing apparatus 100, a photo-curing resin 105 is interposed between the fine uneven shape pattern 102 of the flat plate transfer master 101 and the molding plane 104 of the replica base 103, and the fine uneven shape is obtained. In a state where the pattern 102 is pressed against the photocurable resin 105, the photocurable resin 105 is cured by irradiating ultraviolet rays from below the photocurable resin 105 with an ultraviolet light source 106. Thereby, the fine uneven | corrugated shape pattern which transferred the fine uneven | corrugated shape pattern 102 on the upper surface of the photocurable resin 105 is completed. As described above, in the method of forming the fine concavo-convex pattern 102 using the conventional reference lattice manufacturing apparatus 100, the fine concavo-convex pattern 102 can be processed with high accuracy and efficiency regardless of the size of the reference lattice. It becomes.

上記従来の凸レンズウエハの製造方法のプロセスの一例について、図10(a)〜図10(d)および図11(a)〜図11(c)を用いて詳細に説明する。   An example of the process of the conventional method for manufacturing a convex lens wafer will be described in detail with reference to FIGS. 10 (a) to 10 (d) and FIGS. 11 (a) to 11 (c).

図10(a)〜図10(d)はそれぞれ、従来の凸レンズウエハを製造するための金型作製プロセスを説明するための要部縦断面図であり、図11(a)〜図11(c)はそれぞれ、従来の凸レンズウエハの製造プロセスを説明するための要部縦断面図である。   10 (a) to 10 (d) are longitudinal sectional views for explaining a mold manufacturing process for manufacturing a conventional convex lens wafer, and FIGS. 11 (a) to 11 (c). ) Are main part longitudinal sectional views for explaining the manufacturing process of the conventional convex lens wafer.

まず、図10(a)のレプリカ型成形工程に示すように、ガラス基板またはシリコン基板からなる基材201上の所定位置に樹脂材料202を吐出する。マスター金型203を用いて樹脂材料202を上から押圧する。これによって、マスター金型203の下面形状を樹脂材料202の上面に転写して樹脂レプリカ204を形成する。これを順次繰り返して、図9(b)に示すように、基材201上に複数の樹脂レプリカ204のレプリカ型を等間隔に形成する。   First, as shown in the replica mold forming step of FIG. 10A, a resin material 202 is discharged to a predetermined position on a base material 201 made of a glass substrate or a silicon substrate. The resin material 202 is pressed from above using the master mold 203. As a result, the lower surface shape of the master mold 203 is transferred to the upper surface of the resin material 202 to form the resin replica 204. By repeating this in sequence, replica molds of a plurality of resin replicas 204 are formed at equal intervals on the base material 201 as shown in FIG. 9B.

図10(c)に示すように、複数の樹脂レプリカ204のレプリカ型を用いて、基材201上の複数の樹脂レプリカ204のレプリカ型をウエハサイズの上金型のスタンパ型205に転写する。   As shown in FIG. 10C, the replica molds of the plurality of resin replicas 204 on the substrate 201 are transferred to the stamper mold 205 of the upper mold of the wafer using the replica molds of the plurality of resin replicas 204.

図10(d)に示すように、基材201上の複数の樹脂レプリカ204のレプリカ型からウエハサイズのスタンパ型205を離型して、上金型のスタンパ型205を得る。これと同様にして、基材201上に形成した複数の樹脂レプリカ204のレプリカ型を、図11(a)に示す下金型のスタンパ型206に転写した後、これを離型して、下金型のスタンパ型206を得る。   As shown in FIG. 10D, the wafer size stamper mold 205 is released from the replica molds of the plurality of resin replicas 204 on the base material 201 to obtain an upper mold stamper mold 205. Similarly, after the replica molds of the plurality of resin replicas 204 formed on the substrate 201 are transferred to the stamper mold 206 of the lower mold shown in FIG. A mold stamper mold 206 is obtained.

図11(a)に示すように、下金型のスタンパ型206上の中央位置にレンズ用の成形樹脂207を適量だけ吐出し、これを上金型のスタンパ型205で上から押圧して、スタンパ型205,206で上下から成形樹脂207を挟み込んで、図11(b)に示すようにレンズウエハ208をプレス成形する。このとき、上下金型で所望のレンズ厚みとなるように制御して成形樹脂207を押し広げる。   As shown in FIG. 11 (a), an appropriate amount of a molding resin 207 for the lens is discharged to the center position on the lower mold stamper mold 206, and this is pressed from above by the upper mold stamper mold 205, The molding resin 207 is sandwiched from above and below by the stamper molds 205 and 206, and the lens wafer 208 is press-molded as shown in FIG. At this time, the molding resin 207 is spread by controlling the upper and lower molds to have a desired lens thickness.

さらに、この成形樹脂207を硬化させた後に、上下のスタンパ型205,206を開いて離型し、図11(c)に示すように、所望のレンズウエハ208を上下金型内から取り出す。このようにして、所望の形状のレンズウエハ208を得ることができる。   Further, after the molding resin 207 is cured, the upper and lower stamper molds 205 and 206 are opened and released, and the desired lens wafer 208 is taken out from the upper and lower molds as shown in FIG. In this way, a lens wafer 208 having a desired shape can be obtained.

特開2006−64455号公報JP 2006-64455 A

しかしながら、上記特許文献1に開示されている従来の構成では、図12に示すように、樹脂レプリカ204の成形後のマスター金型203の離型時に、マスター金型203に樹脂レプリカ204がくっ付いて、樹脂レプリカ204と基材201との界面で剥離が発生する。また、アンカーコート材204aを基材201の表面に塗布した場合、樹脂レプリカ204とアンカーコート材204aとの密着力が上がるが、アンカーコート材204aと基材201の界面で剥離が発生したり、または樹脂レプリカ204自体に亀裂204bが発生したりする。   However, in the conventional configuration disclosed in Patent Document 1, the resin replica 204 sticks to the master mold 203 when the master mold 203 is released after the resin replica 204 is molded, as shown in FIG. Thus, peeling occurs at the interface between the resin replica 204 and the base material 201. Further, when the anchor coat material 204a is applied to the surface of the substrate 201, the adhesion between the resin replica 204 and the anchor coat material 204a is increased, but peeling occurs at the interface between the anchor coat material 204a and the substrate 201, Or the crack 204b may generate | occur | produce in resin replica 204 itself.

また、マスター金型203により樹脂レプリカ204を個別に作製する場合、基材201の表面とマスター金型203の表面の濡れ性や、成形時の圧力および樹脂材料202の粘度などの影響により、形成された樹脂レプリカ204の側面形状が垂直にならない場合がある。例えば図13(a)に示すように樹脂レプリカ204の側面の膨れ204c、樹脂レプリカ204の側面の凹み204dおよび樹脂レプリカ204の側面の逆テーパ204eにより、後のスタンパ型205の離型時に問題が発生する。つまり、スタンパ型205を作製した後に、スタンパ型205を樹脂レプリカ204から離型する際に、樹脂レプリカ204の側面にスタンパ型205が食い込んで、図13(b)および図13(c)に示すようにスタンパ型205と共に樹脂レプリカ204が持ち上がる離型不良や、無理に離型しようとすると、樹脂レプリカ204に亀裂が発生して、スタンパ型205内への樹脂残りが発生する。   In addition, when the resin replica 204 is individually manufactured by the master mold 203, it is formed due to the wettability between the surface of the base material 201 and the surface of the master mold 203, the pressure during molding, the viscosity of the resin material 202, and the like. The side shape of the resin replica 204 may not be vertical. For example, as shown in FIG. 13 (a), there is a problem when the stamper mold 205 is released later due to the swelling 204c on the side surface of the resin replica 204, the recess 204d on the side surface of the resin replica 204, and the reverse taper 204e on the side surface of the resin replica 204. appear. That is, after the stamper mold 205 is manufactured, when the stamper mold 205 is released from the resin replica 204, the stamper mold 205 bites into the side surface of the resin replica 204, as shown in FIGS. 13B and 13C. As described above, when the resin replica 204 is lifted together with the stamper mold 205, or when the mold is forcibly released, the resin replica 204 is cracked, and the resin remains in the stamper mold 205.

さらに、図14(a)および図14(b)に示すように、樹脂レプリカ204のレプリカ作製時の樹脂厚みが厚いほど、隣り合う樹脂パターン間の樹脂部208aの厚みが薄くなるため、特に、大型の樹脂板であるレンズウエハ208を作る場合には強度に問題が発生する。また、図14(a)に示すように、スタンパ型205,206で上下から成形樹脂207を挟み込んで成形樹脂207を押し広げる際に、成形樹脂207内の空気や、スタンパ型205,206内の空気が狭い空間では抜け難く、樹脂板であるレンズウエハ208に気泡が残りやすくなる。その気泡がレンズウエハ208のレンズ機能部分に残ると、撮像素子への集光に支障が生じることになる。   Furthermore, as shown in FIGS. 14 (a) and 14 (b), since the thickness of the resin portion 208a between adjacent resin patterns becomes thinner as the resin thickness at the time of replica production of the resin replica 204 is larger, When the lens wafer 208, which is a large resin plate, is produced, a problem arises in strength. 14A, when the molding resin 207 is sandwiched from above and below by the stamper molds 205 and 206 to spread the molding resin 207, the air in the molding resin 207, the stamper molds 205 and 206, It is difficult for air to escape in a narrow space, and bubbles tend to remain on the lens wafer 208 that is a resin plate. If the bubbles remain in the lens function portion of the lens wafer 208, the light condensing on the image sensor is hindered.

本発明は、上記従来の問題を解決するもので、精度よく樹脂レプリカを形成して精度よく上下のスタンパ型を形成すると共に、大型のレンズウエハを作る場合にも、強度的な問題や気泡残りの問題を解消することができるレンズウエハなどの光学素子ウエハおよびその製造方法、光学素子ウエハから一括切断されて個片化した光学素子および、光学素子ウエハを複数積層した光学素子ウエハモジュールから一括切断されて個片化した光学素子モジュール、光学素子または光学素子モジュールと電子素子ウエハとが一体化された電子素子ウエハモジュール、この電子素子ウエハモジュールから一括切断されて個片化されたり、この光学素子または光学素子モジュールを電子素子モジュールとモジュール化した電子素子モジュール、この電子素子モジュールをセンサモジュールとして撮像部に用いた例えばカメラ付き携帯電話装置やテレビジョン電話装置などの電子情報機器を提供することを目的とする。   The present invention solves the above-mentioned conventional problems. In addition to forming a resin replica with high precision and forming upper and lower stamper molds with high precision, there are strength problems and bubble remaining even when making a large lens wafer. Optical element wafers such as lens wafers and methods for manufacturing the same, optical elements separated from the optical element wafers into individual pieces, and optical element wafer modules in which a plurality of optical element wafers are stacked together An optical element module separated into individual pieces, an electronic element wafer module in which an optical element or an optical element module and an electronic element wafer are integrated, or the optical element wafer module is cut into pieces and separated into individual pieces. Alternatively, an electronic element module obtained by modularizing an optical element module with an electronic element module, and the electronic element And to provide an electronic information device such as a mobile phone device or a television telephone apparatus equipped with a camera using the imaging unit Joule as a sensor module.

本発明の光学素子ウエハの製造方法は、複数の光学素子が2次元状に配列された光学素子ウエハの製造方法において、基材に形成された複数の凹部内にレプリカを形成するレプリカ形成工程と、該基材の凹部内に埋め込まれたレプリカの表面側に形成された各光学素子形状を転写してスタンパ型を形成するスタンパ型形成工程と、該スタンパ型を用いて光学素子材料に光学素子形状を転写して光学素子ウエハを成形する光学素子ウエハ成形工程とを有し、該レプリカ形成工程は、該基材に形成された複数の凹部内にレプリカ材料を吐出する工程と、マスター型を用いて該レプリカ材料上を押圧して該マスター型の光学素子形状を該レプリカ材料の表面側に転写する光学素子形状転写工程とを有するものであり、そのことにより上記目的が達成される。
The method for manufacturing an optical element wafer of the present invention is the manufacturing method of the optical element wafer having a plurality of optical elements are arranged two-dimensionally, replica forming step of forming a replica within a plurality of recesses formed in the substrate A stamper mold forming step of forming a stamper mold by transferring the shape of each optical element formed on the surface side of the replica embedded in the recess of the base material; An optical element wafer forming step of transferring an element shape to form an optical element wafer, wherein the replica forming step includes a step of discharging a replica material into a plurality of recesses formed in the base material, and a master mold are those having an optical element shape transfer step of the optical element shapes in the master mold to press on the replica material transferred to the surface side of the replica material using the above objects attained by its It is.

