JP5086599B2 - 水素含有ガスの製造方法 - Google Patents

水素含有ガスの製造方法 Download PDF

Info

Publication number
JP5086599B2
JP5086599B2 JP2006279021A JP2006279021A JP5086599B2 JP 5086599 B2 JP5086599 B2 JP 5086599B2 JP 2006279021 A JP2006279021 A JP 2006279021A JP 2006279021 A JP2006279021 A JP 2006279021A JP 5086599 B2 JP5086599 B2 JP 5086599B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
hydrogen
noble metal
containing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006279021A
Other languages
English (en)
Other versions
JP2007131519A (ja
Inventor
晋 高見
哲也 竹本
正孝 増田
昭雄 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2006279021A priority Critical patent/JP5086599B2/ja
Publication of JP2007131519A publication Critical patent/JP2007131519A/ja
Application granted granted Critical
Publication of JP5086599B2 publication Critical patent/JP5086599B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

本発明は、アルコール類及びエーテル類から選ばれる少なくとも1種の含酸素化合物を含有する燃料を、触媒を用いて改質することにより水素含有ガスを生成する水素含有ガスの製造方法に関する。
一般に、水素含有ガスを製造する方法として、天然ガス、メタノール等の炭化水素系燃料を、改質用の触媒に接触させて改質することにより水素含有ガスを生成することが知られている。そして、このような燃料改質技術は、例えば、燃料電池分野等に適用されている。
また、近年、前記燃料改質の分野においては、炭化水素系燃料の中でも、脱硫処理が不要であり、常温で液体であるか、もしくは常温付近で液化するため、貯蔵や運搬等の取扱いが容易であるとして、アルコール類及びエーテル類が注目されている。
このようなアルコール類及びエーテル類の改質反応としては、部分酸化反応と水蒸気改質反応とが知られている。
部分酸化反応は、下記化1及び化2に示す通りのものであり、発熱反応として進行するものである。このような部分酸化反応は、反応速度が速く、気体空間速度が大きくできる利点がある反面、水素濃度が低くなるという欠点がある。
[化1]
CnH2n+1OH + (n-0.5)O2 → (n+1)H2 + nCO2 (発熱反応)
[化2]
CmH2m+1OCnH2n+1 + (m+n-0.5)O2 → (m+n+1)H2 + (m+n)CO2 (発熱反応)
一方、水蒸気改質反応は、下記化3及び4に示す通りのものであり、吸熱反応として進行するものである。なお、エーテル類の水蒸気改質反応においては、化4に一段階の反応として示しているが、実際には加水分解反応によってアルコール類を生成した後、アルコール類が水蒸気改質されて水素を生成するという二段階の反応が進行している。
このような水蒸気改質反応では、燃料のみならず水蒸気からも水素を生成するため、水素の製造効率が高くなり水素製造に有利である反面、吸熱反応のため外部からの加熱が別途必要になるという課題がある。
[化3]
CnH2n+1OH + (2n-1)H2O → 3nH2 + nCO2 (吸熱反応)
[化4]
CmH2m+1OCnH2n+1 + (2m+2n-1)H2O → (3m+3n)H2 + (m+n)CO2 (吸熱反応)
前記の部分酸化反応及び水蒸気改質反応の課題に対しては、部分酸化反応と水蒸気改質反応とを組合せて、吸熱反応である水蒸気改質反応に必要な熱量を部分酸化反応の発熱を利用して供給するオートサーマル改質が提案されている。
