JP5094240B2 - 投影光学系 - Google Patents

投影光学系 Download PDF

Info

Publication number
JP5094240B2
JP5094240B2 JP2007174352A JP2007174352A JP5094240B2 JP 5094240 B2 JP5094240 B2 JP 5094240B2 JP 2007174352 A JP2007174352 A JP 2007174352A JP 2007174352 A JP2007174352 A JP 2007174352A JP 5094240 B2 JP5094240 B2 JP 5094240B2
Authority
JP
Japan
Prior art keywords
optical element
optical system
refractive index
projection
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007174352A
Other languages
English (en)
Other versions
JP2009014847A (ja
Inventor
豊 末永
Original Assignee
株式会社目白プレシジョン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社目白プレシジョン filed Critical 株式会社目白プレシジョン
Priority to JP2007174352A priority Critical patent/JP5094240B2/ja
Priority to PCT/JP2008/061920 priority patent/WO2009005065A1/ja
Priority to TW97124839A priority patent/TW200912556A/zh
Publication of JP2009014847A publication Critical patent/JP2009014847A/ja
Application granted granted Critical
Publication of JP5094240B2 publication Critical patent/JP5094240B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70225Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明はパターンを基板等に投影するための投影光学系に関する。特に半導体製造で用いられる投影露光装置に好適な投影光学系に関する。
従前の露光装置においては、ダイソン型投影光学系を用いたものがあった。このダイソン型投影光学系は、平凸レンズとメニカスレンズとの2つのレンズを重ね合わせたものであった(例えば、特許文献1参照。)。
特表平10−509561号公報
上述した投影光学系では、メニスカスレンズを精度よく加工する必要があり、製造工程が複雑になったり煩雑になったりせざるを得なかった。
本発明は、上述の点に鑑みてなされたものであり、その目的とするところは、良好な結像性能を有しながら、構成を簡素にして、容易に製造することができる投影光学系を提供することにある。
以上の目的を達成するために、本発明においては、光学的に平行平板形状の第1の光学素子と、平凸形状の第2の光学素子と凹面鏡とを有するとともに、第1の光学素子の屈折率を、第2の光学素子の屈折率よりも大きくする。
具体的には、本発明に係る投影光学系は、
平面形状の第1の面と、前記第1面に光学的に平行に配置された平面形状の第2の面とを有する第1の光学素子と、
前記第2面に平行に配置された平面形状の第3の面と、凸面形状の第4の面とを有する第2の光学素子と、
前記第4の面に凹面を向けて配置された凹面鏡と、を含み、
前記第1の光学素子の屈折率が前記第2の光学素子の屈折率よりも大きいことを特徴とする。
第1の光学素子は、第1の面と第2の面とを有する。この第1の面と第2の面とは、互いに光学的に略平行に形成されている。なお、幾何学的に略平行に形成されていなくても、光学的に略平行に形成されていればよい。ここで、光学的に平行とは、光路が等しい状態で面が平行になっていることをいう。具体的な部材としては、平行平板、直角プリズム、ダハプリズム等が含まれる。第1の光学素子の第1の面に入射した光は、第1の光学素子の第2の面から射出でき、また、逆に、第1の光学素子の第2の面に入射した光は、第1の光学素子の第1の面から射出できるように形成されている。
第2の光学素子は、第3の面と第4の面とを有する。この第3の面は、第1の光学素子の第2の面に向かい合うように配置される。第2の光学素子の第4の面は、凸面からなる。第2の光学素子の第3の面に入射した光は、第2の光学素子の第4の面から射出でき、また、逆に、第2の光学素子の第4の面に入射した光は、第2の光学素子の第3の面から射出できるように形成されている。
凹面鏡は、第2の光学素子の第4の面に向かい合うように、配置される。さらに、凹面鏡、第2の光学素子の第4の面と略同心となるように配置される。このようにすることで、第2の光学素子の第4の面から射出した光を、凹面境によって反射させて、第2の光学素子の第4の面に再入射させることができる。
さらに、第1の光学素子の屈折率は、第2の光学素子の屈折率よりも大きくする。
