JP2017032957A - Light irradiation device and light irradiation method - Google Patents

Light irradiation device and light irradiation method Download PDF

Info

Publication number
JP2017032957A
JP2017032957A JP2015156117A JP2015156117A JP2017032957A JP 2017032957 A JP2017032957 A JP 2017032957A JP 2015156117 A JP2015156117 A JP 2015156117A JP 2015156117 A JP2015156117 A JP 2015156117A JP 2017032957 A JP2017032957 A JP 2017032957A
Authority
JP
Japan
Prior art keywords
light
light irradiation
workpiece
polarized
plate member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015156117A
Other languages
Japanese (ja)
Inventor
一正 石井
Kazumasa Ishii
一正 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2015156117A priority Critical patent/JP2017032957A/en
Priority to TW105106336A priority patent/TW201721259A/en
Priority to CN201610289141.9A priority patent/CN106444101A/en
Priority to CN201620396471.3U priority patent/CN205620651U/en
Priority to KR1020160059404A priority patent/KR20170017707A/en
Publication of JP2017032957A publication Critical patent/JP2017032957A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8848Polarisation of light

Abstract

PROBLEM TO BE SOLVED: To provide a light irradiation device and a light irradiation method which can form a plurality of regions different in an alignment direction on one workpiece by one-time optical alignment processing.SOLUTION: A light irradiation device (polarized light irradiation device) 100 includes: a light irradiation part 10A which is installed on a conveyance path of a workpiece W, which polarizes light from a light source by first polarizers, and which emits first polarized light from a light emission port; and a light irradiation part 10C which is installed in parallel with the light irradiation part 10A on the conveyance path, which polarizes the light from the light source by second polarizers having a transmission axis with a direction different from one of the first polarizers, and which emits second polarized light from a light emission port. The polarized light irradiation device 100 also includes: a light shielding plate 17 which is arranged on the light emission side of the light emission port of the light irradiation part 10A, and which defines an on-workpiece region A1 to be optically aligned by the first polarized light; and a light shielding plate 17 which is arranged on the light emission side of the light emission port of the light irradiation part 10C, and which defines an on-workpiece region B1 to be optically aligned by the second polarized light.SELECTED DRAWING: Figure 5

Description

本発明は、ワークに偏光光を照射する光照射装置および光照射方法に関する。   The present invention relates to a light irradiation apparatus and a light irradiation method for irradiating a workpiece with polarized light.

近年、液晶パネルをはじめとする液晶表示素子の配向膜や、視野角補償フィルムの配向層などの配向処理に関し、所定の波長の偏光光を照射して配向を行う、光配向と呼ばれる技術が採用されている。
例えば、特許文献1には、光配向に用いる光照射装置が開示されている。この光照射装置は、光照射領域の幅に相当する長さを有する線状の光源と、当該光源からの光を偏光する偏光素子とを備え、光源の長手方向に対して直交する方向に搬送されるワークに対して偏光光を照射することで光配向処理を行う。
In recent years, a technique called photo-alignment has been adopted in which alignment is performed by irradiating polarized light of a predetermined wavelength with respect to alignment processing of alignment films for liquid crystal display elements such as liquid crystal panels and alignment layers for viewing angle compensation films. Has been.
For example, Patent Document 1 discloses a light irradiation apparatus used for photo-alignment. The light irradiation apparatus includes a linear light source having a length corresponding to the width of the light irradiation region and a polarizing element that polarizes light from the light source, and is conveyed in a direction orthogonal to the longitudinal direction of the light source. A photo-alignment process is performed by irradiating polarized light to the workpiece.

特開2014−174352号公報JP 2014-174352 A

ところで、光配向処理は、テレビ画面用の液晶パネルのような大型の基板のみならず、スマートフォン用など中小型の液晶ディスプレイにも展開されてきている。そのため、大型の液晶ディスプレイと中小型の液晶ディスプレイなど、異なるサイズ、異なる用途のディスプレイを効率的に製造したいという要望がある。
このような要望に応えるためには、1枚の基板上に配向方向が異なる複数の配向領域を形成し、この基板をマザー基板として複数種類の基板を作成する必要がある。しかしながら、従来の光照射装置は、1枚の基板の全面に対し、一定方向の偏光軸を有する偏光光を照射することしかできない。そのため、1度の光配向処理で1枚の基板上に配向方向が異なる複数の配向領域を形成することはできない。
そこで、本発明は、1度の光配向処理で、1枚のワーク上に配向方向が異なる複数の領域を形成することができる光照射装置および光照射方法を提供することを課題としている。
By the way, the photo-alignment process has been developed not only for a large substrate such as a liquid crystal panel for a television screen but also for a small and medium liquid crystal display such as a smartphone. Therefore, there is a demand for efficiently producing displays of different sizes and different uses such as a large liquid crystal display and a small and medium liquid crystal display.
In order to meet such a demand, it is necessary to form a plurality of alignment regions having different alignment directions on a single substrate and to create a plurality of types of substrates using this substrate as a mother substrate. However, the conventional light irradiation apparatus can only irradiate the entire surface of one substrate with polarized light having a polarization axis in a certain direction. Therefore, a plurality of alignment regions having different alignment directions cannot be formed on a single substrate by one photo-alignment treatment.
Therefore, an object of the present invention is to provide a light irradiation apparatus and a light irradiation method capable of forming a plurality of regions having different alignment directions on a single workpiece by one photo-alignment treatment.

上記課題を解決するために、本発明に係る光照射装置の一態様は、光配向膜が形成されたワークに偏光光を照射して光配向を行う光照射装置であって、前記ワークを所定の搬送路に沿って搬送するステージと、前記ワークの搬送路上に設置され、光源からの光を第一の偏光子によって偏光し、光出射口から第一の偏光光を照射する第一の光照射部と、前記搬送路上において前記第一の光照射部に並設され、光源からの光を前記第一の偏光子とは異なる方向の透過軸を有する第二の偏光子によって偏光し、光出射口から第二の偏光光を照射する第二の光照射部と、前記第一の光照射部の光出射口の光出射側に配置され、前記第一の偏光光により光配向されるべき前記ワーク上の第一の領域を規定する第一のプレート部材と、前記第二の光照射部の光出射口の光出射側に配置され、前記第二の偏光光により光配向されるべき前記ワーク上の第二の領域を規定する第二のプレート部材と、を備える。   In order to solve the above-described problems, one aspect of a light irradiation apparatus according to the present invention is a light irradiation apparatus that performs light alignment by irradiating polarized light onto a work on which a photo-alignment film is formed. A stage that is transported along a transport path of the first workpiece, and a first light that is installed on the transport path of the workpiece, polarizes light from the light source by the first polarizer, and irradiates the first polarized light from the light exit port. An irradiation unit and a second light polarizer arranged in parallel with the first light irradiation unit on the transport path, and polarized by a second polarizer having a transmission axis in a direction different from that of the first polarizer, A second light irradiating unit that irradiates the second polarized light from the output port and a light output side of the light output port of the first light irradiating unit, and should be photo-aligned by the first polarized light A first plate member defining a first region on the workpiece; and the second light irradiation unit. It is disposed on the light emitting side of the light exit opening, and a second plate member defining a second region on the workpiece to be photo-alignment by the second polarized light.

上記の構成により、第一のプレート部材によって、第一の光照射部から出射される第一の偏光光が照射されるワーク上の領域を規定することができ、第二のプレート部材によって、第二の光照射部から出射される第二の偏光光が照射されるワーク上の領域を規定することができる。これにより、偏光軸がそれぞれ異なる複数の偏光光を1枚のワークに照射領域を分けて照射することができ、1度の光配向処理で、1枚のワーク上に配向方向が異なる複数の配向領域を形成することができる。したがって、異なるサイズ、異なる用途の基板を効率的に製造することができ、生産性を向上させることができる。
また、上記の光照射装置において、前記第一のプレート部材および前記第二のプレート部材は、前記光配向膜の光配向に寄与する波長の偏光光を遮光する光学フィルタにより構成されていてもよい。このように、第一のプレート部材および第二のプレート部材を光学フィルタにより構成すれば、光源からの熱による第一のプレート部材および第二のプレート部材の変形や劣化を抑制することができる。
With the above configuration, the first plate member can define the region on the workpiece irradiated with the first polarized light emitted from the first light irradiation unit, and the second plate member It is possible to define a region on the workpiece irradiated with the second polarized light emitted from the second light irradiation unit. Thereby, it is possible to irradiate a single work with a plurality of polarized lights having different polarization axes, and to irradiate a single work with a plurality of orientations having different orientation directions on a single work. Regions can be formed. Therefore, substrates of different sizes and different applications can be efficiently manufactured, and productivity can be improved.
In the light irradiation apparatus, the first plate member and the second plate member may be configured by an optical filter that blocks polarized light having a wavelength that contributes to the light alignment of the light alignment film. . As described above, when the first plate member and the second plate member are configured by the optical filter, deformation and deterioration of the first plate member and the second plate member due to heat from the light source can be suppressed.

さらに、上記の光照射装置において、前記第一のプレート部材および前記第二のプレート部材は、前記光出射口から出射される偏光光の照射可能領域内における所定の使用位置と、前記照射可能領域から退避した退避位置との間を移動可能であってもよい。このように、第一のプレート部材および第二のプレート部材を移動可能に構成することで、ワーク上に形成される配向領域の位置およびサイズを調整可能となる。したがって、様々なサイズの基板の製造に対応することができる。また、例えば、第一のプレート部材を退避位置に退避させ、第二の光照射部からの偏光光の照射を停止すれば、ワークの全面に対して一様に第一の偏光光を照射することもできる。したがって、1枚のワークの全面に対して同一方向の偏光軸を有する偏光光を照射する光配向処理と、1枚のワークを複数の配向領域に分け、配向領域ごとにそれぞれ異なる方向の偏光軸を有する偏光光を照射する光配向処理とを切り替えて実施することも可能となる。   Furthermore, in the above-described light irradiation device, the first plate member and the second plate member have a predetermined use position in the irradiation possible region of the polarized light emitted from the light emission port, and the irradiation possible region. It may be possible to move between the retracted position and the retracted position. As described above, by configuring the first plate member and the second plate member to be movable, the position and size of the alignment region formed on the workpiece can be adjusted. Therefore, it can respond to manufacture of various size substrates. Further, for example, if the first plate member is retracted to the retracted position and irradiation of the polarized light from the second light irradiation unit is stopped, the first polarized light is uniformly applied to the entire surface of the workpiece. You can also. Therefore, a photo-alignment process in which the entire surface of one workpiece is irradiated with polarized light having a polarization axis in the same direction, and one workpiece is divided into a plurality of alignment regions, and polarization axes in different directions for each alignment region. It is also possible to switch between the photo-alignment process of irradiating polarized light having

また、上記の光照射装置において、前記第一のプレート部材および前記第二のプレート部材は、水平方向にスライド移動可能であってもよい。この場合、装置の高さ方向(垂直方向)の省スペース化が図れる。
さらにまた、上記の光照射装置において、前記第一のプレート部材および前記第二のプレート部材は、それぞれ複数枚のサブプレート部材により構成され、前記複数枚のサブプレート部材は、前記使用位置において、前記サブプレート部材同士の端部をオーバーラップさせて一列に連なるように配置されていてもよい。この場合、オーバーラップ量に応じてワーク上に形成される配向領域のサイズを調整可能となる。また、退避位置では複数枚のサブプレート部材を重ねて配置しておくことができるので、退避位置のスペースが小さくてすむ。
In the light irradiation device, the first plate member and the second plate member may be slidable in the horizontal direction. In this case, space saving in the height direction (vertical direction) of the apparatus can be achieved.
Furthermore, in the light irradiation device, the first plate member and the second plate member are each configured by a plurality of subplate members, and the plurality of subplate members are in the use position, You may arrange | position so that the edge part of the said subplate members may overlap and it may continue in a row. In this case, the size of the alignment region formed on the workpiece can be adjusted according to the overlap amount. In addition, since a plurality of sub-plate members can be stacked in the retracted position, the space at the retracted position can be reduced.