この種の技術としては、銅、亜鉛、アルミニウムを含有する前駆体混合物と活性アルミナを混合して調製した触媒を用いて、ジメチルエーテルを改質すること(例えば、特許文献1参照)や、改質触媒を2段で構成し、前段に少なくとも白金またはロジウムを含有する改質触媒、後段に少なくともルテニウムまたはロジウムを含有する改質触媒を設置し、
前段で部分酸化反応、後段で水蒸気改質反応を行うこと(例えば、特許文献2参照)が開示されている。
特開2003−38957公報(第2−7頁) 特開2002−121007号公報(特許請求の範囲)
しかし、前記従来の銅、亜鉛、アルミニウムを含有する前駆体混合物と活性アルミナを混合して調製した触媒を用いて、部分酸化反応及び水蒸気改質反応によりジメチルエーテルを改質する技術では、使用する銅系の触媒は耐熱性が低いため、部分酸化反応の発熱による熱劣化が大きくなり、触媒の寿命が短くなるという問題がある。
また、改質触媒を2段で構成し、前段に少なくとも白金またはロジウムを含有する改質触媒、後段に少なくともルテニウムまたはロジウムを含有する改質触媒を設置し、前段で部分酸化反応、後段で水蒸気改質反応を行う技術にあっては、使用する貴金属系の触媒は耐熱性が高く、部分酸化反応の発熱によっても熱劣化し難いという利点はあるものの、下記化5及び6に示す副反応を起こし易いため、メタンの生成量が多くなり、生成する水素含有ガスの水素濃度が低くなるという問題がある。
[化5]
CO2 + H2 → CO + H2O
[化6]
CO + 3H2 → CH4 + H2O
本発明は上記の問題に鑑みて案出されたものであり、アルコール類及びエーテル類から選ばれる少なくとも1種の含酸素化合物を含有する燃料を、触媒を用いて部分酸化反応と水蒸気改質反応との組合せにより改質し、水素含有ガスを生成する水素含有ガスの製造方法において、触媒の熱劣化を防止し、高い改質効率を保ちながら、長期に亘って水素濃度の高い水素含有ガスを生成することができる水素含有ガスの製造方法を提供することを目的とするものである。
上記目的を達成するための本発明に係る水素含有ガスの製造方法の第1特徴手段は、アルコール類及びエーテル類から選ばれる少なくとも1種の含酸素化合物を含有する燃料を、触媒を用いて改質することにより水素含有ガスを生成する水素含有ガスの製造方法において、前記燃料及び酸素を含む流体を、第一反応領域に供給し、貴金属を含有する触媒に接触させて、部分酸化反応により前記燃料を改質する第一改質工程と、当該第一改質工程の後、前記燃料及び水蒸気を含む流体を、第二反応領域に供給し、銅を含有する触媒に接触させて、水蒸気改質反応により前記燃料を改質する第二改質工程と、を備え、前記貴金属を含有する触媒は、熱処理、被毒処理、被覆処理のうち少なくとも1つの処理を施すことにより、メタン化活性を低下させた点にある。
つまり、この手段によれば、アルコール類及びエーテル類から選ばれる少なくとも1種の含酸素化合物を含有する燃料を改質して水素含有ガスを生成する場合に、燃料と酸素とを含有する流体を、第一反応領域に供給し、貴金属を含有する触媒に接触させて、部分酸化反応を起こさせ、燃料の少なくとも一部を水素含有ガスに改質し、この後、残存する前記燃料と水蒸気とを含有する流体を、第二反応領域に供給し、部分酸化反応により発生した熱を利用して、銅を含有する触媒に接触させ、水蒸気改質反応を起こさせて、前記燃料を水素含有ガスに改質する。
すなわち、本発明者らは、部分酸化反応が速く進行する反応であることに着目し、第一反応領域に耐熱性の高い触媒として貴金属を含有する触媒を配置し、第二反応領域に耐熱性は低いが水蒸気改質反応の技術が確立している触媒として銅を含有する触媒を配置することにより、触媒の熱劣化を防止しつつ、メタンの生成量を抑えることができることを見出した。
したがって、本発明に係る水素含有ガスの製造方法によれば、触媒の熱劣化を防止し、高い改質効率を保ちながら、長期に亘って水素濃度の高い水素含有ガスを製造することが可能となる。
また、前記貴金属を含有する触媒が、メタン化活性を低下させたものであるので、第一反応領域におけるメタンの生成量をより抑えることができるため、生成する水素含有ガス中の水素濃度を高くすることができる。
ここで、前記貴金属を含有する触媒は、熱処理、被毒処理、被覆処理のうち少なくとも1つの処理を施すことにより、前記メタン化活性を低下させたものであるから、このような処理を施した触媒を使用することにより、第一反応領域におけるメタンの生成量を抑えて、生成する水素含有ガス中の水素濃度を高くすることができる。