また、好ましくは、本発明の光学素子ウエハの製造方法におけるレプリカ形成工程は、基材に形成された複数の凹部内に、表面用の光学素子形状が表面側に形成された上用レプリカを形成する上用レプリカ形成工程と、別の基材に形成された複数の凹部内に、裏面用の光学素子形状が表面側に形成された下用レプリカを形成する下用レプリカ形成工程とを有する。   Preferably, in the optical element wafer manufacturing method of the present invention, the replica forming step forms an upper replica in which the optical element shape for the surface is formed on the surface side in the plurality of recesses formed on the base material. An upper replica forming step, and a lower replica forming step of forming a lower replica in which the shape of the optical element for the back surface is formed on the front surface side in a plurality of concave portions formed on another base material.

さらに、好ましくは、本発明の光学素子ウエハの製造方法における光学素子ウエハ成形工程は、前記光学素子形状の外周側に所定厚さの平坦部が設けられ、互いに隣接する該光学素子形状間にある平坦部間が該光学素子形状と同じ材料からなる連接部で接続された前記光学素子ウエハを形成する
Further preferably, in the optical element wafer forming step of the optical element wafer manufacturing method of the present invention, a flat portion having a predetermined thickness is provided on the outer peripheral side of the optical element shape, and is between the adjacent optical element shapes. The optical element wafer is formed in which the flat portions are connected by a connecting portion made of the same material as the shape of the optical element .

さらに、好ましくは、本発明の光学素子ウエハの製造方法において、前記基材と前記レプリカの接触面積が、前記レプリカと前記マスター型の接触面積に比べて大きくなるように該基材の凹部の深さを設定する。   Further preferably, in the method for producing an optical element wafer of the present invention, the depth of the recess of the base material is set so that a contact area between the base material and the replica is larger than a contact area between the replica and the master mold. Set the size.

さらに、好ましくは、本発明の光学素子ウエハの製造方法において、前記基材と前記レプリカの接触面積が、該レプリカと前記スタンパ型の接触面積に比べて大きくなるように該基材の凹部の深さを設定する。   Further preferably, in the method for producing an optical element wafer of the present invention, the depth of the recess of the base material is set so that a contact area between the base material and the replica is larger than a contact area between the replica and the stamper mold. Set the size.

さらに、好ましくは、本発明の光学素子ウエハの製造方法におけるスタンパ型形成工程は、前記上用レプリカの各光学素子形状を転写して上用スタンパ型を形成する上用スタンパ型形成工程と、前記下用レプリカの各光学素子形状を転写して下用スタンパ型を形成する下用スタンパ型形成工程とを有する。   Further preferably, the stamper mold forming step in the method of manufacturing an optical element wafer of the present invention includes an upper stamper mold forming step of forming an upper stamper mold by transferring each optical element shape of the upper replica, A lower stamper mold forming step of transferring the shape of each optical element of the lower replica to form a lower stamper mold.

さらに、好ましくは、本発明の光学素子ウエハの製造方法における光学素子ウエハ成形工程は、前記上用スタンパ型と前記下用スタンパ型により前記光学素子材料を所定厚さにプレスする光学素子材料プレス工程と、該光学素子材料を光硬化または熱硬化させる光学素子材料硬化工程とを有する。   Still preferably, in an optical element wafer manufacturing method of the present invention, the optical element wafer molding step is an optical element material pressing step in which the optical element material is pressed to a predetermined thickness by the upper stamper mold and the lower stamper mold. And an optical element material curing step for photocuring or thermosetting the optical element material.

さらに、好ましくは、本発明の光学素子ウエハの製造方法における光学素子は、一または複数枚のレンズである。   Still preferably, in an optical element wafer manufacturing method of the present invention, the optical element is one or a plurality of lenses.

さらに、好ましくは、本発明の光学素子ウエハの製造方法における光学素子は、出射光を直進させて出射させると共に、入射光を曲げて所定方向に入射させる光学機能素子であ
る。
Further preferably, the optical element in the method of manufacturing an optical element wafer according to the present invention is an optical functional element that causes outgoing light to go straight and emit, and bends incident light to enter in a predetermined direction.

本発明の光学素子ウエハは、光学素子ウエハの製造方法によって製造されたものであり、そのことにより上記目的が達成される。   The optical element wafer of the present invention is manufactured by the method for manufacturing an optical element wafer, thereby achieving the above object.

本発明の光学素子ウエハは、本発明の上記光学素子ウエハの製造方法によって製造され、複数の光学素子が2次元状に配列された光学素子ウエハであって、ウエハ表面とウエハ裏面のうちの少なくともいずれかに複数の光学素子領域が設けられ、該光学素子領域の外周側に所定厚さを持つ平坦部が設けられ、互いに隣接する光学素子領域間の平坦部の厚さと、その平坦部間の連設部の厚さとが、倍半分から同等の厚さ範囲内にあり、そのことにより上記目的が達成される。 Optics wafer of the present invention is manufactured by the manufacturing method of the optical element wafer of the present invention, an optical element wafers arranged plurality of optical elements two-dimensionally, at least one of the wafer surface and the wafer back surface A plurality of optical element regions are provided, and a flat portion having a predetermined thickness is provided on the outer peripheral side of the optical element region, and the thickness of the flat portion between adjacent optical element regions and between the flat portions The thickness of the continuous portion is in the range of half to the equivalent thickness, whereby the above object is achieved.

さらに、好ましくは、本発明の光学素子ウエハにおいて、前記互いに隣接する光学素子領域間の平坦部の厚さは、その平坦部間の連設部の厚さの4/3または3/4から同等の厚さ範囲内にある。   Further preferably, in the optical element wafer of the present invention, the thickness of the flat portion between the adjacent optical element regions is equal to 4/3 or 3/4 of the thickness of the connecting portion between the flat portions. Is in the thickness range.

さらに、好ましくは、本発明の光学素子ウエハにおける光学素子は、一または複数枚のレンズである。   Further preferably, the optical element in the optical element wafer of the present invention is one or a plurality of lenses.

さらに、好ましくは、本発明の光学素子ウエハにおける光学素子は、出射光を直進させて出射させると共に、入射光を曲げて所定方向に入射させる光学機能素子である。   Further preferably, the optical element in the optical element wafer of the present invention is an optical functional element that causes the outgoing light to go straight and to be emitted, and also causes the incident light to be bent and incident in a predetermined direction.

本発明の光学素子は、本発明の上記光学素子ウエハから切断されて個片化された光学素子であって、中央部に光学面が設けられ、該光学面の外周側に所定厚さを持つスペーサ部が設けられたものであり、そのことにより上記目的が達成される。   The optical element of the present invention is an optical element cut from the optical element wafer of the present invention and separated into pieces, and an optical surface is provided at the center, and a predetermined thickness is provided on the outer peripheral side of the optical surface. A spacer portion is provided, and thereby the above object is achieved.

本発明の光学素子モジュールは、本発明の上記光学素子ウエハを光学面を一致させて複数積層した光学素子ウエハモジュールから切断されて個片化されたものであり、そのことにより上記目的が達成される。   The optical element module of the present invention is cut and separated from an optical element wafer module in which a plurality of the optical element wafers of the present invention are laminated with the optical surfaces coincided with each other, whereby the above object is achieved. The

本発明の光学素子モジュールは、好ましくは、前記最も上の光学面以外の上面および複数の光学素子の側面を遮光する遮光ホルダを有する。   The optical element module of the present invention preferably has a light-shielding holder that shields light from the upper surface other than the uppermost optical surface and the side surfaces of the plurality of optical elements.

本発明の光学素子モジュールは、本発明の上記光学素子の光学面以外の上面および側面を遮光する遮光ホルダを有するものであり、そのことにより上記目的が達成される。   The optical element module of the present invention has a light-shielding holder that shields light from the upper surface and side surfaces other than the optical surface of the optical element of the present invention, thereby achieving the above object.

本発明の電子素子ウエハモジュールは、貫通電極を有する複数の電子素子が配設された電子素子ウエハと、該電子素子ウエハ上の所定領域に形成された樹脂接着層と、該電子素子ウエハ上を覆い、該樹脂接着層上に固定された透明支持基板と、該複数の電子素子のそれぞれに各光学素子が対応するように該透明支持基板上に接着されて一体化された本発明の上記光学素子ウエハとを有するものであり、そのことにより上記目的が達成される。   An electronic element wafer module of the present invention includes an electronic element wafer in which a plurality of electronic elements having through electrodes are disposed, a resin adhesive layer formed in a predetermined region on the electronic element wafer, and the electronic element wafer. A transparent support substrate that is covered and fixed on the resin adhesive layer, and the optical element according to the present invention is bonded and integrated on the transparent support substrate so that each optical element corresponds to each of the plurality of electronic elements. And the above object is achieved.

また、好ましくは、本発明の電子素子ウエハモジュールにおける光学素子ウエハは、収差補正レンズ、拡散レンズおよび集光レンズの3枚のレンズからなり、それらのレンズの各外周側にそれぞれ設けられた所定厚さを持つ各平坦部を下からこの順に積層したレンズウエハモジュールである。   Preferably, the optical element wafer in the electronic element wafer module of the present invention includes three lenses, an aberration correction lens, a diffusion lens, and a condenser lens, each having a predetermined thickness provided on each outer peripheral side of these lenses. This is a lens wafer module in which flat portions having thickness are stacked in this order from the bottom.

さらに、好ましくは、本発明の電子素子ウエハモジュールにおける電子素子は、被写体からの画像光を光電変換して撮像する複数の受光部を有する撮像素子である。   Still preferably, in an electronic element wafer module according to the present invention, the electronic element is an imaging element having a plurality of light receiving sections that image-convert image light from a subject.

さらに、好ましくは、本発明の電子素子ウエハモジュールにおける電子素子は、出射光を発生させるための発光素子および入射光を受光するための受光素子である。   Further preferably, the electronic elements in the electronic element wafer module of the present invention are a light emitting element for generating outgoing light and a light receiving element for receiving incident light.

本発明の電子素子モジュールは、本発明の上記電子素子ウエハモジュールから一または複数個毎に切断されたものであり、そのことにより上記目的が達成される。   The electronic element module of the present invention is cut from the electronic element wafer module of the present invention one by one or plural pieces, thereby achieving the above object.

本発明の電子情報機器は、本発明の上記電子素子ウエハモジュールから切断されて個片化された電子素子モジュールをセンサモジュールとして撮像部に用いたものであり、そのことにより上記目的が達成される。   The electronic information device according to the present invention uses the electronic element module cut and separated from the electronic element wafer module according to the present invention as a sensor module in an imaging unit, thereby achieving the above object. .

本発明の電子情報機器は、本発明の上記電子素子ウエハモジュールから切断されて個片化された電子素子モジュールを情報記録再生部にに用いたものであり、そのことにより上記目的が達成される。   An electronic information device according to the present invention uses an electronic element module cut and separated from the electronic element wafer module according to the present invention for an information recording / reproducing unit, thereby achieving the above object. .

上記構成により、以下、本発明の作用を説明する。   With the above configuration, the operation of the present invention will be described below.