また、上記の光照射装置において、前記第一の領域は、前記ワーク上の前記搬送路に直交する方向における一方の側に設定され、前記第二の領域は、前記ワーク上の前記搬送路に直交する方向における他方の側に設定され、前記第一のプレート部材の前記一方の側の端部の位置、および前記第二のプレート部材の前記他方の側の端部の位置は、それぞれ前記第一の領域の前記他方の側の端部と前記第二の領域の前記一方の側の端部との間に設定されていてもよい。このように第一のプレート部材および第二のプレート部材の端部位置を設定することで、1枚のワーク上を搬送路に直交する方向に分離して複数の配向領域を適切に形成することができる。   In the light irradiation apparatus, the first area is set on one side in a direction orthogonal to the conveyance path on the workpiece, and the second area is on the conveyance path on the workpiece. The position of the one end of the first plate member and the position of the other end of the second plate member are set on the other side in the orthogonal direction, respectively. You may set between the edge part of the said other side of one area | region, and the edge part of the said one side of said 2nd area | region. In this way, by setting the end positions of the first plate member and the second plate member, a plurality of orientation regions are appropriately formed by separating one work piece in a direction perpendicular to the conveyance path. Can do.

さらに、上記の光照射装置において、前記第一のプレート部材および前記第二のプレート部材の端部にそれぞれ設けられ、当該端部よりも下方に位置する下端面を有する先端部材をさらに備えてもよい。この場合、先端部材を設けない場合と比較して、第一のプレート部材や第二のプレート部材の直下の領域への光の回り込みを低減することができる。したがって、ワーク上に適切に配向領域を形成することができる。
また、上記の光照射装置において、前記先端部材は、前記下端面の高さ方向位置を調整可能であってもよい。この場合、上記の光の回り込み量を調整することが可能となり、より適切にワーク上に配向領域を形成することができる。
Furthermore, the light irradiation device may further include a tip member provided at each of the end portions of the first plate member and the second plate member and having a lower end surface positioned below the end portion. Good. In this case, it is possible to reduce the wraparound of light into the region immediately below the first plate member and the second plate member as compared with the case where no tip member is provided. Therefore, it is possible to appropriately form the alignment region on the workpiece.
In the light irradiation device, the tip member may be capable of adjusting a height direction position of the lower end surface. In this case, it becomes possible to adjust the amount of wraparound of the light, and an alignment region can be formed on the workpiece more appropriately.

また、本発明に係る光照射方法の一態様は、光配向膜が形成されたワークに偏光光を照射して光配向を行う光照射方法であって、前記ワークの搬送路上に設置され、光源からの光を第一の偏光子によって偏光し、光出射口から第一の偏光光を照射する第一の光照射部の前記光出射口の光出射側に、第一のプレート部材を配置して、前記第一の偏光光により光配向されるべき前記ワーク上の第一の領域を規定するステップと、前記搬送路上において前記第一の光照射部に並設され、光源からの光を前記第一の偏光子とは異なる方向の透過軸を有する第二の偏光子によって偏光し、光出射口から第二の偏光光を照射する第二の光照射部の前記光出射口の光出射側に、第二のプレート部材を配置して、前記第二の偏光光により光配向されるべき前記ワーク上の第二の領域を規定するステップと、前記ワークをステージによって前記搬送路に沿って搬送し、前記ワーク上の前記第一の領域に前記第一の偏光光を照射し、前記ワーク上の前記第二の領域に前記第二の偏光光を照射するステップと、を含む。
上記の構成により、偏光軸がそれぞれ異なる複数の偏光光を1枚のワークに照射領域を分けて照射することができ、1度の光配向処理で、1枚のワーク上に配向方向が異なる複数の配向領域を形成することができる。したがって、異なるサイズ、異なる用途の基板を効率的に製造することができ、生産性を向上させることができる。
Another aspect of the light irradiation method according to the present invention is a light irradiation method for performing light alignment by irradiating polarized light onto a work on which a photo-alignment film is formed, the light irradiation method being installed on the work transport path. The first plate member is disposed on the light exit side of the light exit port of the first light irradiator that polarizes the light from the first light irradiator and irradiates the first polarized light from the light exit port. A step of defining a first region on the workpiece to be photo-aligned by the first polarized light, and arranged in parallel with the first light irradiation unit on the transport path, The light exit side of the light exit of the second light irradiator that is polarized by the second polarizer having a transmission axis in a direction different from that of the first polarizer and irradiates the second polarized light from the light exit The second plate member is disposed, and the second polarized light is to be photo-aligned by the second polarized light. Defining a second region on the workpiece, conveying the workpiece along the conveyance path by a stage, irradiating the first polarized light on the first region on the workpiece, Irradiating the second region with the second polarized light.
With the above configuration, a plurality of polarized light beams having different polarization axes can be irradiated onto a single work by dividing an irradiation region, and a plurality of different alignment directions can be formed on a single work by a single photo-alignment process. The alignment region can be formed. Therefore, substrates of different sizes and different applications can be efficiently manufactured, and productivity can be improved.

本発明によれば、偏光軸がそれぞれ異なる複数の偏光光を1枚のワークに照射領域を分けて照射することができるので、1度の光配向処理で、1枚のワーク上に配向方向が異なる複数の配向領域を形成することができる。したがって、異なるサイズ、異なる用途の基板を効率的に製造することができ、生産性を向上させることができる。   According to the present invention, it is possible to irradiate a single workpiece with a plurality of polarized light beams having different polarization axes, so that the orientation direction can be adjusted on one workpiece by one photo-alignment treatment. A plurality of different alignment regions can be formed. Therefore, substrates of different sizes and different applications can be efficiently manufactured, and productivity can be improved.

本実施形態の偏光光照射装置を示す概略構成図である。It is a schematic block diagram which shows the polarized light irradiation apparatus of this embodiment. 遮光部の概略を説明するための図である。It is a figure for demonstrating the outline of a light-shielding part. 遮光部の構成例を示す図である。It is a figure which shows the structural example of a light-shielding part. 遮光部の具体的な構成例を示す図である。It is a figure which shows the specific structural example of a light-shielding part. 遮光部の動作を示す図である。It is a figure which shows operation | movement of a light-shielding part. 遮光部の位置とワーク上の配向領域との関係を示す図である。It is a figure which shows the relationship between the position of a light-shielding part, and the orientation area | region on a workpiece | work. 先端遮蔽板の一例を示す図である。It is a figure which shows an example of a front-end | tip shielding board.

以下、本発明の実施の形態を図面に基づいて説明する。
(第一の実施形態)
図1は、本実施形態の偏光光照射装置100を示す概略構成図である。
偏光光照射装置100は、光照射部10A、10Bおよび10Cと、ワークWを搬送する搬送部20とを備える。ここで、ワークWは、例えば光配向膜が形成された矩形状の基板である。偏光光照射装置100は、光照射部10A〜10Cの少なくとも1つから偏光光(偏光した光)を照射しながら、搬送部20によってワークWを直線移動させ、ワークWの光配向膜に上記偏光光を照射して光配向処理をする。
本実施形態では、偏光光照射装置100は、1枚のワークWの全面に対して同一方向の偏光軸を有する偏光光を照射する第一の光配向処理と、1枚のワークW上を複数の配向領域に分け、配向領域ごとにそれぞれ異なる方向の偏光軸を有する偏光光を照射する第二の光配向処理とを切り替えて実施可能とする。なお、本実施形態では、第一の光配向処理の方が第二の光配向処理よりも実施頻度が高いものとして説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a schematic configuration diagram showing a polarized light irradiation apparatus 100 of the present embodiment.
The polarized light irradiation apparatus 100 includes light irradiation units 10 </ b> A, 10 </ b> B, and 10 </ b> C and a transport unit 20 that transports the workpiece W. Here, the workpiece W is, for example, a rectangular substrate on which a photo-alignment film is formed. The polarized light irradiation apparatus 100 linearly moves the workpiece W by the transport unit 20 while irradiating polarized light (polarized light) from at least one of the light irradiation units 10A to 10C, and the polarized light is applied to the photo-alignment film of the workpiece W. Light alignment is performed by irradiating light.
In the present embodiment, the polarized light irradiation apparatus 100 includes a first optical alignment process that irradiates the entire surface of a single workpiece W with polarized light having a polarization axis in the same direction, and a plurality of workpieces on the single workpiece W. It is possible to switch to a second optical alignment process that irradiates polarized light having a polarization axis in a different direction for each alignment region. In the present embodiment, the first photo-alignment process is described as being performed more frequently than the second photo-alignment process.

光照射部10A〜10Cは、線状の光源であるランプ11と、ランプ11の光を反射するミラー12とをそれぞれ備える。また、光照射部10A〜10Cは、その光出射側に配置された偏光子ユニット13をそれぞれ備える。さらに、光出射部10A〜10Cは、ランプ11、ミラー12および偏光子ユニット13を収容するランプハウス14をそれぞれ備える。
光照射部10A〜10Cは、ランプ11の長手方向をワークWの搬送路が延在する方向である搬送方向(X方向)に直交する方向(Y方向)に一致させた状態で、ワークWの搬送方向(X方向)に沿って並設されている。なお、図1では、灯具(光照射部)を3灯としているが、2灯以上であればよい。
Each of the light irradiation units 10A to 10C includes a lamp 11 that is a linear light source and a mirror 12 that reflects light from the lamp 11. In addition, each of the light irradiation units 10A to 10C includes a polarizer unit 13 disposed on the light emission side. Further, each of the light emitting units 10A to 10C includes a lamp house 14 that houses the lamp 11, the mirror 12, and the polarizer unit 13.
The light irradiation units 10A to 10C are configured so that the longitudinal direction of the lamp 11 coincides with the direction (Y direction) orthogonal to the conveyance direction (X direction) that is the direction in which the conveyance path of the workpiece W extends. They are juxtaposed along the transport direction (X direction). In addition, in FIG. 1, although the lamp (light irradiation part) is set to 3 lamps, it should just be 2 or more lamps.