本発明に係る水素含有ガスの製造方法の第2特徴手段は、前記貴金属が、ルテニウム、白金、ロジウム、パラジウムからなる群から選ばれる少なくとも1種の金属である点にある。
つまり、この手段によれば、第一反応領域には、ルテニウム、白金、ロジウム、パラジウムからなる群から選ばれる少なくとも1種の貴金属を含有する触媒が備えられる。したがって、第一反応領域における改質性能を高くすることができる。
本発明に係る水素含有ガスの製造方法の第3特徴手段は、前記貴金属を含有する触媒は、無機酸化物に前記貴金属を担持した触媒であって、前記無機酸化物が、アルミナ、シリカ、マグネシア、チタニア、カルシア、ジルコニアからなる群から選ばれる少なくとも1種の化合物である点にある。
つまり、この手段によれば、第一反応領域には、アルミナ、シリカ、マグネシア、チタニア、カルシア、ジルコニアからなる群から選ばれる少なくとも1種の無機酸化物に貴金属を担持した触媒が備えられる。したがって、第一反応領域における改質性能を高くすることができる。
本発明に係る水素含有ガスの製造方法の第4特徴手段は、前記銅を含有する触媒が、固体酸を含有する点にある。
つまり、この手段によれば、第二反応領域には、固体酸を含有する触媒が備えられる。したがって、第二反応領域における改質性能を高くすることができる。
本発明に係る水素含有ガスの製造方法の第5特徴手段は、前記第一反応領域において、温度が部分酸化反応の進行に伴って上昇してピークに到達し、前記第二反応領域の温度は、前記第一反応領域の出口温度と同等もしくはそれより低い点にある。
つまり、この手段によれば、第一反応領域において、温度のピークを有し、第二反応領域の温度が第一反応領域の出口温度と同等もしくはそれより低くなるため、第一反応領域で部分酸化反応の大部分が完了する。したがって、第二反応領域において、銅を含有する触媒が高温に晒され難くなり、銅を含有する触媒の熱劣化を防止することができる。
本発明に係る水素含有ガスの製造方法の第6特徴手段は、前記第一反応領域において、部分酸化反応が完了する点にある。
つまり、この手段によれば、第一反応領域において部分酸化反応が完了し、第二反応領域では水蒸気改質反応が進行するため、銅を含有する触媒の熱劣化をより防止することができる。
本発明に係る水素含有ガスの製造方法は、アルコール類及びエーテル類から選ばれる少なくとも1種の含酸素化合物を含有する燃料を、触媒を用いて改質することにより水素含有ガスを生成する水素含有ガスの製造方法において、前記燃料及び酸素を含む流体を、第一反応領域に供給し、貴金属を含有する触媒(以下、「貴金属系触媒」と称する)に接触させて、部分酸化反応により前記燃料を改質する第一改質工程と、当該第一改質工程の後、前記燃料及び水蒸気を含む流体を、第二反応領域に供給し、銅を含有する触媒(以下、「銅系触媒」と称する)に接触させて、水蒸気改質反応により前記燃料を改質する第二改質工程と、を備える。すなわち、部分酸化反応が速く進行することに着目し、第一反応領域に耐熱性の高い貴金属系触媒を配置して部分酸化反応を起こさせ、第二反応領域には、耐熱性は低いものの水蒸気改質反応の技術が確立している銅系触媒を配置することにより、触媒の熱劣化を防止し、高い改質効率を保ちながら、長期に亘って水素濃度の高い水素含有ガスを製造することができる。
なお、本発明に係る水素含有ガスの製造方法は、上記の通りアルコール類及びエーテル類から選ばれる少なくとも1種の含酸素化合物を含有する燃料を改質することを対象としており、アルコール類及びエーテル類としては特に制限はないが、例えば、アルコール類としては、メタノール、エタノール等、エーテル類としては、ジメチルエーテル等を挙げることができる。中でもジエチルエーテルの場合は、比較的低温で改質することができるため、より好ましく適用することができる。
また、第一反応領域に供給する酸素は、本発明においては、特に制限はなく、空気、純酸素ガス、酸素富化ガス等からのものを適用することができる。
以下、本発明に係る水素含有ガスの製造方法の一実施形態について、図面を参照して説明する。
図1は水素含有ガス製造装置の反応器1の構成とその温度分布との一例を示すものである。第一改質工程を行う反応器1の前段部分の第一反応領域2に貴金属系触媒を充填し、第二改質工程を行う後段部分の第二反応領域3に銅系触媒を充填して、前記燃料と酸素と水蒸気とを含有する流体を反応器1に供給することにより、水素含有ガスを製造する。
第一反応領域2では、前記燃料の部分酸化反応が主に起こり、反応の進行に伴い、その反応熱により温度が上昇し、ピークに到達する。第二反応領域3では、第一反応領域2で起こった部分酸化反応の反応熱により、前記燃料の水蒸気改質反応が主に起こり、その吸熱反応の進行に伴って、温度は徐々に低下する。