本発明においては、光学素子ウエハの製造方法として、基材に形成された複数の凹部内に、光学素子形状が表面側に形成されたレプリカを形成するレプリカ形成工程と、このレプリカの各光学素子形状を用いてスタンパ型を形成するスタンパ型形成工程と、このスタンパ型を用いて光学素子材料に光学素子形状を転写して光学素子ウエハを成形する光学素子ウエハ成形工程とを有している。これによって、本発明の光学素子ウエハは、ウエハ表面とウエハ裏面のうちの少なくともいずれかに複数の光学素子領域が設けられ、この光学素子領域の外周側に所定厚さを持つ平坦部が設けられている。互いに隣接する光学素子領域間の平坦部の厚さと、その平坦部間の連設部の厚さとが、倍半分から同等の厚さ範囲内にある。また、好ましくは、互いに隣接する光学素子領域間の平坦部の厚さは、その平坦部間の連設部の厚さの4/3または3/4から同等の厚さ範囲内にある。   In the present invention, as a method for manufacturing an optical element wafer, a replica forming step of forming a replica in which an optical element shape is formed on the surface side in a plurality of recesses formed on a substrate, and each optical element of this replica A stamper mold forming step of forming a stamper mold using the shape, and an optical element wafer molding step of molding the optical element wafer by transferring the optical element shape to the optical element material using the stamper mold. Thus, the optical element wafer of the present invention is provided with a plurality of optical element regions on at least one of the wafer front surface and the wafer back surface, and a flat portion having a predetermined thickness is provided on the outer peripheral side of the optical element region. ing. The thickness of the flat portion between the optical element regions adjacent to each other and the thickness of the continuous portion between the flat portions are in the range of half to the equivalent thickness. Preferably, the thickness of the flat portion between the optical element regions adjacent to each other is in a range of equivalent thickness from 4/3 or 3/4 of the thickness of the connecting portion between the flat portions.

したがって、レプリカの側面の一部または全部を、基材に掘り込まれた複数の凹部内にそれぞれ埋め込んでレプリカを形成する。このため、基材とレプリカの接触面積が、レプリカとマスター型の接触面積に比べて大きく、かつ基材とレプリカの接触面積が、レプリカとスタンパ型の接触面積に比べて大きくなる。これによって、マスター型やスタンパ型の離型がスムーズで、凹部の深さ分だけ平坦部間の連設部の厚さが厚くなり、これによって、精度よくレプリカを形成して精度よく上下のスタンパ型を形成することが可能となる。また、大型のレンズウエハを作る場合にも、強度的な問題を解消することが可能となる。また、表面の段差が緩和されて気泡残りの問題を解消することが可能となる。   Therefore, a replica is formed by embedding part or all of the side surface of the replica in a plurality of recesses dug into the base material. For this reason, the contact area between the substrate and the replica is larger than the contact area between the replica and the master mold, and the contact area between the substrate and the replica is larger than the contact area between the replica and the stamper mold. As a result, the mold release of the master type and the stamper type is smooth, and the thickness of the connecting portion between the flat portions is increased by the depth of the concave portion, whereby a replica is accurately formed and the upper and lower stampers are accurately formed. A mold can be formed. In addition, even when a large lens wafer is made, the strength problem can be solved. Further, the step on the surface is relaxed, and the problem of remaining bubbles can be solved.

以上により、本発明によれば、レプリカの側面の一部または全部を、基材に掘り込まれた複数の凹部内にそれぞれ埋め込んでレプリカを形成するため、基材とレプリカの接触面積が、レプリカとマスター型の接触面積に比べて大きく、かつ基材とレプリカの接触面積が、レプリカとスタンパ型の接触面積に比べて大きくなることから、マスター型やスタンパ型の離型がスムーズで、凹部の深さ分だけ平坦部間の連設部の厚さが厚くなり、これによって、精度よくレプリカを形成して精度よく上下のスタンパ型を形成すると共に、大型のレンズウエハを作る場合にも、強度的な問題を解消することができ、表面の段差が緩和されて気泡残りの問題を解消することができる。   As described above, according to the present invention, a replica is formed by embedding a part or all of the side surface of the replica in the plurality of recesses dug into the base material. Since the contact area between the base and the replica is larger than the contact area between the replica and the stamper mold, the master mold and stamper mold can be released smoothly and the recess The thickness of the connecting part between the flat parts is increased by the depth, which makes it possible to accurately form replicas to form the upper and lower stamper molds and to produce large lens wafers. Problems can be solved, and the step on the surface can be relaxed to eliminate the problem of remaining bubbles.

本発明の実施形態に係るレンズウエハの構成例を示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows the structural example of the lens wafer which concerns on embodiment of this invention. 図1のレンズウエハの製造方法のレプリカ作製プロセスを説明するための要部縦断面図である。FIG. 5 is a longitudinal sectional view of a main part for explaining a replica manufacturing process of the method for manufacturing the lens wafer of FIG. 1. 図2のレプリカ作製プロセスに用いる掘り込み基材の概略構成例を模式的に示す斜視図である。It is a perspective view which shows typically the example of schematic structure of the digging base material used for the replica preparation process of FIG. (a)〜(c)は、図1のレンズウエハを製造するための金型作製プロセスを説明するための要部縦断面図である。(A)-(c) is a principal part longitudinal cross-sectional view for demonstrating the metal mold | die preparation process for manufacturing the lens wafer of FIG. (a)および(b)は、図1のレンズウエハの成形プロセスを説明するための要部縦断面図である。(A) And (b) is a principal part longitudinal cross-sectional view for demonstrating the shaping | molding process of the lens wafer of FIG. (a)は、図1のレンズウエハから個片化されたレンズの変形例を示す縦断面図、(b)は、複数のレンズを積層したレンズモジュール例を示す縦断面図、(c)は、(b)の第2レンズの上面図、(d)は、(b)の第1レンズの上面図、(e)は、第1レンズと遮光ホルダを組み合わせた場合のレンズモジュールの縦断面図、(f)は、(b)のレンズモジュールの変形例と遮光ホルダを組み合わせた場合のレンズモジュールの縦断面図、(g)は、遮光ホルダウエハ、第1レンズウエハおよび第2レンズウエハを積層したレンズウエハモジュールの要部構成例を示す縦断面図である。(A) is a longitudinal sectional view showing a modified example of a lens separated from the lens wafer of FIG. 1, (b) is a longitudinal sectional view showing an example of a lens module in which a plurality of lenses are laminated, and (c) is shown. The top view of the 2nd lens of (b), (d) is the top view of the 1st lens of (b), (e) is a longitudinal cross-sectional view of the lens module at the time of combining a 1st lens and a light-shielding holder. (F) is a longitudinal cross-sectional view of a lens module when a modified example of the lens module of (b) is combined with a light-shielding holder, and (g) is a stack of a light-shielding holder wafer, a first lens wafer, and a second lens wafer. It is a longitudinal cross-sectional view which shows the example of a principal part structure of a lens wafer module. 本発明の実施形態3に係るセンサモジュールの要部構成例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part structural example of the sensor module which concerns on Embodiment 3 of this invention. 本発明の実施形態4として、レンズモジュールと撮像素子チップとを一体化した上記本実施形態3のセンサモジュールまたは、上記実施形態2のレンズおよびレンズモジュールと撮像素子チップとを一体化したセンサモジュール10Aを含む固体撮像装置を撮像部に用いた電子情報機器の概略構成例を示すブロック図である。As a fourth embodiment of the present invention, the sensor module of the third embodiment in which the lens module and the image sensor chip are integrated, or the sensor module 10A in which the lens and the lens module of the second embodiment and the image sensor chip are integrated. 1 is a block diagram illustrating a schematic configuration example of an electronic information device using a solid-state imaging device including an imaging unit as an imaging unit. 特許文献1に開示されている従来の凸レンズウエハの製造方法を説明するための模式図である。It is a schematic diagram for demonstrating the manufacturing method of the conventional convex lens wafer currently disclosed by patent document 1. FIG. (a)〜(d)は、従来の凸レンズウエハを製造するための金型作製プロセスを説明するための要部縦断面図である。(A)-(d) is a principal part longitudinal cross-sectional view for demonstrating the metal mold | die preparation process for manufacturing the conventional convex lens wafer. (a)〜(c)は、従来の凸レンズウエハの成形プロセスを説明するための要部縦断面図である。(A)-(c) is a principal part longitudinal cross-sectional view for demonstrating the shaping | molding process of the conventional convex lens wafer. 樹脂レプリカ成形後のマスター金型の離型時に発生する問題を説明するためのレプリカ成形工程を示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows the replica shaping | molding process for demonstrating the problem which generate | occur | produces at the time of mold release of the master metal mold | die after resin replica shaping | molding. (a)〜(c)は、スタンパ型を樹脂レプリカから離型する際の問題を説明するためのスタンパ型形成工程を示す要部縦断面図である。(A)-(c) is a principal part longitudinal cross-sectional view which shows the stamper type | mold formation process for demonstrating the problem at the time of releasing a stamper type | mold from a resin replica. (a)および(b)は、レンズウエハの成形時に発生する問題を説明するためのレンズウエハ成形工程を示す要部縦断面図である。(A) And (b) is a principal part longitudinal cross-sectional view which shows the lens wafer shaping | molding process for demonstrating the problem which generate | occur | produces at the time of shaping | molding of a lens wafer.

以下に、本発明の光学素子ウエハおよびその製造方法の実施形態1としてレンズウエハおよびその製造方法に適用した場合について図面を参照しながら詳細に説明する。また、光学素子ウエハを個片化した光学素子、光学素子を複数積層した光学素子ウエハモジュールを個片化した光学素子モジュールの実施形態2として、レンズおよびレンズモジュールについて図面を参照しながら詳細に説明する。さらに、本発明の電子素子ウエハモジュールから一括切断された電子素子モジュールの実施形態3として、上記実施形態1のレンズウエハと、被写体からの画像光を光電変換して撮像する複数の撮像素子が設けられた撮像素子ウエハとを一体化したセンサモジュールに適用した場合について図面を参照しながら詳細に説明する。このセンサモジュールまたは、実施形態2に係る光学素子モジュールを用いたセンサモジュールを画像入力デバイスとして撮像部に用いた例えばカメラ付き携帯電話装置やテレビジョン電話装置などの電子情報機器の実施形態3について図面を参照しながら詳細に説明する。   Hereinafter, a case where the present invention is applied to a lens wafer and a manufacturing method thereof as Embodiment 1 of the optical element wafer and the manufacturing method thereof will be described in detail with reference to the drawings. Further, a lens and a lens module will be described in detail as Embodiment 2 of an optical element obtained by dividing an optical element wafer into pieces and an optical element module obtained by dividing an optical element wafer module in which a plurality of optical elements are laminated, with reference to the drawings. To do. Furthermore, as a third embodiment of the electronic element module that is collectively cut from the electronic element wafer module of the present invention, the lens wafer of the first embodiment and a plurality of imaging elements that photoelectrically convert image light from a subject are provided. The case where the sensor module integrated with the obtained imaging device wafer is applied will be described in detail with reference to the drawings. Drawing 3 about Embodiment 3 of electronic information equipment, such as a mobile telephone apparatus with a camera, a television telephone apparatus, etc. which used this sensor module or a sensor module using an optical element module concerning Embodiment 2 for an image pick-up part as an image input device Will be described in detail with reference to FIG.

(実施形態1)
図1は、本発明の実施形態に係るレンズウエハの構成例を示す要部縦断面図である。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of an essential part showing a configuration example of a lens wafer according to an embodiment of the present invention.

