JP5070735B2 - 転がり軸受 - Google Patents

転がり軸受 Download PDF

Info

Publication number
JP5070735B2
JP5070735B2 JP2006142263A JP2006142263A JP5070735B2 JP 5070735 B2 JP5070735 B2 JP 5070735B2 JP 2006142263 A JP2006142263 A JP 2006142263A JP 2006142263 A JP2006142263 A JP 2006142263A JP 5070735 B2 JP5070735 B2 JP 5070735B2
Authority
JP
Japan
Prior art keywords
less
amount
nitride
rolling element
retained austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006142263A
Other languages
English (en)
Other versions
JP2007314811A (ja
Inventor
光司 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38848946&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5070735(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006142263A priority Critical patent/JP5070735B2/ja
Publication of JP2007314811A publication Critical patent/JP2007314811A/ja
Application granted granted Critical
Publication of JP5070735B2 publication Critical patent/JP5070735B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は転がり軸受に関するものであり、特に自動車用に異物混入潤滑下で用いられる小型円錐ころ軸受の寿命延長、強度向上に関するものである。
従来、転がり軸受には、JIS SUJ2、SUJ3に代表される軸受鋼が用いられ、通常、焼入れ・焼戻し処理によって硬度HRC60以上で使用される。しかし、転がり軸受の使用環境が多様化し、異物が混入するような潤滑下や潤滑が不十分な環境下では、これらの軸受鋼では十分な寿命が得られなかったり、焼き付きが生じたりする場合がある。
このため、SUJ2を用いてマルストレッシングと呼ばれる浸炭窒化処理を施し、窒素を固溶させることにより、軌道面表面の残留オーステナイト量を増加させることによって、異物混入潤滑下での圧痕縁の応力緩和を図ったり、窒素の効果で、耐焼き付き性の改善を図ったりしている。しかしながら、近年、転がり軸受の使用環境は益々過酷化し、SUJ2に浸炭窒化処理下だけでは、十分な効果が得られない場合が発生している。
これを解決するため、下記特許文献1に記載される転がり軸受では、潤滑油中に摩耗粉等の異物が混入するような環境下での寿命延長及び強度向上のために残留オーステナイトを安定的に得るべく、転動体に、SUJ2よりもMnを含有するSUJ3を用い、これに浸炭窒化処理を施して残留オーステナイト量を20〜40%とし、内外輪に浸炭鋼を用い、これに浸炭窒化処理を施して表面の残留尾捨てない塗料を20〜40%とした円錐ころ軸受が開示されている。また、この円錐ころ軸受では、内輪の鍔部の靭性を確保するため、内輪のベースカーボン値を0.4%以下にしている。
特許第3725735号明細書
しかしながら、転動体の残留オーステナイト量を増やすだけでは十分な寿命延長効果が得られない。一方、内輪の炭素量を0.4%以下にすることによって、心部の靭性が増大し、衝撃荷重に対しては効果があるものの、炭素量が少ないと硬度が低下して心部の疲労強度も低下すると共に、鍔部の疲労強度も低下するという問題がある。
本発明は、上記のような問題点に着目してなされたものであり、Si・Mn系窒化物の適正化を図ることで、より長寿命で、耐摩耗性、耐焼き付き性に優れる転がり軸受を提供することを目的とするものである。