このように、第一反応領域2において、部分酸化反応の大部分が完了し、第二反応領域3における温度が、第一反応領域2の出口温度と同等かそれより低くなることが好ましくこれにより、第二反応領域3に充填した銅系触媒は高温に曝され難くなり、銅系触媒の熱による劣化を防止することができる。このため、銅系触媒の熱劣化を防止するという観点からは、第二反応領域3の温度は、水蒸気改質反応が進行する温度の範囲内において低い方が好ましく、例えば、第一反応領域2の出口温度が銅系触媒の耐熱温度以下であることが好ましい。
一方、第一反応領域2において、前記燃料を含む流体と貴金属系触媒との接触時間が長くなると、生成した水素が二酸化炭素及び一酸化炭素と反応し、メタンを生成する。このため、メタンの生成量を抑えて、水素含有ガスの水素濃度を高くするという観点からは、貴金属系触媒が前記燃料を含む流体と接触する時間を短くすることが好ましい。
したがって、第一反応領域2に充填する貴金属系触媒の使用量は、触媒活性、供給する酸素量等を考慮して、第一反応領域2において部分酸化反応がほぼ完了すると共に、メタンの生成量が多くならないように設定することが好ましい。因みに、燃料電池に使用する場合には、メタンの量が多くなると効率が低下するため、水素含有ガス中のメタン濃度は2%以下であることが好ましく、1%以下であることがより好ましい。
また、第二反応領域3に充填する銅系触媒の使用量については、特に制限はなく、触媒活性、供給する水蒸気量、使用温度等から水蒸気改質反応が十分に完了するように設定すればよい。
本実施形態では、一つの反応器1に貴金属系触媒と銅系触媒とを充填する例を示したが、貴金属系触媒と銅系触媒とをそれぞれ別々の反応器に充填し、反応器同士を配管で接続することもできる。また、本実施形態では、燃料と酸素と水蒸気とを含有する流体を第一反応領域2に供給しているが、燃料と酸素とを含有する流体を第一反応領域2に供給し、水蒸気は別途、第二反応領域3に直接供給することもできる。
なお、第一反応領域2において、部分酸化反応による発熱を第二反応領域3において水蒸気改質反応に有効に利用するためには、本実施形態のように、一つの反応器1を用い、触媒を流体の流れる方向と交差する方向に層状に配置し、燃料と酸素と水蒸気とを含有する流体を第一反応領域2に供給することが好ましい。反応器1の形状については、単管式、多重管式、平板式等が、適用でき、特に制限はない。
第一反応領域2に充填する貴金属系触媒は、部分酸化活性を有するものであれば、特に限定はされないが、貴金属としては、ルテニウム、白金、ロジウム、パラジウム等が好ましく用いられ、中でも、燃料の熱分解によるカーボン析出が防止できる耐カーボン析出性能の高いルテニウムがより好ましく適用できる。また、貴金属は1種類のみを用いてもよく、また、必要に応じて2種類以上を併用することもできる。
これらの貴金属系触媒はどのような形状でもよく、特に制限はないが、無機酸化物の担体に貴金属を担持した触媒として使用することが好ましい。担体に貴金属を担持する場合には、貴金属の濃度は0.1〜5重量%であることが好ましく、貴金属の濃度が低くなり過ぎると部分酸化反応が進行し難くなり、高くなり過ぎると貴金属が担体の表面に均一に分散されず反応に寄与しない無駄な貴金属が多くなる。また、担体に使用する無機酸化物には、アルミナ、シリカ、マグネシア、チタニア、カルシア、ジルコニアからなる群から選ばれる少なくとも1種の化合物を好ましく適用することができる。このような無機酸化物の担体に貴金属を担持した触媒は、タブレット状、球状、リング状の成型品の形で使用するか、ハニカム状に成型して使用するのが好ましい。
この種の触媒の製造に関する一例を、アルミナ担体にルテニウムを担持させる場合に関して説明すると、例えば、市販の球状(平均粒子径1〜4mm)のアルミナ成形品を3塩化ルテニウム水溶液に浸漬し、空気中50〜150℃等の通常の乾燥方法で乾燥した後、300〜1000℃で1〜5時間、空気中で焼成することにより調製することができる。
また、貴金属系触媒は、メタンを生成し難い、所謂メタン化活性が低いもの、もしくはメタン化活性を低下させたものを使用することが好ましい。メタン化活性が低い貴金属系触媒を使用することにより、水素含有ガス中の水素濃度をより高くすることができる。このような貴金属系触媒として、例えば、αアルミナ、ルチル型チタニア等の結晶性の高い低表面積の無機酸化物の担体に貴金属を担持した活性金属表面積の低い触媒は、メタン化活性が低くなるため、好ましく使用することができる。さらに、部分酸化反応に使用する触媒の活性は、水蒸気改質反応の触媒ほどの活性を必要としないことから、貴金属系触媒に熱処理、被毒処理、被覆処理等のうち少なくとも一つの処理を施すことにより、触媒自体の活性を低下させることによってもメタンの生成量を低くすることができる。具体的には、貴金属系触媒を高温下で熱処理することにより活性金属をシンタリングする方法、硫黄や重金属等の被毒物質で活性金属を処理する方法、シリカやカーボン等で活性金属を被覆する方法等が挙げられる。また、上記処理を施さないものであっても、例えば、触媒自体、特に活性金属表面積が低い触媒自体に硫黄等の被毒物質を多く含むものは、メタン化活性が低いため、好ましく適用できる。
第二反応領域3に充填する銅系触媒は、水蒸気改質活性を有するものであれば、特に限定されず、例えば、市販のCO変成触媒、メタノール改質触媒等を使用することができる。銅系触媒の金属成分は、銅を10〜45重量%、亜鉛を10〜45重量%含むものが好ましいが、水蒸気改質活性が著しく損なわれないものであれば、アルミニウムやクロム等、その他の金属が1〜20重量%程度含まれていても何ら問題はない。さらに、これらの金属を含有したとしても、メタン化活性が増大しないものがより好ましい。また、銅系触媒は、γアルミナ等の固体酸を含有することが好ましい。例えば、ジメチルエーテルを改質する場合、銅系触媒に固体酸成分を含有することにより、ジメチルエーテルからメタノールへの加水分解反応が進行し易くなる。具体的には、銅系触媒の金属成分と固体酸成分との重量比率が、3:7〜7:3であることが好ましい。
この種の触媒の製造に関する一例を、銅、亜鉛、アルミニウムを含有する触媒の場合について説明すると、例えば、銅、亜鉛、アルミニウムを含有するスラリーを、50〜150℃等の通常の乾燥方法で乾燥した後、180〜500℃、空気中で焼成することにより調製することができる。なお、γアルミナ等の固体酸を含有させる場合には、上記の方法により得られたものを粉砕し、γアルミナの粉末と混合した後、例えば、錠剤成形することにより得ることができる。
以下に、改質実験の実施例について、図2に示す実験装置を用いて行った実験結果を説明する。
実験装置には、触媒を充填した反応領域である反応室4A(以下、マイクロリアクターという)を有する反応器4、マイクロリアクター4A内の温度を測定・記録する温度レコーダ5(図示する例では、温度検出部位を3点のみ示しているが、実際はさらに多点で検出している)、反応器4からの出力ガス中の水分を凝縮させる水凝縮器6、水凝縮器6を通した出力ガスをサンプルする自動サンプラ7、サンプルガスを分析するガスクロマトグラフ8等を備えて構成する。上記反応室4Aの触媒層に対して、前記燃料、酸素又は空気、水蒸気を、開閉弁V1〜V3を経由したのち供給可能としている。反応室4Aの触媒層は周囲を電気炉4Bで囲われると共に、入口側にラシヒリングを設け、出口側に石英ウールを設けている。
本実施例および参考例では、表1、表2に示す触媒を用いて改質を行った。本実施例および参考例で使用する触媒は、上記に示すような従来公知の方法により製造することができる。なお、表1において、貴金属系触媒C,G,I,K,Mは、貴金属系触媒B,D,H,J,Lをそれぞれ体積比が、H2:N2:H20=61.5:15.4:23.1の処理ガス中で、980℃、10kPa、70時間処理(高温熱処理)したもの、貴金属系触媒Eは、貴金属系触媒Dを体積比が、CH4:C26:C38:C410:H2:CO2:H2O=19.1:1.5:0.7:0.3:0.4:0.1:77.9、S=0.1mg/Nm3の処理ガス中で、500℃、20kPa、3300時間処理(硫黄被毒処理)したもの、貴金属系触媒Fは、貴金属系触媒Dを体積比が、CH4:C26:C38:C410:H2:CO2:H2O=19.1:1.5:0.7:0.3:0.4:0.1:77.9、Si=1.5mg/Nm3の処理ガス中で、500℃、20kPa、2350時間処理(シリカ被覆処理)したものである。
Figure 0005086599
Figure 0005086599
(貴金属系触媒の改質性能実験1)
有効内径26.5mmの反応器4の反応室4Aに、上記の表1に示す貴金属系触媒Aを層長が49cmとなるように充填し、表3に示す条件でジメチルエーテル(DME)を燃料として改質を行った。
Figure 0005086599