ダイソン型投影光学系は、通常、マスク等の物体面から第1の面まで空気間隔が設けられている。これにより、第1の面で大きな球面収差が発生する。従来では、この第1の面で発生した大きな球面収差を補正するため、前述のようにメニスカスレンズを用いていた。しかし、本発明では、第1の面を含む第1の光学素子の屈折率を大きくすることで、第1の面で発生した大きな球面収差を補正するようにしている。その際、光学素子の形状は特に限定が無い。そこで、本発明では、第1の光学素子を光学的に平行平板形状にし、第2の光学素子を平凸形状としている。
これにより、第1の光学素子の第1の面と、第2の面と、第2の光学素子の第3の面とがともに、平面であるので、構成を簡素にすることができる。第1の光学素子と第2の光学素子とを密着させる場合、密着が容易になるので、投影光学系を容易に製造することもできる。
また、本発明に係る投影光学系は、前記第1の光学素子の屈折率をn1とし、前記第2の光学素子の屈折率をn2としたとき、以下の条件を満足することが好ましい。
0<n1−n2≦0.2
この条件は、良好な結像性能を維持するための条件である。条件の下限を下回ると、軸上色収差または非点収差のどちらかが悪化するようになる。条件の上限を上回ると、非点収差が大きくなりすぎ、結像領域の中間部から周辺部で良好な結像性能を得ることができなくなる。下限を0.01以上とし、上限を0.1とすると、更に良い結果が得られる。 更に、本発明に係る投影光学系は、前記第1の光学素子の分散をν1とし、前記第2の光学素子の分散をν2としたとき、以下の条件を満足することが好ましい。
0<|ν2−ν1|≦30
この条件は、軸上色収差を良好に補正するための条件である。0になると、球面収差や非点収差を補正した状態での色収差の補正ができなくなってしまう。上限を上回ると、球面収差や非点収差を補正した状態での色収差の補正が、不足しすぎてしまう。下限を0.1以上とし、上限を20とすると、更に良い結果が得られる。軸上色収差を補正して広い波長範囲で使用すれば、積算露光量が増えるので、短時間で焼付けを行うことができるようになり、半導体製造のスループットが向上する。
また、本発明に係る投影光学系は、前記第1の光学素子及び前記第2の光学素子は紫外線を透過する材料であることが好ましい。
光の波動的性質により、波長が短いほど、光学系は解像力が良くなる。そこで、波長の短い紫外線を利用し、高解像力の投影光学系とすることが可能になる。
また、本発明に係る投影光学系は、前記第1の面から前記第2の面までの間隔をdpとし、前記第1の面から前記第4の面までの間隔をdtとしたとき、以下の条件を満足することが好ましい。
0.1<dp/dt≦0.98
この条件は、第1の光学素子の適切な形状及び、球面収差と非点収差とを良好に補正した状態で色収差を良好に補正するための条件である。この条件の下限を下回ると、平行平板の厚さが極端に薄くなってしまい、保持時の変形が大きくなり、製造が困難になる。また、ワーキングディスタンスが非常に短くなってしまう欠点もある。この条件の上限を上回ると、第4の面の曲率半径が大きくなり、非点収差及び軸上色収差の補正が困難になったり、装置が非常に大きくなったりしてしまう。下限を0.05とし、上限を0.90とすると、更に良い結果が得られる。
特に、ν2−ν1が正の値をとる場合は、上記条件の下限を0.5とすると、第1の光学素子をプリズムのような様々な形状に加工することが容易になるという、更に良い結果を得ることができる。
また、本発明に係る投影光学系は、前記第1の光学素子がプリズム形状であることが好ましい。このようにプリズム形状にすると、図2に示すように、投影光学系の入射側の物体面と射出側の像面とを分離して配置することができるようになる。これにより、レチクルとウエハとが重なり合うことが無くなり、より大きな露光領域を確保することができるようになり、且つ操作性が向上する。
また、本発明に係る投影光学系は、前記凹面鏡が誘電体多層膜で反射面を形成されていることが好ましい。誘電体多層膜を使用すれば、所望の波長のみを反射させ、露光波長として用いることができるようになる。尚且つ、不要な波長が凹面鏡を発熱させることが無いので、熱変形の無い安定した投影光学系を作ることができる。
また、本発明に係る投影光学系は、前記第2の面と前記第3の面とが密着されていることが好ましい。このように、密着させると、各光学素子の製造誤差が大きくても、良好な結像性能を得やすくなる利点がある。
また、本発明に係る投影光学系は、前記第1の光学素子と前記第2の光学素子とは分離されていることが好ましい。このような構成は、可視光から離れた紫外線を利用する場合に特に有効である。
良好な結像性能を維持しながら、構成を簡素にして、容易に製造することができる。また、各光学素子を適切に選択することで、色収差を良好に補正することもできる。
以下に、本発明の実施例について図面に基づいて説明する。
<<<第1の実施形態>>>
<<構成>>
図1は、本発明による投影光学系の概念を示す概略図である。本発明による投影光学系は、第1の光学素子10と、第2の光学素子20と、凹面鏡30と、を含む。この図1に示した投影光学系では、第1の光学素子10の光軸と、第2の光学素子20の光軸とは、軸Lとして一致するように配置されている。
<第1の光学素子10>
第1の光学素子10は、略円柱形の形状であり、第1の面12と第2の面14とを有する。第1の面12と第2の面14とは、ともに略円形に形成され、幾何学的に平行になるように形成されている。
第1の光学素子10は、可視光から波長365nmのi線までを透過する。
後述するように、第1の面12から入射した光束は、第2の面14から射出される。また、第2の面14から入射した光束は、第1の面12から射出される。
<第2の光学素子20>