上記課題を解決するために、本発明のうち請求項1に係る転がり軸受は、Si:0.3wt%以上2.2wt%以下、Mn:0.3wt%以上2.0wt%以下で、且つSi/Mnが5以下の鋼からなる転動体に、浸炭窒化処理による浸炭窒化層を形成し、その表面層の窒素濃度を0.2wt%以上とし、且つ完成品表面層にSi・Mn系窒化物を有し、且つ前記窒化物面積率を1%以上10%未満とすると共に、炭素量が0.4wt%を超え、0.8wt%以下の浸炭肌焼鋼からなる内輪に浸炭窒化処理を施して表面窒素濃度を0.05wt%以上0.3wt%以下としたことを特徴とするものである。
また、転動体表面の残留オーステナイト量をγ、内外輪の少なくとも一方の表面の残留オーステナイト量をγRABとした場合、0.8≦γRAB/γ≦1.5であることを特徴とするものである。
本発明者らは、異物混入潤滑下の寿命を支配する因子を鋭意研究した結果、以下に述べるメカニズムによって転がり軸受の寿命が影響を受けることを見出した。異物混入潤滑下では、異物の噛み込みによって軌道輪に圧痕が形成される。この圧痕上を転動体が繰り返し通過すると、転動体が弱い場合には、形状の崩れを起こす。この形状が崩れた転動体が軌道輪に更に大きなダメージを与えて剥離に至る。従って、異物混入潤滑下で寿命を延長するためには、従来のように軌道輪の残留オーステナイトのみを増やして圧痕縁の応力を緩和させるだけでは寿命延長効果が小さい。軌道輪の残留オーステナイトを増やす場合には、まず転動体の残留オーステナイト量を増やして、形成される圧痕の盛り上がりを小さくすると同時に、転動体表面の圧痕の形成自体を抑制できるように転動体を強化する必要がある。
本発明では、転動体にSi及びMnを多く添加した鋼を用い、浸炭窒化処理を施して窒素を高濃度化し、硬質なSiとMnとを含有する窒化物、即ちSi・Mn系窒化物を表面に析出させて転動体を強化し、軌道輪に生じた圧痕による転動体の形状変化を著しく抑制しようとするものである。また、転動体の硬さをあげると共に、残留オーステナイト量を適正値に制御することによって、圧痕縁の盛り上がり量を小さくして、軌道輪へのダメージを低減することができる。
転動体に関する数値の臨界的意義は以下の通りである。
[表面窒素濃度が0.2wt%以上で、析出したSi・Mn系窒化物の面積率が1〜10%]
Si及びMnを含有した析出物は、熱的に安定な窒化物であり、窒化物中におけるSiとMnとの組成の比率が約5:1であり、基地組織に0.01μm〜1μmの大きさで均一微細に分散し、硬さを向上させる特徴がある。この効果によって、寿命延長、耐摩耗性、耐焼き付き性の向上を図ることができる。Si・Mn系窒化物の面積率が1%以上で寿命が著しく向上するため、下限値を1%以上とし、窒素濃度を0.2wt%とする。Si・Mn系窒化物の面積率が10%を超えると効果が飽和するので、上限値を10%、窒素濃度を2wt%とすることが好ましい。
[Si含有量:0.3〜2.2wt%、Mn含有量:0.3〜2.0wt%、且つSi/Mn比率:5以下]
Si・Mn系窒化物を十分に析出させるためには、Si及びMnを多く含有した鋼を用いる必要がある(SUJ2(Si含有量0.25wt%、Mn含有量0.4wt%)では、浸炭窒化などで窒素を過剰に付与しても、Si・Mn系窒化物量が少ない)。このため、Si及びMnの含有量は以下の値を臨界値とする。
[Si含有量:0.3〜2.2wt%]
本発明に係る窒化物の析出に必要な元素であり、Mnの存在によって、0.3wt%以上の添加で、窒素と効果的に反応して顕著に析出する。
[Mn含有量:0.3〜2.0wt%]
本発明に係る窒化物の析出に必要な元素であり、Siとの共存によって、0.3wt%以上の添加でSi・Mn系窒化物の析出を促進させる作用がある。また、Mnはオーステナイトを安定化する働きがあるので、硬化熱処理後に残留オーステナイトが必要以上に増加するといった問題を防止するため、2.0wt%以下とする。
[Si/Mn比率:5以下]
本発明に係る析出物は、焼戻しによる窒化物とは異なり、浸炭窒化処理時に侵入してきた窒素がオーステナイト域で、Mnを取り込みながら、Siと反応して形成される。従って、Si添加量に対してMn添加量が少ないと、十分に窒素を拡散させても、Si・Mn系窒化物の析出が促進されない。前述したSi及びMn添加量の範囲で、且つ窒素量を0.2wt%以上侵入させた場合、Si/Mn比率を5以下とすることによって、寿命延長や耐摩耗性・耐焼き付き性向上に効果のある面積率1.0%以上のSi・Mn系窒化物の析出量を確保することができる。
[転動体のC:0.3wt%以上1.2wt%以下]
Cは、焼入れによってマルテンサイト組織となり、基地組織を硬化させる作用がある。転動部材として必要な心部硬さを得るためにCの下限値は0.3wt%以上とすることが好ましい。浸炭窒化時間を短縮するためには、0.5wt%以上が好ましく、0.8wt%以上がより好ましく、0.95wt%以上が更に好ましい。一方、過剰に添加すると、セメンタイトの析出が過剰となり、浸炭窒化処理によって粗大化して、靭性が低下する。このため、上限値を1.2wt%とすることが好ましい。