以下、光照射部10A〜10Cの具体的構成について説明する。
ランプ11は長尺状のいわゆるロングアーク放電ランプであり、その発光部が、ワークWの搬送方向に直交する方向の幅に対応する長さを有する。このランプ11は、例えば、高圧水銀ランプや、水銀に他の金属とハロゲンとを加えたメタルハライドランプ、水銀以外の金属とハロゲンとが封入されたメタルハライドランプ等の放電ランプであり、封入発光種に応じて波長200nm〜400nmの紫外光を放射する。
光配向膜の材料としては、波長254nmの光で配向されるもの、波長313nmの光で配向されるもの、波長365nmの光で配向されるものなどが知られており、光源の種類は必要とされる波長に応じて適宜選択する。
なお、光源としては、紫外光を放射するLEDやLDを直線状に並べて配置した線状光源を用いることもできる。その場合、LEDやLDを並べる方向がランプの長手方向に相当する。
Hereinafter, a specific configuration of the light irradiation units 10A to 10C will be described.
The lamp 11 is a long so-called long arc discharge lamp, and the light emitting portion thereof has a length corresponding to the width in the direction orthogonal to the conveying direction of the workpiece W. The lamp 11 is, for example, a discharge lamp such as a high-pressure mercury lamp, a metal halide lamp in which other metal and halogen are added to mercury, or a metal halide lamp in which a metal other than mercury and halogen is enclosed. Accordingly, ultraviolet light having a wavelength of 200 nm to 400 nm is emitted.
As materials for the photo-alignment film, those that are aligned by light having a wavelength of 254 nm, those that are aligned by light having a wavelength of 313 nm, and materials that are aligned by light having a wavelength of 365 nm are known. It selects suitably according to the wavelength to be performed.
As the light source, a linear light source in which LEDs or LDs that emit ultraviolet light are arranged in a straight line can be used. In that case, the direction in which the LEDs and LDs are arranged corresponds to the longitudinal direction of the lamp.

ミラー12は、ランプ11からの放射光を所定の方向に反射するものであり、その断面が楕円形または放物線状の樋状集光鏡である。ミラー12は、その長手方向がランプ11の長手方向と一致するように配置されている。
ランプハウス14は、その底面に、ランプ11からの放射光およびミラー12による反射光が通過する光出射口を有する。偏光子ユニット13は、ランプハウス14の光出射口に取り付けられ、当該光出射口を通過する光を偏光する。
偏光子ユニット13は、複数の偏光子をY方向、本実施形態においてはランプ11の長手方向に沿って並んで配置した構成を有する。これら複数の偏光子は、例えばフレーム等により支持されている。偏光子は、例えば、ワイヤーグリッド型偏光素子であり、偏光子の個数は、偏光光を照射する領域の大きさに合わせて適宜選択する。なお、1つの偏光子ユニット13を構成する各偏光子は、それぞれ透過軸が同一方向を向くように配置されている。本実施形態では、光照射部10Aが有する各偏光子の透過軸の方向と、光照射部10Bが有する各偏光子の透過軸の方向とを同一方向とする。そして、光照射部10Cが有する各偏光子の透過軸の方向を、光照射部10Aおよび10Cがそれぞれ有する偏光子の透過軸の方向とは異なる方向に設定する。
The mirror 12 reflects the radiated light from the lamp 11 in a predetermined direction, and is a bowl-shaped condensing mirror whose section is elliptical or parabolic. The mirror 12 is arranged such that its longitudinal direction coincides with the longitudinal direction of the lamp 11.
The lamp house 14 has, on the bottom surface thereof, a light exit port through which radiated light from the lamp 11 and reflected light from the mirror 12 pass. The polarizer unit 13 is attached to the light exit of the lamp house 14 and polarizes light passing through the light exit.
The polarizer unit 13 has a configuration in which a plurality of polarizers are arranged side by side along the Y direction, in the present embodiment, along the longitudinal direction of the lamp 11. The plurality of polarizers are supported by, for example, a frame. The polarizer is, for example, a wire grid type polarizing element, and the number of polarizers is appropriately selected according to the size of the region where the polarized light is irradiated. Each polarizer constituting one polarizer unit 13 is arranged such that the transmission axis faces the same direction. In the present embodiment, the direction of the transmission axis of each polarizer included in the light irradiation unit 10A is the same as the direction of the transmission axis of each polarizer included in the light irradiation unit 10B. Then, the direction of the transmission axis of each polarizer included in the light irradiation unit 10C is set to a direction different from the direction of the transmission axis of the polarizer included in each of the light irradiation units 10A and 10C.

すなわち、光照射部10Aおよび光照射部10Bは、ランプ11からの光を第一の偏光子によって偏光し、光出射口から第一の偏光光を照射する。また、光照射部10Cは、ランプ11からの光を第一の偏光光とは異なる方向の透過軸を有する第二の偏光子によって偏光し、光出射口から第一の偏光光とは偏光軸の方向が異なる第二の偏光光を照射する。なお、光照射部10Aが第一の光照射部に対応し、光照射部10Cが第二の光照射部に対応している。
また、X方向に並設された3つの光照射部10A〜10Cのうち、X方向両端に配置された光照射部10Aおよび10Cは、それぞれ偏光子ユニット13の光出射口の光出射側に、偏光子ユニット13により偏光された偏光光のうち、所定の波長の偏光光を選択的に遮光可能な遮光部16(図2参照)を備える。ここで、所定の波長とは、ワークWの光配向膜の材料が感度を持つ波長である。
That is, the light irradiation unit 10A and the light irradiation unit 10B polarize the light from the lamp 11 by the first polarizer and irradiate the first polarized light from the light exit. In addition, the light irradiation unit 10C polarizes the light from the lamp 11 with a second polarizer having a transmission axis in a direction different from that of the first polarized light, and the first polarized light from the light exit has a polarization axis. The second polarized light having a different direction is irradiated. The light irradiation unit 10A corresponds to the first light irradiation unit, and the light irradiation unit 10C corresponds to the second light irradiation unit.
In addition, among the three light irradiation units 10A to 10C arranged in parallel in the X direction, the light irradiation units 10A and 10C arranged at both ends in the X direction are respectively on the light emission side of the light emission port of the polarizer unit 13. A light shielding unit 16 (see FIG. 2) capable of selectively shielding polarized light having a predetermined wavelength out of the polarized light polarized by the polarizer unit 13 is provided. Here, the predetermined wavelength is a wavelength at which the material of the photo-alignment film of the workpiece W has sensitivity.

図2は、光照射部10Aの遮光部16の概略を説明するための図である。遮光部16は、光照射部10Aによる偏光光の照射可能領域150A内の所定の使用位置に配置され、照射可能領域150Aのうち、一部の領域をワークWへの偏光光の照射を許容する照射許容領域151Aとし、残りの領域を遮光領域152Aとする。ここで、遮光領域152Aとは、偏光子ユニット13から出射される偏光光のうち、少なくとも光配向に寄与する波長の光が遮光された領域である。本実施形態では、遮光部16の使用位置の直下が遮光領域152Aとなる。
なお、図2においては、光照射部10Aの遮光部16のみ図示しているが、光照射部10Cの遮光部16についても同様である。すなわち、光照射部10Cの遮光部16は、光照射部10Cによる偏光光の照射可能領域(150C)のうち、一部の領域をワークWへの偏光光の照射を許容する照射許容領域(151C)とし、残りの領域を遮光領域(152C)とする。光照射部10Aにおける照射許容領域151Aと光照射部10Cにおける照射許容領域151Cとは、Y方向において重ならないように設定される。遮光部16の詳細については後述する。
FIG. 2 is a diagram for explaining the outline of the light shielding unit 16 of the light irradiation unit 10A. The light shielding unit 16 is disposed at a predetermined use position in the irradiation possible region 150A of the polarized light by the light irradiation unit 10A, and allows a part of the irradiation possible region 150A to be irradiated with the polarized light on the workpiece W. Let it be an irradiation allowable region 151A, and the remaining region is a light shielding region 152A. Here, the light shielding region 152A is a region in which at least light having a wavelength that contributes to optical alignment is shielded from the polarized light emitted from the polarizer unit 13. In the present embodiment, the light shielding region 152A is directly below the use position of the light shielding unit 16.
In FIG. 2, only the light shielding unit 16 of the light irradiation unit 10A is illustrated, but the same applies to the light shielding unit 16 of the light irradiation unit 10C. That is, the light shielding unit 16 of the light irradiation unit 10C has an irradiation allowable region (151C) that allows irradiation of polarized light to the workpiece W in a part of the region (150C) that can be irradiated with polarized light by the light irradiation unit 10C. ) And the remaining area as a light shielding area (152C). The irradiation allowable region 151A in the light irradiation unit 10A and the irradiation allowable region 151C in the light irradiation unit 10C are set so as not to overlap in the Y direction. Details of the light shielding unit 16 will be described later.

搬送部20は、ワークWが載置されるステージ21を備える。ステージ21は、真空吸着等の方法によりワークWを吸着保持可能な平板状のステージである。なお、本実施形態では、ステージ21およびワークWを矩形状としているが、これに限定するものではなく、任意の形状とすることができる。また、ワークWを平板状のステージで吸着保持する構成に限定されるものではなく、複数のピンによってワークWを吸着保持する構成であってもよい。
また、搬送部20は、ステージ21をX方向に移動するためのX方向駆動機構22を備える。X方向駆動機構22は、例えばリニアモータ駆動機構であり、X方向に沿って延びる2本のガイド22Aと、2本のガイド22Aの間に配置されたマグネット板22Bと、コイルモジュール22Cとを備える。2本のガイド22Aとマグネット板22Bとは、不図示の設置台の上面に配置されている。マグネット板22Bは、隣り合う磁極の極性を交互に変えてX方向に等間隔で並べられた複数のマグネットにより構成されている。また、コイルモジュール22Cは、ステージ21の裏面の中央部に、マグネット板22Bと対向するように取り付けられている。なお、X方向駆動機構22としては、例えばボールねじを用いた機構を採用することもできる。
The transport unit 20 includes a stage 21 on which the workpiece W is placed. The stage 21 is a flat plate stage that can hold the work W by suction using a method such as vacuum suction. In the present embodiment, the stage 21 and the workpiece W are rectangular, but the present invention is not limited to this and may be any shape. Further, the configuration is not limited to the configuration in which the workpiece W is sucked and held by a flat plate stage, and may be a configuration in which the workpiece W is sucked and held by a plurality of pins.
In addition, the transport unit 20 includes an X-direction drive mechanism 22 for moving the stage 21 in the X direction. The X direction drive mechanism 22 is, for example, a linear motor drive mechanism, and includes two guides 22A extending along the X direction, a magnet plate 22B disposed between the two guides 22A, and a coil module 22C. . The two guides 22 </ b> A and the magnet plate 22 </ b> B are disposed on the upper surface of an installation base (not shown). The magnet plate 22B is composed of a plurality of magnets arranged at equal intervals in the X direction by alternately changing the polarities of adjacent magnetic poles. The coil module 22C is attached to the center of the back surface of the stage 21 so as to face the magnet plate 22B. As the X-direction drive mechanism 22, for example, a mechanism using a ball screw can be adopted.

