JP5093661B2 - 生体関連物質センシングのための基板及びこれを用いたタンパク、金属イオン等の回収方法もしくは検出方法 - Google Patents

生体関連物質センシングのための基板及びこれを用いたタンパク、金属イオン等の回収方法もしくは検出方法 Download PDF

Info

Publication number
JP5093661B2
JP5093661B2 JP2007315341A JP2007315341A JP5093661B2 JP 5093661 B2 JP5093661 B2 JP 5093661B2 JP 2007315341 A JP2007315341 A JP 2007315341A JP 2007315341 A JP2007315341 A JP 2007315341A JP 5093661 B2 JP5093661 B2 JP 5093661B2
Authority
JP
Japan
Prior art keywords
substrate
dna
complementary
sensing
nucleobase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007315341A
Other languages
English (en)
Other versions
JP2009139203A (ja
Inventor
恵美子 小山
英雄 徳久
佳広 吉川
享子 藤原
雅敏 金里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007315341A priority Critical patent/JP5093661B2/ja
Publication of JP2009139203A publication Critical patent/JP2009139203A/ja
Application granted granted Critical
Publication of JP5093661B2 publication Critical patent/JP5093661B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は、核酸塩基モノマーを基板表面上に二次元的に固定化し、DNAやタンパク質などをターゲットとして検出する簡便なセンサー素子に用いることができる生体関連物質センシングのための基板に関し、より具体的には、アデニン、ウラシル、シトシン、グアニンモノマーを各々金基板に固定化できるように修飾した4種類の核酸塩基チオールを自己組織化単分子膜(SAM)として二次元基板表面上に集積化してDNA擬似構造を構築し、基板表面と相補的結合部位およびターゲット認識部位を部分構造として併せ持つ機能性DNAを核酸塩基集積化基板上に結合させることによって、相補的DNAやタンパクなどの生体関連物質センシングのための基板を作製するものに関する。
従来の技術では、生体の検体試料の微量化・ハイスループット化などの観点から、基板上に分子認識素子を微小化・集積化したセンサーの開発が注目されている。中でも、相補鎖DNAの高親和性で特異的な認識能を利用したDNAセンサーに関する研究は代表的である。センサー素子となるDNAの基板への固定化は、主に、接着部位(図1〜3の●)を合成化学的に導入した修飾DNAを用いた、基板−分子の自己組織化による配列制御を利用している(図1参照)。基板上へのDNA固定化法やDNAの認識効率の改善、検出手法の探索が、現在でも盛んに行われている研究分野である(非特許文献1参照)。
また、図2に示すように、一本鎖DNAが形成する立体構造によって、まるで抗体のように様々なタンパク質や金属イオン、低分子有機化合物などの小分子までを、特異的かつ高親和性で認識する能力を持つアプタマーと呼ばれる機能性DNAに関する研究が行われている(非特許文献2参照)。アプタマーは、その安定性などから抗体と比較して利点が多く、バイオ・環境ホルモン検査薬、臨床診断チップ、医薬品などへの応用が有望視されている。
このように、基板に固定化した機能性DNAは利用価値が高く今後発展が期待される系であるが、これまでDNAライブラリから得られた機能性DNAは、基板に固定化するための接着部位を合成化学的に修飾する必要があり、効率的なデバイス構築において一つの課題となっている。また、ターゲットの疎水性表面基板上への非特異吸着や、認識サイトの立体障害による認識効率の低下などの問題も解決すべき重要な課題となっている。そこで、本申請者は、センサーとなるDNAに直接合成化学的に接着部位を修飾するのではなく、DNAのモノマーである核酸塩基を修飾して二次元基板上に固定化・集積化することで、大量に作製可能で、かつセンサーとなるDNAを簡単に固定化でき、上記の問題も同時に克服できる生体関連物質センシング基板を開発することを目的とした。
基板固定化機能性DNAセンサーを構築するためにこれまでに行われてきた主たる手順の概略は、(1)DNAライブラリからの機能性DNAの抽出、(2)機能性DNAに対する基板接着部位の合成化学的導入、(3)基板への固定化、(4)デバイスとしての性能評価、の4つの過程で考えられる。DNAに関して、相補的なDNAの認識は古くより知られているが、他のターゲットに関しても1990年にアプタマーの概念が発表されてから、バイオエンジニアリング分野において機能性DNAの取得に関する研究が確立されてきている。(4)に関しては、主に相補鎖DNAの認識について研究されてきたが、最近では血液凝固作用のあるトロンビンと呼ばれるタンパク質をターゲットとするDNAアプタマーを基板上に固定化したセンサーに関する研究もいくつか報告されるようになってきた。機能性DNAセンサーの重要性を考えると、今後多くの関連した研究が行われると予想される。ここで、デバイス化のためには「基板への固定化」に関する(2)および(3)も重要な過程となる。現在、(3)に関して、ターゲットの疎水性表面基板上への非特異吸着や、認識部位の立体障害による認識効率の低下などの問題を解決すべく、親水性表面の形成や認識部位周りの空間確保について研究が進められている。一方、(2)については、接着部位の合成化学的手法に委ねられており、より簡便な手法の開発が必要であると考えられる。