図1において、本実施形態1の光学素子ウエハとしてのレンズウエハ1は、表面と裏面のうちの少なくともいずれかに複数の光学素子領域としてのレンズ領域2が形成され、このレンズ領域2の外周側に所定厚さを持つ平坦部3が設けられ、互いに隣接するレンズ領域2間の平坦部3の厚さD1と、その平坦部3間の連設部4の厚さD2との関係は、倍半分(2/1または1/2)から同等の範囲内の関係、好ましくは、互いに隣接するレンズ領域2間の平坦部3の厚さD1は、その平坦部3間の連設部4の厚さD2の4/3(または3/4)から同等の範囲内の関係を有している。   In FIG. 1, a lens wafer 1 as an optical element wafer of Embodiment 1 has a plurality of lens areas 2 as optical element areas formed on at least one of a front surface and a back surface, and an outer peripheral side of the lens area 2. The flat portion 3 having a predetermined thickness is provided, and the relationship between the thickness D1 of the flat portion 3 between the adjacent lens regions 2 and the thickness D2 of the connecting portion 4 between the flat portions 3 is doubled. A relationship within a range from half (2/1 or 1/2) to an equivalent range, preferably, the thickness D1 of the flat portion 3 between adjacent lens regions 2 is the thickness of the connecting portion 4 between the flat portions 3. The relationship is within the same range from 4/3 (or 3/4) of the length D2.

ここでは、光学素子領域としてのレンズ領域2およびその周囲の平坦部3における個々の樹脂パターン間の樹脂厚みD2を厚く構成して、樹脂パターンの樹脂厚みD1と略同等(均一)に構成している。これによって、レンズウエハ1の表面および裏面の凹凸が少なくなり(段差が少なくなり)、したがって、樹脂の流動性を妨げ難くく、レンズウエハ1に気泡が残り難くなる。   Here, the resin thickness D2 between the individual resin patterns in the lens region 2 as the optical element region and the flat portion 3 around the lens region 2 is configured to be thick and approximately equal (uniform) to the resin thickness D1 of the resin pattern. Yes. As a result, the unevenness of the front and back surfaces of the lens wafer 1 is reduced (the level difference is reduced). Therefore, it is difficult to hinder the fluidity of the resin, and it is difficult for bubbles to remain in the lens wafer 1.

上記構成の光学素子ウエハとしてのレンズウエハ1の製造方法の各工程について、図2〜図5を用いて詳細に説明する。   Each process of the manufacturing method of the lens wafer 1 as an optical element wafer of the said structure is demonstrated in detail using FIGS.

図2は、図1のレンズウエハの製造方法のレプリカ作製プロセスを説明するための要部縦断面図である。図3は、図2のレプリカ作製プロセスに用いる掘り込み基材の概略構成例を模式的に示す斜視図である。   FIG. 2 is a longitudinal sectional view of an essential part for explaining a replica manufacturing process of the lens wafer manufacturing method of FIG. FIG. 3 is a perspective view schematically showing a schematic configuration example of the digging base material used in the replica manufacturing process of FIG.

ガラス基板またはシリコン基板または樹脂基板からなる基材11の表面には、図3に示すような複数の凹部11aがマトリクス状に配置されている。まず、この基材11の凹部11a内に、図2のレプリカ型成形工程に示すように樹脂材料12を吐出する。次に、マスター金型13を用いて樹脂材料12を上から押圧してマスター金型13の所定レンズ形状を樹脂材料12の表面に転写して樹脂レプリカ14を形成する。これを順次繰り返して、基材11上に複数の樹脂レプリカ14のレプリカ型を等間隔に形成する。   On the surface of the base material 11 made of a glass substrate, a silicon substrate, or a resin substrate, a plurality of recesses 11a as shown in FIG. 3 are arranged in a matrix. First, the resin material 12 is discharged into the recess 11a of the substrate 11 as shown in the replica mold forming step of FIG. Next, the resin material 12 is pressed from above using the master mold 13 to transfer the predetermined lens shape of the master mold 13 to the surface of the resin material 12 to form the resin replica 14. This is repeated sequentially to form replica molds of a plurality of resin replicas 14 on the substrate 11 at equal intervals.

このように、樹脂レプリカ14の側面が基材11の掘り込み形状内(凹部11a内)に埋め込まれることにより、樹脂レプリカ14の樹脂材料12の基材11との接触面積が広くなる。このことや、基材11の凹部11a(掘り込み部)の側面によるアンカー効果などにより、基材11と樹脂材料12との間の密着性が向上し、樹脂レプリカ14からのマスター金型13の離型時にも、従来の樹脂割れや樹脂剥がれを低減することができる。   Thus, the side surface of the resin replica 14 is embedded in the digging shape of the base material 11 (inside the recess 11a), so that the contact area of the resin material 12 of the resin replica 14 with the base material 11 is increased. Due to this and the anchor effect by the side surface of the concave portion 11a (digging portion) of the base material 11, the adhesion between the base material 11 and the resin material 12 is improved, and the master mold 13 from the resin replica 14 is improved. Even during mold release, conventional resin cracking and resin peeling can be reduced.

次に、図4(a)および図4(b)に示すように、掘り込まれた基材11の凹部11a内に埋め込まれた複数の樹脂レプリカ14の各レプリカ型を用いて、基材11上の複数の樹脂レプリカ14のレプリカ型をレンズ面形状としてウエハサイズの上型のスタンパ型15に転写する。さらに、図4(c)に示すように、基材11上の複数の樹脂レプリカ14のレプリカ型から上金型のスタンパ型15を離型して、上金型のスタンパ型15を得る。これと同様にして、基材11上に形成した複数の樹脂レプリカ14のレプリカ型を、後述するスタンパ型16に転写した後、これを離型して、下金型のスタンパ型16を得ることができる。   Next, as shown in FIGS. 4 (a) and 4 (b), the base material 11 is used by using each replica mold of the plurality of resin replicas 14 embedded in the recessed portion 11a of the base material 11 dug. The replica mold of the plurality of resin replicas 14 is transferred to the upper stamper mold 15 of the wafer size as a lens surface shape. Further, as shown in FIG. 4C, the upper mold stamper mold 15 is released from the replica mold of the plurality of resin replicas 14 on the base material 11 to obtain the upper mold stamper mold 15. In the same manner, a replica mold of a plurality of resin replicas 14 formed on the substrate 11 is transferred to a stamper mold 16 to be described later, and then released to obtain a stamper mold 16 of a lower mold. Can do.

このように、基材11上に複数の樹脂レプリカ14のレプリカ型を形成する際に、樹脂レプリカ14のレプリカ型の側面を、垂直な側壁を持つ基材11の凹部11a内に埋め込んでいる。このため、従来のように、基材11の表面とマスター金型13の表面の濡れ性や、成形時の圧力および樹脂材料12の粘度などの影響により、樹脂レプリカ14の側面が膨れたり、凹んだり、逆テーパになったりすることなく、基材11の凹部11a内で垂直になって、後のスタンパ型15,16の離型がスムーズになり、離型不良や、無理に離型しようとしてスタンパ型15,16内に樹脂残りが発生することもなくなる。   As described above, when forming the replica molds of the plurality of resin replicas 14 on the base material 11, the side surfaces of the replica molds of the resin replica 14 are embedded in the recesses 11 a of the base material 11 having vertical side walls. For this reason, as in the prior art, the side surface of the resin replica 14 is swollen or dented due to the wettability between the surface of the base material 11 and the surface of the master mold 13, the pressure during molding, the viscosity of the resin material 12, and the like. Without going down or becoming a reverse taper, it becomes vertical in the recess 11a of the base material 11, and the subsequent release of the stamper dies 15 and 16 becomes smooth. Resin residue is not generated in the stamper molds 15 and 16.

続いて、図5(a)に示すように、下金型のスタンパ型16の中央部上にレンズ用の成形樹脂17を適量だけ吐出する。次に、これを上金型のスタンパ型15で上から押圧して、スタンパ型15,16で上下から成形樹脂17を挟み込んで、図5(b)に示すようにレンズウエハ1にプレス成形する。これによって、上下金型で所望のレンズ厚みとなるように成形樹脂17を押し広げる。   Subsequently, as shown in FIG. 5A, an appropriate amount of the molding resin 17 for the lens is discharged onto the center portion of the stamper mold 16 of the lower mold. Next, this is pressed from above with a stamper die 15 of an upper mold, and a molding resin 17 is sandwiched from above and below by the stamper dies 15 and 16, and press-molded onto the lens wafer 1 as shown in FIG. . As a result, the molding resin 17 is spread by the upper and lower molds so as to obtain a desired lens thickness.

その後、成形された成形樹脂17を紫外線または熱により硬化させた後に、上下のスタンパ型15、16を上下に開いて離型し、図1に示すように、所望のレンズウエハ1を上下型内から取り出す。このようにして、所望のレンズ形状が複数、規則的に繰り返されたレンズウエハ1を得ることができる。   Thereafter, the molded molding resin 17 is cured by ultraviolet rays or heat, and then the upper and lower stamper molds 15 and 16 are opened and released up and down to release the desired lens wafer 1 in the upper and lower molds as shown in FIG. Take out from. In this way, a lens wafer 1 in which a plurality of desired lens shapes are regularly repeated can be obtained.

即ち、本実施形態1の光学素子ウエハとしてのレンズウエハ1の製造方法は、基材11に形成された複数の凹部11a内にレプリカ材料を吐出する工程と、マスター型13を用いてレプリカ材料上を押圧してマスター型13の表面レンズ形状を、レプリカ材料の表面側に転写して上用樹脂レプリカ14を形成する上用レプリカ形成工程と、別の基材11に形成された複数の凹部11a内にレプリカ材料を吐出する工程と、別のマスター型13を用いてレプリカ材料上を押圧してマスター型13の裏面レンズ形状を、レプリカ材料の表面側に転写して下用樹脂レプリカ14を形成する下用レプリカ形成工程と、上用樹脂レプリカ14の各レンズ表面形状を転写して上用スタンパ型15を形成する上用スタンパ型形成工程と、下用樹脂レプリカ14の各レンズ裏面形状を転写して下用スタンパ型16を形成する下用スタンパ型形成工程と、上用スタンパ型15と下用スタンパ型16によりレンズ材料を所定厚さにプレスする光学素子材料プレス工程と、該レンズ材料を光硬化または熱硬化させる光学素子材料硬化工程とを有している。   That is, the manufacturing method of the lens wafer 1 as the optical element wafer according to the first embodiment includes a step of discharging the replica material into the plurality of recesses 11 a formed on the base material 11, The upper surface replica forming step of forming the upper resin replica 14 by transferring the surface lens shape of the master die 13 to the surface side of the replica material by pressing and a plurality of concave portions 11a formed on another substrate 11 The step of discharging the replica material into the inside and pressing the replica material with another master die 13 to transfer the back lens shape of the master die 13 to the surface side of the replica material to form the lower resin replica 14 A lower replica forming process, an upper stamper mold forming process for forming the upper stamper mold 15 by transferring the surface shape of each lens of the upper resin replica 14, and the lower resin replica 1 A lower stamper mold forming step for transferring the shape of each lens back surface to form a lower stamper mold 16 and an optical element material press for pressing the lens material to a predetermined thickness by the upper stamper mold 15 and the lower stamper mold 16. And an optical element material curing step for photocuring or thermosetting the lens material.

この場合、樹脂レプリカ14の側面の一部または全部を、基材11に掘り込まれた複数の凹部11a内にそれぞれ埋め込んで樹脂レプリカ14を形成する。また、基材11と樹脂レプリカ14の接触面積が、樹脂レプリカ14とマスター型13の接触面積に比べて大きく、かつ、基材11と樹脂レプリカ14の接触面積が、樹脂レプリカ14とスタンパ型15、16の接触面積に比べて大きくなるように、基材11の凹部11aの深さを設定している。   In this case, the resin replica 14 is formed by embedding part or all of the side surfaces of the resin replica 14 in the plurality of recesses 11 a dug into the base material 11. Further, the contact area between the base material 11 and the resin replica 14 is larger than the contact area between the resin replica 14 and the master mold 13, and the contact area between the base material 11 and the resin replica 14 is equal to the resin replica 14 and the stamper mold 15. The depth of the recess 11a of the base material 11 is set so as to be larger than the contact area of 16.