[転動体のCr:0.5wt%以上2.0wt%以下]
Crは焼入れ性を向上させると同時に、炭化物形成元素であり、材料を強化する炭化物の析出を促進し、更に微細化させる。0.5wt%未満であると焼入れ性が低下して十分な硬さが得られなかったり、浸炭窒化時に炭化物が粗大化したりする。2.0wt%を超えると、浸炭窒化時に表面にCr酸化膜が形成されて、炭素及び窒素の核酸を阻害する。そのため、Cr含有量は0.5wt%以上2.0wt%以下とすることが好ましい。
[転動体表面の残留オーステナイト量をγ、内外輪の少なくとも一方の表面の残留オーステナイト量をγRABとした場合、0.8≦γRAB/γ≦1.5]
残留オーステナイトは、異物混入潤滑下において、異物を噛み込んだ際の圧痕縁の盛り上がりを小さくする有効な組織である。従って、軌道輪の残留オーステナイト量を高めると、異物混入潤滑下での軌道輪の寿命が延長する。しかしながら、前述の破損メカニズムで述べたように、軌道輪に形成された圧痕上を繰り返し転動体が通過して、形状劣化が生じる。この形状変化を抑制するための金属組織としては残留オーステナイトが有効である。転動体の形状劣化を抑制するためには、転動体の表面の残留オーステナイト量と軌道輪の残留オーステナイト量を適切にするとよい。転動体は、Si・Mn系窒化物で強化されているため、軌道輪の残留オーステナイト量よりも少なくてよく、範囲としてはγRAB/γ≦1.5が好適である。一方、転動体の残留オーステナイト量を高くしすぎると、転動体に形成された圧痕が軌道輪に疲労を与えるため、前述した転動体の残留オーステナイト量を基準にして最適値が存在する。即ち、転動体が強化されているので、γRAB/γの比率を0.8以上とする。
[炭素量が0.4wt%を超え、0.8wt%以下の浸炭肌焼鋼を内輪に用い、浸炭窒化処理による表面窒素濃度が0.05wt%以上0.3wt%以下]
円錐ころ軸受のように、内輪の鍔を有する場合、大きなアキシアル荷重が付与された際には、鍔部は曲げ疲労を受ける。疲労強度は、硬さと比例関係にあり、心部の硬さは炭素量に依存する。従って、炭素量が0.4wt%未満であると心部硬さが低くなり、疲労強度が低下する。従って、本発明では、炭素量の下限値を0.4wt%を超える値とする。一方、炭素量が0.8wt%を超えると、炭素がマルテンサイト中に固溶できなくなり、硬さが飽和して疲労強度の上昇が小さくなる。以上の点から、内輪の炭素量は0.4wt%より大きく、0.8wt%以下とする。本発明に係る炭素量の内輪を用い、浸炭のみでは、表面の残留オーステナイトを安定的に高く保てないので、熱処理として浸炭窒化処理を施し、表面炭素量を0.9〜1.3wt%、表面窒素量を0.05〜0.3wt%とする。
[内輪のSi:0.15wt%以上1.0wt%以下]
Siは、基地組織を強化して寿命延長及び靭性向上に有効な元素である。更に、焼戻し軟化抵抗性を向上させる元素である。その効果は、0.15wt%以上の添加で明確になり、更に0.4wt%以上添加すると顕著になる。1.2wt%を超えて過剰に添加すると、冷間加工性、被削性が低下し、更に浸炭窒化時に窒素の拡散が阻害される。従って、Siを0.15wt%以上1.2wt%以下とする。
[内輪のMn:0.2wt%以上2.0wt%以下]
Mnは、焼入れ性を向上させ、寿命延長に必要である残留オーステナイトを増やす作用がある。その効果を得るためには0.2wt%以上の添加が必要であり、特に0.8wt%以上の添加で顕著となる。2.0wt%を超えて添加すると、冷間加工性や被削性が低下する。従って、Mnを0.2wt%以上2.0wt%以下とする。
[内輪のCr:0.5wt%以上2.0wt%以下]
Crは、焼入れ性を向上させると同時に炭化物形成元素であり、材料を強化する炭化物の析出を促進し、更に微細化させる。0.5wt%未満であると焼入れ性が低下して十分な硬さが得られなかったり、浸炭窒化時に炭化物が粗大化したりする。2.0wt%を超えると、浸炭窒化時に表面にCr酸化膜が形成されて、炭素及び窒素の拡散を阻害する。このため、Crを0.5wt%以上2.0wt%以下とする。
また、必要に応じて、転動体又は内輪に、Mo、Ni、Vの少なくとも1種類以上を添加してもよい。
[Mo:0.2wt%以上1.2wt%以下]
Moは、焼入れ性を向上させると同時に、炭窒化物形成元素であり、材料を強化する炭化物及び炭窒化物、窒化物の析出を促進し、更に微細化させる作用がある。その効果は、0.2wt%以上の添加で顕著になる。1.2wt%を超えると効果が飽和し、コストが高くなる。従って、Mo含有量は0.2wt%以上1.2wt%以下とすることが好ましい。