F. Zhouら, Langmuir, 17, 7637, 2001. W. Plaxco etal., J. Am. Chem. Soc., 127, 17990, 2005.
そこで、本発明は、基板上に核酸塩基モノマーを二次元的に集積化することにより、表面上で擬似的なDNA構造を作製し、簡便に構築できるセンサー素子を開発し、多方面に有効利用できる相補的DNAやタンパクなどの生体関連物質センシングのための基板を提供すべく、種々のターゲットに対して高親和性かつ特異的な認識能を発現するセンサー素子として期待されているDNAやDNAアプタマーなどの機能性DNAの基板への固定化に際して、センサー素子となるDNAを直接合成化学的に修飾することなく、分子認識サイトを有する機能性DNAを簡便な操作で集積化し、生体関連物質センシングのための基板及びこれを用いたDNA鎖の回収方法を提供する。
上記目的を達成するために本発明は、核酸塩基モノマーを、自己組織化単分子膜(SAM)として二次元基板表面上に集積化することにより、機能性DNAを強固に固定することができることに着目した。
すなわち、本発明は、基板上に、アデニン、ウラシル、シトシン、グアニンから選ばれる核酸塩基モノマーの1種あるいは複数種を基板に固定化できるように修飾した核酸塩基モノマーを、自己組織化単分子膜(SAM)として二次元基板表面上に集積化した生体関連物質センシングのための基板である。
また、本発明においては、基板の表面が金であり、修飾分子をチオールとすることができる。
さらに本発明では、修飾分子がスペーサ分子を介して核酸塩基モノマーと結合させることができる。
また、本発明は、核酸塩基モノマーがアデニン、ウラシル、シトシン、グアニンから選ばれる1種もしくは複数種を吸着させた基板を、アデニン、ウラシル、シトシン、グアニンから選ばれる1種もしくは複数種から構成される相補鎖DNAの溶液に浸漬し、相補鎖DNAを表面に集積した生体関連物質センシングのための基板である。
さらに本発明は、相補鎖DNAを表面に集積した生体関連物質センシングのための基板を、アデニン、ウラシル、シトシン、グアニンから選ばれる1種もしくは複数種を部分構造に持ち、さらにタンパクを認識できるDNAアプタマー構造を部分構造として併せ持つであるポリペプチド溶液に浸漬し、相補鎖DNAを表面に集積した生体関連物質センシングのための基板である。
また本発明は、これらの生体関連物質センシングのための基板を用いて、未知のDNA鎖を含む溶液に浸漬し、未知のDNA鎖を含む溶液中から特定のDNA鎖を取り出す操作を繰り返すことによる特定のDNA鎖の回収方法である。
核酸塩基モノマーを、自己組織化単分子膜(SAM)として二次元基板表面上に集積化することにより、機能性DNAを強固に固定することができるため、機能性DNAデバイスに関する研究が促進され、将来有望視されているバイオ・環境ホルモン検査薬、臨床診断チップ、医薬品などへの応用に貢献できることに意義がある。これらの生体関連物質センシングのための基板を用いて、特定のDNA鎖を回収することができる。
本発明は、種々のターゲットに対して高親和性かつ特異的な認識能を発現するセンサー素子として期待されているDNAやDNAアプタマーなどの機能性DNAの基板への固定化に際して、センサー素子となるDNAを直接合成化学的に修飾することなく、分子認識サイトを有する機能性DNAを簡便な操作で集積化するための基板を開発するものである。
基板表面上に核酸塩基モノマーを自己組織化単分子膜(SAM)として集積化することによって、相補的なDNAを認識すると期待できる。数多くの機能性DNAライブラリの中から、基板表面上に集積化された核酸塩基と相補的なシーケンスと、分子認識を行うシーケンスを併せ持つDNAを抽出するのと同時に基板上に結合することで、ワンステップでのDNAデバイス作製が可能となるばかりでなく、基板に固定化した機能性DNAは、認識サイト周囲の空間確保でき、ターゲットの認識を阻害しにくい環境を提供できる。本手法を用いれば、シーケンスが異なる機能性DNAが得られるたびに合成化学的な修飾を施す必要がなく、あらかじめ4種類の核酸塩基チオール誘導体を用意しておくことで、あらゆるタイプの機能性DNAの固定化が可能となることが期待できる。
DNA鎖中の糖鎖結合位置に、核酸塩基にスペーサーを介してチオール基を導入した新規核酸塩基誘導体を合成し、目的とする基板開発のためのモノマーとする。基板表面上に核酸塩基誘導体を集積化し、相補的なDNAに対して選択的な認識能を有することを明らかにする。さらに、センサー素子となる、基板上に集積化した核酸塩基と相互作用する結合部位と、相補鎖DNAやタンパク質認識部位を併せ持つ機能性DNAが、基板に固定化され、ターゲット認識能を発現することを明らかにする。
本発明について実施例を用いてさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
(1.核酸塩基モノマーの合成)
DNA中で核酸塩基が糖鎖と結合している位置に置換スペーサー(R)を介して基板結合部位(R’)を導入する。図4に基板に固定化・集積化する核酸塩基誘導体の例を示す。
(U-1 (R = xylylene, R’= SAc)の合成)
<スキーム1>
Figure 0005093661
1-1-1. α-ブロモ-α’-アセチルチオキシレン
α, α’-ジブロモキシレン(7.89 g, 0.03 mol)をTHF溶液(100 mL)に溶解し、系内を窒素置換した。そこに、アセチルチオ酢酸カリウム(1.14 g, 0.01 mol)を加えて室温下、一晩撹拌した。反応後、溶媒を減圧留去し、残渣をクロロホルムに溶解して不溶物をろ別し、ろ液をゲルパーミエーションクロマトグラフィ(GPC)によって精製し、目的物を得た。
収率85%
1H NMR (CDCl3): δ= 2.35(s, 3H, -C(=O)CH 3), 4.10(s, 2H, -CH 2-S), 4.46(s, 2H, -CH 2-Br), 7.26(d, 2H, J = 8.2, Ph), 7.32(d, J = 8.1, Ph).