その結果、表4に示すように、DEM転化率は100%であったが、生成ガス中のメタン濃度は、1時間後には9.24%になっており、貴金属系触媒Aを用いて改質する場合には、生成する水素含有ガスのメタン濃度が高くなることが分かった。
Figure 0005086599
(銅系触媒の改質性能実験)
有効内径26.5mmの反応器4の反応室4Aに、上記の表2に示す銅系触媒a,b,cをそれぞれ層長が65cmとなるように充填し、反応室4Aの入口温度を350℃とした他は、表3に示す条件でDMEを燃料として改質を行った。
その結果、表5に示すように銅系触媒aでは、触媒層最高温度が679℃となり、DME転化率は4時間後では、99.4%であったものの、286時間後には93.4%まで低下した。また、銅系触媒bでは、触媒層最高温度が713℃となり、DME転化率は4時間後では98.4%であったものの、286時間後には93.2%まで低下した。銅系触媒cでは、触媒層最高温度が732℃となり、DME転化率は4時間後では99.8%であったものの、168時間後には90.1%まで低下した。このように銅系触媒のみを用いて改質する場合には、触媒が劣化し、改質時間の経過に伴い、DME転化率が大きく低下することが分かった。
Figure 0005086599
参考例1
有効内径26.5mmの反応器4の反応室4Aの燃料含有ガス入口側(第一反応領域)に表1に示す貴金属系触媒Aを層長9cmとなるように充填し、その後段(第二反応領域)に表2に示す銅系触媒aを層長54cmとなるように充填し、表3に示す条件でDMEを燃料として改質を行った。
その結果、表6に示すように、生成ガス中のメタン濃度は4.1〜5.4%程度であり、DME転化率は262時間後においても100%を保っていた。なお、第二反応領域の入口温度(第一反応領域の出口温度)は555℃であり、これが第二反応領域の最高温度であった。
Figure 0005086599
(参考例2)
有効内径26.5mmの反応器4の反応室4Aの燃料含有ガス入口側(第一反応領域)に表1に示す貴金属系触媒C(貴金属系触媒Bを高温熱処理したもの)を層長9cmとなるように充填し、その後段(第二反応領域)に表2に示す銅系触媒bを層長54cmとなるように充填し、表3に示す条件でDMEを燃料として改質を行った。
その結果、表7に示すように、生成ガス中のメタン濃度は0.22〜0.23%程度であり、DME転化率は2082時間後においても95.2%であった。なお、第二反応領域(第一反応領域の出口温度)は619℃であり、これが第二反応領域の最高温度であった。
Figure 0005086599
このように貴金属系触媒と銅系触媒とを組み合わせることにより、触媒の熱劣化を防止し、高いDME転化率を保ちながら、長期に亘って水素濃度の高い水素含有ガスを製造できることが確認できた。
(貴金属系触媒の改質性能実験2)
有効内径14.5mmの反応器4の反応室4Aに、上記の表1に示す貴金属系触媒B,D,H,J,Lをそれぞれ層長が8.6cmとなるように充填し、表8に示す条件でDMEを燃料として改質を行った。
Figure 0005086599
その結果、表9に示すように、貴金属系触媒B,D,H,J,Lを用いた場合には、2時間後の生成ガス中のメタン濃度は、それぞれ3.21%,8.22%,7.07%,1.3%,2.53%であった。
Figure 0005086599
(実施例)
有効内径14.5mmの反応器4の反応室4Aに、上記の表1に示す貴金属系触媒C(貴金属系触媒Bを高温熱処理したもの),E(貴金属系触媒Dを硫黄被毒処理したもの),F(貴金属系触媒Dをシリカ被覆処理したもの),G(活性金属表面積の低い触媒),I(貴金属系触媒Hを高温熱処理したもの),K(貴金属系触媒Jを高温熱処理したもの),M(貴金属系触媒Lを高温熱処理したもの)をそれぞれ層長が8.6cmとなるように充填し、表8に示す条件でDMEを燃料として改質を行った。
その結果、表10に示すように、いずれの場合も生成ガス中のメタン濃度は1%未満であった。このように貴金属系触媒にそれぞれの処理を施すことや、活性金属表面積の低い触媒とすることにより、触媒のメタン化活性を低下させることができることが確認できた。
Figure 0005086599
以上の通り、本発明に係る水素含有ガスの製造方法は、高い改質効率を保ちながら、長期に亘って水素濃度の高い水素含有ガスを生成することができるため、燃料電池への水素供給等、様々な分野に適用することができる。
水素含有ガス製造装置の反応器の構成と温度分布を示すグラフ 改質実験用装置の構成図
符号の説明
1 反応器
2 第一反応領域
3 第二反応領域
4 反応器
4A 反応室