[Ni:0.5wt%以上3.0wt%以下]
Niは、焼入れ性を向上させると同時に、靭性を向上させる作用があり、その効果は0.5wt%以上の添加で顕著となる。オーステナイト安定化元素であり、3.0wt%以上添加すると残留オーステナイトが過剰となり、心部硬度が低下する。従って、Ni含有量は0.5wt%以上3.0wt%以下とすることが好ましい。
[V:0.5wt%以上1.5wt%以下]
Vは、浸炭窒化によって硬質な炭化物や炭窒化物を形成して、耐摩耗性を向上させる作用がある。その効果は、0.5wt%以上の添加で顕著となる。1.5wt%を超えて過剰に添加すると、素材の固溶炭素と結びついて炭化物を形成し、硬さが低下する。従って、V含有量は0.5wt%以上1.5wt%以下とすることが好ましい。
[面積375μm2中における0.05μm以上1μm以下のSi・Mn系窒化物の個数が100個以上]
析出強化の理論において析出物粒子間距離の小さい方が強化能に優れるので、窒化物の面積率が同じであっても、面積375μm2の範囲の、0.05μm以上1μm以下のSi・Mn系窒化物を100個以上とすることで、析出数を増やし、析出物粒子間距離を小さくして強化することが好ましい。
而して、本発明のうち請求項1に係る転がり軸受によれば、Si:0.3wt%以上2.2wt%以下、Mn:0.3wt%以上2.0wt%以下で、且つSi/Mnが5以下の鋼からなる転動体に、浸炭窒化処理による浸炭窒化層を形成し、その表面層の窒素濃度を0.2wt%以上とし、且つ完成品表面層にSi・Mn系窒化物を有し、且つ前記窒化物面積率を1%以上10%未満とすると共に、炭素量が0.4wt%を超え、0.8wt%以下の浸炭肌焼鋼からなる内輪に浸炭窒化処理を施して表面窒素濃度を0.05wt%以上0.3wt%以下としたことにより、より長寿命で、耐摩耗性、耐焼き付き性に優れる。
また、転動体表面の残留オーステナイト量をγ、内外輪の少なくとも一方の表面の残留オーステナイト量をγRABとした場合、0.8≦γRAB/γ≦1.5であることにより、より長寿命で、耐摩耗性、耐焼き付き性に優れる。
次に、本発明の転がり軸受の一実施形態について図面を参照しながら説明する。
図1は、本実施形態の転がり軸受の断面図である。この転がり軸受は、内方部材である内輪1、外方部材である外輪2、転動体3、保持器4を備えた、呼び番号L44649の円錐ころ軸受である。
まず、窒素量とSi・Mn析出物量及び性能との関係を明らかにするため、下記表1の材料を用いて図1の円錐ころ軸受のころを作製した。ころの熱処理は、820〜900℃で2〜10時間、Rxガス、プロパンガス、及びアンモニアガスの混合ガス中で浸炭窒化処理後、油焼入れを施し、その後、160〜240℃で2時間、焼戻し処理を施した。処理温度、処理時間、アンモニアガス流量を変化させて、種々の窒素濃度、Si・Mn系窒化物面積率の試験片を作成した。ころ表面の残留オーステナイト量は25%〜30%とした。軌道輪は、SCM440に浸炭窒化処理を施し、完成品表面の残留オーステナイト量を25%とした。なお、下記表1中、鋼種1はJIS SUJ3、鋼種2はJIS SUJ2に相当する。
Figure 0005070735
[表面の窒化物の面積率及び窒素濃度の測定]
電界放射型走査型顕微鏡(FE−SEM)を用い、加速電圧10kVで転動体表面の観察を行った。窒化物面積率については、倍率5000倍で最低3視野以上写真を撮影し、写真を二値化してから画像解析装置を用いて面積率を計算した。窒素濃度の測定は、電子線マイクロアナライザ(EPMA)を用い、加速電圧15kVで行った。
[寿命試験]
続いて、種々の試験片に対し、異物混入潤滑下での試験を行った。試験条件は以下の通りである。
試験荷重:5880N(600kgf)
回転数:1000min-1
潤滑油:VG68
異物の硬さ:Hv870
異物の大きさ:74〜147μm
異物混入量:200ppm
各試験辺における窒素濃度、Si・Mn系窒化物面積率、寿命比を下記表2に示す。寿命比は、比較例1のL10寿命を1としたときの比率で示す。また、転動体表面の窒化物の観察写真を図2に示す。図2の下は、エネルギー分散型X線分散型分析装置で分析した窒化物の元素分析結果を示している。分析結果から、Si、Mn、Nのピークが出現しており、表面の窒化物は、Si・Mn系窒化物であることが分かる。
Figure 0005070735
図3には、窒素濃度とSi・Mn系窒化物の面積率との関係を示す。Si・Mn系窒化物の面積率、即ち析出量は、窒素濃度に比例して増大することが分かる。従って、Si、Mn添加量の多い鋼の方が、同一窒化量で比較した場合に、Si・Mn系窒化物の析出量が多いことになる。また、図4には、Si・Mn系窒化物の面積率とL10寿命との関係を示す。Si・Mn系窒化物の面積率が1%以上になると寿命が著しく向上することが分かる。また、Si・Mn系窒化物の面積率が10%を超えると効果が飽和していることが分かる。
次に、前述と同様に、種々の鋼に対し、820〜900℃で2〜10時間、Rxガス、プロパンガス、及びアンモニアガスの混合ガス中で浸炭窒化処理後、油焼入れを施し、その後、160〜250℃で2時間、焼戻し処理を施した。その際、熱処理時間、熱処理温度、アンモニアガス流量を変化させて下記表3に示す鋼種1〜17の鋼を作製し、その鋼で、図5に示すJIS6206深溝玉軸受の転動体を作製し、合わせて表3に示す鋼で軌道輪を作製した。そして、作製された深溝玉軸受に対して、以下の寿命試験を行った。
[寿命試験]
試験荷重:6223N(635kgf)
回転数:3000min-1
潤滑油:VG68
異物の硬さ:Hv590
異物の大きさ:74〜147μm
異物混入量:200ppm
寿命試験の結果、化学成分(wt%)、Si/Mn比率、窒素濃度(wt%)、Si・Mn系窒化物面積率、転動体表面の残留オーステナイト量γC、軌道輪の炭素量、軌道輪表面の残留オーステナイト量γRAB、転がり寿命比率を表4に示す。寿命比率は、比較例1(SUJ2相当)のL10寿命を1としたときの比で表す。
Figure 0005070735
表3から明らかなように、本発明範囲の鋼を用い、窒素濃度0.2wt%以上2.0wt%以下、Si・Mn系窒化物面積率1%以上10%以下とし、更に転動体表面の残留オーステナイト量γCと軌道輪表面の残留オーステナイト量γRABとを適正にした本発明の実施例は、比較例に比べて寿命延長効果が大きい。
この表3中の転動体表面の残留オーステナイト量γCと軌道輪表面の残留オーステナイト量γRABとの比γRAB/γCと、寿命比率との関係を図6に示す。同図から明らかなように、転動体表面の残留オーステナイト量γCを基準として、0.8≦γRAB/γC≦1.5とすることによって寿命延長効果が大きいことが分かる。比較例1〜5は、軌道輪と転動体の残留オーステナイト量は、本発明範囲内であるが、転動体のSi・Mn系窒化物面積率が、本発明範囲から外れている。この場合、転動体の強化量が不十分なため、前述した転動体の形状劣化を抑制することができず、寿命延長効果が得られなかったと考えられる。比較例2は、転動体の鋼種がSUJ2であるが、SUJ2の場合は、浸炭窒化によって高窒素濃度にしても、Si・Mn系窒化物の形成が不十分である。このため、少なくとも転動体には、Si、Mn含有量が高いSUJ3を用いるのが望ましい(本発明範囲)。
また、表3中のSi/Mn比率とSi・Mn系窒化物面積率との関係を図7に示す。例えば比較例3、4は、本発明範囲の鋼を用い、更に窒素濃度を0.2wt%以上としているが、Si含有量に対してMn含有量が少ないものであり、Si・Mn系窒化物の析出量が面積率で1%以下になっている。図7から明らかなように、Si/Mnの比率を5以下にすることによって、Si・Mn系窒化物の析出を促進することができる。
次に、下記表4に示す炭素量の鋼で前記図1に示す円錐ころ軸受の内輪を作製し、この作製された円錐ころ軸受の内輪に対し、図8に示すように内輪の鍔部に油圧式サーボパルサー試験機で振幅荷重をかけて鍔部の疲労試験を行った。試験条件は以下の通りである。
周波数:15Hz
荷重振幅:2940〜5390N
試験の結果は、107サイクルを疲労限荷重として、表4の比較例33の値を1とした場合の比率で示した。
Figure 0005070735
図9には、表4の内輪の炭素量と疲労限荷重比率との関係を示す。表4及び図9から明らかなように、内輪の炭素量が0.4wt%を超える範囲では、鍔部の疲労強度が向上していることが分かる。一方、炭素量が0.8wt%を超えると効果が飽和する。炭素量が過剰に増えると、衝撃値が低下するので、上限を0.8wt%をとする。
本発明の転がり軸受の一実施形態を示す円錐ころ軸受の断面図である。 Si・Mn系窒化物の観察写真である。 窒素濃度とSi・Mn系窒化物の面積率との関係を示す説明図である。 Si・Mn系窒化物の面積率とL10寿命との関係を示す説明図である。 本発明の転がり軸受の一実施形態を示す深溝玉軸受の断面図である。 転動体の残留オーステナイト量と軌道輪の残留オーステナイト量との比と、寿命比率との関係を示す説明図である。 Si/Mn比率とSi・Mn系窒化物の面積率との関係を示す説明図である。 油圧式サーボパルサー試験機による円錐ころ軸受内輪鍔部の疲労試験の説明図である。 内輪炭素量と疲労限荷重比率との関係を示す説明図である。
符号の説明
1は内輪
2は外輪
3は転動体
4は保持器

Claims (1)

  1. C:0.3wt%以上1.2wt%以下、Cr:0.5wt%以上2.0wt%以下、Si:0.3wt%以上2.2wt%以下、Mn:0.3wt%以上2.0wt%以下、残部鉄と不可避的不純物、且つSi/Mnが5以下の鋼からなる転動体に、浸炭窒化処理による浸炭窒化層を形成し、その表面層の窒素濃度を0.2wt%以上2wt%以下とし、且つ完成品表面層にSi・Mn系窒化物を有し、且つ前記窒化物面積率を1%以上10%未満とすると共に、炭素量が0.4wt%を超え、0.8wt%以下、Si:0.15wt%以上1.0wt%以下、Mn:0.2wt%以上2.0wt%以下、Cr:0.5wt%以上2.0wt%以下、残部鉄と不可避的不純物の浸炭肌焼鋼からなる内輪に浸炭窒化処理を施して表面窒素濃度を0.05wt%以上0.3wt%以下とし、転動体表面の残留オーステナイト量をγ 、内外輪の少なくとも一方の表面の残留オーステナイト量をγ RAB とした場合、0.8≦γ RAB /γ ≦1.5であることを特徴とする転がり軸受。
JP2006142263A 2006-05-23 2006-05-23 転がり軸受 Active JP5070735B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006142263A JP5070735B2 (ja) 2006-05-23 2006-05-23 転がり軸受

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006142263A JP5070735B2 (ja) 2006-05-23 2006-05-23 転がり軸受

Publications (2)

Publication Number Publication Date
JP2007314811A JP2007314811A (ja) 2007-12-06
JP5070735B2 true JP5070735B2 (ja) 2012-11-14

Family

ID=38848946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006142263A Active JP5070735B2 (ja) 2006-05-23 2006-05-23 転がり軸受

Country Status (1)

Country Link
JP (1) JP5070735B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4998054B2 (ja) * 2007-04-03 2012-08-15 日本精工株式会社 転がり軸受
JP2009191942A (ja) * 2008-02-14 2009-08-27 Nsk Ltd 転がり軸受
JP2014101896A (ja) * 2012-11-16 2014-06-05 Nsk Ltd 転がり軸受
JP6466146B2 (ja) * 2014-11-18 2019-02-06 住友重機械工業株式会社 偏心揺動型の減速機

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3538995B2 (ja) * 1994-09-29 2004-06-14 日本精工株式会社 転がり軸受

Also Published As

Publication number Publication date
JP2007314811A (ja) 2007-12-06

Similar Documents

Publication Publication Date Title
JP5194532B2 (ja) 転がり軸受
JP3593668B2 (ja) 転がり軸受
US5660647A (en) Rolling bearing with improved wear resistance
JP3435799B2 (ja) 転がり軸受
JP2002004003A (ja) 転動軸
EP2253728A1 (en) Rolling component and manufacturing method thereof
JP2009192071A (ja) 転がり軸受
US20080006347A1 (en) Rolling/sliding part and production method thereof
JP4998054B2 (ja) 転がり軸受
JP5372316B2 (ja) 転動部材
JP5070735B2 (ja) 転がり軸受
JP6939670B2 (ja) 転動疲労特性に優れた鋼部品
JP2009222076A (ja) 4列円錐ころ軸受
JP5991026B2 (ja) 転がり軸受の製造方法
JP2008232212A (ja) 転動装置
JP2009204076A (ja) 転がり軸受
JP5668283B2 (ja) 転がり摺動部材の製造方法
JP2009191942A (ja) 転がり軸受
JP5194538B2 (ja) 転がり軸受
JP5211453B2 (ja) 転がり軸受
JP2006045591A (ja) 円すいころ軸受
JP5233171B2 (ja) 転がり軸受
JP2013155438A (ja) 転動部材
JP2005273698A (ja) 自動調心ころ軸受
JP2012237338A (ja) 転がり軸受

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

R150 Certificate of patent or registration of utility model

Ref document number: 5070735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157