1-1-2. U-1
ウラシル(0.39 g, 3.5 mmol)を脱水DMF(50mL)に溶解し、系内を窒素置換した。そこに、60%NaH(0.17 g, 0.42mmol)を加え、50度で一時間反応させた。その後、室温まで冷却し、α-ブロモ-α’-アセチルチオキシレン(1.00 g, 3.8 mmol)を加え、室温で5時間反応させた。反応後、溶媒を減圧留去し、残渣をクロロホルムに溶解して、GPCにより精製し、目的物を得た。
収率40%
1H NMR (CDCl3): δ= 2.35(s, 3H, -C(=O)CH 3), 4.10(s, 2H, -CH 2-S), 4.87(s, 2H, -CH 2-N), 5.68(d, 1H, J = 8.0, -CH=), 7.14(d, 1H, J = 7.9, -CH=), 7.22(d, 2H, d = 8.2, Ph), 7.31(d, 2H, J = 8.1, Ph).
(核酸塩基モノマーの基板上での集積化)
(U-1の集積化)
金膜を蒸着したガラス基板をUV/O3クリーナーにてクリーニングし、U-1(0.58 mg, 2x10-6 mmol)のエタノール溶液(1x10-4M, 20 mL)中に浸漬した。その後、エタノールで洗浄し、窒素を噴きつけて乾燥させ基板U-1-Auを得た。X線光電子分光装置(XPS) により、C1s, N1s, S2pに帰属されるスペクトルが観察された。特に2pSに関して、161.7 eV, 163.0 eVに金-チオール(4f)結合特有の結合エネルギーが観察された。そこで、これらのスペクトルの強度の浸漬時間による依存性を調べたところ、およそ36時間でU-1の吸着量が飽和したので、測定には36時間浸漬した基板を用いた。
さらにこの基板について表面赤外フーリエスペクトル(FTIR-RAS)により表面解析を行ったところ、チオールの保護基であるアセチル基に由来するスペクトルが消失し、ウラシル骨格のカルボニル基に由来するスペクトルがxxcm-1に出現していることから、U-1が金表面上に固定化されたことを確認した(図5参照)。
(相補的DNAの選択的認識能)
(U-1-AuのDNA認識能)
核酸塩基チオールU-1を集積化した基板U-1-Auを用いて、表面プラズモン共鳴装置(SPR)によって、単一モノマー成分からなる各DNAのPBS buffer溶液(5x10-5 M)を240秒間流し、その後Bufferのみを流して基板への吸脱着を観察した。
(核酸塩基集積化基板上におけるDNA交互積層構造の形成)
(U-1-Auの基板上における交互積層構造の形成)
核酸塩基チオールU-1を集積化した基板U-1-Auを用いて、表面プラズモン共鳴装置(SPR)によって、アデニン成分からなるDNA(pA)のPBS buffer溶液(5x10-5 M)を240秒間流し、その後Bufferのみを流し、さらにウラシル成分からなるDNA(pU)のPBS buffer溶液(5x10-5 M)を240秒間流し、その後Bufferのみを流す操作を繰り返して、基板最表面に吸着した単一成分DNAに対する相補的な単一成分DNA基板の吸脱着を観察した。
(結果)
(核酸塩基モノマー基板におけるDNAの認識)
(U-1-Au のDNA認識能)
SPRにより、基板上に集積化したウラシルチオール誘導体(U-1-Au)のDNA認識を検討した。用いたDNAは、各々単一の核酸塩基成分から構成されているポリアデニン(pA)、ポリウラシル(pU)、ポリシトシン(pC)、ポリグアニン(pG)の4種類である。図7の横軸の時間はDNA-Buffer溶液が基板を設置したフローセルに到達した時間を0とし、その240秒後にBuffer溶液のみに切り替えた(図中の点線)。
図7に示したように、基板U-1-Auに対して、相補的なpAをサンプル溶液として流したとき、Δθは他の3種類のDNAを流したときよりも非常に大きかった。また、Bufferのみに切り替えた後もpAのΔθはほとんど減少していないことから、基板U-1-Auは、4種類のDNAのうち、選択的にpAを認識し、吸着したことがわかった。また、pUおよびpGについては、流路に流す溶液をBufferのみに切り替えたところ、わずかな脱離が観察された。