Claims (6)

  1. アルコール類及びエーテル類から選ばれる少なくとも1種の含酸素化合物を含有する燃料を、触媒を用いて改質することにより水素含有ガスを生成する水素含有ガスの製造方法において、
    前記燃料及び酸素を含む流体を、第一反応領域に供給し、貴金属を含有する触媒に接触させて、部分酸化反応により前記燃料を改質する第一改質工程と、
    当該第一改質工程の後、前記燃料及び水蒸気を含む流体を、第二反応領域に供給し、銅を含有する触媒に接触させて、水蒸気改質反応により前記燃料を改質する第二改質工程と、
    備え、
    前記貴金属を含有する触媒は、熱処理、被毒処理、被覆処理のうち少なくとも1つの処理を施すことにより、メタン化活性を低下させたものである水素含有ガスの製造方法。
  2. 前記貴金属が、ルテニウム、白金、ロジウム、パラジウムからなる群から選ばれる少なくとも1種の金属である請求項1に記載の水素含有ガスの製造方法。
  3. 前記貴金属を含有する触媒は、無機酸化物に前記貴金属を担持した触媒であって、前記無機酸化物が、アルミナ、シリカ、マグネシア、チタニア、カルシア、ジルコニアからなる群から選ばれる少なくとも1種の化合物である請求項1または2に記載の水素含有ガスの製造方法。
  4. 前記銅を含有する触媒が、固体酸を含有する請求項1〜3のいずれか一項に記載の水素含有ガスの製造方法。
  5. 前記第一反応領域において、温度が部分酸化反応の進行に伴って上昇してピークに到達し、前記第二反応領域の温度は、前記第一反応領域の出口温度と同等もしくはそれより低い請求項1〜4のいずれか一項に記載の水素含有ガスの製造方法。
  6. 前記第一反応領域において、部分酸化反応が完了する請求項5に記載の水素含有ガスの製造方法。
JP2006279021A 2005-10-14 2006-10-12 水素含有ガスの製造方法 Expired - Fee Related JP5086599B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006279021A JP5086599B2 (ja) 2005-10-14 2006-10-12 水素含有ガスの製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005300245 2005-10-14
JP2005300245 2005-10-14
JP2006279021A JP5086599B2 (ja) 2005-10-14 2006-10-12 水素含有ガスの製造方法