このように、樹脂レプリカ14を個別に成形するときに、基材11の掘り込み部(凹部11a)内に樹脂レプリカ14を構成する樹脂材料12を埋め込んでいるため、個々の樹脂パターンの間の樹脂厚みを厚く、樹脂パターンの間の樹脂と樹脂パターンが均一になるため、大型の樹脂板であるレンズウエハ1を作製した場合にも、強度的に良好である。また、スタンパ型15、16で上下から成形樹脂17を挟み込んで、成形樹脂17を押し広げる際にも、従来技術に比べてスタンパ型15、16に凹凸が少なくなり、樹脂の流動性を妨げ難くく、レンズウエハ1に気泡が残り難い。   Thus, since the resin material 12 which comprises the resin replica 14 is embedded in the dug part (recessed part 11a) of the base material 11 when shape | molding the resin replica 14 separately, between each resin pattern Since the resin thickness and the resin pattern between the resin patterns are uniform, the strength of the lens wafer 1 which is a large resin plate is also good. Further, when the molding resin 17 is sandwiched from above and below by the stamper molds 15 and 16 and the molding resin 17 is spread, the stamper molds 15 and 16 have less irregularities than the prior art, and the fluidity of the resin is hardly hindered. In addition, bubbles hardly remain on the lens wafer 1.

樹脂レプリカ14の作製において、使用する基材11に求められる性能は、(1)最終レンズの傾き、高さバラツキに影響を及ぼす平坦性、(2)レプリカ樹脂材料12の材質および特性(選定形状安定性に影響を及ぼす樹脂の硬化手法に対して)の選定、(3)樹脂レプリカ14のレプリカ型を作る為の樹脂との高密着性が必要となる。このレプリカ作製用の基材11に掘り込み部(凹部11a)を設けることにより、樹脂レプリカ14のサイズ、例えばレプリカ径の制御が容易になったり、金型面とガラス面との平行性を出しやすく、形状の傾きが低減できる。この掘り込み形状により、樹脂との密着面積が増えるため、どのような材料に対してもレプリカ樹脂材料12の密着性は向上する。   In the production of the resin replica 14, the performance required for the substrate 11 to be used is (1) flatness affecting the inclination and height variation of the final lens, (2) material and characteristics of the replica resin material 12 (selected shape) (3) High adhesion to the resin for making a replica mold of the resin replica 14 is required. By providing a dug portion (recess 11a) in the replica-producing base material 11, the size of the resin replica 14, for example, the replica diameter can be easily controlled, and the parallelism between the mold surface and the glass surface is obtained. It is easy and the inclination of the shape can be reduced. Since the digging shape increases the adhesion area with the resin, the adhesion of the replica resin material 12 is improved with respect to any material.

また、レプリカ樹脂材料12を基材11の掘り込み部(凹部11a)に埋め込む構造とする。このため、樹脂レプリカ14の表面と基材11の表面との段差が小さくなり、上下のスタンパ型15、16を形成した後の上下のスタンパ型15、16との密着面積も小さくなり、スタンパ型15、16の凹凸形状内への樹脂の食い込み量も少なくなる。このことから、樹脂レプリカ14からのスタンパ型15、16の離型が容易なものとなる。   Further, the replica resin material 12 is structured to be embedded in the digging portion (recessed portion 11 a) of the base material 11. For this reason, the level difference between the surface of the resin replica 14 and the surface of the substrate 11 is reduced, and the contact area between the upper and lower stamper dies 15 and 16 after forming the upper and lower stamper dies 15 and 16 is also reduced. The amount of resin biting into the concave and convex shapes 15 and 16 is also reduced. This makes it easy to release the stamper dies 15 and 16 from the resin replica 14.

さらに、レプリカ樹脂材料12を基材11の掘り込み部(凹部11a)内に埋め込む構造とする。このため、樹脂レプリカ14の表面と基材11の表面との段差が小さくなって、上下のスタンパ型15、16によってレンズを形成した場合には、レンズ樹脂板の厚さが厚く、均一になり、WLレンズ(ウエハレベルレンズ;レンズウエハ)の成形が容易なものとなる。   Further, the replica resin material 12 is embedded in the digging portion (recess 11a) of the base material 11. For this reason, the level difference between the surface of the resin replica 14 and the surface of the substrate 11 is reduced, and when the lens is formed by the upper and lower stamper molds 15 and 16, the thickness of the lens resin plate is thick and uniform. , WL lens (wafer level lens; lens wafer) can be easily molded.

(実施形態2)
本実施形態2では、上記実施形態1において、上用スタンパ型15と下用スタンパ型16により成形された光学素子ウエハとしてのレンズウエハ1を個片化した光学素子としてのレンズの変形例および、このレンズを複数積層した光学素子モジュールとしてのレンズモジュールの変形例について詳細に説明する。
(Embodiment 2)
In the second embodiment, a modified example of the lens as an optical element obtained by dividing the lens wafer 1 as an optical element wafer formed by the upper stamper mold 15 and the lower stamper mold 16 in the first embodiment, and A modification of the lens module as an optical element module in which a plurality of lenses are laminated will be described in detail.

図6(a)は、図1のレンズウエハから個片化されたレンズの変形例を示す縦断面図、図6(b)は、複数のレンズを積層したレンズモジュール例を示す縦断面図、図6(c)は、図6(b)の第2レンズの上面図、図6(d)は、図6(b)の第1レンズの上面図、図6(e)は、第1レンズと遮光ホルダを組み合わせた場合のレンズモジュールの縦断面図、図6(f)は、図6(b)のレンズモジュールの変形例と遮光ホルダを組み合わせた場合のレンズモジュールの縦断面図、図6(g)は、遮光ホルダウエハ187B、第1レンズウエハ65Bおよび第2レンズウエハ185Bを積層したレンズウエハモジュールの要部構成例を示す縦断面図である。   6A is a longitudinal sectional view showing a modified example of the lens separated from the lens wafer of FIG. 1, and FIG. 6B is a longitudinal sectional view showing an example of a lens module in which a plurality of lenses are stacked. 6C is a top view of the second lens in FIG. 6B, FIG. 6D is a top view of the first lens in FIG. 6B, and FIG. 6E is the first lens. 6F is a longitudinal cross-sectional view of the lens module when the light-shielding holder is combined, and FIG. 6F is a vertical cross-sectional view of the lens module when the light-shielding holder is combined with the modification of the lens module of FIG. (G) is a longitudinal sectional view showing an example of a principal part configuration of a lens wafer module in which a light shielding holder wafer 187B, a first lens wafer 65B, and a second lens wafer 185B are laminated.

上記実施形態1の上用スタンパ型15と下用スタンパ型16とはレンズ面が異なる上下金型により成形された第1レンズウエハおよび第2レンズウエハをそれぞれダイシングラインDLに沿って切断して、図6(a)に示すように多数の第1レンズ84を得ると共に、多数の第2レンズ85を得ることができる。第1レンズ84と第2レンズ85はそれぞれ、中央部の光学面Aの外周側に所定厚さを持つスペーサ部が設けられている。スペーサ部は、図6(d)に示すように、平面視外形4角形で内形円形の斜線部分で示すように、光学面Aを囲む円形状の外周端部Bから光学面Aの凸形状よりも突出した平坦部F1になっている。これらの第1レンズ84と第2レンズ85において、光学面Aおよびスペーサ部は透明樹脂材料により一括成型されている。なお、平面視4角形の第2レンズ85は、その表面側のスペーサ部が、図6(c)に示すように環状の斜線部分で示すように、光学面Aを囲む円形状の外周端部Bから光学面Aの凸形状よりも突出した環状の突出部F2になっている。環状の突出部F2の表面も平坦面である。   The upper stamper mold 15 and the lower stamper mold 16 of the first embodiment are cut along the dicing line DL, respectively, with the first lens wafer and the second lens wafer formed by upper and lower molds having different lens surfaces. As shown in FIG. 6A, a large number of first lenses 84 and a large number of second lenses 85 can be obtained. Each of the first lens 84 and the second lens 85 is provided with a spacer portion having a predetermined thickness on the outer peripheral side of the optical surface A at the center. As shown in FIG. 6 (d), the spacer portion is a convex shape of the optical surface A from the circular outer peripheral end B surrounding the optical surface A, as shown by the hatched portion of the quadrangular outer shape in plan view and the inner circular shape. It becomes the flat part F1 which protruded more. In the first lens 84 and the second lens 85, the optical surface A and the spacer portion are collectively formed of a transparent resin material. In addition, the second lens 85 having a quadrangular shape in plan view has a circular outer peripheral end portion that surrounds the optical surface A such that the spacer portion on the surface side is shown by an annular shaded portion as shown in FIG. An annular projecting portion F2 projecting from the convex shape of the optical surface A from B is formed. The surface of the annular protrusion F2 is also a flat surface.

また、図6(b)に示すように、複数の第1レンズ84Aが形成された第1レンズウエハと、複数の第2レンズ85Aが形成された第2レンズウエハとが上下に接着材7で貼り合わされた状態で、ダイシングラインDLに沿って一括切断して、図6(b)に示すレンズモジュール86を得ることができる。この切断の際にも、第1レンズ84Aや第2レンズ85Aの切断時と同様に、切断保持テープを、下側の第2レンズウエハの平坦部F1に貼り付け、また、レンズ面保護のために、表面保護テープを、上側の第1レンズウエハの平坦部F1に貼り付ける。これによって、切断時に、第1レンズ84Aおよび第2レンズ85Aの各レンズ光学面が、切断保持テープおよび表面保護テープによって密閉されて保護されて、切削水によって各レンズ光学面が汚れない。   Further, as shown in FIG. 6B, the first lens wafer on which the plurality of first lenses 84A are formed and the second lens wafer on which the plurality of second lenses 85A are formed are vertically bonded with an adhesive material 7. In a state of being bonded, the lens module 86 shown in FIG. 6B can be obtained by collectively cutting along the dicing line DL. At the time of this cutting, similarly to the cutting of the first lens 84A and the second lens 85A, the cutting holding tape is applied to the flat portion F1 of the lower second lens wafer, and for protecting the lens surface. Then, a surface protection tape is attached to the flat portion F1 of the upper first lens wafer. Thus, at the time of cutting, the lens optical surfaces of the first lens 84A and the second lens 85A are sealed and protected by the cutting holding tape and the surface protection tape, and the lens optical surfaces are not soiled by the cutting water.

この場合、上側の第1レンズ84Aのスペーサ部と、下側の第2レンズ85Aのスペーサ部との各環状の平坦面が直に接し、各平坦面の更に外周側の底部によって囲まれた空間部分に接着材7が配置されて、第1レンズ84Aおよび第2レンズ85Aが接着されている。   In this case, the annular flat surfaces of the spacer portion of the upper first lens 84A and the spacer portion of the lower second lens 85A are in direct contact with each other, and the space surrounded by the bottom portion on the outer peripheral side of each flat surface. The adhesive 7 is disposed in the portion, and the first lens 84A and the second lens 85A are bonded.

さらに、図6(a)において、破線で示す第1レンズ84aのように裏面が平らで、表面だけに、光学面Aおよびこれよりも突出した平坦部F1が設けられている。この場合に、第2レンズ85がセットになる。また、第1レンズ84と、破線で示す第2レンズ85aがセットになる。第2レンズ85aの表面の光学面Aが突出していても、第1レンズ84の裏面の凹みに嵌まり込む。第2レンズ85aの裏面だけに、光学面Aおよびこれよりも突出した平坦部F1が設けられている。これによっても、前述したように、切削水によって各レンズ光学面Aが汚れない。   Further, in FIG. 6A, the back surface is flat like the first lens 84a indicated by the broken line, and the optical surface A and the flat portion F1 protruding beyond the surface are provided only on the front surface. In this case, the second lens 85 is set. Moreover, the 1st lens 84 and the 2nd lens 85a shown with a broken line become a set. Even if the optical surface A on the surface of the second lens 85a protrudes, it fits into the recess on the back surface of the first lens 84. Only the back surface of the second lens 85a is provided with the optical surface A and a flat portion F1 protruding beyond the optical surface A. Also by this, as described above, each lens optical surface A is not soiled by the cutting water.

要するに、光学面Aおよびこれよりも突出した突出部F2または平坦部F1は、表面および裏面のうちの少なくともいずれかの面に設けられていればよいことになる。   In short, the optical surface A and the protruding portion F2 or flat portion F1 that protrudes more than this need only be provided on at least one of the front surface and the back surface.