(核酸塩基集積化基板上におけるDNA交互積層構造の形成)
(U-1-Auの基板への交互積層構造の形成)
基板上に集積化したウラシルチオール誘導体(U-1-Au)基板上での相補鎖DNAの交互吸着をSPRにより検討した。図9について、横軸はサンプル溶液およびバッファ溶液を流した時間を示しており、縦軸は表面プラズモン共鳴角の変化量を示している。なお、表面プラズモン共鳴角の変化量は基板への物質吸着量に相関している。また、両矢印で示した点線間にDNA溶液をフローした。両矢印で示していない時間はバッファ溶液のみをフローした。
初期の基板表面上ではウラシルが集積化されている状態である。そこに、pAの溶液をフローしたとき、先の結果と同様にΔθは大きく変化し、pAが吸着したことが確認された。しばらくバッファのみをフローした後、pUの溶液をフローすると、先の変化量よりも小さいもののΔθが増加してpUが吸着することがわかった。同様にpA, pU溶液を交互にフローすると、Δθの変化量は小さくなっていくものの、順々に、それぞれの単一成分DNAが吸着されていくことがわかった。
つまり、U-1-Au基板を用いた場合、図10に示すように、pAおよびpUを交互に積層することができ、この基板とそれぞれのDNA溶液を用意し、交互に浸漬すれば、必要に応じてpAもしくはpUを最表面に持たせることができると考えられる。
(A-1 (R = xylylene, R’= SAc)の合成)
<スキーム2>
Figure 0005093661
(1-2-1. A-1)
アデニン(0.39 g, 2.9 mmol)を脱水DMF(50mL)に溶解し、系内を窒素置換した。そこに、60%NaH(85 mg, 0.21mmol)を加え、50度で一時間反応させた。その後、室温まで冷却し、α-ブロモ-α’-アセチルチオキシレン(0.50 g, 1.9 mmol)を加え、室温で5時間反応させた。反応後、溶媒を減圧留去し、残渣をクロロホルムに溶解して、GPCにより精製し、目的物を得た。
収率55%
1H NMR (CDCl3): δ= 2.34(s, 3H, -C(=O)CH 3), 4.08(s, 2H, -CH 2-S), 5.34(s, 2H, -CH 2-N), 5.59(bs, 2H, -NH2), 7.22(d, 2H, J = 8.1, Ph), 7.27(d, 2H, J = 7.9, Ph), 7.76(s, 1H,-N-CH=N-), 8.40(s, 1H, -N-CH=N-).
(核酸塩基モノマーの基板上での集積化)
(2-2. A-1の集積化)
金膜を蒸着したガラス基板をUV/O3クリーナーにてクリーニングし、A-1(0.63 mg, 2x10-6 mmol)のエタノール溶液(1x10-4M, 20 mL)中に36時間浸漬した。その後、エタノールで洗浄し、窒素を噴きつけて乾燥させ基板A-1-Auを得た。得られた基板についてX線光電子分光装置(XPS)により、C1s, N1s, S2pに帰属されるスペクトルが観察された。特に2pSに関して、161.9 eV, 163.2 eVに金-チオール(4f)結合特有の結合エネルギーが観察された。
さらにこの基板について表面赤外フーリエスペクトル(FTIR-RAS)により表面解析を行ったところ、チオールの保護基であるアセチル基に由来するスペクトルが消失し、ウラシル骨格のカルボニル基に由来するスペクトルがxxcm-1に出現していることから、A-1が金表面上に固定化されたことを確認した(図5参照)。
(相補的DNAの選択的認識能)
(A-1-AuのDNA認識能)
核酸塩基チオールA-1を集積化した基板A-1-Auを用いて、表面プラズモン共鳴装置(SPR)によって、単一モノマー成分からなる各DNAのPBS buffer溶液(5x10-5 M)を240秒間流し、その後Bufferのみを流して基板への吸脱着を観察した。