第1の光学素子10の第2の面14には、第2の光学素子20である平凸レンズが接合されている。この第2の光学素子20は第3の面22と第4の面24とを有する。第3の面22は、略円形に形成され、第4の面24は、凸球面形に形成されている。また、第4の面24の中心が、軸L上で、後述する平面40上の点Oと一致するように、第2の光学素子20は配置されている。
第2の光学素子20は、可視光から波長365nmのi線までを透過する。第1の光学素子10の屈折率は、第2の光学素子20の屈折率よりも大きい。
後述するように、第3の面22から入射した光束は、第4の面24から射出される。また、第4の面24から入射した光束は、第3の面22から射出される。
<凹面鏡30>
第2の光学素子20の第4の面24と向かい合うように、凹面鏡30が配置されている。この凹面鏡30の反射面32は、光を反射させることができる材料、例えばアルミニウム、又は誘電体多層膜によって形成されているものが好ましい。
反射面32は、球面の中心が、軸L上で、後述する平面40上の点Oとなるように、凹面鏡30は配置されている。凹面鏡30をこのように配置することで、第2の光学素子20の第2の面24と、凹面鏡30の反射面32とは、同心になるように配置される。なお、本明細書では、同心とは、実質的に同心であればよく、完全に曲率の中心が一致する必要はない。
<<光の進行>>
物点A及び像点Bを含む平面40と第1の光学素子10との間には、空気が存在する。同様に、第2の光学素子20と凹面反射鏡30との間にも、空気が存在する。
この平面40上の1つの物点Aから第1の光学素子10に向かって発せられた光が辿る光路について説明する。なお、図1に示す光路P1〜P4及びR1〜R4は、物点Aから発せられた光束のうちの開口数が最も大きくなるときの光についてのものである。
物点Aから発せられた光は、光路P1に示すように、第1の光学素子10の第1の面12に入射する。第1の面12に入射した光は、光路P2に示すように、空気の屈折率と第1の光学素子10の屈折率との差に応じて、第1の面12で屈折して、第1の光学素子10内を進み、第2の面14から射出する。図1に示した例では、第1の光学素子10の屈折率は、空気の屈折率よりも大きいので、第1の面12における射出角は、入射角よりも小さくなる。
上述したように、第1の光学素子10と第2の光学素子20とは接合されているので、第1の光学素子10の第2の面14から射出した光は、光路P3に示すように、第1の光学素子10の屈折率と第2の光学素子20の屈折率とに応じて、第1の光学素子10の第2の面14と第2の光学素子20の第1の面22との接合面で屈折して、第2の光学素子20内を進み、第2の面24から射出する。図1に示した例では、第2の光学素子20の屈折率は、第1の光学素子10の屈折率よりも大きいので、第1の光学素子10の第2の面14と第2の光学素子20の第1の面22との接合面における射出角は、入射角よりも大きくなる。
第2の光学素子20の第2の面24から射出した光は、光路P4に示すように、第2の光学素子20の屈折率と空気の屈折率とに応じて第2の面24で屈折して、第2の光学素子20の第2の面24から射出され、凹面反射鏡30に達する。図1に示した例では、第2の光学素子20の屈折率は、空気の屈折率よりも大きいので、第2の面24における射出角は、入射角よりも大きくなる。
凹面反射鏡30に達した光は、反射面32で反射し、光路R1に示すように、第2の光学素子20の第2の面24に向かって進み、第2の面24に入射する。
第2の光学素子20の第2の面24に入射した光は、光路R2に示すように、第2の光学素子20の屈折率と空気の屈折率とに応じて第2の面24で屈折して、第2の光学素子20内を進み、第1の面22から射出する。第2の光学素子20の屈折率は、空気の屈折率よりも大きいので、第2の面24における射出角は、入射角よりも小さくなる。
第2の光学素子20の第1の面22から射出した光は、光路R3に示すように、第1の光学素子10の屈折率と第2の光学素子20の屈折率とに応じて、第1の光学素子10の第2の面14と第2の光学素子20の第1の面22との接合面で屈折して、第1の光学素子10内を進み、第1の面12から射出する。第2の光学素子20の屈折率は、第1の光学素子10の屈折率よりも大きいので、第1の光学素子10の第2の面14と第2の光学素子20の第1の面22との接合面における射出角は、入射角よりも小さくなる。
第1の光学素子10の第1の面12から射出した光は、光路R4に示すように、空気の屈折率と第1の光学素子10の屈折率とに応じて、第1の面12で屈折して、平面40に向かって進み、平面40上の1つの点Bに達する。第1の光学素子10の屈折率は、空気の屈折率よりも大きいので、第1の面12における射出角は、入射角よりも大きくなる。
上述したように、第2の光学素子20の第2の面24と、凹面反射鏡30の反射面32とが、実質的に同心になるように、第2の光学素子20と凹面反射鏡30とは配置されているので、点Aから発せられた光は、凹面反射鏡30の反射面32によって反射されて、点Oを中心として対称な位置である像点Bに達する。したがって、点Aに物体が位置する場合には、その物体の像は、点Oを中心として対称な位置である点Bに形成される。
上述したように、第1の光学素子10の屈折率と、第2の光学素子20の屈折率との相違によって、光が第1の光学素子10から第2の光学素子20へ入射するとき、及び光が第2の光学素子20から第1の光学素子10へ入射するときに、光を屈折させる。このように光を屈折させることにより、第1の光学素子10の屈折率と、第2の光学素子20の屈折率との相違によって、像面湾曲を少なくすることができる。
<<<第2の実施形態>>>