さらに、図6(e)に示すように、遮光ホルダ87内に、図6(a)の第1レンズ84を組み込んでレンズモジュール88とすることができる。また、図6(f)に示すように、遮光ホルダ87内に、第1レンズ61Aおよび図6(b)の第2レンズ85Aからなるレンズモジュール86Aを組み込んでレンズモジュール89とすることもできる。このように、レンズに遮光ホルダ87をセットしてこれもレンズモジュールとする。   Further, as shown in FIG. 6E, the lens module 88 can be formed by incorporating the first lens 84 of FIG. Further, as shown in FIG. 6F, a lens module 86A including the first lens 61A and the second lens 85A of FIG. Thus, the light shielding holder 87 is set on the lens, and this is also used as a lens module.

これらの第1レンズ84や第2レンズ85、レンズモジュール88および89のいずれかに電子素子としての撮像素子を積層して電子素子モジュールとしてのセンサモジュールを得ることができる。   An image sensor as an electronic element can be stacked on any of the first lens 84, the second lens 85, and the lens modules 88 and 89 to obtain a sensor module as an electronic element module.

上記実施形態1のレンズウエハ1を、電子素子ウエハとしての撮像素子ウエハ上に積層して電子素子ウエハモジュールとしてのセンサウエハモジュールを一体形成し、このセンサウエハモジュールを一括切断して個片化して多数のセンサモジュールを一度に得ることができる。このセンサモジュールについて、次の実施形態2として図7を用いて詳細に説明する。   The lens wafer 1 according to the first embodiment is laminated on an imaging element wafer as an electronic element wafer to integrally form a sensor wafer module as an electronic element wafer module, and the sensor wafer module is collectively cut into individual pieces. A large number of sensor modules can be obtained at one time. This sensor module will be described in detail as a second embodiment with reference to FIG.

(実施形態3)
図7は、本発明の実施形態3に係るセンサモジュールの要部構成例を示す縦断面図である。
(Embodiment 3)
FIG. 7 is a longitudinal sectional view showing an example of the configuration of the main part of a sensor module according to Embodiment 3 of the present invention.

図7において、本実施形態例3の電子素子モジュールとしてのセンサモジュール10は、被写体からの画像光を光電変換して撮像する複数の受光部を有する撮像素子21が中央部に配置され、撮像素子21に対して貫通電極22が設けられた撮像素子チップ20と、この撮像素子チップ20上の撮像素子21間上に形成された樹脂接着層30と、撮像素子チップ20上を覆い、樹脂接着層30上に接着固定されたガラス板などの透明支持基板40と、この透明支持基板40上に、撮像素子21に対応するように設けられたレンズモジュール50とを有している。   In FIG. 7, the sensor module 10 as the electronic element module according to the third embodiment has an image sensor 21 having a plurality of light receiving units that photoelectrically convert image light from a subject to be imaged. An image sensor chip 20 provided with a through electrode 22 with respect to 21, a resin adhesive layer 30 formed between the image sensors 21 on the image sensor chip 20, and a resin adhesive layer covering the image sensor chip 20 A transparent support substrate 40 such as a glass plate bonded and fixed on 30, and a lens module 50 provided on the transparent support substrate 40 so as to correspond to the imaging element 21 are provided.

撮像素子チップ20は、表面中央部に撮像素子21(複数の画素を構成する複数の受光部が設けられている)が配設されており、その撮像素子21に対してパッド23が接続され、裏面から表面のパッド23(電極パッド)下に貫通する複数の貫通穴が明けられている。この貫通穴の側壁と裏面側は絶縁膜で覆われており、パッド23にコンタクトを持つ配線層24が貫通穴を介して裏面まで貫通電極22として形成されている。この配線層24上および裏面には絶縁膜が形成され、この配線層24の外部接続端子上に半田ボール25が形成される部分は絶縁膜が窓明けされて半田ボール25が外部に露出して形成されて
いる。
The image sensor chip 20 is provided with an image sensor 21 (provided with a plurality of light receiving portions constituting a plurality of pixels) at the center of the surface, and a pad 23 is connected to the image sensor 21. A plurality of through holes penetrating from the back surface to the bottom of the front surface pad 23 (electrode pad) are formed. The side wall and the back surface side of the through hole are covered with an insulating film, and a wiring layer 24 having a contact with the pad 23 is formed as a through electrode 22 through the through hole to the back surface. An insulating film is formed on the wiring layer 24 and on the back surface, and a portion of the wiring layer 24 where the solder balls 25 are formed on the external connection terminals is opened to expose the solder balls 25 to the outside. Is formed.

樹脂接着層30は、表面の撮像素子21の周囲部上に形成されて、撮像素子チップ20と透明支持基板40とを接着している。半導体表面上方が透明支持基板40で覆われる場合に、この樹脂接着層30により、撮像素子チップ20上の電子素子としての撮像素子21が設けられたセンサ領域上の内部空間が密閉される。樹脂接着層30は、撮像素子チップ20上の所定場所に通常のフォトリソ技術により形成され、その上に透明支持基板40が接着されるが、このフォトリソ技術の他にスクリーン印刷手法またはディスペンス手法を用いて形成することができる。   The resin adhesive layer 30 is formed on the periphery of the imaging element 21 on the surface, and bonds the imaging element chip 20 and the transparent support substrate 40. When the upper surface of the semiconductor is covered with the transparent support substrate 40, the resin adhesive layer 30 seals the internal space on the sensor region where the image sensor 21 as an electronic element on the image sensor chip 20 is provided. The resin adhesive layer 30 is formed at a predetermined location on the image pickup device chip 20 by a normal photolithography technique, and the transparent support substrate 40 is adhered thereon. In addition to this photolithography technique, a screen printing technique or a dispensing technique is used. Can be formed.

レンズモジュール50は、本実施形態1のレンズウエハ1を3枚積層したモジュールであって、透明支持基板40上に上から第1レンズ51と第2レンズ52と第3レンズ53とが順次設けられている。各レンズ51〜53はそれぞれ、中央部にレンズ領域が設けられ、このレンズ領域の外周側に所定厚さを持つスペーサ部が設けられている。第3レンズ53が収差補正レンズであり、第2レンズ52が拡散レンズであり、第1レンズ51が集光レンズであって、それらの各レンズの各外周側にそれぞれ設けられた所定厚さを持つ各スペーサ部が下からこの順に積層されて配置されている。これらの第1レンズ51と第2レンズ52とは接着層61で接着され、第2レンズ52と第3レンズ53とは接着層62で接着されている。   The lens module 50 is a module in which three lens wafers 1 of the first embodiment are stacked, and a first lens 51, a second lens 52, and a third lens 53 are sequentially provided on the transparent support substrate 40 from above. ing. Each of the lenses 51 to 53 has a lens region at the center, and a spacer portion having a predetermined thickness is provided on the outer peripheral side of the lens region. The third lens 53 is an aberration correction lens, the second lens 52 is a diffusing lens, the first lens 51 is a condenser lens, and has a predetermined thickness provided on each outer peripheral side of each of these lenses. Each of the spacer portions is stacked and arranged in this order from the bottom. The first lens 51 and the second lens 52 are bonded by an adhesive layer 61, and the second lens 52 and the third lens 53 are bonded by an adhesive layer 62.

(実施形態4)
図8は、本発明の実施形態4として、レンズモジュール50と撮像素子チップ20とを一体化した本発明の実施形態3のセンサモジュール10または、上記実施形態2のレンズおよびレンズモジュールと撮像素子チップとを一体化したセンサモジュール10Aを含む固体撮像装置を撮像部に用いた電子情報機器の概略構成例を示すブロック図である。
(Embodiment 4)
FIG. 8 shows, as Embodiment 4 of the present invention, the sensor module 10 of Embodiment 3 of the present invention in which the lens module 50 and the image sensor chip 20 are integrated, or the lens, lens module and image sensor chip of Embodiment 2 described above. 2 is a block diagram illustrating a schematic configuration example of an electronic information device using a solid-state imaging device including a sensor module 10A integrated with the imaging unit as an imaging unit.

図8において、本実施形態4の電子情報機器90は、上記実施形態3のセンサモジュール10または、上記実施形態2のセンサモジュール10Aからの撮像信号を各種信号処理してカラー画像信号を得る固体撮像装置91と、この固体撮像装置91からのカラー画像信号を記録用に所定の信号処理した後にデータ記録可能とする記録メディアなどのメモリ部92と、この固体撮像装置91からのカラー画像信号を表示用に所定の信号処理した後に液晶表示画面などの表示画面上に表示可能とする液晶表示装置などの表示手段93と、この固体撮像装置91からのカラー画像信号を通信用に所定の信号処理をした後に通信処理可能とする送受信装置などの通信手段94と、この固体撮像装置91からのカラー画像信号を印刷用に所定の信号処理をした後に印刷処理可能とするプリンタなどの画像出力手段95とを有している。なお、この電子情報機器90として、これに限らず、固体撮像装置91の他に、メモリ部92と、表示手段93と、通信手段94と、プリンタなどの画像出力手段95とのうちの少なくともいずれかを有していてもよい。   In FIG. 8, the electronic information device 90 of the fourth embodiment is a solid-state imaging device that obtains a color image signal by performing various signal processing on the imaging signal from the sensor module 10 of the third embodiment or the sensor module 10A of the second embodiment. A device 91, a memory unit 92 such as a recording medium capable of recording data after a predetermined signal processing is performed on the color image signal from the solid-state imaging device 91, and the color image signal from the solid-state imaging device 91 is displayed. Display means 93 such as a liquid crystal display device which can be displayed on a display screen such as a liquid crystal display screen after predetermined signal processing for use, and color signal signals from the solid-state imaging device 91 are subjected to predetermined signal processing for communication. The communication means 94 such as a transmission / reception device that enables communication processing after the image processing and predetermined signal processing for printing the color image signal from the solid-state imaging device 91 are performed. And an image output means 95 such as a printer which allows printing process after. The electronic information device 90 is not limited to this, but in addition to the solid-state imaging device 91, at least one of a memory unit 92, a display unit 93, a communication unit 94, and an image output unit 95 such as a printer. You may have.

この電子情報機器90としては、前述したように例えばデジタルビデオカメラ、デジタルスチルカメラなどのデジタルカメラや、監視カメラ、ドアホンカメラ、車載用後方監視カメラなどの車載用カメラおよびテレビジョン電話用カメラなどの画像入力カメラ、スキャナ装置、ファクシミリ装置、カメラ付き携帯電話装置、テレビジョン電話装置および携帯端末装置(PDA)などの画像入力デバイスを有した電子機器が考えられる。   As described above, the electronic information device 90 includes, for example, a digital camera such as a digital video camera and a digital still camera, an in-vehicle camera such as a surveillance camera, a door phone camera, and an in-vehicle rear surveillance camera, and a video phone camera. An electronic apparatus having an image input device such as an image input camera, a scanner device, a facsimile device, a camera-equipped mobile phone device, a television phone device, and a portable terminal device (PDA) is conceivable.

したがって、本実施形態4によれば、この固体撮像装置91からのカラー画像信号に基づいて、このカラー画像信号を表示手段93により表示画面上に良好に表示したり、このカラー画像信号を紙面にて画像出力手段95により良好にプリントアウト(印刷)したり、このカラー画像信号を通信手段94により通信データとして有線または無線にて良好に通信したり、このカラー画像信号をメモリ部92に所定のデータ圧縮処理を行って良好に記憶したり、各種のデータ処理を良好に行うことができる。   Therefore, according to the fourth embodiment, on the basis of the color image signal from the solid-state imaging device 91, the color image signal is favorably displayed on the display screen by the display means 93, or the color image signal is displayed on the paper surface. Then, the image output means 95 prints out the image satisfactorily, or the communication means 94 communicates the color image signal as communication data by wire or wirelessly. Data compression processing can be performed for good storage and various data processing can be performed favorably.