(核酸塩基集積化基板上におけるDNA交互積層構造の形成)
(A-1-Auの基板上における交互積層構造の形成)
核酸塩基チオールA-1を集積化した基板A-1-Auを用いて、表面プラズモン共鳴装置(SPR)によって、アデニン成分からなるDNA(pU)のPBS buffer溶液(5x10-5 M)を240秒間流し、その後Bufferのみを流し、さらにウラシル成分からなるDNA(pA)のPBS buffer溶液(5x10-5 M)を240秒間流し、その後Bufferのみを流す操作を繰り返して、基板最表面に吸着した単一成分DNAに対する相補的な単一成分DNA基板の吸脱着を観察した。
(結果)
(核酸塩基モノマー基板におけるDNAの認識)
(A-1-AuのDNA認識能)
U-1-Au の場合と同様に、SPRにより、基板上に集積化したアデニンチオール誘導体(A-1-Au)に対するDNA(pA, pU, pC, pG)の認識を検討した。図8の横軸の時間はDNA-Buffer溶液が基板を設置したフローセルに到達した時間を0とし、その240秒後にBuffer溶液のみに切り替えた(図中の点線)。
図8に示したように、基板A-1-Auに対して、相補的なpUをサンプル溶液として流したとき、Δθは他の3種類のDNAをフローしたときよりも非常に大きかった。また、Bufferのみに切り替えた後もpUのΔθは減少していないことから、基板A-1-Auは、4種類のDNAのうち、pU > pA > pG > pCの順に吸着し、相補的なDNAが最も吸着することがわかった。また、pAおよびpGについては、系に流す溶液をBufferのみに切り替えたところ、徐々に脱離が観察されたが、pUについてはほとんど脱離がなく、強固に吸着したと考えられる。
(核酸塩基集積化基板上におけるDNA交互積層構造の形成)
(A-1-Auの基板への交互積層構造の形成)
基板上に集積化したアデニンチオール誘導体(A-1-Au)基板上での相補鎖DNAの交互吸着をSPRにより検討した。図11について、上と同じように、横軸はサンプル溶液およびバッファ溶液のフロー時間を示しており、縦軸は表面プラズモン共鳴角の変化量を示している。
初期の基板表面上ではアデニンが集積化されている状態である。そこに、pUの溶液をフローしたとき、先の結果と同様にΔθは大きく変化し、pUが吸着したことが確認された。しばらくバッファのみをフローした後、pAの溶液をフローすると、先の変化量よりも小さいもののΔθが増加してpAが吸着することがわかった。同様にしてpU, pA溶液を交互にフローすると、Δθの変化量は小さくなっていくものの、順々に、それぞれの単一成分DNAが吸着されていくことがわかった。
つまり、U-1-Au基板と同様に、A-1-Au基板を用いた場合でも、図12に示すように、pUおよびpAを交互に積層することができ、この基板とそれぞれのDNA溶液を用意し、交互に浸漬すれば、必要に応じてpUもしくはpAを最表面に持たせることができると考えられる。
本発明の自己組織化単分子膜(SAM)として二次元基板表面上に集積化した生体関連物質センシングのための基板は、製造が簡単な上、機能性DNAデバイスに関する研究に適しており、バイオ・環境ホルモン検査薬、臨床診断チップ、医薬品などへの応用に貢献できるため、産業上の利用可能性が高いものである。
従来のDNAセンシングのモデル図 従来のDNAアプタマーを用いたタンパクの認識のモデル図 本発明のセンシングの概略図 基板に固定化・集積化する核酸塩基誘導体の化学構造図 ウラシル集積化基板のモデル図 アデニン集積化基板のモデル図 U-1-Au のDNA認識能の実験結果図 A-1-Au のDNA認識能の実験結果図 U-1-Au基板上での相補鎖DNAの交互吸着のモデル図 pA及びPuの交互積層のモデル図 A-1-Au基板上での相補鎖DNAの交互吸着のモデル図 pUおよびpAの交互積層のモデル図