図2は、本発明による第1の実施形態とは異なる投影光学系の概念を示す概略図である。本実施形態による投影光学系は、第1の光学素子である第1プリズム110a及び第2プリズム110bと、第2の光学素子120と、凹面鏡130と、を含む。これらの第1の光学素子110a及び110bと、第2の光学素子120と、凹面鏡130との各々は、支持部材(図示せず)によって筐体150に所定の配置となるように支持されている。
<第1プリズム110a及び第2プリズム110b(第1の光学素子)>
第1の光学素子である第1プリズム110a及び第2プリズム110bの各々は、略三角柱形の形状のプリズムである。
第1の光学素子である第1プリズム110aは、第1の面112aと第2の面114aと第3の面116aとを有する。第1の面112aと第2の面114aとは、これらのなす角が略直角となるように形成されている。また、第1の面112aと第3の面116aとのなす角が、略45度となるように、かつ、第2の面114aと第3の面116aとのなす角が、略45度となるように形成されている。
第1の光学素子である第2プリズム110bは、第1の面112bと第2の面114bと第3の面116bとを有する。第1の面112bと第2の面114bとは、これらのなす角が略直角となるように形成されている。また、第1の面112bと第3の面116bとのなす角が、略45度となるように、かつ、第2の面114bと第3の面116bとのなす角が、略45度となるように形成されている。
このようにすることで、第1の光学素子である第1プリズム110aの第1の面112aと第2の面114aとを、光学的に略平行にすることができる。また、同様に、第1の光学素子である第2プリズム110bの第1の面112bと第2の面114bとを、光学的に略平行にすることができる。
また、第1の光学素子である第1プリズム110aの第2の面114aと、第1の光学素子である第2プリズム110bの第2の面114bとは、1つの平面を形成するように、いわゆる面一となるように配置されている。
第1の光学素子第1プリズム110a及び第2プリズム110bの各々は、紫外線を透過する材料からなる。
後述するように、第1の光学素子である第1プリズム110aの第1の面112aから入射した光束は、第3の面116aによって反射されて、第2の面114aから射出される。また、第1の光学素子である第2プリズム110bの第2の面114bから入射した光束は、第3の面116bによって反射されて、第1の面112bから射出される。ここでは直角プリズム形状を示したが、場合によっては、ダハ面を有したプリズムでも良い。
<第2の光学素子120>
第1の光学素子である第1プリズム110aの第2の面114aと、第1の光学素子である第2プリズム110bの第2の面114bとには、第2の光学素子120である平凸レンズが接合されている。この第2の光学素子120は第3の面122と第4の面124とを有する。第3の面122は、略円形に形成されている。以下では、第1の面122の半分側(図2の左半分側)を第1の面122aと称し、第1の面122の残りの半分側(図2の右半分側)を第1の面122bと称する。第2の光学素子120の第2の面124は、凸球面形に形成されている。第1の面122aが第1の光学素子110aの第2の面114aと接合するように、第1の面122bが第1の光学素子110bの第2の面114bと接合するように、第1の光学素子110aと、第1の光学素子110bと、第2の光学素子120とは配置されている。
第2の光学素子120は、第1の光学素子10の屈折率は、第2の光学素子20の屈折率よりも大きい。
後述するように、第1の面122aから入射した光束は、第2の面124から射出される。また、第2の面124から入射した光束は、第1の面122bから射出される。
上述したように、第1の光学素子110aの第2の面114aと、第1の光学素子110bの第2の面114bとには、第2の光学素子120が接合されているが、収差に影響しない程度ならば、第2の光学素子120を第1の光学素子110aや第1の光学素子110bから離隔した位置に配置してもよい。
<凹面鏡130>
第2の光学素子120の第4の面124と向かい合うように、凹面鏡130が配置されている。凹面鏡130の反射面132は、光を反射させることができる材料、例えばアルミニウム又は誘電体多層膜によって形成されているものが好ましい。
反射面132が、第2の光学素子120の第2の面124と同心になるように配置されている。なお、本明細書では、同心とは、実質的に同心であればよい。
<<光の進行>>
図2に示すように、第1の光学素子110aの第1の面112aから離隔した位置に、第1の面112aと向かい合うように、かつ、平行に、入射面140aが位置づけられている。この入射面140aには、レチクル等の被投影物体が配置される。レチクルは、プリント配線体や半導体デバイスのウエハを製造するときに、導体パターン等のパターンを基板に形成するために用いられるフォトマスクをいう。
光源(図示せず)から発せられた光は、入射面140aに位置づけられたレチクル等の被投影物体を介して、第1の光学素子110aの第1の面112aに入射する。第1の面112aに入射する光は、第1の実施例で示した光路P1に相当する。
第1の面112aに入射した光は、上述したように、第3の面116aによって反射されて、第2の面114aから射出される。第1の光学素子110aの第1の面112aに入射して、第2の面114aから射出される光は、第1の実施例で示した光路P2に相当する。
上述したように、第1の光学素子110aと第2の光学素子120とは接合されているので、第2の面114aから射出された光は、直ちに、第2の光学素子120の第1の面122aに入射する。第2の光学素子120の第1の面122aに入射する光は、第1の実施例で示した光路P3と同様に、第1の光学素子110aの屈折率と第2の光学素子120の屈折率との差に応じて、第1の光学素子110aの第2の面114aと第2の光学素子120の第1の面122aとの接合面で屈折する。図2に示した例では、図1に示した例と同様に、第2の光学素子120の屈折率は、第1の光学素子110aの屈折率よりも大きいので、第1の光学素子110aの第2の面114aと第2の光学素子120の第1の面122aとの接合面における射出角は、入射角よりも大きくなる。第2の光学素子120の第1の面122aに入射した光は、第2の光学素子120内を進み、第2の面124から射出する。
第2の光学素子120の第2の面124から射出した光は、第1の実施例で示した光路P4と同様に、第2の光学素子120の屈折率と空気の屈折率とに応じて第2の面124で屈折する。図2に示した例では、図1に示した例と同様に、第2の光学素子120の屈折率は、空気の屈折率よりも大きいので、第2の面124における射出角は、入射角よりも大きくなる。第2の光学素子120の第2の面124から射出された光は、凹面反射鏡130に達する。
凹面反射鏡130に達した光は、反射面132で反射し、第1の実施例で示した光路R1と同様に、第2の光学素子120の第2の面124に向かって進み、第2の面124に入射する。
第2の光学素子120の第2の面124に入射した光は、第1の実施例で示した光路R2と同様に、第2の光学素子120の屈折率と空気の屈折率とに応じて第2の面124で屈折する。第2の光学素子120の屈折率は、空気の屈折率よりも大きいので、第2の面124における射出角は、入射角よりも小さくなる。第2の光学素子120の第2の面124から入射した光は、第2の光学素子120内を進み、第1の面122bから射出する。
第2の光学素子120の第1の面122bから射出した光は、第1の実施例で示した光路R3と同様に、第1の光学素子110bの屈折率と第2の光学素子120の屈折率とに応じて、第1の光学素子110bの第2の面114bと第2の光学素子120の第1の面122bとの接合面で屈折する。第2の光学素子120の屈折率は、第1の光学素子110bの屈折率よりも大きいので、第1の光学素子110bの第2の面114bと第2の光学素子120の第1の面122bとの接合面における射出角は、入射角よりも小さくなる。第1の光学素子110bの第2の面114bに入射した光は、上述したように、第3の面116bによって反射されて、第1の光学素子110b内を進み、第1の面112bから射出する。この光は、第1の実施例で示した光路R3に相当する。
図2に示すように、第1の光学素子110bの第1の面112bから離隔した位置には、第1の面112bと向かい合うように、かつ、平行に、射出面140bが位置づけられている。第1の光学素子110bの第1の面112bから射出した光は、射出面140bに達する。
<数値実施例>
以下に、本発明による投影光学系の具体的な数値実施例を示す。
各表のレンズデータ中、最も左側の列は面番号を、左から二番目の列(r)は曲率半径を、左から三番目の列(d)は面間隔を、左から四番目の列(nd)はd線での屈折率を、左から五番目の列(νd)はd線基準の分散値を、それぞれ示す。
各実施例とも、g線(波長435.8nm)、h線(波長404.7nm)及びi線(365.0nm)で色収差補正を行っている。
また、第1の光学素子の形状は、第2の実施形態のところで述べた様に、プリズム形状
にしてもかまわない。
<第1数値実施例>
本実施例に開示される投影光学系は、第1の光学素子L1、第2の光学素子L2及び凹面鏡Mから構成され、物像平面Bで倍率−1の共役関係を形成している。更に、第1の光学素子L1は平行平面の第1の面及び第2の面から形成され、第2の光学素子L2は平面の第3の面及び凸面の第4の面から形成され、第1の光学素子Llの第2の面と第2の光学素子L2の第3の面とはオプティカルコンタクトにより密着している。尚、この密着面は分離可能で、その際は、物像平面から第1面までの距離が変化するだけで、性能は殆ど変わらない。以下の表1に、本実施例の諸データを示す。図3は本実施例による投影光学系の断面図であり、図4は本実施例による投影光学系の諸収差図である。図4の諸収差図から分かる様に、諸収差は良好に補正されている。
Figure 0005094240
<第2数値実施例>
本実施例に開示される投影光学系は、第1の光学素子L1、第2の光学素子L2及び凹面鏡Mから構成され、物像平面Bで倍率−1の共役関係を形成している。更に、第1の光学素子Llは平行平面の第1の面及び第2の面から形成され、第2の光学素子L2は平面の第3の面及び凸面の第4の面から形成され、第1の光学素子L1と第2の光学素子L2は分離されている。以下の表2に、本実施例の諸データを示す。図5は本実施例による投影光学系の断面図であり、図6は本実施例による投影光学系の諸収差図である。図6の諸収差図から分かる様に、諸収差は良好に補正されている。
Figure 0005094240
<第3数値実施例>
本実施例に開示される投影光学系は、第1の光学素子L1、第2の光学素子L2及び凹面鏡Mから構成され、物像平面Bで倍率−1の共役関係を形成している。更に、第1の光学素子L1は平行平面の第1の面及び第2の面から形成され、第2の光学素子L2は平面の第3の面及び凸面の第4の面から形成され、第1の光学素子L1と第2の光学素子L2は分離されている。以下の表3に、本実施例の諸データを示す。図7は本実施例による投影光学系の断面図であり、図8は本実施例による投影光学系の諸収差図である。図8の諸収差図から分かる様に、諸収差は良好に補正されている。