なお、上記実施形態4の電子情報機器90に限らず、本発明の電子素子モジュールを情報記録再生部に用いたピックアップ装置などの電子情報機器であってもよい。この場合のピックアップ装置の光学素子としては、出射光を直進させて出射させると共に、入射光を曲げて所定方向に入射させる光学機能素子(例えばホログラム光学素子)である。また、ピックアップ装置の電子素子としては、出射光を発生させるための発光素子(例えば半導体レーザ素子またはレーザチップ)および入射光を受光するための受光素子(例えばフォトIC)を有している。   Note that the electronic information device 90 is not limited to the electronic information device 90 of the fourth embodiment, and may be an electronic information device such as a pickup device using the electronic element module of the present invention for an information recording / reproducing unit. The optical element of the pickup device in this case is an optical functional element (for example, a hologram optical element) that causes the outgoing light to go straight and output, and also bends the incident light and makes it incident in a predetermined direction. Further, the electronic elements of the pickup device include a light emitting element (for example, a semiconductor laser element or a laser chip) for generating emitted light and a light receiving element (for example, a photo IC) for receiving incident light.

以上により、上記実施形態1によれば、樹脂レプリカ14の側面の一部または全部を、基材11に掘り込まれた複数の凹部11a内にそれぞれ埋め込んで樹脂レプリカ14を形成する。このため、基材11と樹脂レプリカ14の接触面積が、樹脂レプリカ14とマスター型13の接触面積に比べて大きく、かつ基材11と樹脂レプリカ14の接触面積が、樹脂レプリカ14とスタンパ型15、16の接触面積に比べて大きくなる。このことから、マスター型13やスタンパ型15、16の離型がスムーズで、凹部11aの深さ分だけ平坦部3間の連設部4の厚さが厚くなる。これによって、精度よく樹脂レプリカ14の側面を形成して精度よく上下のスタンパ型15、16を形成すると共に、大型のレンズウエハを作る場合にも、強度的な問題を解消することができ、表面の段差(D1-D2)が緩和されて気泡残りの問題も解消することができる。   As described above, according to the first embodiment, the resin replica 14 is formed by embedding a part or all of the side surfaces of the resin replica 14 in the plurality of recesses 11 a dug into the base material 11. Therefore, the contact area between the base material 11 and the resin replica 14 is larger than the contact area between the resin replica 14 and the master mold 13, and the contact area between the base material 11 and the resin replica 14 is equal to the resin replica 14 and the stamper mold 15. , 16 is larger than the contact area. Therefore, the master mold 13 and the stamper molds 15 and 16 are released smoothly, and the connecting portion 4 between the flat portions 3 becomes thicker by the depth of the recess 11a. As a result, the side surfaces of the resin replica 14 can be accurately formed to form the upper and lower stamper molds 15 and 16, and the strength problem can be solved even when a large lens wafer is manufactured. The step (D1-D2) is relaxed and the problem of remaining bubbles can be solved.

なお、本実施形態1〜4では、特に説明しなかったが、光学素子ウエハの製造方法として、基材に形成された複数の凹部内に、光学素子形状が表面側に形成されたレプリカを形成するレプリカ形成工程と、このレプリカの各光学素子形状を用いてスタンパ型を形成するスタンパ型形成工程と、このスタンパ型を用いて光学素子材料に光学素子形状を転写して光学素子ウエハを成形する光学素子ウエハ成形工程とを有している。これによって、精度よく樹脂レプリカを形成して精度よく上下のスタンパ型を形成すると共に、大型のレンズウエハを作る場合にも、強度的な問題や気泡残りの問題を解消する目的を達成することができる。   Although not particularly described in Embodiments 1 to 4, as a method for manufacturing an optical element wafer, a replica in which the optical element shape is formed on the surface side is formed in a plurality of recesses formed in the base material. Forming a replica, forming a stamper mold using each optical element shape of the replica, and forming an optical element wafer by transferring the optical element shape to an optical element material using the stamper mold And an optical element wafer forming step. This makes it possible to accurately form a resin replica to form the upper and lower stamper molds and to achieve the purpose of eliminating the problem of strength and remaining bubbles even when making a large lens wafer. it can.

また、光学素子ウェハは具体的にはレンズウエハであるが、光学素子としてはレンズの他にプリズムやホログラム素子でもよい。これらの場合、プリズムウエハやホログラム素子ウエハとなる。   The optical element wafer is specifically a lens wafer, but the optical element may be a prism or a hologram element in addition to the lens. In these cases, it becomes a prism wafer or a hologram element wafer.

以上のように、本発明の好ましい実施形態1〜4を用いて本発明を例示してきたが、本発明は、この実施形態1〜4に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態1〜4の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。   As mentioned above, although this invention has been illustrated using preferable Embodiment 1-4 of this invention, this invention should not be limited and limited to this Embodiment 1-4. It is understood that the scope of the present invention should be construed only by the claims. It is understood that those skilled in the art can implement an equivalent range from the description of specific preferred embodiments 1 to 4 of the present invention based on the description of the present invention and the common general technical knowledge. Patents, patent applications, and documents cited herein should be incorporated by reference in their entirety, as if the contents themselves were specifically described herein. Understood.

本発明は、入射光を集光する複数の光学素子としての複数のレンズが設けれれたレンズウエハや光学機能素子ウエハなどの光学素子ウエハおよびその製造方法、光学素子ウエハから一括切断されて個片化した光学素子、光学素子ウエハを複数積層した光学素子ウエハモジュールから一括切断されて個片化した光学素子モジュール、光学素子ウエハまたは光学素子ウエハモジュールと、被写体からの画像光を光電変換して撮像する複数の撮像素子が設けられた撮像素子ウエハとが一体化されたセンサウエハモジュールなどの電子素子ウエハモジュール、この電子素子ウエハモジュールから一括切断されて個片化された電子素子モジュール、この電子素子モジュールとしてのセンサモジュールを画像入力デバイスとして撮像部に用いた例えばデジタルビデオカメラおよびデジタルスチルカメラなどのデジタルカメラや、画像入力カメラ、スキャナ装置、ファクシミリ装置、カメラ付き携帯電話装置、テレビジョン電話装置などの電子情報機器の分野において、レプリカの側面の一部または全部を、基材に掘り込まれた複数の凹部内にそれぞれ埋め込んでレプリカを形成するため、基材とレプリカの接触面積が、レプリカとマスター型の接触面積に比べて大きく、かつ基材とレプリカの接触面積が、レプリカとスタンパ型の接触面積に比べて大きくなることから、マスター型やスタンパ型の離型がスムーズで、凹部の深さ分だけ平坦部間の連設部の厚さが厚くなり、これによって、精度よくレプリカを形成して精度よく上下のスタンパ型を形成すると共に、大型のレンズウエハを作る場合にも、強度的な問題を解消することができ、表面の段差が緩和されて気泡残りの問題を解消することができる。   The present invention relates to an optical element wafer such as a lens wafer or an optical functional element wafer provided with a plurality of lenses as a plurality of optical elements for condensing incident light, a method for manufacturing the same, and an individual piece cut from the optical element wafer. Optical elements, optical element wafers obtained by cutting a single piece from an optical element wafer module in which a plurality of optical element wafers are stacked, and optical element wafers or optical element wafer modules, and image light from a subject is photoelectrically converted and imaged An electronic element wafer module such as a sensor wafer module integrated with an imaging element wafer provided with a plurality of imaging elements, an electronic element module cut from the electronic element wafer module into individual pieces, and the electronic element For example, if a sensor module as a module is used as an image input device In the field of electronic information equipment such as digital cameras such as digital video cameras and digital still cameras, image input cameras, scanner devices, facsimile devices, camera-equipped mobile phone devices, and television telephone devices, some or all of the side surfaces of replicas Are embedded in a plurality of recesses dug into the base material to form replicas, so that the contact area between the base material and the replica is larger than the contact area between the replica and the master mold, and between the base material and the replica. Since the contact area is larger than the contact area of the replica and stamper type, the mold release of the master type and stamper type is smooth, and the thickness of the connecting part between the flat parts is increased by the depth of the recess. In this way, when replicas are accurately formed, the upper and lower stamper molds are accurately formed, and a large lens wafer is made. Also, it is possible to eliminate the strength problem, a step of surface is relieved can be eliminated air bubbles remaining issues.

1 レンズウエハ
10、10A センサモジュール
11 基材
11a 凹部
12 樹脂材料
13 マスター金型
14 樹脂レプリカ
15 上金型のスタンパ型
16 下金型のスタンパ型
20 撮像素子チップ
21 撮像素子
22 貫通電極
23 パッド
24 配線層
25 半田ボール
30 樹脂接着層
40 透明支持基板
50 レンズモジュール
51 第1レンズ
52 第2レンズ
53 第3レンズ
61,62 接着層
61A、84、84A、84a 第1レンズ
85、85A、85a 第2レンズ
86,86A レンズモジュール
87 遮光ホルダ
88,89 レンズモジュール
90 電子情報機器
91 固体撮像装置
92 メモリ部
93 表示手段
94 通信手段
95 画像出力手段
A 光学面
B 光学面外周端部
DL ダイシングライン
F1 平坦部
F2 環状の突出部
DESCRIPTION OF SYMBOLS 1 Lens wafer 10, 10A Sensor module 11 Base material 11a Recessed part 12 Resin material 13 Master mold 14 Resin replica 15 Upper mold stamper type 16 Lower mold stamper type 20 Imaging element chip 21 Imaging element 22 Through electrode 23 Pad 24 Wiring layer 25 Solder ball 30 Resin adhesive layer 40 Transparent support substrate 50 Lens module 51 First lens 52 Second lens 53 Third lens 61, 62 Adhesive layer 61A, 84, 84A, 84a First lens 85, 85A, 85a Second Lens 86, 86A Lens module 87 Shading holder 88, 89 Lens module 90 Electronic information device 91 Solid-state imaging device 92 Memory unit 93 Display unit 94 Communication unit 95 Image output unit A Optical surface B Optical surface outer peripheral end DL Dicing line F1 Flat portion F2 annular Out section

Claims (9)