Claims (6)

  1. 基板に固定化できるように修飾した、アデニン、ウラシル、シトシン、グアニンから選ばれる核酸塩基モノマーの一種を自己組織化単分子膜(SAM)として二次元基板表面上に集積化した基板を、該基板表面上に集積された核酸塩基に対して相補的なDNA鎖を持つDNAの溶液に浸漬し、基板に対して相補的なDNAを表面に集積したことを特徴とする生体関連物質センシングのための基板。
  2. 基板に固定化できるように修飾した、アデニン、ウラシル、シトシン、グアニンから選ばれる核酸塩基モノマーの一種を自己組織化単分子膜(SAM)として二次元基板表面上に集積化した基板を、該基板表面上に集積された核酸塩基に対して相補的なDNA鎖と溶液中のDNAをセンシングするための相補的なDNA鎖とを併せ持つ機能性DNAの溶液に浸漬し、基板に対して該機能性DNAを表面に集積したことを特徴とする生体関連物質センシングのための基板。
  3. 基板に固定化できるように修飾した、アデニン、ウラシル、シトシン、グアニンから選ばれる核酸塩基モノマーの一種を自己組織化単分子膜(SAM)として二次元基板表面上に集積化した基板を、該基板表面上に集積された核酸塩基に対して相補的なDNA鎖を持つDNAの溶液と、該相補的なDNA鎖に対して相補的なDNA鎖を持つDNAの溶液とに交互に浸漬し、基板に対して相補的なDNA及び該DNAに対して相補的なDNAとを表面に交互に積層したことを特徴とする生体関連物質センシングのための基板。
  4. 請求項1又は請求項3に記載の生体関連物質センシングのための基板を、さらに該基板表面上に集積されたDNAに対して相補的なDNA鎖と溶液中のDNAをセンシングするための相補的なDNA鎖とを併せ持つ機能性DNAの溶液に浸漬し、該機能性DNAを表面に集積したことを特徴とする生体関連物質センシングのための基板。
  5. 基板の表面が金であり、修飾分子がチオールであることを特徴とする請求項1〜のいずれか1項に記載の生体関連物質センシングのための基板。
  6. 修飾分子がスペーサ分子を介して核酸塩基モノマーと結合していることを特徴とする請求項1〜のいずれか1項に記載の生体関連物質センシングのための基板。
JP2007315341A 2007-12-06 2007-12-06 生体関連物質センシングのための基板及びこれを用いたタンパク、金属イオン等の回収方法もしくは検出方法 Expired - Fee Related JP5093661B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007315341A JP5093661B2 (ja) 2007-12-06 2007-12-06 生体関連物質センシングのための基板及びこれを用いたタンパク、金属イオン等の回収方法もしくは検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007315341A JP5093661B2 (ja) 2007-12-06 2007-12-06 生体関連物質センシングのための基板及びこれを用いたタンパク、金属イオン等の回収方法もしくは検出方法