Figure 0005094240
<第4数値実施例>
本実施例に開示される投影光学系は、第1の光学素子L1、第2の光学素子L2及び凹面鏡Mから構成され、物像平面Bで倍率−1の共役関係を形成している。更に、第1の光学素子L1は平行平面の第1の面及び第2の面から形成され、第2の光学素子L2は平面の第3の面及び凸面の第4の面から形成され、第1の光学素子L1と第2の光学素子L2は分離されている。以下の表4に、本実施例の諸データを示す。図9は本実施例による投影光学系の断面図であり、図10は本実施例による投影光学系の諸収差図である。図10の諸収差図から分かる様に、諸収差は良好に補正されている。
Figure 0005094240
<第5数値実施例>
本実施例に開示される投影光学系は、第1の光学素子Ll、第2の光学素子L2及び凹面鏡Mから構成され、物像平面Bで倍率−1の共役関係を形成している。更に、第1の光学素子L1は平行平面の第1の面及び第2の面から形成され、第2の光学素子L2は平面の第3の面及び凸面の第4の面から形成され、第1の光学素子L1の第2の面と第2の光学素子L2の第3の面とはオプティカルコンタクトにより密着されている。尚、この密着面は分離可能で、その際は、物像平面から第1面までの距離が変化するだけで、性能は殆ど変わらない。以下の表5に、本実施例の諸データを示す。図11は本実施例による投影光学系の断面図であり、図12は本実施例による投影光学系の諸収差図である。図12の諸収差図から分かる様に、諸収差は良好に補正されている。
Figure 0005094240
<第6数値実施例>
本実施例に開示される投影光学系は、第3の光学素子L3、第1の光学素子L1、第2の光学素子L2及び凹面鏡Mから構成され、物像平面Bで倍率−1の共役関係を形成している。更に、第3の光学素子L3は平行平板形状であり、第1の光学素子L1は平行平面の第1の面及び第2の面から形成され、第2の光学素子L2は平面の第3の面及び凸面の第4の面から形成されている。そして、第3の光学素子L3の一方の面と第1の光学素子L1の第1の面とはオプティカルコンタクトで密着され、第1の光学素子L1の第2の面と第2の光学素子L2の第3の面とはオプティカルコンタクトで密着されている。尚、これらの密着面は分離可能で、その際は、物像平面から第1面間までの距離が変化するだけで、性能は殆ど変わらない。以下の表6に、本実施例の諸データを示す。図13は本実施例による投影光学系の断面図であり、図14は本実施例による投影光学系の諸収差図である。図14の諸収差図から分かる様に、諸収差は良好に補正されている。
Figure 0005094240
<第7数値実施例>
本実施例に開示される投影光学系は、第1の光学素子L1、第2の光学素子L2及び凹面鏡Mから構成され、物像平面Bで倍率−1の共役関係を形成している。更に、第1の光学素子L1は平行平面の第1の面及び第2の面から形成され、第2の光学素子L2は平面の第3の面及び凸面の第4の面から形成され、第1の光学素子L1と第2の光学素子L2は分離されている。以下の表7に、本実施例の諸データを示す。図15は本実施例による投影光学系の断面図であり、図16は本実施例による投影光学系の諸収差図である。図16の諸収差図から分かる様に、諸収差は良好に補正されている。
Figure 0005094240
<第8数値実施例>
本実施例に開示される投影光学系は、第1の光学素子L1、第2の光学素子L2及び凹面鏡Mから構成され、物像平面Bで倍率−1の共役関係を形成している。更に、第1の光学素子L1は平行平面の第1の面及び第2の面から形成され、第2の光学素子L2は平面の第3の面及び凸面の第4の面から形成され、第1の光学素子L1と第2の光学素子L2は分離されている。以下の表8に、本実施例の諸データを示す。図17は本実施例による投影光学系の断面図であり、図18は本実施例による投影光学系の諸収差図である。図18の諸収差図から分かる様に、諸収差は良好に補正されている。
Figure 0005094240
本発明による投影光学系の概念を示す概略図である。 本発明による投影光学系の具体例を示す概略図である。 本実施例による第1数値実施例の投影光学系の断面図である。 本実施例による第1数値実施例の投影光学系の諸収差図である。 本実施例による第2数値実施例の投影光学系の断面図である。 本実施例による第2数値実施例の投影光学系の諸収差図である。 本実施例による第3数値実施例の投影光学系の断面図である。 本実施例による第3数値実施例の投影光学系の諸収差図である。 本実施例による第4数値実施例の投影光学系の断面図である。 本実施例による第4数値実施の例投影光学系の諸収差図である。 本実施例による第5数値実施例の投影光学系の断面図である。 本実施例による第5数値実施例の投影光学系の諸収差図である。 本実施例による第6数値実施例の投影光学系の断面図である。 本実施例による第6数値実施例の投影光学系の諸収差図である。 本実施例による第7数値実施例の投影光学系の断面図である。 本実施例による第7数値実施例の投影光学系の諸収差図である。 本実施例による第8数値実施例の投影光学系の断面図である。 本実施例による第8数値実施例の投影光学系の諸収差図である。
符号の説明
10,110a,110b 第1の光学素子
12,112a,112b 第1の光学素子の第1の面
14,114a,114b 第1の光学素子の第2の面
20,120 第2の光学素子
22,122a,122b 第2の光学素子の第1の面
24,124 第2の光学素子の第2の面
30,130 凹面反射鏡(反射手段)
32,132 反射面(凹曲面、凹球面)
B 物像平面
L1 第1の光学素子
L2 第2の光学素子
M 凹面鏡

Claims (7)

  1. 平面形状の第1の面と、前記第1面に光学的に平行に配置された平面形状の第2の面とを有する第1の光学素子と、
    前記第2面に平行に配置された平面形状の第3の面と、凸面形状の第4の面とを有する第2の光学素子と、
    前記第4の面に凹面を向けて配置された凹面鏡と、を含み、
    前記第1の光学素子の屈折率をnlとし、前記第2の光学素子の屈折率をn2としたとき、以下の条件を満足することを特徴とする投影光学系。
    0<nl−n2≦0.2
  2. 平行平板形状である第3の光学素子をさらに含み、前記第3の光学素子の一方の面を、前記第1の光学素子の前記第1の面に平行に配置した請求項1に記載の投影光学系。
  3. 前記第1の光学素子の分散をν1とし、前記第2の光学素子の分散をν2としたとき、
    以下の条件を満足する請求項1又は2に記載の投影光学系。
    0<|ν2−ν1|≦30
  4. 前記第1の光学素子及び前記第2の光学素子、又は前記第1〜第3の光学素子は紫外線を透過する材料である請求項1乃至3のいずれかに記載の投影光学系。
  5. 前記第1の面から前記第2の面までの間隔をdpとし、前記第1の面から前記第4の面までの間隔をdtとしたとき、以下の条件を満足する請求項1乃至4のいずれかに記載の投影光学系。
    0.1<dp/dt≦0.98
  6. 前記第1の光学素子は、プリズム形状である請求項1乃至5のいずれかに記載の投影光学系。
  7. 前記凹面鏡は、誘電体多層膜で反射面を形成されている請求項1乃至6のいずれかに記載の投影光学系。
JP2007174352A 2007-07-02 2007-07-02 投影光学系 Active JP5094240B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007174352A JP5094240B2 (ja) 2007-07-02 2007-07-02 投影光学系
PCT/JP2008/061920 WO2009005065A1 (ja) 2007-07-02 2008-07-01 投影光学系
TW97124839A TW200912556A (en) 2007-07-02 2008-07-02 Projection optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007174352A JP5094240B2 (ja) 2007-07-02 2007-07-02 投影光学系

Publications (2)

Publication Number Publication Date
JP2009014847A JP2009014847A (ja) 2009-01-22
JP5094240B2 true JP5094240B2 (ja) 2012-12-12

Family

ID=40226110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007174352A Active JP5094240B2 (ja) 2007-07-02 2007-07-02 投影光学系

Country Status (3)

Country Link
JP (1) JP5094240B2 (ja)
TW (1) TW200912556A (ja)
WO (1) WO2009005065A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11175487B2 (en) * 2017-06-19 2021-11-16 Suss Microtec Photonic Systems Inc. Optical distortion reduction in projection systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4103989A (en) * 1977-02-07 1978-08-01 Seymour Rosin Unit-power concentric optical systems
JPH112761A (ja) * 1997-04-15 1999-01-06 Nikon Corp 投影光学系およびそれを備えた露光装置

Also Published As

Publication number Publication date
WO2009005065A1 (ja) 2009-01-08
JP2009014847A (ja) 2009-01-22
TW200912556A (en) 2009-03-16

Similar Documents

Publication Publication Date Title
KR100876153B1 (ko) 비구면 요소를 갖는 투영 노출 렌즈 시스템
EP0736789B1 (en) Catadioptric optical system and exposure apparatus having the same
US7301707B2 (en) Projection optical system and method
JPH08179204A (ja) 投影光学系及び投影露光装置
JPH08211294A (ja) 投影露光装置
WO2007140663A1 (en) Large-field unit-magnification projection optical system
JPH07140384A (ja) 投影光学系及び投影露光装置
JP6393906B2 (ja) 投写光学系および画像投写装置
JP5105743B2 (ja) 浸漬リソグラフィー用屈折性投影対物レンズ
JP2001343589A (ja) 投影光学系、および該投影光学系による投影露光装置、デバイス製造方法
JP2005301074A (ja) 投影光学系
JP2004258218A (ja) 斜め投影光学系
JPH1184248A (ja) 反射屈折縮小光学系
JPWO2007086220A1 (ja) 反射屈折結像光学系、露光装置、およびデバイスの製造方法
WO2007111104A1 (ja) 投影光学系、露光装置、およびデバイス製造方法
JP7029564B2 (ja) カタディオプトリック光学系、照明光学系、露光装置および物品製造方法
JPH08255746A (ja) 露光装置
JP2000352668A (ja) 広角反射光学系
JP5094240B2 (ja) 投影光学系
JP2006284564A (ja) 光電式エンコーダ
JP4957548B2 (ja) 投影光学系、および露光装置
JPH10308344A (ja) 反射屈折投影光学系
JP2005512151A (ja) カタジオプトリック縮小対物レンズ
JP4547714B2 (ja) 投影光学系、露光装置、および露光方法
WO2005062101A1 (ja) 投影光学系および該投影光学系を備えた露光装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Ref document number: 5094240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250