複数の光学素子が2次元状に配列された光学素子ウエハの製造方法において、
基材に形成された複数の凹部内にレプリカを形成するレプリカ形成工程と、
該基材の凹部内に埋め込まれたレプリカの表面側に形成された各光学素子形状を転写してスタンパ型を形成するスタンパ型形成工程と、
該スタンパ型を用いて光学素子材料に光学素子形状を転写して光学素子ウエハを成形する光学素子ウエハ成形工程とを有し、
該レプリカ形成工程は、該基材に形成された複数の凹部内にレプリカ材料を吐出する工程と、マスター型を用いて該レプリカ材料上を押圧して該マスター型の光学素子形状を該レプリカ材料の表面側に転写する光学素子形状転写工程とを有する光学素子ウエハの製造方法。
In the method of manufacturing an optical element wafer in which a plurality of optical elements are arranged two-dimensionally,
A replica forming step of forming a replica in a plurality of recesses formed on the substrate;
A stamper mold forming step of forming a stamper mold by transferring each optical element shape formed on the surface side of the replica embedded in the concave portion of the substrate;
An optical element wafer forming step of forming an optical element wafer by transferring an optical element shape to an optical element material using the stamper mold,
The replica forming step includes a step of discharging a replica material into a plurality of recesses formed on the base material, and pressing the replica material using a master die to change the shape of the master type optical element to the replica material. An optical element wafer manufacturing method comprising: an optical element shape transfer step for transferring to the surface side of the optical element wafer.
前記レプリカ形成工程は、基材に形成された複数の凹部内に、表面用の光学素子形状が表面側に形成された上用レプリカを形成する上用レプリカ形成工程と、別の基材に形成された複数の凹部内に、裏面用の光学素子形状が表面側に形成された下用レプリカを形成する下用レプリカ形成工程とを有する請求項1に記載の光学素子ウエハの製造方法。   The replica forming step is formed on an upper replica forming step for forming an upper replica in which the optical element shape for the surface is formed on the surface side in a plurality of concave portions formed on the substrate, and on the other base material. The method for producing an optical element wafer according to claim 1, further comprising: a lower replica forming step of forming a lower replica in which the shape of the optical element for the back surface is formed on the front surface side in the plurality of concave portions formed. 前記光学素子ウエハ成形工程は、前記光学素子形状の外周側に所定厚さの平坦部が設けられ、互いに隣接する該光学素子形状間にある平坦部間が該光学素子形状と同じ材料からなる連接部で接続された前記光学素子ウエハを形成する請求項1に記載の光学素子ウエハの製造方法。   In the optical element wafer forming step, a flat portion having a predetermined thickness is provided on the outer peripheral side of the optical element shape, and the flat portions between the adjacent optical element shapes are connected with the same material as the optical element shape. The method of manufacturing an optical element wafer according to claim 1, wherein the optical element wafers connected at a portion are formed. 前記基材と前記レプリカの接触面積が、前記レプリカと前記マスター型の接触面積に比べて大きくなるように該基材の凹部の深さを設定する請求項1に記載の光学素子ウエハの製造方法。   The method of manufacturing an optical element wafer according to claim 1, wherein the depth of the concave portion of the base material is set so that a contact area between the base material and the replica is larger than a contact area between the replica and the master mold. . 前記基材と前記レプリカの接触面積が、該レプリカと前記スタンパ型の接触面積に比べて大きくなるように該基材の凹部の深さを設定する請求項1に記載の光学素子ウエハの製造方法。   2. The method of manufacturing an optical element wafer according to claim 1, wherein the depth of the concave portion of the base material is set so that a contact area between the base material and the replica is larger than a contact area between the replica and the stamper mold. . 前記スタンパ型形成工程は、前記上用レプリカの各光学素子形状を転写して上用スタンパ型を形成する上用スタンパ型形成工程と、前記下用レプリカの各光学素子形状を転写して下用スタンパ型を形成する下用スタンパ型形成工程とを有する請求項2に記載の光学素子ウエハの製造方法。   In the stamper mold forming step, an upper stamper mold forming step for forming the upper stamper mold by transferring each optical element shape of the upper replica, and a lower stamper by transferring each optical element shape of the lower replica. The method for producing an optical element wafer according to claim 2, further comprising a lower stamper mold forming step of forming a stamper mold. 前記光学素子ウエハ成形工程は、前記上用スタンパ型と前記下用スタンパ型により前記光学素子材料を所定厚さにプレスする光学素子材料プレス工程と、該光学素子材料を光硬化または熱硬化させる光学素子材料硬化工程とを有する請求項6に記載の光学素子ウエハの製造方法。   The optical element wafer molding step includes an optical element material pressing step for pressing the optical element material to a predetermined thickness by the upper stamper mold and the lower stamper mold, and an optical for photocuring or thermosetting the optical element material. An optical element wafer manufacturing method according to claim 6, further comprising an element material curing step. 前記光学素子は、一または複数枚のレンズである請求項1に記載の光学素子ウエハの製造方法。   The method of manufacturing an optical element wafer according to claim 1, wherein the optical element is one or a plurality of lenses. 前記光学素子は、出射光を直進させて出射させると共に、入射光を曲げて所定方向に入射させる光学機能素子である請求項1に記載の光学素子ウエハの製造方法。
2. The method of manufacturing an optical element wafer according to claim 1, wherein the optical element is an optical functional element that causes the emitted light to go straight and emit, and bends the incident light to be incident in a predetermined direction.
JP2009199032A 2008-09-26 2009-08-28 Optical element wafer manufacturing method Expired - Fee Related JP5094802B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009199032A JP5094802B2 (en) 2008-09-26 2009-08-28 Optical element wafer manufacturing method
US12/585,769 US20100079642A1 (en) 2008-09-26 2009-09-24 Optical element wafer and method for manufacturing optical element wafer, optical element, optical element module, electronic element wafer module, electronic element module, and electronic information device
CN2009102044287A CN101685169B (en) 2008-09-26 2009-09-25 Optical element wafer and method for manufacturing optical element wafer, and electronic element wafer module

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008249253 2008-09-26
JP2008249253 2008-09-26
JP2009199032A JP5094802B2 (en) 2008-09-26 2009-08-28 Optical element wafer manufacturing method

Publications (2)

Publication Number Publication Date
JP2010102312A JP2010102312A (en) 2010-05-06
JP5094802B2 true JP5094802B2 (en) 2012-12-12

Family

ID=42048416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009199032A Expired - Fee Related JP5094802B2 (en) 2008-09-26 2009-08-28 Optical element wafer manufacturing method

Country Status (3)

Country Link
US (1) US20100079642A1 (en)
JP (1) JP5094802B2 (en)
CN (1) CN101685169B (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5623121B2 (en) 2010-04-27 2014-11-12 キヤノン株式会社 Subject information acquisition device
TWI503580B (en) * 2011-01-25 2015-10-11 Konica Minolta Opto Inc Manufacturing method of molding tool, wafer lens, and optical lens
JP2012158098A (en) * 2011-01-31 2012-08-23 Konica Minolta Advanced Layers Inc Method and device for manufacturing mold
JP5725153B2 (en) * 2011-03-07 2015-05-27 コニカミノルタ株式会社 Mold, wafer lens and optical lens manufacturing method
JP5841731B2 (en) * 2011-03-11 2016-01-13 シャープ株式会社 Optical element, optical element module, electronic element module, and electronic information device
JP2013041878A (en) 2011-08-11 2013-02-28 Sony Corp Imaging apparatus and camera module
JP5459722B2 (en) * 2011-09-29 2014-04-02 シャープ株式会社 Laminated wafer lens and method for manufacturing the same, multilayer lens
CN102628945B (en) * 2012-03-30 2013-10-16 瑞声声学科技(深圳)有限公司 Manufacturing method for light distance sensing device
CN104395805B (en) * 2012-06-18 2017-03-08 夏普株式会社 Camera assembly, it is mounted with the electronic equipment of this camera assembly and the manufacture method of this camera assembly
US9919455B2 (en) * 2012-08-22 2018-03-20 Omnivision Technologies, Inc. Methods for forming a lens plate for an integrated camera using UV-transparent molds and methods for forming UV-transparent molds
WO2014034507A1 (en) 2012-08-31 2014-03-06 株式会社ダイセル Curable composition, cured product thereof, optical member and optical device
US9041019B2 (en) * 2012-10-25 2015-05-26 Flextronics Ap, Llc Method of and device for manufacturing LED assembly using liquid molding technologies
CN106886082B (en) 2013-08-20 2020-10-02 株式会社大赛璐 Wafer lens, wafer lens array, wafer lens laminate, and wafer lens array laminate
KR102551233B1 (en) * 2016-01-25 2023-07-05 엘지이노텍 주식회사 Camera module and optical apparatus
CN115348378B (en) * 2016-01-25 2024-03-08 Lg伊诺特有限公司 Camera module and optical device
US10469718B2 (en) 2017-05-03 2019-11-05 Omnivision Technologies, Inc. Camera module having baffle between two glass substrates
EP3534292A4 (en) 2017-11-09 2020-07-22 Shenzhen Goodix Technology Co., Ltd. Optical module and processing method therefor, and terminal device
WO2020255191A1 (en) * 2019-06-17 2020-12-24 日本電信電話株式会社 Optical circuit wafer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09174566A (en) * 1995-12-25 1997-07-08 Fujitsu Ltd Stamper for reproducing optical element
JP2002350609A (en) * 2001-05-29 2002-12-04 Ricoh Co Ltd Method for manufacturing optical element, optical element and optical pickup device
JP4054658B2 (en) * 2002-10-31 2008-02-27 オリンパス株式会社 Lens connecting member and lens array mold
JP2004151450A (en) * 2002-10-31 2004-05-27 Olympus Corp Method for manufacturing lens array and molding die for lens array
JP2004310077A (en) * 2003-03-25 2004-11-04 Nikon Corp Method for manufacturing microlens, microlens and exposure device
JP2005132660A (en) * 2003-10-29 2005-05-26 Matsushita Electric Ind Co Ltd Manufacturing method of optical element having non-reflective structure and optical element having non-reflective structure manufactured through the method
JP2005223716A (en) * 2004-02-06 2005-08-18 Rohm Co Ltd Image sensor module and lens unit therefor
JP2007163889A (en) * 2005-12-14 2007-06-28 Seiko Precision Inc Imaging apparatus and manufacturing method therefor
EP2044629A4 (en) * 2006-07-17 2012-08-01 Digitaloptics Corp East Camera system and associated methods

Also Published As

Publication number Publication date
CN101685169B (en) 2013-01-16
US20100079642A1 (en) 2010-04-01
CN101685169A (en) 2010-03-31
JP2010102312A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
JP5094802B2 (en) Optical element wafer manufacturing method
JP5009209B2 (en) Wafer-like optical device and manufacturing method thereof, electronic element wafer module, sensor wafer module, electronic element module, sensor module, and electronic information device
JP4764941B2 (en) Optical element, optical element wafer, optical element wafer module, optical element module, optical element module manufacturing method, electronic element wafer module, electronic element module manufacturing method, electronic element module, and electronic information device
JP4768060B2 (en) Optical element, optical element wafer, optical element wafer module, optical element module, optical element module manufacturing method, electronic element wafer module, electronic element module manufacturing method, electronic element module, and electronic information device
JP5047243B2 (en) Optical element wafer module, optical element module, optical element module manufacturing method, electronic element wafer module, electronic element module manufacturing method, electronic element module, and electronic information device
JP4764942B2 (en) Optical element, optical element wafer, optical element wafer module, optical element module, optical element module manufacturing method, electronic element wafer module, electronic element module manufacturing method, electronic element module, and electronic information device
TWI402979B (en) Electronic element wafer module, electronic element module, sensor wafer module, sensor module, lens array plate, manufacturing method for the sensor module, and electronic information device
JP5118674B2 (en) Optical element module and manufacturing method thereof, electronic element module and manufacturing method thereof, and electronic information device
JP4819152B2 (en) Optical element wafer, optical element wafer module, optical element module, method for manufacturing optical element module, electronic element wafer module, method for manufacturing electronic element module, electronic element module, and electronic information device
JP4891214B2 (en) Electronic element wafer module, electronic element module, sensor wafer module, sensor module, lens array plate, sensor module manufacturing method, and electronic information device
JP5202361B2 (en) Molding method, molding apparatus, molding die, optical element array plate manufacturing method, electronic element module manufacturing method, electronic information equipment
JP4835799B2 (en) Wafer lens and manufacturing method thereof
US20100091168A1 (en) Solid-state image pickup apparatus, and method of manufacturing solid-state image pickup apparatus
TW200541063A (en) Image pickup device and production method thereof
JP4800291B2 (en) Method for manufacturing sensor module and method for manufacturing electronic information device
TW201013906A (en) Electronic element wafer module, method for manufacturing an electronic element wafer module, electronic element module, and electronic information device
JP2011048303A (en) Optical element module and method for manufacturing the same, electronic element module and method for manufacturing the same, and electronic information equipment
JP2009266901A (en) Transfer apparatus, method for manufacturing wafer-like optical device, electronic element wafer module, sensor wafer module, electronic element module, sensor module and electronic information instrument
JP2009251249A (en) Wafer-like optical device and manufacturing method thereof, electronic element wafer module, sensor wafer module, electronic element module, sensor module, and electronic information apparatus
JP2009086092A (en) Method of manufacturing optical component and method of manufacturing photographing device
JP2015170638A (en) Imaging element package and imaging device
JP5061580B2 (en) Solid-state imaging device and manufacturing method thereof
JP5202381B2 (en) Molding apparatus, mold manufacturing method, optical element array plate manufacturing method, electronic element module manufacturing method, electronic information device
JP2009044494A (en) Imaging device
US7964432B2 (en) Method of manufacturing lenses, in particular for an integrated imager

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Ref document number: 5094802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

LAPS Cancellation because of no payment of annual fees