このように、ステージ21は、搬送軸であるガイド22Aに沿ってX方向に往復移動可能に構成されている。なお、X方向駆動機構22の構成は、図1に示す構成に限定されるものではなく、ステージ21をX方向に移動可能な構成であれば任意の構成を採用することができる。
さらに、搬送部20は、ステージ21をθ方向(Z軸回り)に回転可能なθ移動機構24を備える。ステージ21は、固定ベース25上にθ方向に回転可能に取り付けられており、θ移動機構24は、ステージ21のθ方向の回転角度を調整可能である。
ステージ21の移動経路は、光照射部10A、10Bおよび10Cの真下を通るように設計されている。搬送部20は、ワークWを光照射部10A、10Bおよび10Cによる偏光光の照射領域に搬送し、且つその照射領域を通過させるように構成されている。さらに、搬送部20は、ワークWが照射領域を完全に通過した後、当該ワークWを折り返し、再び当該照射領域を通過させるように構成されている。
本実施形態では、偏光光照射装置100は、第一の光配向処理を行う場合、光照射部10Aおよび10Bを作動状態とし、光照射部10Cを非作動状態とする。また、光照射部10Aの遮光部16を非作動状態とし、遮光領域152Aを形成しないようにする。これにより、光照射部10Aおよび10BからワークWの全面に対して第一の偏光光を照射し、光配向処理することができる。
As described above, the stage 21 is configured to be capable of reciprocating in the X direction along the guide 22 </ b> A that is a conveyance axis. The configuration of the X-direction drive mechanism 22 is not limited to the configuration shown in FIG. 1, and any configuration can be adopted as long as the stage 21 can be moved in the X direction.
Further, the transport unit 20 includes a θ moving mechanism 24 that can rotate the stage 21 in the θ direction (around the Z axis). The stage 21 is mounted on the fixed base 25 so as to be rotatable in the θ direction, and the θ moving mechanism 24 can adjust the rotation angle of the stage 21 in the θ direction.
The moving path of the stage 21 is designed to pass directly under the light irradiation units 10A, 10B, and 10C. The conveyance unit 20 is configured to convey the workpiece W to the irradiation region of the polarized light by the light irradiation units 10A, 10B, and 10C and pass the irradiation region. Furthermore, after the workpiece W has completely passed through the irradiation area, the transport unit 20 is configured to return the workpiece W and pass the irradiation area again.
In the present embodiment, when performing the first photo-alignment process, the polarized light irradiation device 100 sets the light irradiation units 10A and 10B to the operating state and sets the light irradiation unit 10C to the non-operating state. Further, the light shielding unit 16 of the light irradiation unit 10A is deactivated so that the light shielding region 152A is not formed. Thereby, the first polarized light can be applied to the entire surface of the workpiece W from the light irradiation units 10A and 10B, and the optical alignment process can be performed.

一方、偏光光照射装置100は、第二の光配向処理を行う場合、光照射部10Aおよび10Cを作動状態とし、光照射部10Bを非作動状態とする。また、光照射部10Aおよび10Cの遮光部16を共に作動状態とし、光照射部10Aおよび10Cにそれぞれ遮光領域152Aおよび152Cを形成する。これにより、ワークW上に第一の偏光光のみが照射されて光配向処理される第一の配向領域と、第二の偏光光のみが照射されて光配向処理される第二の配向領域とを形成することができる。上述したように、光照射部10Aにおける照射許容領域151Aと光照射部10Cにおける照射許容領域151Cとは、Y方向において重ならないように設定される。したがって、ワークW上には、第一の配向領域と第二の配向領域とがY方向に分割されて形成される。   On the other hand, when performing the second photo-alignment process, the polarized light irradiation device 100 puts the light irradiation units 10A and 10C into an operating state and puts the light irradiation unit 10B into a non-operational state. Further, the light shielding units 16 of the light irradiation units 10A and 10C are both activated, and light shielding regions 152A and 152C are formed in the light irradiation units 10A and 10C, respectively. Thus, the first alignment region that is irradiated with only the first polarized light and subjected to the photo-alignment process on the workpiece W, and the second alignment region that is irradiated with only the second polarized light and subjected to the photo-alignment process Can be formed. As described above, the irradiation allowable region 151A in the light irradiation unit 10A and the irradiation allowable region 151C in the light irradiation unit 10C are set so as not to overlap in the Y direction. Therefore, the first alignment region and the second alignment region are formed on the workpiece W by being divided in the Y direction.

ステージ21の基本動作は、以下のとおりである。
ステージ21は、X方向における照射領域の一方の側に設定されたワーク搭載位置において、ワークWの交換処理およびアライメント処理が行われる。アライメント完了後、ステージ21は、θ回転機構24によって回転移動される。これにより、ワークWの向きが偏光光の偏光軸に対して所定の向きになる。
その後、ステージ21は、照射領域へ向けてX方向に往路移動を開始する。そして、照射領域を通過した所定の折り返し位置に到達すると、同時に復路移動を開始し、ワーク搭載位置まで引き返す。このワーク搭載位置では、再びワークWの交換処理およびアライメント処理が行われ、アライメント完了後、ステージ21は、再び照射領域へ向けて往路移動を開始する。この動作を繰り返す。図1の搬送部20の各部は、上記のステージ動作を実現するように不図示の制御部によって制御される。なお、ワークWの光配向膜に対する光配向処理は、往路移動と復路移動の双方で実施されてもよい。
The basic operation of the stage 21 is as follows.
The stage 21 is subjected to workpiece W replacement processing and alignment processing at a workpiece mounting position set on one side of the irradiation region in the X direction. After the alignment is completed, the stage 21 is rotated by the θ rotation mechanism 24. Thereby, the direction of the workpiece W becomes a predetermined direction with respect to the polarization axis of the polarized light.
Thereafter, the stage 21 starts moving in the X direction toward the irradiation region. Then, when a predetermined turn-back position that has passed through the irradiation area is reached, the backward movement is started at the same time, and the work is returned to the work mounting position. At the workpiece mounting position, the workpiece W replacement processing and alignment processing are performed again, and after the alignment is completed, the stage 21 starts moving forward toward the irradiation region again. This operation is repeated. Each part of the conveyance part 20 of FIG. 1 is controlled by the control part not shown so that said stage operation | movement may be implement | achieved. In addition, the optical alignment process with respect to the optical alignment film of the workpiece | work W may be implemented by both an outward movement and a backward movement.

以下、光照射部10Aおよび10Cがそれぞれ備える遮光部16の構成について、具体的に説明する。
図3は、光照射部10A〜10Cを光出射側から見たときの遮光部16の構成を示す図である。この図3に示すように、遮光部16は、遮光板17と遮光板駆動部18とを備える。遮光板17は、光照射部10Aおよび10Cの偏光子ユニット13よりも下方でワークWよりも上方に配置されている。遮光板17は、例えば光学フィルタなどのプレート状の部材である。すなわち、遮光により図2に示すような遮光領域152Aを形成するためには、遮光板17には面積の広い形態が要求される。また、遮光部16の高さ方向(Z方向)の省スペース化や軽量化のためには、遮光板17には厚さの薄い形態が要求される。そのため、遮光板17には、厚さが薄く、面積の広い形態であるプレート部材を用いる。また、遮光板17は、基板表面に真空蒸着法やスパッタリング法などにより機能膜(反射膜や吸収膜)が形成された構成を有する。基板は、例えば石英ガラスである。また、機能膜は、例えば、5酸化タンタル(Ta25)や酸化ケイ素(SiO2)などの無機材料からなる誘電体多層膜や、クロム(Cr)などからなる蒸着膜である。
Hereinafter, the configuration of the light shielding unit 16 provided in each of the light irradiation units 10A and 10C will be specifically described.
FIG. 3 is a diagram illustrating a configuration of the light shielding unit 16 when the light irradiation units 10A to 10C are viewed from the light emitting side. As shown in FIG. 3, the light shielding unit 16 includes a light shielding plate 17 and a light shielding plate driving unit 18. The light shielding plate 17 is disposed below the polarizer unit 13 of the light irradiation units 10A and 10C and above the workpiece W. The light shielding plate 17 is a plate-like member such as an optical filter. That is, in order to form the light shielding region 152A as shown in FIG. 2 by light shielding, the light shielding plate 17 is required to have a wide area. Further, in order to save the space in the height direction (Z direction) and reduce the weight of the light shielding portion 16, the light shielding plate 17 is required to have a thin form. Therefore, a plate member having a thin shape and a wide area is used for the light shielding plate 17. The light shielding plate 17 has a configuration in which a functional film (a reflective film or an absorption film) is formed on the surface of the substrate by a vacuum deposition method, a sputtering method, or the like. The substrate is, for example, quartz glass. The functional film is, for example, a dielectric multilayer film made of an inorganic material such as tantalum pentoxide (Ta 2 O 5 ) or silicon oxide (SiO 2 ), or a vapor deposition film made of chromium (Cr).

すなわち、遮光板17は、透光性材料からなる基板に波長選択用の薄膜をコーティングした構成を有する。具体的には、遮光板17は、254nmや313nmといった光配向膜材料が感度を有する波長(ワークWの光配向に寄与する波長)の光を遮光し、それ以外の波長の光を透過する波長カットフィルタとする。遮光板17は、上記のコーティング膜が形成された面を上方(ランプ11側)に向けて配設される。なお、遮光板17は、材料そのものに不純物をドープした波長選択的カットフィルタ、例えば、紫外光を吸収するドーピング材がドープされた石英ガラスであってもよい。   That is, the light shielding plate 17 has a configuration in which a substrate made of a translucent material is coated with a thin film for wavelength selection. Specifically, the light-shielding plate 17 shields light having a wavelength (wavelength contributing to the photo-alignment of the workpiece W) with which the photo-alignment film material has sensitivity such as 254 nm and 313 nm, and transmits light having other wavelengths. A cut filter is used. The light shielding plate 17 is disposed with the surface on which the coating film is formed facing upward (the lamp 11 side). The light shielding plate 17 may be a wavelength selective cut filter in which the material itself is doped with impurities, for example, quartz glass doped with a doping material that absorbs ultraviolet light.