Publications (2)

Publication Number Publication Date
JP2007131519A JP2007131519A (ja) 2007-05-31
JP5086599B2 true JP5086599B2 (ja) 2012-11-28

Family

ID=38153479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006279021A Expired - Fee Related JP5086599B2 (ja) 2005-10-14 2006-10-12 水素含有ガスの製造方法

Country Status (1)

Country Link
JP (1) JP5086599B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5231825B2 (ja) * 2008-01-30 2013-07-10 本田技研工業株式会社 燃料改質装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001096159A (ja) * 1999-09-29 2001-04-10 Daihatsu Motor Co Ltd ジメチルエーテル改質触媒および燃料電池装置
JP3924407B2 (ja) * 1999-10-13 2007-06-06 株式会社日立製作所 燃料改質器及び燃料電池システム
JP3743995B2 (ja) * 1999-12-15 2006-02-08 日産自動車株式会社 メタノール改質触媒
JP2002145602A (ja) * 2000-11-08 2002-05-22 Mitsubishi Heavy Ind Ltd 燃料改質装置
JP4724973B2 (ja) * 2001-07-30 2011-07-13 三菱瓦斯化学株式会社 ジメチルエーテル改質触媒および該触媒を用いる水素含有ガス製造方法
JP4831800B2 (ja) * 2001-08-07 2011-12-07 三菱重工業株式会社 ジメチルエーテル改質触媒およびジメチルエーテル改質方法
JP2005034778A (ja) * 2003-07-16 2005-02-10 Nissan Motor Co Ltd モノリス触媒
JP2005169236A (ja) * 2003-12-10 2005-06-30 Nissan Motor Co Ltd 燃料改質触媒

Also Published As

Publication number Publication date
JP2007131519A (ja) 2007-05-31

Similar Documents

Publication Publication Date Title
US7682724B2 (en) Use of metal supported copper catalysts for reforming alcohols
US6972119B2 (en) Apparatus for forming hydrogen
JP3759406B2 (ja) メタノール改質触媒、メタノール改質装置及びメタノール改質方法
JP4185952B2 (ja) 一酸化炭素除去触媒及びその製造方法並びに一酸化炭素除去装置
EP1232790A1 (en) Catalyst for exothermic or endothermic reaction, catalyst for water-gas-shift reaction and catalyst for selective oxidation of carbon monoxide, and plate-fin heat exchange type reformer
JP2009533514A5 (ja)
JP3746401B2 (ja) 改質ガス中の一酸化炭素の選択酸化触媒
TWI294413B (en) Method for converting co and hydrogen into methane and water
KR101866500B1 (ko) 일산화탄소 제거부를 포함한 수소제조 반응기
US8021447B2 (en) Hydrogen-producing assemblies
JP2005200266A (ja) 改質方法、改質器、発電装置及び燃料容器
US20040241509A1 (en) Hydrogen generator and fuel cell system
JP5086599B2 (ja) 水素含有ガスの製造方法
JP4629630B2 (ja) 燃料電池用のシフト反応器、燃料電池用の燃料処理装置、燃料電池システム及び燃料電池用のシフト反応器の運転方法
JP4240787B2 (ja) 一酸化炭素除去触媒の活性化方法及び一酸化炭素除去器の運転方法並びに燃料電池システムの運転方法
JP2006036579A (ja) 水素製造方法
JP2004523459A (ja) モリブデンカーバイド触媒の使用方法
WO2021251471A1 (ja) Coの選択的酸化触媒を備えたco2メタネーション反応装置およびガス中のcoの除去方法
JPWO2008149900A1 (ja) 水素の製造方法および改質反応器
JPH07315825A (ja) Coのco2への酸化方法及び燃料電池用の水素含有ガスの製造方法
JP2002293510A (ja) 一酸化炭素転化器
JP2012020888A (ja) 改質装置及びその製造方法
JP4663095B2 (ja) 水素精製装置
JP2005067917A (ja) Co除去触媒装置及びco選択除去方法
JP4083556B2 (ja) 改質ガス中の一酸化炭素の選択酸化触媒

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees