JP5077465B2 - Polarized light irradiation device for photo-alignment - Google Patents

Polarized light irradiation device for photo-alignment Download PDF

Info

Publication number
JP5077465B2
JP5077465B2 JP2011155510A JP2011155510A JP5077465B2 JP 5077465 B2 JP5077465 B2 JP 5077465B2 JP 2011155510 A JP2011155510 A JP 2011155510A JP 2011155510 A JP2011155510 A JP 2011155510A JP 5077465 B2 JP5077465 B2 JP 5077465B2
Authority
JP
Japan
Prior art keywords
light irradiation
light
photo
alignment film
polarizing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011155510A
Other languages
Japanese (ja)
Other versions
JP2011215639A (en
Inventor
サユ 塩谷
暁史 三宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44945339&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5077465(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP2011155510A priority Critical patent/JP5077465B2/en
Publication of JP2011215639A publication Critical patent/JP2011215639A/en
Application granted granted Critical
Publication of JP5077465B2 publication Critical patent/JP5077465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Description

本発明は、液晶素子の配向膜や視野角補償フィルムの配向層などの配向膜の光配向を行なう偏光光照射装置に関する。   The present invention relates to a polarized light irradiation apparatus that performs photo-alignment of an alignment film such as an alignment film of a liquid crystal element or an alignment layer of a viewing angle compensation film.

近年、液晶パネルの配向膜や、視野角補償フィルムの配向層などの配向処理に関し、配向膜に所定の波長の偏光光を照射することにより配向を行なう、光配向と呼ばれる技術が採用されるようになってきている。以下、上記光により配向を行う配向膜や配向層を設けたフィルムのことを総称して光配向膜と呼ぶ。
光配向膜は、液晶パネルの大型化と共に大型化しており、それと共に光配向膜に偏光光を照射する偏光光照射装置も大型化している。
上記光配向膜において、例えば視野角補償フィルムは、帯状で長尺のワークであり、配向処理後、所望の長さに切断し使用する。最近は、パネルの大きさに合わせて大きくなり、幅1500mm以上のものもある。
このような大型の光配向膜に対して光配向を行うために、配向膜の幅に合せた線状の光源(棒状ランプ)を使った装置(例えば特許文献1、特許文献2、特許文献6)や、配向膜の幅に合せて照射ヘッドを多連化した装置が提案されている(例えば特許文献3)。
In recent years, a technique called photo-alignment has been adopted in which alignment processing is performed by irradiating polarized light of a predetermined wavelength to the alignment film, for alignment processing of alignment films for liquid crystal panels and alignment layers for viewing angle compensation films. It is becoming. Hereinafter, a film provided with an alignment film or alignment layer that performs alignment with light is generally referred to as a photo-alignment film.
The photo-alignment film has been enlarged along with the enlargement of the liquid crystal panel, and the polarized light irradiation apparatus for irradiating the photo-alignment film with polarized light has also been enlarged.
In the above-mentioned photo-alignment film, for example, the viewing angle compensation film is a strip-like and long work, and is used after being oriented and cut into a desired length. Recently, it has become larger in accordance with the size of the panel, and some have a width of 1500 mm or more.
In order to perform photo-alignment on such a large photo-alignment film, an apparatus using a linear light source (bar-shaped lamp) that matches the width of the alignment film (for example, Patent Document 1, Patent Document 2, and Patent Document 6). ), And an apparatus in which irradiation heads are connected in series according to the width of the alignment film has been proposed (for example, Patent Document 3).

図12に、棒状ランプを使った偏光光照射装置の構成例を示す。
高圧水銀ランプやメタルハライドランプ等の光配向を行うための波長の光を放射する棒状ランプ21と、ランプ21からの光を反射する断面が楕円形の樋状集光鏡22を備えた光照射部20を、ランプ21の長手方向が、ワーク50上に形成された光配向膜51の幅方向(搬送方向に対して直交方向)になるように配置する。棒状ランプ21の長さは、棒状ランプ21からの光が、光配向膜51の全幅を照射できるように、光配向膜51の幅よりも広くなるものを選択する。
光照射部20には、ワイヤーグリッド偏光素子を組み合わせた偏光素子ユニット10が設けられている。偏光素子ユニット10の構造については、後述する。
棒状ランプ21は、その長手方向が樋状集光鏡22の長手方向と一致するように、また、断面が楕円形の樋状集光鏡22の第1焦点位置に一致するように配置され、ワーク50上に形成された光配向膜51は、樋状集光鏡22の第2焦点位置に配置されている。
ワーク50は例えば長尺の連続ワークであり、送り出しローラR1にロール状に巻かれており、送り出しローラR1から引き出されて搬送され、光照射部20の下を通って巻き取りローラR2に巻き取られる。
FIG. 12 shows a configuration example of a polarized light irradiation apparatus using a rod-shaped lamp.
A light irradiation unit including a rod-shaped lamp 21 that emits light having a wavelength for performing photo-alignment, such as a high-pressure mercury lamp or a metal halide lamp, and a bowl-shaped condensing mirror 22 that has an elliptical cross section that reflects the light from the lamp 21 20 is arranged so that the longitudinal direction of the lamp 21 is in the width direction of the photo-alignment film 51 formed on the workpiece 50 (perpendicular to the transport direction). The length of the rod-shaped lamp 21 is selected so that the light from the rod-shaped lamp 21 is wider than the width of the photo-alignment film 51 so that the entire width of the photo-alignment film 51 can be irradiated.
The light irradiation unit 20 is provided with a polarizing element unit 10 that is a combination of wire grid polarizing elements. The structure of the polarizing element unit 10 will be described later.
The rod-shaped lamp 21 is arranged so that its longitudinal direction coincides with the longitudinal direction of the bowl-shaped condenser mirror 22, and so that its cross section coincides with the first focal position of the elliptic bowl-shaped condenser mirror 22, The photo-alignment film 51 formed on the workpiece 50 is disposed at the second focal position of the bowl-shaped condenser mirror 22.
The work 50 is, for example, a long continuous work, is wound in a roll shape around the feed roller R1, is pulled out from the feed roller R1, is conveyed, and is taken up by the take-up roller R2 under the light irradiation unit 20. It is done.

ワーク50が光照射部の下を搬送されるとき、ワーク50の光配向51に、偏光素子ユニット10により偏光された棒状ランプ21からの光が照射され、光配向処理される。
ワイヤーグリッド偏光素子については、例えば特許文献4や特許文献5に詳細が示されている。
ワイヤーグリッド偏光子は、長さが幅よりもはるかに長い複数の直線状の電気導体(例えばクロムやアルミニウム等の金属線、以下グリッドと呼ぶ)を、石英ガラスなどの基板上に平行に配置形成したものである。電気導体のピッチPは、入射する光の波長以下、望ましくは1/3以下がよい。
電磁波中に上記偏光素子を挿入すると、グリッドの長手方向に平行な偏波(偏光)成分は大部分反射され、直交する偏波(偏光)成分は通過する。
したがって、図12に示す装置においては、光配向膜51に対して、ワーク50の幅方向(ランプ21の長手方向)に沿った偏光光が照射される。
現在、光配向には波長280nm〜320nmの紫外線が用いられる。したがって、光配向用偏光光照射装置に用いるワイヤーグリッド偏光素子は、100nm程度のグリッドを形成する、微細な加工技術が必要である。
そのため、半導体製造に使われる技術を利用して、ガラス基板(ガラスウエハ)上にグリッドを形成し、適度な大きさに切断して用いる。
When the workpiece 50 is transported under the light irradiation unit, the light alignment 51 of the workpiece 50 is irradiated with light from the rod-shaped lamp 21 polarized by the polarizing element unit 10 and subjected to a light alignment process.
Details of the wire grid polarization element are disclosed in, for example, Patent Document 4 and Patent Document 5.
Wire grid polarizers are formed by arranging a plurality of linear electrical conductors whose length is much longer than their width (for example, metal wires such as chromium and aluminum, hereinafter referred to as grids) on a substrate such as quartz glass in parallel. It is a thing. The pitch P of the electric conductor is not more than the wavelength of the incident light, preferably not more than 1/3.
When the polarizing element is inserted into the electromagnetic wave, most of the polarization (polarization) component parallel to the longitudinal direction of the grid is reflected and the orthogonal polarization (polarization) component passes.
Therefore, in the apparatus shown in FIG. 12, polarized light along the width direction of the work 50 (longitudinal direction of the lamp 21) is irradiated to the photo-alignment film 51.
Currently, ultraviolet light having a wavelength of 280 nm to 320 nm is used for photo-alignment. Therefore, the wire grid polarization element used in the polarized light irradiation device for photo-alignment needs a fine processing technique for forming a grid of about 100 nm.
Therefore, using a technique used in semiconductor manufacturing, a grid is formed on a glass substrate (glass wafer) and cut into an appropriate size.

しかし、半導体製造に使われる装置は、処理することができる基板の大きさが、現状ではφ300mm程度までであり、1枚で大面積のワークに対応できるような大型の偏光素子は製作できない。
そこで、発光長の長い棒状の光源、例えば長さ1500mmの棒状の高圧水銀ランプやメタルハライドランプに応じた、大きな偏光素子が必要な場合、前記特許文献2においてはガラス基板から切り出したワイヤーグリッド偏光素子を1個の偏光子とし、この偏光子を複数、グリッドの方向をそろえ、ランプの長手方向に沿って並べ、一つの偏光素子として使用することが提案されている。
しかし、単にワイヤーグリッド偏光素子を並べだけでは、個々のワイヤーグリッド偏光素子の基板である石英ガラスのエッジは微小な欠けや凹凸が生じており、その隙間から、光源からの直射光、即ち無偏光光が漏れ、消光比が悪くなる。また、上記したエッジ付近の欠けが、グリッドの欠損を引き起こし、偏光素子の周辺部においては消光比が悪くなる。
この問題を防ぐために、われわれは偏光素子の突き合わせ部分から無偏光光が漏れないように偏光素子の配列方向の端部に遮光部分を設けることを、特願2004−314056号において提案した。
However, the size of a substrate that can be processed by an apparatus used for semiconductor manufacturing is currently up to about φ300 mm, and a large polarizing element that can handle a large-area workpiece cannot be manufactured.
Therefore, when a large polarizing element corresponding to a bar-shaped light source having a long light emission length, for example, a bar-shaped high-pressure mercury lamp or metal halide lamp having a length of 1500 mm, is required, in Patent Document 2, a wire grid polarizing element cut out from a glass substrate is used. It is proposed that a single polarizer is used, and a plurality of polarizers are aligned in the grid direction and aligned along the longitudinal direction of the lamp to be used as a single polarizing element.
However, if the wire grid polarizing elements are simply arranged, the edges of the quartz glass that is the substrate of each wire grid polarizing element have minute chips and irregularities, and direct light from the light source, that is, non-polarized light, from the gaps. Light leaks and the extinction ratio becomes worse. Moreover, the chip | tip of the edge vicinity mentioned above causes the defect | deletion of a grid, and an extinction ratio worsens in the peripheral part of a polarizing element.
In order to prevent this problem, we proposed in Japanese Patent Application No. 2004-314056 to provide a light shielding portion at the end of the polarizing element in the arrangement direction so that non-polarized light does not leak from the abutting portion of the polarizing element.

図13は上述した出願の第1の実施例の偏光素子ユニットの構成を示す図であり、図13(a)は、上記偏光素子ユニット10を照射光の光軸方向から見た図、図13(b)は偏光素子ユニット10の側面図、図13(c)は遮光板の取り付け例を示す図である。
図13(a)(b)に示すように、上フレーム2a、下フレーム2bからなるフレーム2内にガラス基板から切り出されたワイヤーグリッド偏光素子1が複数並べて配置されている。
偏光素子1の配列方向端部(境界部分)には、遮光板3が設けられる。
遮光板3は、例えば図13(c)に示すように取り付けられる。すなわち、フレーム2を上フレーム2a、下フレーム2bから構成し、下フレーム2bの上に複数のワイヤーグリッド偏光素子1を並べ、その上から遮光板と一体となった上フレーム2aをかぶせ固定する。
同図においては、偏光素子に形成されたワイヤーグリッドの方向は、ワーク50の搬送方向(ランプ21の長手方向に対して直交する方向)であり、したがって、光配向膜51には、ワーク50の幅方向(ランプ21の長手方向に沿った方向)の偏光光が照射される。
FIG. 13 is a diagram showing the configuration of the polarizing element unit of the first embodiment of the above-mentioned application. FIG. 13A is a diagram of the polarizing element unit 10 as seen from the optical axis direction of the irradiation light. FIG. 13B is a side view of the polarizing element unit 10, and FIG.
As shown in FIGS. 13 (a) and 13 (b), a plurality of wire grid polarizing elements 1 cut out from a glass substrate are arranged side by side in a frame 2 composed of an upper frame 2a and a lower frame 2b.
A light shielding plate 3 is provided at an end portion (boundary portion) of the polarizing element 1 in the arrangement direction.
The light shielding plate 3 is attached, for example, as shown in FIG. That is, the frame 2 is composed of an upper frame 2a and a lower frame 2b, a plurality of wire grid polarizing elements 1 are arranged on the lower frame 2b, and an upper frame 2a integrated with a light shielding plate is placed thereon and fixed.
In the figure, the direction of the wire grid formed on the polarizing element is the conveyance direction of the workpiece 50 (the direction orthogonal to the longitudinal direction of the lamp 21). Polarized light in the width direction (the direction along the longitudinal direction of the lamp 21) is irradiated.

光配向膜51に、ワーク50の搬送方向(ランプ21の長手方向に対して直交する方向)に沿った偏光光を照射したい場合は、同図において全てのワイヤーグリッド偏光素子1を90°回転させてフレーム2に配置し、ワイヤーグリッドの方向が、ワーク50の搬送方向(ランプ21の長手方向に対して直交する方向)になるようにすれば良い。
このように、図1に対してワイヤーグリッド偏光素子1を90°回転させて配置した場合においても、上記と同様に、偏光素子の周辺部においては、石英ガラスのエッジの微小な欠けや凹凸や、グリッドの欠損により消光比が悪くなるという問題が生じるため、遮光板3を設ける必要がある。
When it is desired to irradiate the photo-alignment film 51 with polarized light along the conveyance direction of the workpiece 50 (direction orthogonal to the longitudinal direction of the lamp 21), all the wire grid polarization elements 1 are rotated by 90 ° in FIG. The wire grid may be arranged in the frame 2 so that the direction of the wire grid is the conveyance direction of the workpiece 50 (the direction orthogonal to the longitudinal direction of the lamp 21).
As described above, even when the wire grid polarization element 1 is rotated by 90 ° with respect to FIG. Since there is a problem that the extinction ratio is deteriorated due to the lack of the grid, it is necessary to provide the light shielding plate 3.

図13に示すように、遮光板3を設けることにより、遮光板3を設けた部分の照度は低下するが、並べて配置した偏光素子1の隙間から無偏光光が漏れることはなくなるので、消光比は低下しない。ただし遮光板3の存在により、遮光板3の直下の照度が低くなり、照度分布が悪化する。
照度分布が悪化すると、配向膜において他よりも低いエネルギーの偏光光で照射される部分が生じる場合がある。配向膜に照射される偏光光のエネルギーが低いと、その配向膜が使用された製品において、液晶の配向を十分に行うことができない場合があり、ディスプレイとして使用される場合は、画面のむらやコントラストの低下といった製品不良の原因となる。
遮光板がないと、照度の低下はないが、ワイヤーグリッド偏光子の周辺部や境界部から無偏光光が透過するので、光配向膜に照射される消光比が悪化する。
消光比が悪化すると、照度が低下した場合と同様に、その配向膜が使用された製品において、液晶の配向を十分に行うことができない場合がある。
As shown in FIG. 13, by providing the light shielding plate 3, the illuminance of the portion where the light shielding plate 3 is provided decreases, but the non-polarized light does not leak from the gap between the polarizing elements 1 arranged side by side. Will not drop. However, due to the presence of the light shielding plate 3, the illuminance immediately below the light shielding plate 3 is lowered, and the illuminance distribution is deteriorated.
When the illuminance distribution deteriorates, a portion irradiated with polarized light having lower energy than the others may be generated in the alignment film. If the energy of the polarized light irradiated to the alignment film is low, the alignment of the liquid crystal may not be performed sufficiently in the product using the alignment film. This may cause product defects such as lowering.
Without the light shielding plate, the illuminance does not decrease, but non-polarized light is transmitted from the peripheral part or boundary part of the wire grid polarizer, so that the extinction ratio irradiated to the photo-alignment film is deteriorated.
When the extinction ratio is deteriorated, the liquid crystal may not be sufficiently aligned in the product in which the alignment film is used, as in the case where the illuminance is decreased.

一方、特許文献3に示される照射ヘッドを多連化して配置した装置においては、光配向膜の幅方向(搬送方向に対して直交方向)に対して、光照射領域が途切れないように、各照射ヘッドからの光照射領域が重なり合うように照射している。
しかし、このような光照射領域が重なり合う部分においては、照度が二つの照射ヘッドからの光の合算になるため、一つの照射ヘッドからの光により照射されている他の領域比べて照度の制御が難しい。そのため他の領域に比べて照度が高くなったり低くなったりして照度分布が悪化する場合があり、上記と同様の問題が生じる。
On the other hand, in the apparatus in which the irradiation heads shown in Patent Document 3 are arranged in a series, each light irradiation region is not interrupted with respect to the width direction of the photo-alignment film (direction perpendicular to the transport direction). Irradiation is performed so that light irradiation areas from the irradiation head overlap.
However, in such a portion where the light irradiation areas overlap, since the illuminance is the sum of the light from the two irradiation heads, the illuminance can be controlled compared to other areas irradiated by the light from one irradiation head. difficult. Therefore, the illuminance distribution may deteriorate due to the illuminance becoming higher or lower than other regions, and the same problem as described above occurs.

特開2004−163881号公報JP 2004-163881 A 特開2004−144884号公報JP 2004-144484 A 特開2002−350858号公報JP 2002-350858 A 特開2002−328234号公報JP 2002-328234 A 特表2003−508813号公報Japanese translation of PCT publication No. 2003-508813 特開2004−177904号公報JP 2004-177904 A

上述したように1枚で大面積のワークに対応できるような大型のワイヤグリッド偏光素子は製作できず、大面積のワークに光を照射する場合は、複数の偏光素子を並べて使用せざるを得ない。そこで、前記したように境界部分に遮光板を設けて消光比の低下を防いでいるが、偏光素子間に境界部が生じ、この境界部の照度が低下し、照度分布が悪化するといった問題が生ずる。
同様に、蒸着膜を蒸着させた偏光素子や、ガラス板をブリュースタ角で傾けた偏光素子の場合も、製作できる大きさには限界があり、一枚の偏光素子で大面積のワークに対応できる大型のものは製作できない。
そこで、例えば前記特許文献3に示すように、照射ヘッドを多連化して複数の偏光素子を並べて使用することになるが、この場合も各照射ヘッドに設けれられた偏光素子による偏光光の間には境界部が生じており、この部分の照度が他の領域に比べて照度が高くなったり低くなったりして照度分布が悪化するため照射エネルギー分布が悪化するといった問題がある。
本発明は上記事情に鑑みなされたものであって、大型の配向膜に対して偏光光を照射し光配向を行なう偏光光照射装置において、配向膜に対し均一なエネルギー分布で偏光光を照射できる光配向用偏光光照射装置を提供することを目的とする。
As described above, it is not possible to manufacture a large wire grid polarizing element that can handle a large-area workpiece as described above. If a large-area workpiece is irradiated with light, a plurality of polarizing elements must be used side by side. Absent. Therefore, as described above, the light shielding plate is provided at the boundary portion to prevent the extinction ratio from being lowered. However, there is a problem that the boundary portion is generated between the polarizing elements, the illuminance at the boundary portion is lowered, and the illuminance distribution is deteriorated. Arise.
Similarly, there is a limit to the size that can be produced in the case of a polarizing element with a deposited film or a polarizing element with a glass plate tilted at a Brewster angle, and a single polarizing element can handle large-area workpieces. A large one that can be made cannot be produced.
Therefore, for example, as shown in Patent Document 3, multiple irradiation elements are used in parallel by arranging a plurality of polarizing elements. In this case as well, between the polarized lights by the polarizing elements provided in the respective irradiation heads. There is a boundary portion, and the illuminance of this portion becomes higher or lower than that of other regions, so that the illuminance distribution deteriorates and the irradiation energy distribution deteriorates.
The present invention has been made in view of the above circumstances, and in a polarized light irradiation apparatus that performs light alignment by irradiating polarized light to a large alignment film, the alignment film can be irradiated with polarized light with a uniform energy distribution. It aims at providing the polarized light irradiation apparatus for photo-alignment.

上記課題を本発明においては、次のように解決する。
連続または間歇的に直線状に搬送される光配向膜に対し、光配向膜の搬送方向に沿って光照射部を多段に配置する。
上記多段に配置された各光照射部は、光配向膜の搬送方向に対して直交する方向に多連に並べられた光照射ユニット群から構成され、各光照射ユニットに、複数の光照射ユニットをガラスの放電容器内に一対の電極が対向配置されたランプと、ランプからの光を反射する反射ミラーと、該反射ミラーにより反射された光を偏光する偏光手段とを設け、上記ランプを上記一対の電極を結ぶ線である管軸が上記反射ミラーの光軸と平行になるように配置する。
そして、各段の光照射部の偏光手段の境界部が、他の段の光照射部の偏光手段の境界部と光配向膜の搬送方向に対して互いに重ならないように、各段に配置された光照射部を、光配向膜の搬送方向に直交する方向に位置をずらして配置する。
In the present invention, the above problem is solved as follows.
With respect to the photo-alignment film that is continuously or intermittently transported in a straight line, the light irradiation units are arranged in multiple stages along the transport direction of the photo-alignment film.
Each light irradiation unit arranged in multiple stages is composed of a group of light irradiation units arranged in a row in a direction orthogonal to the transport direction of the photo-alignment film, and each light irradiation unit includes a plurality of light irradiation units. A lamp having a pair of electrodes opposed to each other in a glass discharge vessel, a reflecting mirror that reflects light from the lamp, and polarizing means that polarizes light reflected by the reflecting mirror, and the lamp is The tube axis, which is a line connecting the pair of electrodes, is arranged so as to be parallel to the optical axis of the reflection mirror.
And the boundary part of the polarization means of the light irradiation part of each stage is arranged in each stage so that it does not overlap with the boundary part of the polarization means of the light irradiation part of the other stage and the transport direction of the photo-alignment film. The light irradiating portions are arranged with their positions shifted in a direction perpendicular to the transport direction of the photo-alignment film.

本発明においては、光照射部を光配向膜の搬送方向に対して多段に配置し、各段に配置された光照射部の偏光手段の境界部が、他の段の光照射部の偏光手段の境界部と光配向膜の搬送方向に対して互いに重ならないように、各段に配置された光照射部を光配向膜の搬送方向に直交する方向に位置をずらして配置したので、光配向膜全体に均一なエネルギー分布で偏光光を照射することができる。
すなわち、偏光手段の境界部に対応した光配向膜上の照度は低く(あるいは高く)なるが、各段の光照射部の偏光手段の境界部は、光配向膜の搬送方向に直交する方向に位置をずらして配置されており、多段の光照射部から光配向膜上に順次光を照射することにより、光配向膜上の照度分布は積算され、結果として光配向膜全体は均一なUVエネルギー分布で偏光光が照射されることになる。
したがって、光配向膜において、照射される偏光光のエネルギーが不足する部分が生じるのを防ぐことができる。
In the present invention, the light irradiation parts are arranged in multiple stages with respect to the transport direction of the photo-alignment film, and the boundary part of the polarization means of the light irradiation part arranged in each stage is the polarization means of the light irradiation part of the other stage. Since the light irradiation part arranged in each step is arranged in a direction perpendicular to the transport direction of the photo-alignment film so that it does not overlap with the boundary part of the photo-alignment film and the transport direction of the photo-alignment film, the photo-alignment The entire film can be irradiated with polarized light with a uniform energy distribution.
That is, the illuminance on the photo-alignment film corresponding to the boundary part of the polarization means is low (or high), but the boundary part of the polarization means of the light irradiation part in each stage is in a direction orthogonal to the transport direction of the photo-alignment film. The illuminance distribution on the photo-alignment film is integrated by sequentially irradiating light on the photo-alignment film from the multi-stage light irradiation unit, and as a result, the entire photo-alignment film has a uniform UV energy. Polarized light is irradiated with the distribution.
Therefore, it is possible to prevent the occurrence of a portion where the energy of the irradiated polarized light is insufficient in the photo-alignment film.

本発明の前提となる偏光光照射装置の構成を示す図である。It is a figure which shows the structure of the polarized light irradiation apparatus used as the premise of this invention. 偏光素子ユニットの配置とエネルギー分布を示す図である。It is a figure which shows arrangement | positioning and energy distribution of a polarizing element unit. ワークの搬送方向に多段に並べて配置した光照射部の、ワイヤーグリッド偏光素子ユニットの並べ方を示す図である。It is a figure which shows how to arrange the wire grid polarizing element unit of the light irradiation part arrange | positioned along with the conveyance direction of a workpiece | work in multiple stages. 光照射部が一段の場合のエネルギー分布を示す図である。It is a figure which shows energy distribution in case a light irradiation part is one step. 光照射部が二段の場合のエネルギー分布を示す図である。It is a figure which shows energy distribution in case a light irradiation part is two steps | paragraphs. 光照射部が四段の場合のエネルギー分布を示す図である。It is a figure which shows energy distribution in case a light irradiation part is four steps | paragraphs. 本発明の第1の実施例の偏光光照射装置の構成を示す図である。It is a figure which shows the structure of the polarized light irradiation apparatus of 1st Example of this invention. 本発明の第2の実施例の偏光光照射装置の構成を示す図である。It is a figure which shows the structure of the polarized light irradiation apparatus of the 2nd Example of this invention. 蒸着多層膜を用いた偏光素子を用いた光照射部の構成例を示す図である。It is a figure which shows the structural example of the light irradiation part using the polarizing element using a vapor deposition multilayer film. 偏光素子としてガラス板をブリュースタ角傾けて配置した偏光素子を用いた光照射部の構成例を示す図である。It is a figure which shows the structural example of the light irradiation part using the polarizing element which has arrange | positioned the glass plate as a polarizing element by inclining the Brewster angle. 図9において、コリメータミラーに換えて平面鏡を用いた光照射部の構成例を示す図である。In FIG. 9, it is a figure which shows the structural example of the light irradiation part which replaced with the collimator mirror and used the plane mirror. 棒状ランプを使った偏光光照射装置の構成例を示す図である。It is a figure which shows the structural example of the polarized light irradiation apparatus using a rod-shaped lamp. 偏光素子ユニットの構成を示す図である。It is a figure which shows the structure of a polarizing element unit.

図1に本発明の前提となる偏光光照射装置の構成を示す。
光照射部20A,20Bには、線状の光源である、高圧水銀ランプやメタルハライドランプ等の棒状のランプ21と、ランプ21からの光を反射する断面が楕円形の樋状集光鏡22が内蔵されている。
光照射部20A,20Bは、ランプ21の長手方向が、ワーク50上に形成された光配向膜51の幅方向(搬送方向に対して直交方向)になるように配置されている。
棒状ランプ21は、その長手方向が樋状集光鏡22の長手方向と一致するように、また、断面のほぼ中心部が楕円形の樋状集光鏡22の第1焦点位置に一致するように配置され、ワーク50上に形成された光配向膜51は、樋状集光鏡22の第2焦点位置に配置されている。
ワーク50は例えば長尺の連続ワークであり、不図示の送り出しローラにロール状に巻かれており、送り出しローラから引き出されて搬送され、光照射部20A,20Bの下を通って不図示の巻き取りローラに巻き取られる。
光照射部20A,20Bの光出射側には、図13に示したワイヤーグリッド偏光素子ユニット10,10’が設けられている。前述したように、ワイヤーグリッド偏光素子ユニット10,10’には、偏光素子1の配列方向端部(境界部分)には、遮光板3が設けられている。
FIG. 1 shows a configuration of a polarized light irradiation apparatus which is a premise of the present invention.
The light irradiators 20A and 20B include a rod-shaped lamp 21 such as a high-pressure mercury lamp or a metal halide lamp, which is a linear light source, and a bowl-shaped condensing mirror 22 having an elliptical cross section for reflecting light from the lamp 21. Built in.
The light irradiation units 20 </ b> A and 20 </ b> B are arranged so that the longitudinal direction of the lamp 21 is in the width direction of the photo-alignment film 51 formed on the workpiece 50 (perpendicular to the transport direction).
The rod-shaped lamp 21 has a longitudinal direction that coincides with the longitudinal direction of the bowl-shaped condenser mirror 22, and a substantially central portion of the cross section coincides with the first focal position of the elliptical bowl-shaped condenser mirror 22. The photo-alignment film 51 formed on the workpiece 50 is disposed at the second focal position of the bowl-shaped condenser mirror 22.
The work 50 is, for example, a long continuous work, is wound in a roll shape around a feed roller (not shown), is pulled out from the feed roller and conveyed, and passes under the light irradiation units 20A and 20B. It is wound on a take-up roller.
Wire grid polarization element units 10 and 10 'shown in FIG. 13 are provided on the light emission side of the light irradiation units 20A and 20B. As described above, the wire grid polarizing element units 10 and 10 ′ are provided with the light shielding plate 3 at the end portion (boundary portion) of the polarizing element 1 in the arrangement direction.

なお、以下では、線状の光源として棒状ランプを例にして説明するが、近年は、紫外光を放射するLEDやLDも実用化されており、このようなLEDまたはLDを直線状に並べて配置し線状光源としても良い。なおその場合は、LEDまたはLDを並べる方向がランプの長手方向に相当する。
また、現在光配向膜の材料としては、波長260nm±20nmの光で配向されるもの、280nm〜330nmの光で配向されるもの、365nmの光で配向されるものなどが知られており、光源の種類は必要せされる波長に応じて適宜選択する。
In the following, a rod-shaped lamp will be described as an example of a linear light source. However, in recent years, LEDs and LDs that emit ultraviolet light have been put into practical use, and such LEDs or LDs are arranged in a straight line. A linear light source may be used. In that case, the direction in which the LEDs or LDs are arranged corresponds to the longitudinal direction of the lamp.
Further, as materials for photo-alignment films, there are known materials that are aligned with light having a wavelength of 260 nm ± 20 nm, materials that are aligned with light of 280 nm to 330 nm, and materials that are aligned with light of 365 nm. The type is appropriately selected according to the required wavelength.

光照射部20A,20Bのランプ21の長手方向の両側には、ブロック23が取り付けられ、このブロック23を介して支柱24が取り付けられている。光配向膜51が形成されたワーク50は、上記2本の支柱の24間を搬送される。
このような偏光光を出射する光照射部20A,20Bを、複数、ワーク50の搬送方向に沿って多段に設ける。図1は光照射部20A,20Bを2段に並べた場合を示し、以下2段の場合を例にして説明するが、3段以上設けても良い。
ここで、各段に配置された各光照射部20A,20Bは、各段の光照射部20A,20Bの偏光素子1の間の境界部(遮光板3の設けられている部分)が、他の段の光照射部の偏光素子1の境界部と、光配向膜51の搬送方向に対して互い重ならないように、搬送方向に直交する方向に位置をずらして配置されている。
すなわち、図2に示すように、2段に設けた光照射部20Aと20Bのワイヤーグリッド偏光素子ユニット10,10’の遮光板3が、ワークの搬送方向に対して重ならないように(一直線状に並ばないように)ずらして配置される。光照射部を3段以上設ける場合も同様に、遮光板3が、ワークの搬送方向に対して重ならないように(一直線状に並ばないように)ずらして配置される。
なお、図1では光照射部20A,20Bにそれぞれ5枚と6枚のワイヤーグリッド偏光素子を設けた場合を示しているが、図2では8枚のワイヤーグリッド偏光素子からなるワイヤーグリッド偏光素子ユニットを用いた場合を示している。
Blocks 23 are attached to both sides of the light irradiation units 20 </ b> A and 20 </ b> B in the longitudinal direction of the lamp 21, and support columns 24 are attached via the blocks 23. The work 50 on which the photo-alignment film 51 is formed is conveyed between the two struts 24.
A plurality of light irradiation units 20 </ b> A and 20 </ b> B that emit such polarized light are provided in multiple stages along the conveyance direction of the workpiece 50. FIG. 1 shows a case in which the light irradiators 20A and 20B are arranged in two stages. The following description will be made by taking the case of two stages as an example, but three or more stages may be provided.
Here, each light irradiation part 20A, 20B arranged in each stage is different from the boundary part (part where the light shielding plate 3 is provided) between the polarizing elements 1 of the light irradiation parts 20A, 20B in each stage. In order to avoid overlapping with the boundary part of the polarizing element 1 of the light irradiation part of the stage and the transport direction of the photo-alignment film 51, the positions are shifted in the direction orthogonal to the transport direction.
That is, as shown in FIG. 2, the light-shielding plates 3 of the wire grid polarization element units 10 and 10 ′ of the light irradiation units 20A and 20B provided in two stages do not overlap with the workpiece conveyance direction (in a straight line shape). So as not to line up). Similarly, when three or more light irradiation units are provided, the light shielding plate 3 is arranged so as not to overlap with the workpiece conveyance direction (so as not to be aligned in a straight line).
1 shows a case where five and six wire grid polarizing elements are provided in the light irradiators 20A and 20B, respectively, FIG. 2 shows a wire grid polarizing element unit composed of eight wire grid polarizing elements. The case where is used is shown.

次に図1に示した装置の動作について説明する。
ワーク50が搬送されると、光配向膜51は、まず、光照射部20Bからの偏光光が照射され、次に光照射部20Aからの偏光光が照射される。
光照射部20Bの偏光素子ユニット10’に並べられた複数のワイヤーグリッド偏光子1の境界には、遮光板3が設けられており、したがって、遮光板3の直下を搬送される光配向膜51の部分には、図2の(a)に示すように照度の低い偏光光が照射される。
光照射部20Aの偏光素子ユニット10に並べられた複数のワイヤーグリッド偏光子1の境界にも、遮光板3が設けられており、したがって、遮光板3の直下を搬送される光配向膜51の部分には、図2(b)に示すように照度の低い偏光光が照射される。
しかし、偏光素子ユニット10’と10の遮光板3の位置が、ワークの搬送方向に対して重ならないように(一直線状に並ばないように)ずらして配置されているので、光照射部20Bによる偏光光照射において低い照度で照射された部分は、次の光照射部20Aによる偏光光照射において高い照度で照射され、また、光照射部20Aによる偏光光照射において低い照度で照射される部分は、先に光照射部20Bによる偏光光照射において高い照度で照射されている。
したがって、光照射部20Aと20Bの両方の下を通過して偏光光が照射された光配向膜51は、図2(c)に示すように両者の照度分布が積算され、結果として均一なエネルギー分布で偏光光が照射されることになる。このことにより、光配向膜51において、照射される偏光光のエネルギーが不足する部分が生じるのを防ぐことができる。
Next, the operation of the apparatus shown in FIG. 1 will be described.
When the work 50 is transported, the photo-alignment film 51 is first irradiated with polarized light from the light irradiation unit 20B, and then irradiated with polarized light from the light irradiation unit 20A.
The light shielding plate 3 is provided at the boundary between the plurality of wire grid polarizers 1 arranged in the polarizing element unit 10 ′ of the light irradiation unit 20 B. Therefore, the photo-alignment film 51 transported directly below the light shielding plate 3. This part is irradiated with polarized light with low illuminance as shown in FIG.
The light shielding plate 3 is also provided at the boundary between the plurality of wire grid polarizers 1 arranged in the polarizing element unit 10 of the light irradiation unit 20A. Therefore, the photo-alignment film 51 transported directly below the light shielding plate 3 is provided. The portion is irradiated with polarized light with low illuminance as shown in FIG.
However, since the positions of the light shielding plates 3 of the polarizing element units 10 ′ and 10 are arranged so as not to overlap with each other (so as not to be aligned in a straight line) with respect to the workpiece conveyance direction, the light irradiation unit 20B The portion irradiated with low illuminance in the polarized light irradiation is irradiated with high illuminance in the polarized light irradiation by the next light irradiation unit 20A, and the portion irradiated with low illuminance in the polarized light irradiation by the light irradiation unit 20A is First, irradiation with polarized light by the light irradiation unit 20B is performed with high illuminance.
Therefore, the photo-alignment film 51 irradiated with polarized light passing under both of the light irradiation units 20A and 20B is integrated with the illuminance distribution of both as shown in FIG. 2C, resulting in uniform energy. Polarized light is irradiated with the distribution. As a result, in the photo-alignment film 51, it is possible to prevent a portion where the energy of the irradiated polarized light is insufficient.

ワーク50は、ロールに巻かれた長尺帯状のワークであってもよいし、また、光配向膜51が形成された例えば液晶パネルの大きさに整形された矩形状のワークであってもよい。
ワーク50が矩形状の場合、ワーク50は図示しないワークステージ上に載置され、光照射部20A、20Bから偏光光を照射しながらワークステージを直線移動させて、光配向膜の光配向処理をする。
なお、ワーク50の光配向膜51に偏光光を照射し、光配向処理を行なう際、偏光光を照射しながらワーク50を連続的に移動させてもよいし、ワークを間歇的に移動させながら偏光光を照射してもよい。
ワーク50を間歇的に移動させる場合には、例えば、ワーク50を一定量移動させた後、ワーク50を停止させて偏光光を照射し、ついで偏光光の照射を停止してワークを一定量移動させた後、ワークを停止させて偏光光を照射する動作を繰り返す。
また、一方向だけでなくワーク50を往復移動させて、例えば光照射部20B→20A→20A→20Bのように偏光光を照射するようにしても良い。
さらに、ワークステージを移動させる代わりに、ワーク50上で光照射部20A,20Bを移動させてワーク50の光配向処理を行ってもよい。
The workpiece 50 may be a long strip-shaped workpiece wound around a roll, or may be a rectangular workpiece shaped to the size of, for example, a liquid crystal panel on which the photo-alignment film 51 is formed. .
When the work 50 is rectangular, the work 50 is placed on a work stage (not shown), and the work stage is linearly moved while irradiating polarized light from the light irradiation units 20A and 20B, so that the photo-alignment processing of the photo-alignment film is performed. To do.
In addition, when irradiating polarized light to the photo-alignment film 51 of the work 50 and performing photo-alignment processing, the work 50 may be continuously moved while irradiating the polarized light, or while moving the work intermittently. You may irradiate with polarized light.
When the workpiece 50 is moved intermittently, for example, after the workpiece 50 is moved by a certain amount, the workpiece 50 is stopped and irradiated with polarized light, and then the irradiation of polarized light is stopped and the workpiece is moved by a certain amount. Then, the operation of stopping the workpiece and irradiating the polarized light is repeated.
Further, not only in one direction but also the workpiece 50 may be reciprocated to irradiate polarized light, for example, as in the light irradiation unit 20B → 20A → 20A → 20B.
Furthermore, instead of moving the work stage, the light irradiation units 20A and 20B may be moved on the work 50 to perform the photo-alignment process of the work 50.

次に偏光素子ユニットの遮光板3の位置が、ワークの搬送方向に対して重ならないようにずらして配置した光照射装置を用いて、エネルギー分布均一化の効果を調べた実験結果を示す。
図3は、ワークの搬送方向に多段に並べて配置した光照射部の、ワイヤーグリッド偏光素子ユニットの並べ方を示す図である。
図3に示すように光照射部は、光照射部1〜4の4台あり、ワークの搬送方向に沿って並べられている。同図に示されるように、各光照射部のワイヤーグリッド偏光素子ユニットの遮光板3は、ワークの搬送方向に対して重ならないように(一直線状に並ばないように)ずらして配置されている。
このようなワイヤーグリッド偏光素子ユニットの配置において、光照射部(ワイヤーグリッド偏光素子ユニット)が1段のみ、光照射部(ワイヤーグリッド偏光素子ユニット)が2段、光照射部(ワイヤーグリッド偏光素子ユニット)が4段の、各場合に関するUVエネルギー(平均照度)分布を測定した。ここで平均照度とは、ワークを搬送方向に移動させたときの平均的な照度のことをいう。
Next, an experimental result of examining the effect of uniform energy distribution using a light irradiation apparatus in which the position of the light shielding plate 3 of the polarizing element unit is shifted so as not to overlap the workpiece conveyance direction is shown.
FIG. 3 is a diagram illustrating how the wire grid polarization element units are arranged in the light irradiation unit arranged in multiple stages in the workpiece conveyance direction.
As shown in FIG. 3, there are four light irradiation units, that is, the light irradiation units 1 to 4, which are arranged along the workpiece conveyance direction. As shown in the figure, the light shielding plate 3 of the wire grid polarizing element unit of each light irradiation unit is arranged so as not to overlap with the workpiece conveyance direction (so as not to be aligned in a straight line). .
In such an arrangement of the wire grid polarization element unit, the light irradiation part (wire grid polarization element unit) has only one stage, the light irradiation part (wire grid polarization element unit) has two stages, and the light irradiation part (wire grid polarization element unit). ) Was measured for UV energy (average illuminance) distribution in each case with four stages. Here, the average illuminance means the average illuminance when the workpiece is moved in the transport direction.

図4〜図6にその結果を示す。図4は、光照射部として図3の光照射部1のみを使用した場合である。
縦軸は光配向膜に照射されるUVエネルギー(単位mJ/cm2)であり、横軸はワークの中心から幅方向の距離(単位mm)であり、図5,6も同様である。
図4に示すように、光照射部1のみでは、遮光部により照度分布が生じ、下記式で光照射領域のエネルギー分布を計算すると、±8.5%であった。
エネルギー分布(±%)={(エネルギー最大値−エネルギー最小値)/(エネルギー最大値+エネルギー最小値)}×100
図5は、光照射部として図3の光照射部1と光照射部2の2段を使用した場合である。同図下のほうのグラフは、光照射部1と光照射部2のそれぞれでのエネルギー分布であり、エネルギー分布は上式より±8%〜10%程度であるが、両方が重ね合わされて照射されると、照射されるUVエネルギーが倍になるとともに、一方の光照射部の照度の低い部分が他方の光照射部の照度の高い部分で打ち消され、上のほうに示されるグラフのように、エネルギー分布は±2.8%に改善された。
図6は、光照射部として図3の光照射部1から光照射部4までの4段を全て使用した場合である。同図下のほうのグラフは、光照射部1から光照射部4のそれぞれのエネルギー分布であり、エネルギー分布は上式より±8%〜10%程度であるが、すべてが重ね合わされて照射されると、照射されるUVエネルギーが4倍になるとともに、各光照射部の照度分布の凹凸が相殺され、上のほうに示されるグラフのように、エネルギー分布は±1.5%に改善された。
The results are shown in FIGS. FIG. 4 shows a case where only the light irradiation unit 1 of FIG. 3 is used as the light irradiation unit.
The vertical axis represents the UV energy (unit mJ / cm 2 ) irradiated to the photo-alignment film, the horizontal axis represents the distance in the width direction (unit mm) from the center of the workpiece, and the same applies to FIGS.
As shown in FIG. 4, in the light irradiation unit 1 alone, an illuminance distribution is generated by the light shielding unit, and the energy distribution in the light irradiation region is calculated by the following formula, and is ± 8.5%.
Energy distribution (±%) = {(maximum energy value−minimum energy value) / (maximum energy value + minimum energy value)} × 100
FIG. 5 shows a case where two stages of the light irradiation unit 1 and the light irradiation unit 2 of FIG. 3 are used as the light irradiation unit. The lower graph in the figure shows the energy distribution in each of the light irradiation unit 1 and the light irradiation unit 2, and the energy distribution is about ± 8% to 10% from the above formula. Then, the irradiated UV energy is doubled, and the low illuminance part of one light irradiation part is canceled out by the high illuminance part of the other light irradiation part, as in the graph shown above The energy distribution was improved to ± 2.8%.
FIG. 6 shows a case where all four stages from the light irradiation unit 1 to the light irradiation unit 4 in FIG. 3 are used as the light irradiation unit. The lower graph in the figure shows the energy distribution of each of the light irradiation unit 1 to the light irradiation unit 4, and the energy distribution is about ± 8% to 10% from the above formula. Then, the irradiated UV energy is quadrupled and the unevenness of the illuminance distribution of each light irradiation part is offset, and the energy distribution is improved to ± 1.5% as shown in the graph above. It was.

図7に本発明の第1の実施例の偏光光照射装置の構成を示す。
図1に示したものでは、棒状ランプ21と樋状集光鏡22を用いて光照射部を構成したが、本発明においては、上記棒状ランプ21と樋状集光鏡22に換えて図7に示すように、複数のランプ31と反射ミラー32を用いて光照射部30A,30Bを構成した。
各光照射部30A,30B内には、ガラスの放電容器内に一対の電極が対向配置された、例えば超高圧水銀ランプやキセノン水銀ランプ等の点光源ランプ31と、ランプ31からの光を反射する反射ミラー32と、該反射ミラー32により反射された光を偏光する偏光素子11とが設けられ、ランプ31は一対の電極を結ぶ線である管軸が反射ミラーの光軸と平行になるように配置されている。
上記偏光素子11としては、例えば偏光素子1をランプの配列方向と同じ方向に複数並べた、前記図13に示したワイヤーグリッド偏光素子を用いることができ、隣り合う偏光素子1の端部には境界部を有する。
上記各ランプ31、反射ミラー32は、図7に示すように隣合うランプから出射した光が、被照射面(ワーク上)で重ならないように配置され、各ランプ31から出射する光により、ワーク50の搬送方向に対して直交する方向に延びた光照射領域が形成されている。このため、偏光素子11の境界部の直下の部分の照度は低下する。
光照射ユニット30A,30Bは、図1に示したものと同様、ブロック23を介して支柱24が取り付けられている。光配向膜51が形成されたワーク50は、上記2本の支柱の24間を搬送される。
このように構成された光照射部30A,30Bを、複数、ワーク50の搬送方向に沿って多段に設ける。図7は光照射部を2段に並べた場合を示しているが、3段以上設けても良い。
FIG. 7 shows the configuration of the polarized light irradiation apparatus of the first embodiment of the present invention.
In the example shown in FIG. 1, the light irradiation unit is configured by using the rod-shaped lamp 21 and the bowl-shaped condensing mirror 22. As shown in FIG. 4, the light irradiation units 30A and 30B are configured by using a plurality of lamps 31 and the reflection mirror 32.
In each of the light irradiation units 30A and 30B, a pair of electrodes are disposed opposite to each other in a glass discharge vessel, for example, a point light source lamp 31 such as an ultrahigh pressure mercury lamp or a xenon mercury lamp, and light from the lamp 31 is reflected. The reflecting mirror 32 and the polarizing element 11 that polarizes the light reflected by the reflecting mirror 32 are provided, and the lamp 31 has a tube axis, which is a line connecting a pair of electrodes, parallel to the optical axis of the reflecting mirror. Is arranged.
As the polarizing element 11, for example, the wire grid polarizing element shown in FIG. 13 in which a plurality of polarizing elements 1 are arranged in the same direction as the arrangement direction of the lamps can be used. Has a boundary.
As shown in FIG. 7, the lamps 31 and the reflecting mirrors 32 are arranged so that the light emitted from the adjacent lamps does not overlap on the irradiated surface (on the workpiece). A light irradiation region extending in a direction orthogonal to the 50 conveyance directions is formed. For this reason, the illuminance of the portion immediately below the boundary portion of the polarizing element 11 decreases.
The light irradiation units 30 </ b> A and 30 </ b> B are attached with support columns 24 via blocks 23 as in the case shown in FIG. 1. The work 50 on which the photo-alignment film 51 is formed is conveyed between the two struts 24.
A plurality of the light irradiation units 30 </ b> A and 30 </ b> B configured as described above are provided in multiple stages along the conveyance direction of the workpiece 50. Although FIG. 7 shows the case where the light irradiation units are arranged in two stages, three or more stages may be provided.

上記したように、各光照射部30A,30Bにおいては、偏光素子11の境界部の直下の部分の照度が低下し、照度分布が悪化する。
そこで、本実施例においては前記図1に示したものと同様、各段に配置された各光照射部30A,30Bを、各段の光照射部30A,30Bの偏光素子11の境界部が、他の段の光照射部の偏光素子11の境界部と、光配向膜51の搬送方向に対して互い重ならないように(一直線状に並ばないように)、搬送方向に直交する方向に位置をずらして配置する。
図7の例では、光照射部30Aにはランプ31が4灯設けられているが、光照射部30Bには、光照射部30Aのランプ31の境界部にランプ31が配置されるように、ランプ31が5灯設けられている。
光照射部を3段以上設ける場合も同様に、光照射ユニットの境界部分が、ワークの搬送方向に対して重ならないように(一直線状に並ばないように)ずらして配置する。
このような配置とすることにより、前記図1に示したものと同様、光照射部30A,30Bによる偏光光照射において低い照度で照射された部分は、他の段の光照射部30B,30Aによる偏光光照射において高い照度で照射され、両者の照度分布が積算され、結果として均一なエネルギー分布で偏光光が照射されることになる。
As described above, in each of the light irradiation units 30A and 30B, the illuminance of the portion immediately below the boundary portion of the polarizing element 11 is reduced, and the illuminance distribution is deteriorated.
Therefore, in the present embodiment, as in the case shown in FIG. 1, the light irradiation units 30A and 30B arranged in the respective stages are replaced by the boundary portions of the polarizing elements 11 of the light irradiation units 30A and 30B in the respective stages. Positions in the direction orthogonal to the transport direction so as not to overlap each other with respect to the transport direction of the photo-alignment film 51 and the boundary portion of the polarizing element 11 of the light irradiation unit of the other stage. Shift and arrange.
In the example of FIG. 7, four lamps 31 are provided in the light irradiation unit 30A, but in the light irradiation unit 30B, the lamps 31 are arranged at the boundary of the lamp 31 of the light irradiation unit 30A. Five lamps 31 are provided.
Similarly, in the case where three or more light irradiation units are provided, the boundary portions of the light irradiation units are arranged so as not to overlap with the workpiece conveyance direction (so as not to be aligned in a straight line).
By adopting such an arrangement, as in the case shown in FIG. 1, the portion irradiated with the low illuminance in the polarized light irradiation by the light irradiation units 30A and 30B is caused by the light irradiation units 30B and 30A in the other stages. Irradiated with polarized light is irradiated with high illuminance, and the illuminance distributions of both are integrated, and as a result, polarized light is irradiated with a uniform energy distribution.

図8に本発明の第2の実施例の偏光光照射装置の構成を示す。
本実施例は光照射部をランプと反射ミラーと偏光素子を有する複数の光照射ユニットから構成したものである。
図8に示すように、光照射部40A,40Bは、複数の光照射ユニット41を、ワーク50の搬送方向に対して直交する方向に多連に並べて構成したものであり、各光照射ユニット41内には、ガラスの放電容器内に一対の電極が対向配置された、例えば超高圧水銀ランプやキセノン水銀ランプ等の点光源ランプ42と、ランプからの光を反射する反射ミラー43と、該反射ミラー43により反射された光を偏光する偏光素子12とが設けられ、ランプ42は一対の電極を結ぶ線である管軸が反射ミラー43の光軸と平行になるように配置されている。図8では偏光素子12として、前記したワイヤーグリッド偏光素子を用いた場合を示しているが、後述するように蒸着多層膜を利用したものや、ガラス板をブリュースタ角に配置したものを用いることもできる。
光照射部40A,40Bの光照射ユニット41は、図8に示すように各光照射ユニット41出射した光が、被照射面(ワーク上)で重ならないように配置され、各ランプ31から出射する光により、ワークの搬送方向に対して直交する方向に延びた光照射領域が形成されている。このため、各偏光素子12の境界部(すなわち、隣合う光照射ユニット41の境界部)の直下の部分の照度は低下する。
光照射ユニット41は支持体25により連結され、その両側には、ブロック23が取り付けられ、このブロック23を介して支柱24が取り付けられている。光配向膜51が形成されたワーク50は、上記2本の支柱の24間を搬送される。
FIG. 8 shows the configuration of a polarized light irradiation apparatus according to the second embodiment of the present invention.
In this embodiment, the light irradiating unit is composed of a plurality of light irradiating units each having a lamp, a reflecting mirror, and a polarizing element.
As illustrated in FIG. 8, the light irradiation units 40 </ b> A and 40 </ b> B are configured by arranging a plurality of light irradiation units 41 in a row in a direction orthogonal to the conveyance direction of the workpiece 50. In the glass discharge vessel, a pair of electrodes are opposed to each other, for example, a point light source lamp 42 such as an ultra-high pressure mercury lamp or a xenon mercury lamp, a reflection mirror 43 that reflects light from the lamp, and the reflection A polarizing element 12 that polarizes the light reflected by the mirror 43 is provided, and the lamp 42 is arranged so that a tube axis that is a line connecting a pair of electrodes is parallel to the optical axis of the reflecting mirror 43. Although FIG. 8 shows the case where the above-described wire grid polarizing element is used as the polarizing element 12, one using a vapor deposition multilayer film or one having a glass plate arranged at a Brewster angle as described later is used. You can also.
As shown in FIG. 8, the light irradiation units 41 of the light irradiation units 40 </ b> A and 40 </ b> B are arranged so that the light emitted from each light irradiation unit 41 does not overlap on the irradiated surface (on the workpiece) and is emitted from each lamp 31. The light irradiation area | region extended in the direction orthogonal to the conveyance direction of a workpiece | work is formed with light. For this reason, the illuminance of the portion immediately below the boundary portion of each polarizing element 12 (that is, the boundary portion of the adjacent light irradiation units 41) decreases.
The light irradiation unit 41 is connected by a support 25, and blocks 23 are attached to both sides of the light irradiation unit 41, and a support column 24 is attached via the block 23. The work 50 on which the photo-alignment film 51 is formed is conveyed between the two struts 24.

上記のように構成された光照射部40A,40Bを、複数、ワーク50の搬送方向に沿って多段に設ける。図8は光照射部を2段に並べた場合を示し、以下2段の場合を例にして説明するが、3段以上設けても良い。
上記したように、各光照射部40A,40Bにおいては、偏光素子12の境界部の直下の部分の照度が低下し、照度分布が悪化する。
そこで、本実施例においても前記第1,2の実施例と同様、光照射部40Aと40Bにおいて、各光照射ユニット41の偏光素子12間に存在する境界部分が、ワークの搬送方向に対して重ならないように(一直線状に並ばないように)ずらして配置する。
そのために、図8においては、光照射部40Aの光照射ユニット41は4連であるが、光照射部40Bの光照射ユニット41は5連とし、光照射部40Aの偏光素子12の境界部分に、光照射部40Bの光照射ユニット41が入るようにしている。
光照射部を3段以上設ける場合も同様に、光照射土ニットの境界部分が、ワークの搬送方向に対して重ならないように(一直線状に並ばないように)ずらして配置する。
このような配置とすることにより、前記第1の実施例と同様、光照射部40A,40Bによる偏光光照射において低い照度で照射された部分は、他の段の光照射部40B,40Aによる偏光光照射において高い照度で照射され、両者の照度分布が積算され、結果として均一なエネルギー分布で偏光光が照射されることになる。
A plurality of the light irradiation units 40 </ b> A and 40 </ b> B configured as described above are provided in multiple stages along the conveyance direction of the workpiece 50. FIG. 8 shows a case where the light irradiation units are arranged in two stages, and the case of two stages will be described below as an example, but three or more stages may be provided.
As described above, in each of the light irradiation units 40A and 40B, the illuminance at the portion immediately below the boundary portion of the polarizing element 12 is reduced, and the illuminance distribution is deteriorated.
Therefore, also in the present embodiment, as in the first and second embodiments, in the light irradiation units 40A and 40B, the boundary portion existing between the polarizing elements 12 of each light irradiation unit 41 is in the workpiece conveyance direction. Arrange them so that they do not overlap (do not line up in a straight line).
Therefore, in FIG. 8, the light irradiation unit 41 of the light irradiation unit 40A has four light irradiation units, but the light irradiation unit 41 of the light irradiation unit 40B has five light irradiation units, and is located at the boundary portion of the polarizing element 12 of the light irradiation unit 40A. The light irradiation unit 41 of the light irradiation unit 40B enters.
Similarly, when three or more light irradiation units are provided, the boundary portions of the light irradiation soil knit are arranged so as not to overlap with each other in the workpiece conveyance direction (so as not to be aligned in a straight line).
By adopting such an arrangement, as in the first embodiment, the portions irradiated with low illuminance in the polarized light irradiation by the light irradiation units 40A and 40B are polarized by the light irradiation units 40B and 40A in the other stages. In the light irradiation, irradiation is performed with high illuminance, and the illuminance distributions of both are integrated, and as a result, the polarized light is irradiated with a uniform energy distribution.

図9〜図11は偏光素子として蒸着多層膜を利用した偏光素子、あるいはガラス板をブリュースタ角に配置した偏光素子を用いた場合の光照射装置の構成例を示す図であり、本発明を上記偏光素子を用いたものに適用しても同様の効果を得ることができる。
図9は蒸着多層膜を用いた偏光素子を用いた光照射部40の構成例を示す図である。
図9(a)は、上記光照射部40を構成する各光照射ユニット41の構成例を示し、同図(b)はこのユニットを複数並べて構成した光照射部40の構成例を示す。
なお、図9(b)において各光照射ユニット41は、図9(a)のA方向が紙面手前になるように並べられている。また、同図では光照射ユニット41を2台並べた場合を示しているが、必要に応じて複数台の光照射ユニットを並べて配置することができる。以下の図10、図11についても同様に複数台の光照射ユニットを並べて配置することができる。
図9(a)に示すように、各光照射ユニット41は、ランプ42と該ランプ42の光を集光する反射ミラー43と、反射ミラー43で集光された光を反射する平面鏡44と、インテグレータレンズ45と、コリメータミラー46と、蒸着膜を蒸着させた蒸着膜偏光素子13から構成される。インテグレータレンズ45から出た光はコリメータミラー46により平行光とされ蒸着膜偏光素子13に入射し、偏光光として図示しないワークに入射する。
大型の光配向膜に対して光配向を行うには、上記図9(a)に示した光照射ユニット41を図9(b)に示すように多連に並べて光照射装置40を構成する。この場合同図に示すように、隣り合う光照射ユニット41の光照射領域が光照射面(ワーク上)で重ならないようにすると、偏光素子の境界部の照度は低下する。
そこで、前記図8に示したように、光照射部40を複数、ワーク50の搬送方向に沿って多段に設け、各光照射ユニット41の偏光素子13間に存在する境界部分が、ワークの搬送方向に対して重ならないようにずらして配置する。
これにより、前記したように均一な照度分布で偏光光を照射することができる。
FIG. 9 to FIG. 11 are diagrams showing a configuration example of a light irradiation device when a polarizing element using a vapor deposition multilayer film as a polarizing element or a polarizing element having a glass plate arranged at a Brewster angle is used. The same effect can be obtained even when applied to the polarizing element.
FIG. 9 is a diagram illustrating a configuration example of the light irradiation unit 40 using a polarizing element using a vapor deposition multilayer film.
FIG. 9A shows a configuration example of each light irradiation unit 41 configuring the light irradiation unit 40, and FIG. 9B shows a configuration example of the light irradiation unit 40 configured by arranging a plurality of these units.
In addition, in FIG.9 (b), each light irradiation unit 41 is arranged so that the A direction of Fig.9 (a) may be near this paper surface. Moreover, although the figure shows the case where two light irradiation units 41 are arranged, a plurality of light irradiation units can be arranged side by side as necessary. In the following FIGS. 10 and 11 as well, a plurality of light irradiation units can be arranged side by side.
As shown in FIG. 9A, each light irradiation unit 41 includes a lamp 42, a reflection mirror 43 that collects the light from the lamp 42, a plane mirror 44 that reflects the light collected by the reflection mirror 43, It is comprised from the integrator lens 45, the collimator mirror 46, and the vapor deposition film polarizing element 13 which vapor-deposited the vapor deposition film. The light emitted from the integrator lens 45 is converted into parallel light by the collimator mirror 46 and is incident on the vapor deposition film polarizing element 13 and is incident on a workpiece (not shown) as polarized light.
In order to perform photo-alignment on a large photo-alignment film, the light irradiation unit 40 is configured by arranging the light irradiation units 41 shown in FIG. 9A in multiple rows as shown in FIG. 9B. In this case, as shown in the figure, if the light irradiation regions of the adjacent light irradiation units 41 are not overlapped on the light irradiation surface (on the workpiece), the illuminance at the boundary portion of the polarizing element decreases.
Therefore, as shown in FIG. 8, a plurality of light irradiation units 40 are provided in multiple stages along the conveyance direction of the workpiece 50, and the boundary portion existing between the polarizing elements 13 of each light irradiation unit 41 is the conveyance of the workpiece. Arrange them so that they do not overlap with the direction.
Thereby, as described above, the polarized light can be irradiated with a uniform illuminance distribution.

図10は偏光素子としてガラス板をブリュースタ角傾けて配置した偏光素子14(パイル偏光素子という)を用いた場合の光照射部40の構成例を示す図であり、各光照射ユニット41の構成は図9(a)において蒸着膜偏光素子13をパイル偏光素子14としたものと同じである。
この場合も、隣り合う光照射ユニット41の光照射領域が光照射面(ワーク上)で重ならないようにすると、偏光素子14の境界部の照度は低下する。
そこで、前記図8に示したように、光照射部40を複数、ワーク50の搬送方向に沿って多段に設け、各光照射ユニット41の偏光素子13間に存在する境界部分が、ワークの搬送方向に対して重ならないように(一直線状に並ばないように)ずらして配置する。
これにより、前記したように均一な照度分布で偏光光を照射することができる。
FIG. 10 is a diagram showing a configuration example of the light irradiation unit 40 when a polarizing element 14 (referred to as a pile polarizing element) in which a glass plate is disposed with a Brewster angle inclined as a polarizing element. 9 is the same as that shown in FIG. 9A in which the vapor deposition film polarizing element 13 is a pile polarizing element 14.
Also in this case, if the light irradiation regions of the adjacent light irradiation units 41 are not overlapped on the light irradiation surface (on the workpiece), the illuminance at the boundary portion of the polarizing element 14 decreases.
Therefore, as shown in FIG. 8, a plurality of light irradiation units 40 are provided in multiple stages along the conveyance direction of the workpiece 50, and the boundary portion existing between the polarizing elements 13 of each light irradiation unit 41 is the conveyance of the workpiece. Arrange them so as not to overlap with each other (so as not to line up in a straight line).
Thereby, as described above, the polarized light can be irradiated with a uniform illuminance distribution.

図11は、図9においてコリメータミラー46に換えて平面鏡47を用いた場合の構成を示す。図11(a)は図9(a)と同様、光照射ユニット41の構成例を示し、図11(b)は光照射ユニット41を多連に並べて構成した光照射部の構成例を示しており、前記図9と同一のものには同一の符号を付している。
この場合には、偏光素子12に平行光ではなく広がる光が入射する。この場合も同図に示すように隣り合う光照射ユニット41の光照射領域が光照射面(ワーク上)で重ならないようにすると、偏光素子の境界部の照度は低下するが、前記図8に示したように光照射部40を複数、ワーク50の搬送方向に沿って多段に設け、偏光素子13間に存在する境界部分が、ワークの搬送方向に対して重ならないようにずらして配置することで、前記したように均一なエネルギー分布で偏光光を照射することができる。
なお、前記特許文献3に示されるように、隣合う偏光光照射ユニットからでる偏光光の照射領域がワーク上で重なるようにすることもできるが、この場合はその重なった部分か明るくなり、同様に照度分布が悪化する。したがってこの場合も、図8に示すように光照射部40を複数、ワーク50の搬送方向に沿って多段に設け、偏光素子13間に存在する境界部分が、ワークの搬送方向に対して重ならないように(一直線状に並ばないように)ずらして配置することで、均一なエネルギー分布で偏光光を照射することができる。
FIG. 11 shows a configuration when a plane mirror 47 is used in place of the collimator mirror 46 in FIG. FIG. 11A shows a configuration example of the light irradiation unit 41, as in FIG. 9A, and FIG. 11B shows a configuration example of a light irradiation unit configured by arranging the light irradiation units 41 in multiple rows. The same components as those in FIG. 9 are denoted by the same reference numerals.
In this case, not the parallel light but the spreading light is incident on the polarizing element 12. Also in this case, as shown in FIG. 8, if the light irradiation areas of the adjacent light irradiation units 41 do not overlap on the light irradiation surface (on the workpiece), the illuminance at the boundary portion of the polarizing element is reduced, but in FIG. As shown, a plurality of light irradiation units 40 are provided in multiple stages along the conveyance direction of the work 50, and the boundary portions existing between the polarizing elements 13 are arranged so as not to overlap with the conveyance direction of the work. As described above, the polarized light can be irradiated with a uniform energy distribution.
In addition, as shown in the said patent document 3, although the irradiation area | region of the polarized light which comes out from an adjacent polarized light irradiation unit can also be made to overlap on a workpiece | work, in this case, the overlapped part will become bright, The illuminance distribution gets worse. Therefore, also in this case, as shown in FIG. 8, a plurality of light irradiation units 40 are provided in multiple stages along the conveyance direction of the workpiece 50, and the boundary portion existing between the polarizing elements 13 does not overlap the conveyance direction of the workpiece. In such a manner (so as not to line up in a straight line), the polarized light can be irradiated with a uniform energy distribution.

1 ワイヤーグリッド偏光素子
3 遮光板
10,10’ 偏光素子ユニット
11 偏光素子
12 偏光素子
13 偏光素子(多層蒸着膜を利用したもの)
14 偏光素子(ガラス板をブリュースタ角で配置したもの)
20A,20B 光照射部
21 棒状のランプ
22 樋状集光鏡
23 ブロック
24 支柱
50 ワーク
51 光配向膜
30A,30B 光照射部
31 ランプ
32 反射ミラー
40A,40B 光照射部
41 光照射ユニット
42 ランプ
43 反射ミラー
DESCRIPTION OF SYMBOLS 1 Wire grid polarizing element 3 Light-shielding plate 10,10 'Polarizing element unit 11 Polarizing element 12 Polarizing element 13 Polarizing element (The thing using a multilayer vapor deposition film)
14 Polarizing element (glass plate arranged at Brewster angle)
20A, 20B Light irradiation part 21 Bar-shaped lamp 22 Gutter-shaped condensing mirror 23 Block 24 Prop 50 Work 51 Photo-alignment film 30A, 30B Light irradiation part 31 Lamp 32 Reflection mirror 40A, 40B Light irradiation part 41 Light irradiation unit 42 Lamp 43 Reflection mirror

Claims (1)

連続または間歇的に直線状に搬送される光配向膜に対し、光配向膜の搬送方向に沿って光照射部が多段に配置され、多段に配置された各光照射部から上記光配向膜に偏光光を照射して光配向する偏光光照射装置であって、
上記多段に配置された各光照射部は、光配向膜の搬送方向に対して直交する方向に多連に並べられた光照射ユニット群から構成され、
上記各光照射ユニットは、複数の光照射ユニットをガラスの放電容器内に一対の電極が対向配置されたランプと、ランプからの光を反射する反射ミラーと、該反射ミラーにより反射された光を偏光する偏光手段とを備え、上記ランプは上記一対の電極を結ぶ線である管軸が上記反射ミラーの光軸と平行になるように配置されたものであり、
各光照射部を構成する隣り合う光照射ユニットに設けられた各偏光手段の間には境界部が生じており、
各段に配置された光照射部は、各段の光照射部の上記偏光手段の境界部が、他の段の光照射部の偏光手段の境界部と光配向膜の搬送方向に対して互いに重ならないように、光配向膜の搬送方向に直交する方向に位置をずらして配置されている
ことを特徴とする光配向用偏光光照射装置。
With respect to the photo-alignment film that is continuously or intermittently linearly transported, the light irradiation sections are arranged in multiple stages along the direction of transport of the photo-alignment film, and from the light irradiation sections arranged in multiple stages to the photo-alignment film A polarized light irradiation apparatus that irradiates polarized light and optically aligns,
Each of the light irradiation units arranged in multiple stages is composed of a group of light irradiation units arranged in a row in a direction orthogonal to the transport direction of the photo-alignment film,
Each light irradiation unit includes a plurality of light irradiation units, a lamp having a pair of electrodes opposed to each other in a glass discharge container, a reflection mirror that reflects light from the lamp, and light reflected by the reflection mirror. The lamp is arranged such that a tube axis that is a line connecting the pair of electrodes is parallel to the optical axis of the reflection mirror,
There is a boundary between the polarizing means provided in the adjacent light irradiation units constituting each light irradiation unit,
The light irradiation unit arranged in each stage is such that the boundary of the polarization means of the light irradiation part of each stage is mutually relative to the boundary of the polarization means of the light irradiation part of the other stage and the transport direction of the photo-alignment film. A polarized light irradiation apparatus for photo-alignment, wherein the position is shifted in a direction orthogonal to the transport direction of the photo-alignment film so as not to overlap.
JP2011155510A 2011-07-14 2011-07-14 Polarized light irradiation device for photo-alignment Active JP5077465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011155510A JP5077465B2 (en) 2011-07-14 2011-07-14 Polarized light irradiation device for photo-alignment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011155510A JP5077465B2 (en) 2011-07-14 2011-07-14 Polarized light irradiation device for photo-alignment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005308117A Division JP4815995B2 (en) 2005-10-24 2005-10-24 Polarized light irradiation device for photo-alignment

Publications (2)

Publication Number Publication Date
JP2011215639A JP2011215639A (en) 2011-10-27
JP5077465B2 true JP5077465B2 (en) 2012-11-21

Family

ID=44945339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011155510A Active JP5077465B2 (en) 2011-07-14 2011-07-14 Polarized light irradiation device for photo-alignment

Country Status (1)

Country Link
JP (1) JP5077465B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5887981B2 (en) * 2012-02-15 2016-03-16 岩崎電気株式会社 Ultraviolet irradiation device and illuminance adjustment method
WO2014064742A1 (en) * 2012-10-26 2014-05-01 株式会社有沢製作所 Exposure apparatus, mask, and optical film
JP6136675B2 (en) * 2013-07-10 2017-05-31 大日本印刷株式会社 Polarizer
WO2015108075A1 (en) * 2014-01-15 2015-07-23 大日本印刷株式会社 Polarizer, polarizer manufacturing method, optical alignment device and mounting method of polarizer
JP6766370B2 (en) * 2015-02-18 2020-10-14 大日本印刷株式会社 Polarizer, polarizer holder, and photoaligner
JP6500543B2 (en) * 2015-03-24 2019-04-17 大日本印刷株式会社 Polarizer, light alignment device, and light alignment method
JP6660144B2 (en) * 2015-10-23 2020-03-04 株式会社ブイ・テクノロジー Light irradiation device
JP7415545B2 (en) * 2019-12-24 2024-01-17 ウシオ電機株式会社 Polarized light irradiation device and polarized light irradiation method
JP2024007933A (en) 2022-07-07 2024-01-19 ウシオ電機株式会社 Light irradiation device, light irradiation method, and method for manufacturing component

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350858A (en) * 2001-05-28 2002-12-04 Sony Corp Light orientation device
JP2006323060A (en) * 2005-05-18 2006-11-30 Ushio Inc Polarized-light irradiating device

Also Published As

Publication number Publication date
JP2011215639A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
JP4815995B2 (en) Polarized light irradiation device for photo-alignment
JP5077465B2 (en) Polarized light irradiation device for photo-alignment
JP4506412B2 (en) Polarizing element unit and polarized light irradiation device
TWI516847B (en) Light directed with polarized light irradiation device
JP5177266B2 (en) Polarizing element unit, light irradiation device using the polarizing element unit, and transmittance setting method of polarizing element unit
JP2006133498A (en) Polarized light irradiation device for optical orientation
JP5200271B1 (en) Polarized light irradiation device
JP6025909B2 (en) Mask and optical filter manufacturing apparatus including the same
JP6308816B2 (en) Polarized light irradiation device for photo-alignment
JP2017032957A (en) Light irradiation device and light irradiation method
TWI521258B (en) Light alignment illumination device
TWI606287B (en) Ultraviolet illumination device
JP2015106015A (en) Polarized light irradiation device, polarized light irradiation method and polarized light irradiation program
JP6500543B2 (en) Polarizer, light alignment device, and light alignment method
JP6534567B2 (en) Light irradiation device
JP2013152433A (en) Polarization light irradiation apparatus
JP5825392B2 (en) Polarized light irradiation device
JP2015057639A (en) Polarizing element unit and polarized light irradiation device using polarizing element unit
JP2021144112A (en) Polarized light irradiation device
KR101294890B1 (en) Apparatus for manufacturing optical filter
JP2014123754A (en) Method for manufacturing semiconductor device
TW201445225A (en) Polarized light irradiation equipment for light orientation
JP2016076721A (en) Laser irradiation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5077465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250