遮光板駆動部18は、例えばモータ駆動機構であり、遮光板17をY方向にスライド移動可能に構成されている。具体的には、遮光板17は、照射領域15内において対応する光照射部10Aまたは10Cから照射される偏光光のうち上述した所定の波長の光を遮断してワークWに照射されることを阻止する遮光位置(使用位置)と、照射領域15から退避してワークWへの偏光光の照射を許容する退避位置161との間を移動可能である。なお、図3は、遮光板17が退避位置161に配置されている状態を示している。
この図3に示すように、光照射部10Aの遮光板17の退避位置161と、光照射部10Cの遮光板17の退避位置161とは、Y方向において照射領域15を挟んで対向する位置に設定されている。つまり、退避位置161から照射領域15へ向かう方向を前進方向、照射領域15から退避位置161へ戻る方向を後退方向とすると、光照射部10Aの遮光板17の前進方向と光照射部10Cの遮光板17の前進方向とは、Y方向において逆向きとなる。
The light shielding plate driving unit 18 is, for example, a motor driving mechanism, and is configured to be able to slide the light shielding plate 17 in the Y direction. Specifically, the light shielding plate 17 blocks the light of the predetermined wavelength described above from the polarized light irradiated from the corresponding light irradiation unit 10A or 10C in the irradiation region 15 and irradiates the workpiece W with the light. It is possible to move between a blocking light blocking position (use position) and a retracting position 161 that retracts from the irradiation region 15 and allows the polarized light to be irradiated onto the workpiece W. FIG. 3 shows a state where the light shielding plate 17 is disposed at the retreat position 161.
As shown in FIG. 3, the retracted position 161 of the light shielding plate 17 of the light irradiating unit 10A and the retracted position 161 of the light shielding plate 17 of the light irradiating unit 10C are opposed to each other across the irradiation region 15 in the Y direction. Is set. That is, if the direction from the retracted position 161 toward the irradiation region 15 is the forward direction, and the direction from the irradiation region 15 back to the retracted position 161 is the backward direction, the forward direction of the light shielding plate 17 of the light irradiation unit 10A and the light shielding of the light irradiation unit 10C. The forward direction of the plate 17 is opposite in the Y direction.

図4は、遮光板17の具体的構成を示す斜視図である。なお、光照射部10Aの遮光板17と光照射部10Cの遮光板17とは同様の構成を有するため、図4においては、光照射部10Aの遮光板17のみを図示し、以下、光照射部10Aの遮光板17の構成について説明する。
遮光板17は、上述したようにプレート部材により構成されているが、当該プレート部材は複数のサブプレート部材の集合によって構成してもよい。具体的には、図4に示すように、同一形状の3枚のサブプレート部材である遮光板17a〜17cにより構成することができる。これら遮光板17a〜17cは、それぞれ個別にY方向に移動可能であり、一番下(ワークW側)に位置する遮光板17aから遮光板17b、遮光板17cの順に、退避位置161から前進方向に一列に連なるように引き出された形で遮光位置162に配置される。また、この遮光位置162において、遮光板17a〜17cは、前段の遮光板の後端部と後段の遮光板の前端部とがオーバーラップするように配置される。これにより、遮光板(サブプレート部材)同士のつなぎ目部分から光が漏れてワークWに照射されるのを防止し、適切に図2に示す遮光領域152Aを形成することができる。
FIG. 4 is a perspective view showing a specific configuration of the light shielding plate 17. Since the light shielding plate 17 of the light irradiation unit 10A and the light shielding plate 17 of the light irradiation unit 10C have the same configuration, only the light shielding plate 17 of the light irradiation unit 10A is illustrated in FIG. The configuration of the light shielding plate 17 of the portion 10A will be described.
As described above, the light shielding plate 17 is composed of a plate member. However, the plate member may be composed of a set of a plurality of sub-plate members. Specifically, as shown in FIG. 4, the light shielding plates 17 a to 17 c that are three sub-plate members having the same shape can be used. These light shielding plates 17a to 17c are individually movable in the Y direction. The light shielding plate 17a located at the bottom (work W side), the light shielding plate 17b, and the light shielding plate 17c are sequentially moved from the retracted position 161 in the forward direction. Are arranged at the light shielding position 162 so as to be drawn in a row. Further, at the light shielding position 162, the light shielding plates 17a to 17c are arranged so that the rear end portion of the front light shielding plate overlaps the front end portion of the rear light shielding plate. Thereby, it is possible to prevent light from leaking from the joint portion between the light shielding plates (sub-plate members) and irradiating the workpiece W, and to appropriately form the light shielding region 152A shown in FIG.

遮光板17a〜17cは、図5(a)に示すように、退避位置161では完全に重なった状態で配置される。すなわち、退避位置161では、遮光板同士のオーバーラップ量は最大となる。そして、この状態から、図5(b)に示すように上記オーバーラップ量を徐々に小さくしていくことで、遮光板17a〜17cは遮光位置162に配置され、その直下に図2に示す遮光領域152Aまたは152Cが形成される。上記オーバーラップ量は遮光領域152Aや152CのY方向の長さに応じて調整可能であり、図5(c)に示すようにオーバーラップ量が最小であるとき、遮光領域152Aや152CのY方向の長さは最大となる。
なお、本実施形態では、遮光板17a〜17cが同一形状を有する場合について説明するが、遮光板17a〜17cの形状は適宜設定可能である。また、遮光板の枚数も3枚に限定されるものではない。
As illustrated in FIG. 5A, the light shielding plates 17 a to 17 c are arranged in a state of being completely overlapped at the retracted position 161. That is, at the retracted position 161, the amount of overlap between the light shielding plates is maximized. Then, from this state, the light shielding plates 17a to 17c are arranged at the light shielding position 162 by gradually reducing the overlap amount as shown in FIG. 5B, and the light shielding plate shown in FIG. Region 152A or 152C is formed. The overlap amount can be adjusted according to the length of the light shielding regions 152A and 152C in the Y direction. When the overlap amount is minimum as shown in FIG. 5C, the light shielding regions 152A and 152C have the Y direction. The length of is the maximum.
In addition, although this embodiment demonstrates the case where the light-shielding plates 17a-17c have the same shape, the shape of the light-shielding plates 17a-17c can be set suitably. Further, the number of light shielding plates is not limited to three.

第二の光配向処理を行う際には、光照射部10Aの遮光部16と光照射部10Cの遮光部16とを共に作動状態とし、図6に示すように、光照射部10Aの遮光板17aの前進方向における先端位置と光照射部10Cの遮光板17aの前進方向における先端位置とを、Y方向において一致させる。このときの遮光板17aの先端位置Paは、光照射部10Aから出射される第一の偏光光のみが照射されるべきワークW上の領域(第一の領域)A1と、光照射部10Cから出射される第二の偏光光のみが照射されるべきワークW上の領域(第二の領域)B1との間の領域C内に設定する。本実施形態では、先端位置Paは、例えば領域A1と領域B1との間の隙間のY方向における中央位置に設定する。   When performing the second photo-alignment process, the light shielding unit 16 of the light irradiating unit 10A and the light shielding unit 16 of the light irradiating unit 10C are both activated, and as shown in FIG. 6, the light shielding plate of the light irradiating unit 10A. The tip position in the forward direction of 17a and the tip position in the forward direction of the light shielding plate 17a of the light irradiation unit 10C are matched in the Y direction. The tip position Pa of the light shielding plate 17a at this time is from the region (first region) A1 on the workpiece W to be irradiated with only the first polarized light emitted from the light irradiation unit 10A and the light irradiation unit 10C. It is set in a region C between the region (second region) B1 on the workpiece W to be irradiated with only the second polarized light emitted. In the present embodiment, the tip position Pa is set, for example, at the center position in the Y direction of the gap between the region A1 and the region B1.

この場合、光照射部10Aの遮光板17a〜17cの直下を通過するワークWには、第一の偏光光のうち光配向に寄与する波長の光は照射されない。同様に、光照射部10Cの遮光板17a〜17cの直下を通過するワークWには、第二の偏光光のうち光配向に寄与する波長の光は照射されない。したがって、光照射部10Aおよび10Cを通過した光配向処理後のワークW上には、領域A1を含む第一の配向領域A2がY方向における先端位置Paの一方の側(図6の右側)に形成され、領域B1を含む第二の配向領域B2が先端位置Paの他方の側(図6の左側)に形成される。
なお、光照射部10Aの遮光板17aの前進方向における先端位置と光照射部10Cの遮光板17aの前進方向における先端位置とは、Y方向において必ずしも一致させる必要はない。上記の各先端位置は、領域A1と領域B1との間であれば適宜設定可能である。但し、遮光板17の直下に形成される遮光領域152Aへの光の回り込みを考慮すると、光照射部10Aの遮光板17aの前進方向における先端位置(図6の右側端部位置)は、領域A1の当該前進方向における後端位置(図6の左側端部位置)に近いほどよい。光照射部10Cの遮光板17aの前進方向における先端位置についても同様である。
In this case, the work W that passes immediately below the light shielding plates 17a to 17c of the light irradiation unit 10A is not irradiated with light having a wavelength that contributes to photoalignment among the first polarized light. Similarly, light having a wavelength that contributes to the photo-alignment of the second polarized light is not irradiated on the workpiece W that passes immediately below the light shielding plates 17a to 17c of the light irradiation unit 10C. Therefore, the first alignment region A2 including the region A1 is on one side (the right side in FIG. 6) of the tip position Pa in the Y direction on the workpiece W after the photo-alignment process that has passed through the light irradiation units 10A and 10C. The second alignment region B2 formed and including the region B1 is formed on the other side (left side in FIG. 6) of the tip position Pa.
Note that the front end position of the light irradiation unit 10A in the forward direction of the light shielding plate 17a and the front end position of the light irradiation unit 10C in the forward direction of the light shielding plate 17a do not necessarily have to coincide with each other in the Y direction. Each of the tip positions can be set as appropriate as long as it is between the area A1 and the area B1. However, in consideration of the light sneaking into the light shielding region 152A formed immediately below the light shielding plate 17, the tip position in the forward direction of the light shielding plate 17a of the light irradiation unit 10A (the right end portion position in FIG. 6) is the region A1. The closer to the rear end position (the left end position in FIG. 6) in the forward direction, the better. The same applies to the tip position in the forward direction of the light shielding plate 17a of the light irradiation unit 10C.

さらに、図7に示すように、遮光板17aの前進方向端部に先端部材17dを設けてもよい。なお、図7では、光照射部10Aの遮光板17aに取り付ける先端部材17dのみを図示しているが、光照射部10Cの遮光板17aにも同様の先端部材17dを取り付けることができる。
先端部材17dは、光照射部10Aの光出射口から出射される光の遮光領域152Aへの回り込みを低減するための部材であり、図7に示すように、遮光板17aの前進方向端部よりも下方に位置する下端面を有する。また、先端部材17dは、例えば遮光板17aと同等の材質によって構成する。また、先端部材17dは、例えば、ねじ17eによって、遮光板17aに対して高さ方向(Z方向)位置を調整可能に取り付けられている。そして、先端部材17dは、遮光板17aよりもワークWに接近し、且つワークWから高さ方向に所定距離離間する位置に設置される。
Further, as shown in FIG. 7, a tip member 17d may be provided at the forward end of the light shielding plate 17a. In FIG. 7, only the tip member 17d attached to the light shielding plate 17a of the light irradiation unit 10A is illustrated, but a similar tip member 17d can also be attached to the light shielding plate 17a of the light irradiation unit 10C.
The tip member 17d is a member for reducing the wraparound of the light emitted from the light exit of the light irradiator 10A to the light shielding region 152A, as shown in FIG. 7, from the end in the forward direction of the light shielding plate 17a. Also has a lower end surface located below. The tip member 17d is made of a material equivalent to the light shielding plate 17a, for example. In addition, the tip member 17d is attached to the light shielding plate 17a, for example, by a screw 17e so that the position in the height direction (Z direction) can be adjusted. The tip member 17d is installed at a position that is closer to the workpiece W than the light shielding plate 17a and is separated from the workpiece W by a predetermined distance in the height direction.

図7の二点鎖線で示すように、上記の光の回り込みが発生している場合、照射許容領域151Aと遮光領域152Aとの境界位置は、先端部材17dのY方向における先端位置よりも後退方向側に設定される。この遮光領域152A側への光の回り込み量は、ワークWの上面と先端部材17dの下面との間のギャップGに応じて決まる。したがって、ギャップGは、遮光領域152Aへの光の回り込み量の許容値や、先端部材17dとワークWとの接触可能性等を考慮して設定する。
なお、先端部材17dの形状は、図7に示す形状に限定されない。先端部材17dのX方向から見た形状は、例えば、L字形状であってもよいし、I字形状であってもよい。また、先端部材17dは、一方の端部が遮光板17aの前進方向端部と同等、もしくは前進方向端部よりも前進方向側に突出して水平配置される平板状の部材であってもよい。この場合、平板状の部材を、遮光板17aの下面に高さ調整用のスペーサを介して取り付けてもよい。
As shown by the two-dot chain line in FIG. 7, when the above-described wraparound of light occurs, the boundary position between the irradiation allowable region 151A and the light shielding region 152A is a backward direction from the tip position in the Y direction of the tip member 17d. Set to the side. The amount of light sneaking to the light shielding region 152A is determined according to the gap G between the upper surface of the workpiece W and the lower surface of the tip member 17d. Therefore, the gap G is set in consideration of the allowable value of the amount of light sneaking into the light shielding region 152A, the possibility of contact between the tip member 17d and the workpiece W, and the like.
The shape of the tip member 17d is not limited to the shape shown in FIG. The shape of the tip member 17d viewed from the X direction may be, for example, an L shape or an I shape. Further, the tip member 17d may be a flat plate member whose one end portion is equal to the forward end portion of the light shielding plate 17a or is horizontally disposed so as to protrude from the forward direction end portion toward the forward direction side. In this case, a flat plate member may be attached to the lower surface of the light shielding plate 17a via a spacer for height adjustment.

ところで、近年、光配向処理はテレビ画面用の大型の液晶ディスプレイのみならず、スマートフォン用など中小型の液晶ディスプレイにも展開されてきており、様々な種類、寸法の液晶ディスプレイの生産が期待されている。このような様々な種類の基板を効率良く処理するためには、1枚の多面取りマザー基板から種類の異なる複数のセル基板を切り出す必要がある。
本実施形態における偏光光照射装置100は、上述した構成により、一度の光照射処理によって、1枚のワークW上に配向方向の異なる複数の配向領域を形成することができる。したがって、複数種類の基板を効率良く生産することができ、コストメリットが得られる。また、個別のオーダーにも柔軟に対応することができる。
By the way, in recent years, photo-alignment processing has been developed not only for large-sized liquid crystal displays for TV screens but also for small and medium-sized liquid crystal displays for smartphones, and production of liquid crystal displays of various types and dimensions is expected. Yes. In order to efficiently process such various types of substrates, it is necessary to cut out a plurality of different types of cell substrates from one multi-sided mother substrate.
With the configuration described above, the polarized light irradiation apparatus 100 according to the present embodiment can form a plurality of alignment regions having different alignment directions on a single workpiece W by a single light irradiation process. Therefore, it is possible to efficiently produce a plurality of types of substrates and to obtain cost merit. In addition, it is possible to respond flexibly to individual orders.

また、本実施形態の偏光光照射装置100は、3つの光照射部10A〜10Cを備え、光照射部10Aの光出射口の光出射側と光照射部10Cの光出射口の光出射側とにそれぞれ遮光部16を設ける。そして、この遮光部16によって、光照射部10Aから出射される第一の偏光光の照射許容領域151Aと、光照射部10Cから出射される第二の偏光光の照射許容領域151Cとを規定する。すなわち、遮光部16は、ワークW上の第一の偏光光によって光配向されるべき領域A1と、第二の偏光光によって光配向されるべき領域B1とを既定することができる。したがって、一度の光照射処理によって、ワークW上に異なる複数の配向領域を適切に形成することができる。   Moreover, the polarized light irradiation device 100 of this embodiment includes three light irradiation units 10A to 10C, and includes a light emission side of the light emission port of the light irradiation unit 10A and a light emission side of the light emission port of the light irradiation unit 10C. Each is provided with a light shielding portion 16. The light shielding unit 16 defines an irradiation allowable region 151A for the first polarized light emitted from the light irradiation unit 10A and an irradiation allowable region 151C for the second polarized light emitted from the light irradiation unit 10C. . That is, the light shielding unit 16 can define a region A1 that is to be photo-oriented by the first polarized light on the workpiece W and a region B1 that is to be photo-oriented by the second polarized light. Therefore, a plurality of different alignment regions can be appropriately formed on the workpiece W by a single light irradiation process.

また、第一の光配向処理を行う際に使用する光照射部10Aおよび10Bは、X方向において基板交換位置に近い側に配置される。基板交換位置から光配向処理が行われる照射領域15までの距離が短いほど、タクトタイムは短縮されるため、実施頻度が高い第一の光配向処理において使用される光照射部10Aおよび10Bを基板交換位置に近い側に配置することで、生産性を向上させることができる。上記実施形態では、第一の光配向処理の実施頻度の方が第二の光配向処理の実施頻度よりも高い場合について説明したが、第二の光配向処理の実施頻度の方が第一の光配向処理の実施頻度よりも高い場合には、基板交換位置に近い側に光照射部10Aおよび10Cを配置してもよい。
なお、第一の光配向処理を実施しない場合や、光配向処理に必要な照射光量や光配向処理時間などの条件により第一の光配向処理を1つの光照射部10Aのみを使用して実施可能である場合には、遮光部16を有しない光照射部10Bは設置しなくてもよい。
In addition, the light irradiation units 10A and 10B used when performing the first photo-alignment process are arranged on the side close to the substrate replacement position in the X direction. The shorter the distance from the substrate exchange position to the irradiation region 15 where the photo-alignment process is performed, the shorter the tact time, so the light irradiation units 10A and 10B used in the first photo-alignment process with high frequency of implementation are used as the substrate. Productivity can be improved by arrange | positioning at the side near an exchange position. In the above embodiment, the case where the frequency of the first photo-alignment process is higher than the frequency of the second photo-alignment process has been described. However, the frequency of the second photo-alignment process is the first. If the photo-alignment processing frequency is higher, the light irradiation units 10A and 10C may be arranged on the side closer to the substrate replacement position.
When the first photo-alignment process is not performed, or the first photo-alignment process is performed using only one light irradiation unit 10A according to conditions such as the amount of irradiation light and the photo-alignment process time required for the photo-alignment process. If possible, the light irradiation unit 10B that does not include the light shielding unit 16 may not be installed.

また、遮光部16は、プレート部材である遮光板17と、遮光板17をY方向にスライド移動させる遮光板駆動部18とを含んで構成する。これにより、ワークW上をY方向に複数領域に分割し、これらの領域をそれぞれ配向方向が異なる配向領域として設定することができる。さらに、遮光板17のY方向における配置位置の自由度を向上させることができるので、ワークW上に形成する配向領域を比較的自由に設定することができ、様々なサイズの液晶配向領域に対応することができる。
また、遮光板17を水平方向にスライド移動可能な構成とすることで、遮光部16の高さ方向(Z方向)の省スペース化が図れる。したがって、光照射部10A,10Cの光出射口からワークWまでの距離が非常に近い場合であっても、遮光板17を光出射口の光出射側の適切な位置に配置することができる。
The light shielding unit 16 includes a light shielding plate 17 that is a plate member, and a light shielding plate driving unit 18 that slides the light shielding plate 17 in the Y direction. Accordingly, the work W can be divided into a plurality of regions in the Y direction, and these regions can be set as alignment regions having different alignment directions. Furthermore, since the degree of freedom of the arrangement position of the light shielding plate 17 in the Y direction can be improved, the alignment region formed on the workpiece W can be set relatively freely, and it corresponds to liquid crystal alignment regions of various sizes. can do.
Further, by configuring the light shielding plate 17 to be slidable in the horizontal direction, space saving in the height direction (Z direction) of the light shielding portion 16 can be achieved. Therefore, even when the distance from the light exits of the light irradiators 10A and 10C to the workpiece W is very close, the light shielding plate 17 can be disposed at an appropriate position on the light exit side of the light exit.

さらに、遮光板17は、光出射口から出射される偏光光の照射可能領域内における所定の使用位置(遮光位置)162と、照射可能領域から退避した退避位置161との間を移動可能な構成とする。この場合、遮光板17を退避位置161に配置した非作動状態では、照射可能領域内に遮光領域が形成されない。そのため、遮光部16を備える光照射部を、第一の光配向処理と第二の光配向処理との両方に併用することができる。
また、光照射部10Aの遮光板17の退避位置161と、光照射部10Cの遮光板17の退避位置161とを、Y方向において対向する位置に設定する。すなわち、光照射部10Aの遮光板17の前進方向と光照射部10Cの遮光板17の前進方向とを、Y方向において逆向きに設定する。したがって、各遮光板17の退避位置161と遮光位置162との間の移動距離を短くすることができ、各遮光板17の移動時間の短縮が図れる。
なお、上記実施形態においては、遮光板17の退避位置161を光照射部10Aおよび10CのY方向端部に設ける場合について説明したが、X方向に退避位置を設けられる場合には、遮光板17をX方向に退避させる構成であってもよい。
Further, the light shielding plate 17 is configured to be movable between a predetermined use position (light shielding position) 162 in the irradiable area of the polarized light emitted from the light exit and a retreat position 161 retracted from the irradiable area. And In this case, in the non-operating state where the light shielding plate 17 is disposed at the retracted position 161, the light shielding region is not formed in the irradiable region. Therefore, the light irradiation part provided with the light-shielding part 16 can be used in combination for both the first photo-alignment process and the second photo-alignment process.
Further, the retracted position 161 of the light shielding plate 17 of the light irradiation unit 10A and the retracted position 161 of the light shielding plate 17 of the light irradiation unit 10C are set to positions facing each other in the Y direction. That is, the advancing direction of the light shielding plate 17 of the light irradiation unit 10A and the advancing direction of the light shielding plate 17 of the light irradiation unit 10C are set in opposite directions in the Y direction. Therefore, the moving distance between the retreat position 161 and the light shielding position 162 of each light shielding plate 17 can be shortened, and the movement time of each light shielding plate 17 can be shortened.
In the above-described embodiment, the case where the retreat position 161 of the light shielding plate 17 is provided at the Y direction end portions of the light irradiation units 10A and 10C has been described, but when the retreat position is provided in the X direction, the light shielding plate 17 is provided. May be configured to retract in the X direction.

さらに、遮光板17を光学フィルタにより構成するので、遮光板17を金属板や樹脂によって構成する場合と比較して、ランプ11の熱や紫外線による変形や劣化を抑制することができる。仮に、遮光板17を金属板とすると、ランプ11の熱により遮光板17が変形し、スライド移動ができなくなったりワークWに接触したりするといった不具合が生じ得る。これに対して、本実施形態では、遮光板17を光学フィルタによって構成するので、上記不具合の発生を抑制することができる。なお、遮光板17は、光学フィルタに限定されるものではなく、熱や紫外線に耐えうる材質で且つ遮光領域を適切に形成可能な部材であれば、適宜適用可能である。   Furthermore, since the light shielding plate 17 is constituted by an optical filter, the deformation and deterioration of the lamp 11 due to heat and ultraviolet rays can be suppressed as compared with the case where the light shielding plate 17 is constituted by a metal plate or resin. If the light-shielding plate 17 is a metal plate, the light-shielding plate 17 is deformed by the heat of the lamp 11, which may cause a problem that it cannot be slid and contacts the workpiece W. On the other hand, in this embodiment, since the light-shielding plate 17 is comprised with an optical filter, generation | occurrence | production of the said malfunction can be suppressed. The light shielding plate 17 is not limited to an optical filter, and can be appropriately applied as long as it is a material that can withstand heat and ultraviolet rays and can appropriately form a light shielding region.

また、遮光板17は、複数枚(上記実施形態では3枚)のサブプレート部材である遮光板17a〜17cにより構成し、退避位置161では、これら遮光板17a〜17cをZ方向に重ね合わせて配置する。したがって、退避位置161のスペースを小さくすることができ、装置の小型化を実現することができる。さらに、遮光位置162では、これら遮光板17a〜17cを一列に連なるように、前段の遮光板の後端部と後段の遮光板の前端部とをオーバーラップさせて配置する。したがって、遮光板同士の隙間から偏光光が漏れて遮光領域152A,152Cに照射されるのを防止し、適切に遮光領域152A,152Cを形成することができる。また、遮光板同士のオーバーラップ量を調整することで、遮光領域のサイズを容易に調整することができる。
さらに、遮光板17の前進方向先端部に先端部材17dを設けるので、遮光領域152A,152Cへの偏光光の回り込みを抑制することができる。さらに、先端部材17dは、その下端面の高さ方向位置を調整可能に構成されているので、上記の光の回り込み量を調整することができ、適切に遮光領域152A,152Cを形成することができる。
The light shielding plate 17 includes a plurality of (three in the above embodiment) light shielding plates 17a to 17c which are sub-plate members, and at the retreat position 161, the light shielding plates 17a to 17c are overlapped in the Z direction. Deploy. Therefore, the space at the retreat position 161 can be reduced, and the apparatus can be downsized. Further, at the light shielding position 162, the rear end portion of the front light shielding plate and the front end portion of the rear light shielding plate are overlapped so that the light shielding plates 17a to 17c are arranged in a line. Therefore, it is possible to prevent the polarized light from leaking from the gap between the light shielding plates and irradiating the light shielding regions 152A and 152C, and to appropriately form the light shielding regions 152A and 152C. Moreover, the size of the light shielding region can be easily adjusted by adjusting the overlap amount of the light shielding plates.
Furthermore, since the tip member 17d is provided at the tip of the light shielding plate 17 in the forward direction, the wraparound of the polarized light into the light shielding regions 152A and 152C can be suppressed. Furthermore, since the tip member 17d is configured to be able to adjust the position in the height direction of the lower end surface thereof, the amount of light wraparound can be adjusted, and the light shielding regions 152A and 152C can be appropriately formed. it can.

(変形例)
上記実施形態においては、遮光板17を退避位置161と遮光位置162との間で水平方向にスライド移動可能な構成とする場合について説明したが、遮光板17は、必ずしもスライド移動する必要はない。例えば、遮光板17は回転開閉する構成であってもよい。さらに、遮光板17は、ランプハウス14に対して着脱可能にねじ止めする構成であってもよい。この場合、遮光領域152A,152Cの大きさに応じたサイズの遮光板17をランプハウス14に取り付けるようにすれば、ワークW上に形成する配向領域のサイズを自由に設定することが可能となる。すなわち、遮光板17は手動で移動させてもよい。
また、上記実施形態においては、遮光板17をY方向に移動可能な構成とする場合について説明したが、ワークW上に形成する配向領域の位置およびサイズが固定である場合には、遮光板17は固定であってもよい。
(Modification)
In the above embodiment, the case where the light shielding plate 17 is configured to be slidable in the horizontal direction between the retreat position 161 and the light shielding position 162 has been described, but the light shielding plate 17 does not necessarily need to slide. For example, the light shielding plate 17 may be configured to open and close. Further, the light shielding plate 17 may be configured to be detachably screwed to the lamp house 14. In this case, if the light shielding plate 17 having a size corresponding to the size of the light shielding regions 152A and 152C is attached to the lamp house 14, the size of the orientation region formed on the workpiece W can be freely set. . That is, the light shielding plate 17 may be moved manually.
Further, in the above embodiment, the case where the light shielding plate 17 is configured to be movable in the Y direction has been described. However, when the position and size of the alignment region formed on the workpiece W are fixed, the light shielding plate 17 is used. May be fixed.

さらに、上記実施形態においては、ワークW上に2つの配向領域を形成する場合について説明したが、3つ以上の配向領域を形成することもできる。この場合、遮光部16を備える光照射部を3つ以上設けてもよいし、1つの光照射部に複数の遮光部16を備え、1つの光照射部において複数の遮光領域を形成するようにしてもよい。
また、上記実施形態においては、1つのステージ21が灯具(光照射部10A〜10C)の直下を往復するシングルステージ方式の偏光光照射装置100に本発明を適用する場合について説明したが、偏光光照射装置100の構成は図1に示す構成に限定されない。例えば、2つのステージが灯具の下を往復しあう、所謂ツインステージ方式の偏光光照射装置100に本発明を適用することもできる。また、1つのステージに複数のワークWを載置し、ワークWごとに異なる偏光軸の偏光光を照射して光配向処理を行う装置にも適用可能である。
Furthermore, in the above-described embodiment, the case where two alignment regions are formed on the workpiece W has been described, but three or more alignment regions can also be formed. In this case, three or more light irradiation units including the light shielding unit 16 may be provided, or a plurality of light shielding units 16 may be provided in one light irradiation unit, and a plurality of light shielding regions may be formed in one light irradiation unit. May be.
Moreover, in the said embodiment, although the case where one stage 21 applied the present invention to the single stage type polarized light irradiation apparatus 100 which reciprocates directly under a lamp (light irradiation part 10A-10C) was demonstrated, polarized light The configuration of the irradiation apparatus 100 is not limited to the configuration shown in FIG. For example, the present invention can also be applied to a so-called twin stage type polarized light irradiation apparatus 100 in which two stages reciprocate under a lamp. Further, the present invention can also be applied to an apparatus in which a plurality of workpieces W are placed on one stage and a light alignment process is performed by irradiating polarized light having a different polarization axis for each workpiece W.

10A〜10C…光照射部、11…ランプ、12…ミラー、13…偏光子ユニット、14…ランプハウス、15…照射領域、16…遮光部、17(17a〜17c)…遮光板(プレート部材)、17d…先端部材、17e…ねじ、18…遮光板駆動部、20…搬送部、21…ステージ、22…X方向駆動機構、22A…ガイド、22B…マグネット板、22C…コイルモジュール、24…θ移動機構、100…偏光光照射装置、150A…照射可能領域、151A…照射許容領域、152A…遮光領域、161…退避位置、162…遮光位置(使用位置)   DESCRIPTION OF SYMBOLS 10A-10C ... Light irradiation part, 11 ... Lamp, 12 ... Mirror, 13 ... Polarizer unit, 14 ... Lamp house, 15 ... Irradiation area, 16 ... Light-shielding part, 17 (17a-17c) ... Light-shielding plate (plate member) , 17d ... tip member, 17e ... screw, 18 ... light shielding plate drive unit, 20 ... transport unit, 21 ... stage, 22 ... X direction drive mechanism, 22A ... guide, 22B ... magnet plate, 22C ... coil module, 24 ... θ Moving mechanism, 100: Polarized light irradiation device, 150A: Irradiable area, 151A: Irradiation allowable area, 152A: Light shielding area, 161: Retraction position, 162: Light shielding position (use position)

Claims (9)

光配向膜が形成されたワークに偏光光を照射して光配向を行う光照射装置であって、
前記ワークを所定の搬送路に沿って搬送するステージと、
前記ワークの搬送路上に設置され、光源からの光を第一の偏光子によって偏光し、光出射口から第一の偏光光を照射する第一の光照射部と、
前記搬送路上において前記第一の光照射部に並設され、光源からの光を前記第一の偏光子とは異なる方向の透過軸を有する第二の偏光子によって偏光し、光出射口から第二の偏光光を照射する第二の光照射部と、
前記第一の光照射部の光出射口の光出射側に配置され、前記第一の偏光光により光配向されるべき前記ワーク上の第一の領域を規定する第一のプレート部材と、
前記第二の光照射部の光出射口の光出射側に配置され、前記第二の偏光光により光配向されるべき前記ワーク上の第二の領域を規定する第二のプレート部材と、を備えることを特徴とする光照射装置。
A light irradiation device that performs light alignment by irradiating polarized light onto a work on which a photo-alignment film is formed,
A stage for conveying the workpiece along a predetermined conveyance path;
A first light irradiating unit that is installed on the conveyance path of the workpiece, polarizes light from the light source by the first polarizer, and irradiates the first polarized light from the light exit port;
The light from the light source is arranged in parallel with the first light irradiation unit on the transport path, and is polarized by a second polarizer having a transmission axis in a direction different from that of the first polarizer. A second light irradiation unit for irradiating two polarized lights;
A first plate member disposed on the light exit side of the light exit of the first light irradiator and defining a first region on the workpiece to be photo-oriented by the first polarized light;
A second plate member disposed on the light exit side of the light exit of the second light irradiator and defining a second region on the workpiece to be photo-oriented by the second polarized light; A light irradiation apparatus comprising:
前記第一のプレート部材および前記第二のプレート部材は、
前記光配向膜の光配向に寄与する波長の偏光光を遮光する光学フィルタにより構成されていることを特徴とする請求項1に記載の光照射装置。
The first plate member and the second plate member are:
The light irradiation apparatus according to claim 1, wherein the light irradiation apparatus includes an optical filter that blocks polarized light having a wavelength that contributes to the photo-alignment of the photo-alignment film.
前記第一のプレート部材および前記第二のプレート部材は、
前記光出射口から出射される偏光光の照射可能領域内における所定の使用位置と、前記照射可能領域から退避した退避位置との間を移動可能であることを特徴とする請求項1または2に記載の光照射装置。
The first plate member and the second plate member are:
3. The apparatus according to claim 1, wherein the movable portion is movable between a predetermined use position in an irradiable area of the polarized light emitted from the light exit and a retracted position retracted from the irradiable area. The light irradiation apparatus of description.
前記第一のプレート部材および前記第二のプレート部材は、水平方向にスライド移動可能であることを特徴とする請求項3に記載の光照射装置。   The light irradiation apparatus according to claim 3, wherein the first plate member and the second plate member are slidable in a horizontal direction. 前記第一のプレート部材および前記第二のプレート部材は、それぞれ複数枚のサブプレート部材により構成され、
前記複数枚のサブプレート部材は、前記使用位置において、前記サブプレート部材同士の端部をオーバーラップさせて一列に連なるように配置されていることを特徴とする請求項3または4に記載の光照射装置。
Each of the first plate member and the second plate member is constituted by a plurality of sub-plate members,
5. The light according to claim 3, wherein the plurality of sub-plate members are arranged in a row so that end portions of the sub-plate members overlap each other at the use position. Irradiation device.
前記第一の領域は、前記ワーク上の前記搬送路に直交する方向における一方の側に設定され、前記第二の領域は、前記ワーク上の前記搬送路に直交する方向における他方の側に設定され、
前記第一のプレート部材の前記一方の側の端部の位置、および前記第二のプレート部材の前記他方の側の端部の位置は、それぞれ前記第一の領域の前記他方の側の端部と前記第二の領域の前記一方の側の端部との間に設定されていることを特徴とする請求項1〜5のいずれか1項に記載の光照射装置。
The first area is set on one side in a direction orthogonal to the conveyance path on the workpiece, and the second area is set on the other side in a direction orthogonal to the conveyance path on the workpiece. And
The position of the end on the one side of the first plate member and the position of the end on the other side of the second plate member are respectively the end on the other side of the first region. The light irradiation device according to claim 1, wherein the light irradiation device is set between the first region and the end portion on the one side of the second region.
前記第一のプレート部材および前記第二のプレート部材の端部にそれぞれ設けられ、当該端部よりも下方に位置する下端面を有する先端部材をさらに備えることを特徴とする請求項1〜6のいずれか1項に記載の光照射装置。   The tip member which is provided in the edge part of said 1st plate member and said 2nd plate member, respectively, and has a lower end surface located below the said edge part is further provided. The light irradiation apparatus of any one of Claims. 前記先端部材は、前記下端面の高さ方向位置を調整可能であることを特徴とする請求項7に記載の光照射装置。   The light irradiation apparatus according to claim 7, wherein the tip member is capable of adjusting a height direction position of the lower end surface. 光配向膜が形成されたワークに偏光光を照射して光配向を行う光照射方法であって、
前記ワークの搬送路上に設置され、光源からの光を第一の偏光子によって偏光し、光出射口から第一の偏光光を照射する第一の光照射部の前記光出射口の光出射側に、第一のプレート部材を配置して、前記第一の偏光光により光配向されるべき前記ワーク上の第一の領域を規定するステップと、
前記搬送路上において前記第一の光照射部に並設され、光源からの光を前記第一の偏光子とは異なる方向の透過軸を有する第二の偏光子によって偏光し、光出射口から第二の偏光光を照射する第二の光照射部の前記光出射口の光出射側に、第二のプレート部材を配置して、前記第二の偏光光により光配向されるべき前記ワーク上の第二の領域を規定するステップと、
前記ワークをステージによって前記搬送路に沿って搬送し、前記ワーク上の前記第一の領域に前記第一の偏光光を照射し、前記ワーク上の前記第二の領域に前記第二の偏光光を照射するステップと、を含むことを特徴とする光照射方法。
A light irradiation method for performing photo-alignment by irradiating polarized light to a work on which a photo-alignment film is formed,
The light exit side of the light exit port of the first light irradiating unit that is installed on the conveyance path of the workpiece, polarizes the light from the light source by the first polarizer, and irradiates the first polarized light from the light exit port. Disposing a first plate member to define a first region on the workpiece to be photo-oriented by the first polarized light;
The light from the light source is arranged in parallel with the first light irradiation unit on the transport path, and is polarized by a second polarizer having a transmission axis in a direction different from that of the first polarizer. A second plate member is disposed on the light exit side of the light exit port of the second light irradiating unit that irradiates the second polarized light, on the workpiece to be photo-oriented by the second polarized light Defining a second region;
The work is transported along the transport path by a stage, the first polarized light is irradiated onto the first area on the work, and the second polarized light is applied to the second area on the work. And irradiating with a light irradiation method.
JP2015156117A 2015-08-06 2015-08-06 Light irradiation device and light irradiation method Pending JP2017032957A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015156117A JP2017032957A (en) 2015-08-06 2015-08-06 Light irradiation device and light irradiation method
TW105106336A TW201721259A (en) 2015-08-06 2016-03-02 Light irradiation device and light irradiation method
CN201610289141.9A CN106444101A (en) 2015-08-06 2016-05-04 Light irradiation apparatus and light irradiation method
CN201620396471.3U CN205620651U (en) 2015-08-06 2016-05-04 Light irradiation apparatus
KR1020160059404A KR20170017707A (en) 2015-08-06 2016-05-16 Light irradiation apparatus and light irradiation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015156117A JP2017032957A (en) 2015-08-06 2015-08-06 Light irradiation device and light irradiation method

Publications (1)

Publication Number Publication Date
JP2017032957A true JP2017032957A (en) 2017-02-09

Family

ID=57025670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015156117A Pending JP2017032957A (en) 2015-08-06 2015-08-06 Light irradiation device and light irradiation method

Country Status (4)

Country Link
JP (1) JP2017032957A (en)
KR (1) KR20170017707A (en)
CN (2) CN205620651U (en)
TW (1) TW201721259A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145975A1 (en) * 2016-02-22 2017-08-31 株式会社ブイ・テクノロジー Polarized light irradiation device
DE112018000995B4 (en) 2017-02-24 2021-10-28 Kyocera Corporation RADIO COMMUNICATION DEVICE AND CONTROL PROCEDURE THEREOF

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017151405A (en) * 2016-02-22 2017-08-31 株式会社ブイ・テクノロジー Polarized light irradiation device
JP2018017952A (en) * 2016-07-29 2018-02-01 ウシオ電機株式会社 Light projection apparatus and light projection method
CN106773336A (en) * 2017-01-03 2017-05-31 京东方科技集团股份有限公司 A kind of shade, multi-model set product light orientation equipment and its control method
CN109856862A (en) * 2017-11-30 2019-06-07 上海微电子装备(集团)股份有限公司 Dual stage light alignment apparatus and alignment method
CN110658653B (en) * 2018-06-29 2021-09-03 上海微电子装备(集团)股份有限公司 Optical alignment device and method
CN110262135A (en) * 2019-06-27 2019-09-20 成都天马微电子有限公司 The process for optical alignment and display base plate of a kind of light orientation device, display base plate
CN111552124B (en) * 2020-05-26 2022-09-23 武汉京东方光电科技有限公司 Optical alignment equipment and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5344105B1 (en) 2013-03-08 2013-11-20 ウシオ電機株式会社 Polarizing light irradiation apparatus for photo-alignment and polarized light irradiation method for photo-alignment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145975A1 (en) * 2016-02-22 2017-08-31 株式会社ブイ・テクノロジー Polarized light irradiation device
DE112018000995B4 (en) 2017-02-24 2021-10-28 Kyocera Corporation RADIO COMMUNICATION DEVICE AND CONTROL PROCEDURE THEREOF

Also Published As

Publication number Publication date
KR20170017707A (en) 2017-02-15
CN106444101A (en) 2017-02-22
TW201721259A (en) 2017-06-16
CN205620651U (en) 2016-10-05

Similar Documents

Publication Publication Date Title
JP2017032957A (en) Light irradiation device and light irradiation method
JP2018017952A (en) Light projection apparatus and light projection method
JP5884776B2 (en) Polarized light irradiation device for photo-alignment
US8922757B2 (en) Photo-alingment apparatus, and method for fabricating liquid crystal display
JP5773095B1 (en) Light irradiation apparatus and light irradiation method
CN104069998A (en) Light illuminating device
TWI521258B (en) Light alignment illumination device
JP6607003B2 (en) Light irradiation apparatus and light irradiation method
KR20170135737A (en) Polarized light illuminating apparatus and light aligning apparatus
JP2015106015A (en) Polarized light irradiation device, polarized light irradiation method and polarized light irradiation program
JP2017146428A (en) Polarization element unit and polarization light irradiation apparatus
JP6750717B2 (en) Light irradiation device and light irradiation method
JP6613949B2 (en) Polarizing element unit and polarized light irradiation device
JP6398766B2 (en) Polarized light irradiation device for photo-alignment
US11573429B2 (en) Polarized light irradiation apparatus and method for polarized light irradiation
JP6253002B2 (en) Polarizing light irradiation apparatus for photo-alignment and polarized light irradiation method for photo-alignment
JP6852498B2 (en) Manufacturing method of polarized light irradiation device for photo-alignment and liquid crystal panel
JP6124201B2 (en) Polarized light irradiation method for photo-alignment
JP7035376B2 (en) Polarized light irradiation device and polarized light irradiation method
JP2015169884A (en) Polarization light irradiation device for optical orientation and polarization light irradiation method for optical orientation
JP2023008001A (en) Polarized light irradiation device, exposure device including the same, and polarized light irradiation method
JP6015810B2 (en) Light irradiation apparatus and light irradiation method
JP2016180882A (en) Polarizer, photo-aligning device and photo-aligning method
JP5979179B2 (en) Polarized light irradiation device
JP2017015880A (en) Light radiation device and light radiation system