Publications (2)

Publication Number Publication Date
JP2009139203A JP2009139203A (ja) 2009-06-25
JP5093661B2 true JP5093661B2 (ja) 2012-12-12

Family

ID=40869958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007315341A Expired - Fee Related JP5093661B2 (ja) 2007-12-06 2007-12-06 生体関連物質センシングのための基板及びこれを用いたタンパク、金属イオン等の回収方法もしくは検出方法

Country Status (1)

Country Link
JP (1) JP5093661B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101945757B1 (ko) * 2017-03-07 2019-04-17 연세대학교 원주산학협력단 유전영동기술을 이용한 금속이온 검출방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4193039B2 (ja) * 2003-01-15 2008-12-10 東洋紡績株式会社 二本鎖オリゴヌクレオチドアレイ
JP4706074B2 (ja) * 2005-03-29 2011-06-22 独立行政法人物質・材料研究機構 生体分子固定化用の三脚型機能性界面分子とこれを用いた遺伝子検出デバイス
JP5111382B2 (ja) * 2005-10-13 2013-01-09 バイオメトリックス テクノロジー インコーポレイテッド 新規なイミンカリックスアレーン誘導体とアミノカリックスアレーン誘導体、その製造方法及び該製造方法によって製造された自己組織化単分子層、該自己組織化単分子層を利用したオリゴ遺伝子の固定化方法及びこれによって製造されたオリゴ遺伝子チップ
GB0718255D0 (en) * 2007-09-19 2007-10-31 Univ Edinburgh Nucleobase characterisation

Also Published As

Publication number Publication date
JP2009139203A (ja) 2009-06-25

Similar Documents

Publication Publication Date Title
Bi et al. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate
Vasapollo et al. Molecularly imprinted polymers: present and future prospective
Khumsap et al. Epitope-imprinted polymers: applications in protein recognition and separation
Brittain et al. The surface science of microarray generation–a critical inventory
JP5026070B2 (ja) ポリマー粒子
US20050112650A1 (en) Reactive polyurethane-based polymers
Niu et al. Surface-imprinted nanostructured layer-by-layer film for molecular recognition of theophylline derivatives
Akbulut et al. A molecularly imprinted whatman paper for clinical detection of propranolol
US10550494B2 (en) Method for assembly of analyte filter arrays using biomolecules
JP2009092651A (ja) 担体およびその製造方法
Mamipour et al. Molecularly imprinted polymer grafted on paper and flat sheet for selective sensing and diagnosis: a review
Ma et al. Synthesis of a pH-responsive functional covalent organic framework via facile and rapid one-step postsynthetic modification and its application in highly efficient N 1-methyladenosine extraction
EP1798250B1 (en) Molecules suitable for binding to a metal layer for covalently immobilizing biomolecules
JP4959327B2 (ja) ロタキサン化合物、ロタキサン化合物が結合した固体基板及びこれを利用したバイオチップ
Diltemiz et al. Molecularly imprinted ligand-exchange recognition assay of DNA by SPR system using guanosine and guanine recognition sites of DNA
JP5093661B2 (ja) 生体関連物質センシングのための基板及びこれを用いたタンパク、金属イオン等の回収方法もしくは検出方法
JP5703129B2 (ja) 固相化担体および固相化担体の製造方法
CN104931687A (zh) 一种三维生物表面及其制备方法和一种三维生物芯片及其用途
JP2009527755A (ja) 固体支持体上にグラフトされた多価マトリックスによる認識モチーフの提示
KR101251063B1 (ko) C-반응성 단백질 검출용 칩 및 이의 제조 방법
JP4300183B2 (ja) 官能基が導入されたポリアミド固相
KR101317321B1 (ko) 혈청 아밀로이드 p 요소 단백질의 분자각인 칩
JP2005534021A (ja) バイオチップの製造方法
Brimo et al. Molecular Imprinted Polymers for Mass Sensitive Sensors: Comparation of Performance Toward Immuno-Sensing Strategies
Hen et al. An off-the-shelf integrated microfluidic device comprising self-assembled monolayers for protein array experiments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees