JP5061442B2 - Insulated circuit board and insulated circuit board with cooling sink - Google Patents

Insulated circuit board and insulated circuit board with cooling sink Download PDF

Info

Publication number
JP5061442B2
JP5061442B2 JP2005268095A JP2005268095A JP5061442B2 JP 5061442 B2 JP5061442 B2 JP 5061442B2 JP 2005268095 A JP2005268095 A JP 2005268095A JP 2005268095 A JP2005268095 A JP 2005268095A JP 5061442 B2 JP5061442 B2 JP 5061442B2
Authority
JP
Japan
Prior art keywords
circuit board
metal plate
insulating
solder layer
cooling sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005268095A
Other languages
Japanese (ja)
Other versions
JP2007081202A (en
Inventor
祥郎 黒光
誠 鳥海
義幸 長友
博弥 石塚
陽一郎 馬場
智之 渡邊
卓也 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005268095A priority Critical patent/JP5061442B2/en
Priority to EP06798058A priority patent/EP1926142A1/en
Priority to KR1020077010834A priority patent/KR20070118065A/en
Priority to US11/720,658 priority patent/US20090229864A1/en
Priority to PCT/JP2006/318395 priority patent/WO2007032486A1/en
Publication of JP2007081202A publication Critical patent/JP2007081202A/en
Application granted granted Critical
Publication of JP5061442B2 publication Critical patent/JP5061442B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Description

この発明は、大電流、高電圧を制御する半導体装置に用いられる絶縁回路基板および冷却シンク部付き絶縁回路基板に関するものである。   The present invention relates to an insulating circuit board used in a semiconductor device that controls a large current and a high voltage, and an insulating circuit board with a cooling sink portion.

この種の冷却シンク部付き絶縁回路基板としては、例えば下記特許文献1に示されるような、セラミックス等により形成された絶縁板と、該絶縁板の一方の表面に接合された回路板と、前記絶縁板の他方の表面に接合された金属板とを備える絶縁回路基板と、前記金属板の、前記絶縁板に接合された表面と反対側の下面に設けられた冷却部とを備える概略構成とされ、前記回路板の表面にはんだ層を介して半導体チップが接合されるようになっている。   As this type of insulated circuit board with a cooling sink part, for example, as shown in Patent Document 1 below, an insulating board formed of ceramics, etc., a circuit board joined to one surface of the insulating board, A schematic configuration comprising: an insulating circuit board including a metal plate bonded to the other surface of the insulating plate; and a cooling unit provided on a lower surface of the metal plate opposite to the surface bonded to the insulating plate. A semiconductor chip is bonded to the surface of the circuit board via a solder layer.

前記冷却部は、放熱板と内部に冷媒が供給される冷却シンク部とを備え、これらの放熱板と冷却シンク部とが、これらの間に熱伝導性グリース(例えばシリコーングリース)を介してねじにより締結されて接続された構成とされている。そして、前記冷却部の放熱板が、前記金属板にはんだ層を介して接合されている。
特開平8−264680号公報
The cooling part includes a heat sink and a cooling sink part to which a refrigerant is supplied. The heat sink and the cooling sink part are screwed with a heat conductive grease (for example, silicone grease) between them. It is set as the structure fastened and connected by. And the heat sink of the said cooling part is joined to the said metal plate through the solder layer.
JP-A-8-264680

ところで、近年では、前記冷却シンク部付き絶縁回路基板における回路板の表面に半導体チップが接合されてなるパワーモジュールの高出力化に伴い、当該パワーモジュールを構成する前記各構成要素同士の接合信頼性を低減させることなく、このパワーモジュールの積層方向におけるトータル熱抵抗を低減させることに対する要求が高まっている。しかし、前記熱伝導性グリースは前記トータル熱抵抗を低減させることに対して大きな阻害要因となっていた。   By the way, in recent years, as the output of a power module in which a semiconductor chip is bonded to the surface of a circuit board in the insulated circuit board with the cooling sink portion is increased, the bonding reliability between the components constituting the power module is increased. There is an increasing demand for reducing the total thermal resistance in the stacking direction of the power modules without reducing the power. However, the thermally conductive grease has been a major obstacle to reducing the total thermal resistance.

この発明はこのような事情を考慮してなされたもので、各構成要素同士の接合信頼性を低減させることなく、積層方向におけるトータル熱抵抗を低減させることができる絶縁回路基板および冷却シンク部付き絶縁回路基板を提供することを目的とする。   The present invention has been made in consideration of such circumstances, and has an insulating circuit board and a cooling sink portion that can reduce the total thermal resistance in the stacking direction without reducing the bonding reliability between the components. An object is to provide an insulated circuit board.

このような課題を解決して、前記目的を達成するために、本発明の絶縁回路基板は、絶縁板と、該絶縁板の一方の表面に接合された回路板と、前記絶縁板の他方の表面に接合された金属板とを備えた絶縁回路基板であって、前記回路板の表面に第1はんだ層を介して半導体チップが接合されるとともに、前記金属板の、前記絶縁板に接合された表面と反対側の下面に第2はんだ層を介して冷却シンク部が接合される構成とされ、前記回路板は、純度が99.98%以上のAl合金若しくは純Alにより形成され、前記金属板は、純度が99.00%以上99.90%以下のAl合金により形成されたことを特徴とする。
In order to solve such problems and achieve the above object, an insulated circuit board according to the present invention includes an insulating plate, a circuit board bonded to one surface of the insulating plate, and the other of the insulating plate. An insulating circuit board including a metal plate bonded to a surface, wherein a semiconductor chip is bonded to the surface of the circuit board via a first solder layer, and the metal plate is bonded to the insulating plate. A cooling sink portion is joined to a lower surface opposite to the front surface via a second solder layer, and the circuit board is made of an Al alloy or pure Al having a purity of 99.98% or more, and the metal The plate is formed of an Al alloy having a purity of 99.00% or more and 99.90% or less.

この発明では、前記回路板が純度99.98%以上のAl合金若しくは純Alにより形成され、前記金属板が純度99.00%以上99.90%以下のAl合金により形成されているので、前記金属板を前記第2はんだ層を介して冷却シンク部に直接接合することにより、熱伝導性グリースを介在させず、しかも接合界面数を低減させて、積層方向におけるトータル熱抵抗の低減されたパワーモジュールを形成しても、前記第1、第2はんだ層に亀裂が発生および進展することを抑制することが可能になる。
In this invention, the circuit board is made of Al alloy having a purity of 99.98% or more or pure Al, and the metal board is made of an Al alloy having a purity of 99.00% or more and 99.90% or less. By directly joining the metal plate to the cooling sink portion via the second solder layer, the heat conduction grease is not interposed, and the number of joint interfaces is reduced, thereby reducing the total thermal resistance in the stacking direction. Even if the module is formed, it is possible to suppress the occurrence and development of cracks in the first and second solder layers.

すなわち、前記回路板が純度99.98%以上のAl合金若しくは純Alにより形成されると、パワーモジュールに熱サイクルが作用したときに、回路板に大きなひずみを蓄積させて、前記第1はんだ層に蓄積されるひずみ量を抑えることが可能になり、この第1はんだ層に亀裂が発生および進展することを抑制することができる。
また、前記金属板が純度99.00%以上99.90%以下のAl合金により形成されると、パワーモジュールに熱サイクルが作用したときに金属板に蓄積されるひずみにより、この金属板を加工硬化させることが可能になり、当該絶縁回路基板全体の熱変形挙動に占める絶縁板の寄与度を減少させる一方、金属板の寄与度を増大させることができる。したがって、この絶縁回路基板全体の熱膨張係数が見かけ上増大し、前記冷却シンク部の熱膨張係数との差が小さくなり、前記第2はんだ層に蓄積されるひずみ量を低減させることが可能になり、この第2はんだ層に亀裂が発生および進展することを抑制することができる。
That is, when the circuit board is made of an Al alloy having a purity of 99.98% or more or pure Al, when the thermal cycle is applied to the power module, a large strain is accumulated in the circuit board, and the first solder layer It is possible to suppress the amount of strain accumulated in the first solder layer, and it is possible to suppress the occurrence and development of cracks in the first solder layer.
In addition, when the metal plate is formed of an Al alloy having a purity of 99.00% or more and 99.90% or less, the metal plate is processed by strain accumulated in the metal plate when a thermal cycle is applied to the power module. It is possible to cure, and the contribution of the metal plate can be increased while the contribution of the insulating plate to the thermal deformation behavior of the entire insulated circuit board is reduced. Therefore, the thermal expansion coefficient of the entire insulated circuit board is apparently increased, the difference from the thermal expansion coefficient of the cooling sink portion is reduced, and the amount of strain accumulated in the second solder layer can be reduced. Thus, cracks can be prevented from occurring and progressing in the second solder layer.

以上より、パワーモジュールを構成する前記各構成要素同士の接合信頼性を低減させることなく、このパワーモジュールの積層方向におけるトータル熱抵抗を低減させることが可能になる絶縁回路基板を提供することができる。   As described above, it is possible to provide an insulated circuit board capable of reducing the total thermal resistance in the stacking direction of the power modules without reducing the bonding reliability between the components constituting the power module. .

ここで、前記回路板の厚さ(a)は0.2mm以上0.8mm以下とされるとともに、前記金属板の厚さ(b)は0.6mm以上1.5mm以下とされ、かつa/b≦1とされてもよい。   Here, the thickness (a) of the circuit board is 0.2 mm to 0.8 mm, the thickness (b) of the metal board is 0.6 mm to 1.5 mm, and a / b ≦ 1 may be set.

この場合、前記第1、第2はんだ層に発生する応力を緩和させることができる。
すなわち、前記金属板の厚さ(b)が0.6mm以上1.5mm以下で、かつa/b≦1とされて、その厚さが厚くされているので、金属板の上面に熱膨張係数の小さい絶縁板が接合されて、この絶縁板により金属板の上面側における熱変形が拘束されたとしても、金属板の下面側における熱変形が絶縁板により拘束されることを抑制することが可能になる。また、前記回路板の厚さ(a)が0.2mm以上0.8mm以下で、かつa/b≦1とされて、その厚さが薄くされているので、この回路板の上下面に、熱膨張係数が小さい半導体チップおよび絶縁板がそれぞれ接合されることにより、この回路板の熱変形を偏りなく均等に拘束することが可能になる。
In this case, the stress generated in the first and second solder layers can be relaxed.
That is, since the thickness (b) of the metal plate is 0.6 mm or more and 1.5 mm or less and a / b ≦ 1, and the thickness is increased, the coefficient of thermal expansion is increased on the upper surface of the metal plate. Even if a small insulating plate is joined and thermal deformation on the upper surface side of the metal plate is constrained by this insulating plate, it is possible to suppress thermal deformation on the lower surface side of the metal plate from being constrained by the insulating plate. become. Further, since the thickness (a) of the circuit board is 0.2 mm or more and 0.8 mm or less and a / b ≦ 1, and the thickness thereof is reduced, By joining the semiconductor chip and the insulating plate each having a small thermal expansion coefficient, it becomes possible to evenly restrain the thermal deformation of the circuit board evenly.

ここで、前記回路板の厚さが0.2mmより小さいと、該回路板に流せる電流量が制限され、また、この厚さが0.8mmより大きいと、絶縁板により回路板の熱変形を偏りなく均等に拘束させることが困難になり、前記第1はんだ層における熱サイクル時の亀裂進展速度が大きくなって、接合信頼性を低下させるおそれがある。   Here, if the thickness of the circuit board is less than 0.2 mm, the amount of current that can be passed through the circuit board is limited. If the thickness is greater than 0.8 mm, the insulating board causes thermal deformation of the circuit board. It becomes difficult to restrain evenly without bias, and the crack growth rate during the thermal cycle in the first solder layer increases, which may reduce the bonding reliability.

前記金属板の厚さが0.6mmより小さいと、この金属板の熱変形が、その上面側のみならず下面側も絶縁板により拘束されることになり、前記第2はんだ層における熱サイクル時の亀裂進展速度が大きくなって、接合信頼性が低下するおそれがあり、また、この厚さが1.5mmより大きいと、金属板の熱変形により、絶縁板および回路板が変形させられることによって、前記第1はんだ層における熱サイクル時の亀裂進展速度が大きくなり、接合信頼性を低下させるおそれがある。   If the thickness of the metal plate is less than 0.6 mm, thermal deformation of the metal plate is restricted not only on the upper surface side but also on the lower surface side by the insulating plate, and during the thermal cycle in the second solder layer The crack growth rate of the metal plate increases and the bonding reliability may decrease. If the thickness exceeds 1.5 mm, the insulating plate and the circuit board are deformed due to thermal deformation of the metal plate. The crack growth rate during the thermal cycle in the first solder layer is increased, and there is a possibility that the joint reliability is lowered.

また、本発明の冷却シンク部付き絶縁回路基板は、請求項1または2に記載の絶縁回路基板と、前記冷却シンク部とが備えられ、前記第2はんだ層は、Snを主成分とするはんだにより形成され、その厚さが0.05mm〜0.5mmとされていることを特徴とする。 An insulating circuit board with a cooling sink portion according to the present invention includes the insulating circuit board according to claim 1 and the cooling sink portion, and the second solder layer is a solder containing Sn as a main component. The thickness is 0.05 mm to 0.5 mm .

この発明では、前記金属板と冷却シンク部とがSnを主成分とする第2はんだ層により接合されているので、冷却シンク部および絶縁板の熱膨張係数が異なることによって、各接合界面に応力が生じようとした場合においても、この応力を前記第2はんだ層により吸収させることが可能になり、パワーモジュールの接合信頼性をさらに向上させることができる。   In the present invention, since the metal plate and the cooling sink portion are joined by the second solder layer containing Sn as a main component, the thermal expansion coefficients of the cooling sink portion and the insulating plate are different, so that stress is applied to each joint interface. Even in the case where the phenomenon is about to occur, this stress can be absorbed by the second solder layer, and the joining reliability of the power module can be further improved.

ここで、前記第2はんだ層は、ヤング率が35GPa以上、0.2%耐力が30MPa以上、引張強度が40MPa以上とされてもよい。   Here, the second solder layer may have a Young's modulus of 35 GPa or more, a 0.2% proof stress of 30 MPa or more, and a tensile strength of 40 MPa or more.

この場合、冷却シンク部付き絶縁回路基板を有するパワーモジュールに熱サイクルが作用したときに、ひずみを前記金属板に多く蓄積させて、この第2はんだ層に蓄積されるひずみ量を低減させることが可能になり、前記金属板を加工硬化させることが可能になることと相俟って、第2はんだ層に亀裂が生ずること等を防ぐことができる。   In this case, when a thermal cycle is applied to a power module having an insulated circuit board with a cooling sink portion, a large amount of strain is accumulated on the metal plate, thereby reducing the amount of strain accumulated on the second solder layer. This makes it possible to prevent the second solder layer from being cracked and the like in combination with the fact that the metal plate can be work-hardened.

また、前記第2はんだ層は、Sn85wt%以上、Ag0.5wt%以上、Cu0.1wt%以上である3元以上の多元系合金からなるはんだにより形成されてもよい。   The second solder layer may be formed of a ternary or higher multicomponent alloy of Sn 85 wt% or more, Ag 0.5 wt% or more, and Cu 0.1 wt% or more.

この発明によれば、各構成要素同士の接合信頼性を低減させることなく、積層方向におけるトータル熱抵抗を低減させることが可能になる絶縁回路基板および冷却シンク部付き絶縁回路基板を提供することことができる。   According to this invention, it is possible to provide an insulating circuit board and an insulating circuit board with a cooling sink portion that can reduce the total thermal resistance in the stacking direction without reducing the bonding reliability between the components. Can do.

以下、図面を参照し、この発明の実施の形態について説明する。
本実施形態のパワーモジュール10は、絶縁回路基板20と、該絶縁回路基板20の一方の表面側に設けられた半導体チップ(発熱体)30と、絶縁回路基板20の他方の表面側に設けられた冷却シンク部31とを備えている。言い換えると、パワーモジュール10は、絶縁回路基板20および冷却シンク部31からなる冷却シンク部付き絶縁回路基板10aと半導体チップ30とを備えている。
Embodiments of the present invention will be described below with reference to the drawings.
The power module 10 of the present embodiment is provided on the insulating circuit board 20, the semiconductor chip (heating element) 30 provided on one surface side of the insulating circuit board 20, and the other surface side of the insulating circuit board 20. The cooling sink portion 31 is provided. In other words, the power module 10 includes an insulating circuit board 10 a with a cooling sink part, which includes the insulating circuit board 20 and the cooling sink part 31, and the semiconductor chip 30.

絶縁回路基板20は、絶縁板11と、該絶縁板11の一方の表面に接合された回路板12と、絶縁板11の他方の表面に接合された金属板13とを備えている。そして、回路板12の表面に第1はんだ層14を介して半導体チップ30が接合され、金属板13の、絶縁板11に接合された表面と反対側の下面に冷却シンク部31が設けられている。   The insulating circuit board 20 includes an insulating plate 11, a circuit plate 12 bonded to one surface of the insulating plate 11, and a metal plate 13 bonded to the other surface of the insulating plate 11. The semiconductor chip 30 is bonded to the surface of the circuit board 12 via the first solder layer 14, and the cooling sink portion 31 is provided on the lower surface of the metal plate 13 opposite to the surface bonded to the insulating plate 11. Yes.

ここで、回路板12および金属板13の表面にはそれぞれ、厚さ約2μmの図示されないNiメッキ層が形成されており、このNiメッキ層の形成された回路板12の表面に、第1はんだ層14を介して半導体チップ30が接合され、また、Niメッキ層の形成された回路板12および金属板13の各表面と絶縁板11とがろう付けにより接合されている。   Here, a Ni plating layer (not shown) having a thickness of about 2 μm is formed on the surface of each of the circuit board 12 and the metal plate 13, and the first solder is formed on the surface of the circuit board 12 on which the Ni plating layer is formed. The semiconductor chip 30 is bonded via the layer 14, and each surface of the circuit board 12 and the metal plate 13 on which the Ni plating layer is formed and the insulating plate 11 are bonded by brazing.

なお、絶縁板11が、AlN、Si等の窒化物系セラミックス、若しくはAl等の酸化物系セラミックスにより形成され、回路板12が、純度99.98%以上のAl合金若しくは純Alにより形成され、金属板13が、純度99.00%以上99.90%以下のAl合金により形成された構成において、絶縁板11と回路板12および金属板13とを接合するろう材は、Al−Si系、Al−Ge系、Al−Cu系、Al−Mg系またはAl−Mn系のろう材から選ばれる1または2以上のろう材とされる。
The insulating plate 11 is made of nitride ceramics such as AlN or Si 3 N 4 or oxide ceramics such as Al 2 O 3 , and the circuit board 12 is an Al alloy having a purity of 99.98% or more or A brazing material that joins the insulating plate 11, the circuit board 12, and the metal plate 13 in a configuration in which the metal plate 13 is made of an Al alloy having a purity of 99.00% or more and 99.90% or less is formed of pure Al. One or two or more brazing materials selected from Al—Si, Al—Ge, Al—Cu, Al—Mg, and Al—Mn brazing materials.

冷却シンク部31は、純Al、Al合金、純Cu若しくはCu合金等の金属若しくはAlSiC等の金属セラミック複合材により形成されるとともに、表面に金属板13が設けられる本体部31aと、表面に内部空間31bと連通する開口部が形成された箱体31cとを備えている。ここで、本体部31aは、製造上、純Al、Al合金、純Cu若しくはCu合金等の金属若しくはAlSiC等の金属セラミック複合材のいずれか1つの材料から構成されるのが望ましいが、複数の材料を積層した複合体とすることもできる。例えば、本体部31aの内部空間31b側の部分を純Alとし、金属板13側の部分に純Cu板を設けた複合体とすることができる。この場合、純Cu板は、前記純Alの熱膨張係数とAlN(絶縁板11)の熱膨張係数の中間の熱膨張係数を有することから、応力緩衝部材として機能する。本体部31aの、前記表面と反対側の下面には、下方に向けて延在し、かつこの本体部31aの幅方向(図1の紙面に奥行き方向)に延在する冷却フィン31dがその長さ方向(図1の紙面の左右方向)に複数所定の間隔をあけて形成されている。なお、本体部31aは、熱伝達および加工性等の観点から、純Al若しくはAl合金が望ましく、Al合金では特に純度98%以上が良い。   The cooling sink portion 31 is formed of a metal such as pure Al, Al alloy, pure Cu or Cu alloy, or a metal ceramic composite material such as AlSiC, and has a body portion 31a provided with a metal plate 13 on the surface, and an internal surface on the surface. And a box 31c having an opening communicating with the space 31b. Here, it is preferable that the main body 31a is made of any one material of a metal such as pure Al, Al alloy, pure Cu or Cu alloy, or a metal ceramic composite material such as AlSiC. A composite in which materials are laminated can also be used. For example, a composite body in which a portion of the main body portion 31a on the inner space 31b side is made of pure Al and a portion of the metal plate 13 side is provided with a pure Cu plate can be obtained. In this case, since the pure Cu plate has a thermal expansion coefficient intermediate between the thermal expansion coefficient of pure Al and the thermal expansion coefficient of AlN (insulating plate 11), it functions as a stress buffer member. A cooling fin 31d extending downward and extending in the width direction of the main body 31a (in the depth direction on the paper surface of FIG. 1) is provided on the lower surface of the main body 31a opposite to the surface. A plurality of predetermined intervals are formed in the vertical direction (left and right direction in FIG. 1). The main body 31a is preferably pure Al or an Al alloy from the viewpoints of heat transfer, workability, and the like, and the purity of the Al alloy is preferably 98% or more.

この冷却シンク部31は、本体部31aの冷却フィン31dが、箱体31cの内部空間31bに突出した状態で、本体部31aの前記下面が、箱体31cの前記開口部を閉塞する構成とされている。さらに、本体部31aの前記下面と、箱体31cの表面における前記開口部の周縁部との間には、熱伝導グリースが介在されておらず、本体部31aの前記下面と、箱体31cの表面における前記開口部の周縁部とは、直接接触した構成とされている。   The cooling sink 31 is configured such that the lower surface of the main body 31a closes the opening of the box 31c in a state where the cooling fins 31d of the main body 31a protrude into the internal space 31b of the box 31c. ing. Further, no thermal conductive grease is interposed between the lower surface of the main body 31a and the peripheral edge of the opening on the surface of the box 31c, and the lower surface of the main body 31a and the box 31c It is set as the structure which contacted the peripheral part of the said opening part in the surface directly.

そして、この閉塞された前記内部空間31bに冷却液や冷却空気などの冷媒を供給および回収する図示されない冷媒循環手段が設けられ、該手段により前記冷媒が、本体部31aの前記下面および冷却フィン31dの全域に接触するようになっている。
すなわち、前記内部空間31bに供給された冷媒により、半導体チップ30から冷却シンク部31に伝導された熱を回収することによって、半導体チップ30からの熱をパワーモジュール10から放散させるようになっている。なお、冷却シンク部31の本体部31aの熱伝達係数は約6000W/℃・m〜約15000W/℃・mとされている。
The closed internal space 31b is provided with a refrigerant circulation means (not shown) for supplying and collecting a refrigerant such as a coolant and cooling air, and the refrigerant is supplied to the lower surface of the main body 31a and the cooling fins 31d by the means. It comes to contact the whole area.
That is, heat from the semiconductor chip 30 is dissipated from the power module 10 by recovering the heat conducted from the semiconductor chip 30 to the cooling sink portion 31 by the coolant supplied to the internal space 31b. . The heat transfer coefficient of the body portion 31a of the cooling sink 31 is approximately 6000W / ℃ · m 2 ~ about 15000W / ℃ · m 2.

さらに本実施形態では、金属板13と本体部31aとは、ヤング率が35GPa以上、0.2%耐力が30MPa以上、引張強度が40MPa以上のSnを主成分とする第2はんだ層15により接合されている。金属板13、および本体部31aの互いに対向する表面には、図示されないNiメッキ層(金属板13では厚さ約2μm、本体部31aでは厚さ約5μm)が形成されており、これらの各Niメッキ層と第2はんだ層15とが接合されている。図示の例では、金属板13の下面の略全域が、第2はんだ層15により接合されている。また、第2はんだ層15は、Sn85wt%以上、Ag0.5wt%以上、Cu0.1wt%以上である3元以上の多元系合金からなるはんだにより形成されている。
なお、第1はんだ層14の材質は特に限定されるものではないが、Snを主成分とするはんだにより形成されるのが望ましい。
Furthermore, in this embodiment, the metal plate 13 and the main body 31a are joined by the second solder layer 15 mainly composed of Sn having a Young's modulus of 35 GPa or more, a 0.2% proof stress of 30 MPa or more, and a tensile strength of 40 MPa or more. Has been. Ni plating layers (not shown) (thickness of about 2 μm for the metal plate 13 and thickness of about 5 μm for the main body 31a) are formed on the surfaces of the metal plate 13 and the main body 31a facing each other. The plating layer and the second solder layer 15 are joined. In the illustrated example, substantially the entire lower surface of the metal plate 13 is joined by the second solder layer 15. Further, the second solder layer 15 is formed of a solder made of a ternary or higher multicomponent alloy of Sn 85 wt% or more, Ag 0.5 wt% or more, and Cu 0.1 wt% or more.
The material of the first solder layer 14 is not particularly limited, but is preferably formed of solder containing Sn as a main component.

また、絶縁板11の縦、横および厚さがそれぞれ10mm〜100mm、10mm〜100mmおよび0.2mm〜1.0mmとされ、回路板12の縦、横および厚さがそれぞれ10mm〜100mm、10mm〜100mmおよび0.2mm以上0.8mm以下とされ、金属板13の縦、横および厚さがそれぞれ10mm〜100mm、10mm〜100mmおよび0.6mm以上1.5mm以下とされたパワーモジュール10が、−40℃〜105℃の温度範囲で使用される場合において、第1はんだ層14および第2はんだ層15の厚さは0.05mm〜0.5mmとされている。   The length, width, and thickness of the insulating plate 11 are 10 mm to 100 mm, 10 mm to 100 mm, and 0.2 mm to 1.0 mm, respectively, and the length, width, and thickness of the circuit board 12 are 10 mm to 100 mm, 10 mm to 10 mm, respectively. The power module 10 in which the length, width, and thickness of the metal plate 13 are 10 mm to 100 mm, 10 mm to 100 mm, and 0.6 mm to 1.5 mm, respectively, is 100 mm and 0.2 mm to 0.8 mm. When used in a temperature range of 40 ° C. to 105 ° C., the thicknesses of the first solder layer 14 and the second solder layer 15 are 0.05 mm to 0.5 mm.

また、前記の数値範囲において、回路板12の厚さは金属板13の厚さより小さくされており、回路板12の厚さをa、金属板13の厚さをbとすると、a/b≦1の関係を満たしている。   Further, in the above numerical range, the thickness of the circuit board 12 is smaller than the thickness of the metal plate 13, and when the thickness of the circuit board 12 is a and the thickness of the metal plate 13 is b, a / b ≦ The relationship of 1 is satisfied.

以上説明したように、本実施形態に係るパワーモジュール10によれば、回路板12が純度99.98%以上のAl合金若しくは純Alにより形成され、金属板13が純度99.00%以上99.90%以下のAl合金により形成されているので、金属板13を冷却シンク部31の本体部31aに第2はんだ層15を介して直接接合することにより、熱伝導性グリースを介在させず、しかも接合界面数を低減させて、積層方向におけるトータル熱抵抗の低減されたパワーモジュール10を形成しても、第1、第2はんだ層14、15に亀裂が発生および進展することを抑制することが可能になる。
As described above, according to the power module 10 according to the present embodiment, the circuit board 12 is formed of Al alloy or pure Al having a purity of 99.98% or more, and the metal plate 13 is 99.00% or more of 99.00% purity . Since it is made of 90% or less Al alloy, the metal plate 13 is directly joined to the main body 31a of the cooling sink part 31 via the second solder layer 15, so that no thermally conductive grease is interposed. Even if the power module 10 having a reduced total thermal resistance in the stacking direction is formed by reducing the number of bonding interfaces, it is possible to suppress the occurrence and development of cracks in the first and second solder layers 14 and 15. It becomes possible.

すなわち、回路板12が純度99.98%以上のAl合金若しくは純Alにより形成されると、パワーモジュール10に熱サイクルが作用したときに、回路板12に大きなひずみを蓄積させて、第1はんだ層14に蓄積されるひずみ量を抑えることが可能になり、この第1はんだ層14に亀裂が発生および進展することを抑制することができる。   That is, when the circuit board 12 is formed of an Al alloy having a purity of 99.98% or more or pure Al, when a thermal cycle is applied to the power module 10, a large strain is accumulated in the circuit board 12, and the first solder It is possible to suppress the amount of strain accumulated in the layer 14, and it is possible to suppress the occurrence and development of cracks in the first solder layer 14.

また、金属板13が純度99.00%以上99.90%以下のAl合金により形成されると、パワーモジュール10に熱サイクルが作用したときに金属板13に蓄積されるひずみにより、この金属板13を加工硬化させることが可能になり、当該絶縁回路基板20全体の熱変形挙動に占める絶縁板11の寄与度を減少させる一方、金属板13の寄与度を増大させることができる。したがって、この絶縁回路基板20全体の熱膨張係数が見かけ上増大し、冷却シンク部31の熱膨張係数との差が小さくなり、第2はんだ層15に蓄積されるひずみ量を低減させることが可能になり、この第2はんだ層15に亀裂が発生および進展することを抑制することができる。 Further, when the metal plate 13 is formed of an Al alloy having a purity of 99.00% or more and 99.90% or less, the metal plate 13 is deformed due to strain accumulated in the metal plate 13 when a thermal cycle is applied to the power module 10. 13 can be work-hardened, and the contribution of the insulating plate 11 to the thermal deformation behavior of the entire insulated circuit board 20 can be reduced, while the contribution of the metal plate 13 can be increased. Therefore, the thermal expansion coefficient of the entire insulating circuit board 20 is apparently increased, the difference from the thermal expansion coefficient of the cooling sink portion 31 is reduced, and the amount of strain accumulated in the second solder layer 15 can be reduced. Thus, it is possible to suppress the occurrence and development of cracks in the second solder layer 15.

以上により、パワーモジュール10を構成する前記各構成要素同士の接合信頼性を低減させることなく、このパワーモジュール10の積層方向におけるトータル熱抵抗を低減させることが可能になる絶縁回路基板20を提供することができる。   As described above, there is provided an insulating circuit board 20 capable of reducing the total thermal resistance in the stacking direction of the power modules 10 without reducing the bonding reliability between the components constituting the power module 10. be able to.

本実施形態では、回路板12および金属板13の厚さが前記範囲に設定されているので、第1、第2はんだ層14、15に発生する応力を緩和させることができる。
すなわち、金属板13の厚さ(b)が0.6mm以上1.5mm以下で、かつa/b≦1とされて、その厚さが厚くされているので、金属板13の上面に熱膨張係数の小さい絶縁板11が接合されて、この絶縁板11により金属板13の上面側における熱変形が拘束されたとしても、金属板13の下面側における熱変形が絶縁板11により拘束されることを抑制することが可能になる。
In this embodiment, since the thickness of the circuit board 12 and the metal plate 13 is set in the above range, the stress generated in the first and second solder layers 14 and 15 can be relaxed.
That is, since the thickness (b) of the metal plate 13 is 0.6 mm or more and 1.5 mm or less and a / b ≦ 1, and the thickness is increased, the thermal expansion is performed on the upper surface of the metal plate 13. Even if the insulating plate 11 having a small coefficient is joined and thermal deformation on the upper surface side of the metal plate 13 is restrained by the insulating plate 11, thermal deformation on the lower surface side of the metal plate 13 is restrained by the insulating plate 11. Can be suppressed.

また、回路板12の厚さ(a)が0.2mm以上0.8mm以下で、かつa/b≦1とされて、その厚さが薄くされているので、この回路板12の上下面に、熱膨張係数が小さい半導体チップ30および絶縁板11がそれぞれ接合されることにより、この回路板12の熱変形を偏りなく均等に拘束することが可能になる。   In addition, since the thickness (a) of the circuit board 12 is 0.2 mm or more and 0.8 mm or less and a / b ≦ 1, and the thickness is reduced, By joining the semiconductor chip 30 and the insulating plate 11 having a small thermal expansion coefficient, the thermal deformation of the circuit board 12 can be evenly restrained evenly.

ここで、回路板12の厚さが0.2mmより小さいと、該回路板12に流せる電流量が制限され、また、この厚さが0.8mmより大きいと、絶縁板11により回路板12の熱変形を偏りなく均等に拘束させることが困難になり、第1はんだ層14における熱サイクル時の亀裂進展速度が大きくなって、接合信頼性を低下させるおそれがある。   Here, if the thickness of the circuit board 12 is smaller than 0.2 mm, the amount of current that can be passed through the circuit board 12 is limited. If the thickness is larger than 0.8 mm, the insulating board 11 causes the circuit board 12 to It becomes difficult to restrain thermal deformation evenly without bias, and the crack growth rate during the thermal cycle in the first solder layer 14 increases, which may reduce the bonding reliability.

金属板13の厚さが0.6mmより小さいと、この金属板13の熱変形が、その上面側のみならず下面側も絶縁板11により拘束されることになり、第2はんだ層15における熱サイクル時の亀裂進展速度が大きくなって、接合信頼性が低下するおそれがあり、また、この厚さが1.5mmより大きいと、金属板13の熱変形により、絶縁板11および回路板12が変形させられることによって、第1はんだ層14における熱サイクル時の亀裂進展速度が大きくなり、接合信頼性を低下させるおそれがある。   If the thickness of the metal plate 13 is smaller than 0.6 mm, the thermal deformation of the metal plate 13 is restricted not only on the upper surface side but also on the lower surface side by the insulating plate 11, and the heat in the second solder layer 15. There is a risk that the crack propagation rate during the cycle will increase, and the bonding reliability may be reduced. If the thickness is greater than 1.5 mm, the insulating plate 11 and the circuit board 12 will be deformed due to thermal deformation of the metal plate 13. By being deformed, the crack propagation rate during the thermal cycle in the first solder layer 14 is increased, and there is a concern that the joint reliability is lowered.

また、本実施形態では、金属板13と冷却シンク部31とが、Snを主成分とする第2はんだ層15により接合されているので、冷却シンク部31および絶縁板11の熱膨張係数が異なることによって、接合界面に応力が生じようとした場合においても、この応力を第2はんだ層15により吸収させることが可能になり、パワーモジュール10の接合信頼性をさらに向上させることができる。   Moreover, in this embodiment, since the metal plate 13 and the cooling sink part 31 are joined by the 2nd solder layer 15 which has Sn as a main component, the thermal expansion coefficients of the cooling sink part 31 and the insulating plate 11 differ. As a result, even when a stress is about to occur at the joint interface, the stress can be absorbed by the second solder layer 15, and the joint reliability of the power module 10 can be further improved.

さらに、第2はんだ層15のヤング率、0.2%耐力および引張強度が前記大きさとされていることから、パワーモジュール10に熱サイクルが作用したときに、ひずみを金属板13に多く蓄積させて、この第2はんだ層15に蓄積されるひずみ量を低減させることが可能になり、金属板13を加工硬化させることが可能になることと相俟って、第2はんだ層15に亀裂が生ずること等を防ぐことができる。   Further, since the Young's modulus, 0.2% proof stress and tensile strength of the second solder layer 15 are set to the above-described sizes, a large amount of strain is accumulated in the metal plate 13 when a thermal cycle is applied to the power module 10. As a result, the amount of strain accumulated in the second solder layer 15 can be reduced, and coupled with the fact that the metal plate 13 can be work-hardened, there is a crack in the second solder layer 15. It can be prevented from occurring.

ここで、以上の作用効果のうち、回路板12を純度99.98%以上のAl合金若しくは純Alにより形成し、金属板13を純度98.00%以上99.90%以下のAl合金により形成したことにより、第1、第2はんだ層14、15に亀裂が発生および進展するのを防ぐことができることについて、実験により検証した(以下、「第1検証実験」という)。   Here, among the above effects, the circuit board 12 is formed of an Al alloy having a purity of 99.98% or more or pure Al, and the metal plate 13 is formed of an Al alloy having a purity of 98.00% or more and 99.90% or less. As a result, it was verified by experiments that cracks can be prevented from occurring and progressing in the first and second solder layers 14 and 15 (hereinafter referred to as “first verification experiment”).

本実験に供する冷却シンク部付き絶縁回路基板として、AlNを主成分とする材質により形成された絶縁板11の縦、横および厚さがそれぞれ50mm、50mmおよび0.635mmとされ、Al合金により形成された回路板12の縦、横および厚さがそれぞれ48mm、48mmおよび0.4mmとされ、Al合金により形成された金属板13の縦、横および厚さがそれぞれ48mm、48mmおよび0.6mmとされ、AA(Alminum Association)6063系のAl合金により形成された冷却シンク部31は、その本体部31aの縦、横および厚さがそれぞれ100mm、100mmおよび3mmとされるとともに、冷却フィン31dの厚さ(図1の紙面の左右方向の大きさ)、長さ(図1の紙面の上下方向の大きさ)およびピッチがそれぞれ1mm、8mmおよび3mmとされ、Sn3.5%Ag0.75%Cuからなる第2はんだ層15の厚さが0.3mmとされた構成を採用した。   As an insulating circuit board with a cooling sink portion used in this experiment, the vertical, horizontal and thickness of the insulating plate 11 made of a material mainly composed of AlN are 50 mm, 50 mm and 0.635 mm, respectively, and are formed of an Al alloy. The vertical, horizontal, and thickness of the formed circuit board 12 are 48 mm, 48 mm, and 0.4 mm, respectively, and the vertical, horizontal, and thickness of the metal plate 13 formed of an Al alloy are 48 mm, 48 mm, and 0.6 mm, respectively. The cooling sink portion 31 formed of an AA (Alumum Association) 6063 series Al alloy has the main body portion 31a of 100 mm, 100 mm and 3 mm in length, 100 mm and 3 mm, respectively, and the thickness of the cooling fin 31 d. (The size in the left-right direction of the paper surface of FIG. 1) and length (the size in the vertical direction of the paper surface of FIG. Is) and the pitch is 1mm each, is a 8mm and 3 mm, the thickness of the second solder layer 15 made of Sn3.5% Ag0.75% Cu is adopted a structure which is a 0.3 mm.

以上の構成において、回路板12および金属板13を形成する各Al合金のAl純度をそれぞれ異ならせた36種類の冷却シンク部付き絶縁回路基板を形成した。以下、これらのうち、回路板12を形成するAl合金の純度が99.98%以上で、かつ金属板13を形成するAl合金の純度が98.00%以上99.90%以下の構成を第1実施例といい、これ以外の構成を第1比較例という。   In the above configuration, 36 types of insulated circuit boards with cooling sink portions were formed in which the Al purity of each Al alloy forming the circuit board 12 and the metal plate 13 was different. Hereinafter, among these, the purity of the Al alloy forming the circuit board 12 is 99.98% or more, and the purity of the Al alloy forming the metal plate 13 is 98.00% or more and 99.90% or less. This is called one embodiment, and the other configuration is called a first comparative example.

なお、金属板13と冷却シンク部31の本体部31aとの第2はんだ層15を介した接合は、予め、金属板13が接合される冷却シンク部の本体部31aの表面と、金属板13の表面とに、前記Niメッキ層を無電解メッキにより形成しておき、その後、温度が300℃とされた還元雰囲気下で実施した。また、この接合の際、同時に第2はんだ層15と同じはんだ材料により、縦、横および厚さがそれぞれ10mm、10mmおよび0.3mmとされたAlNを用いたヒーターチップを回路板12に接合した。このヒータチップは、本検証試験の実施に際して半導体チップ30に代えて採用したものである(以下、この構成を「パワーモジュール」という)。さらに、回路板12および金属板13と絶縁板11とは、Al−Siろう箔を用いてあらかじめ真空ろう付けした。なお、このろう付けに際し予め、回路板12および金属板13の各表面に厚さ2μmのNiメッキ層を無電解メッキにより形成した。   The metal plate 13 and the main body portion 31 a of the cooling sink portion 31 are joined via the second solder layer 15 in advance, the surface of the main body portion 31 a of the cooling sink portion to which the metal plate 13 is joined, and the metal plate 13. The Ni plating layer was formed on the surface of the substrate by electroless plating, and then performed in a reducing atmosphere at a temperature of 300 ° C. At the same time, a heater chip using AlN having a length, width, and thickness of 10 mm, 10 mm, and 0.3 mm, respectively, was joined to the circuit board 12 by the same solder material as that of the second solder layer 15. . This heater chip is employed in place of the semiconductor chip 30 in carrying out this verification test (this configuration is hereinafter referred to as “power module”). Furthermore, the circuit board 12, the metal plate 13, and the insulating plate 11 were previously vacuum brazed using an Al—Si brazing foil. In this brazing, a Ni plating layer having a thickness of 2 μm was previously formed on each surface of the circuit board 12 and the metal plate 13 by electroless plating.

以上の各パワーモジュールをそれぞれ、フッ素系溶媒からなる液相雰囲気下に置いて、その雰囲気温度を−40℃から105℃に10分間で上昇させ、105℃から−40℃に10分間で下降させる温度履歴を1サイクルとした温度サイクルを前記各パワーモジュールに付与し、該付与前の熱抵抗値(以下、「初期熱抵抗値」という)と比べて10%以上の上昇が確認されたときの熱サイクル数を、このパワーモジュールの熱サイクル寿命として測定した。ここで、第1、第2はんだ層14、15等の接合部等に亀裂が発生および進展したときに、熱抵抗値が上昇することになる。この熱サイクル寿命の測定は、500サイクル経過するたびに熱抵抗値を測定することにより実施した。   Each of the above power modules is placed in a liquid phase atmosphere composed of a fluorinated solvent, and the ambient temperature is increased from −40 ° C. to 105 ° C. over 10 minutes and then decreased from 105 ° C. to −40 ° C. over 10 minutes. When a temperature cycle with a temperature history of 1 cycle is applied to each power module, and an increase of 10% or more is confirmed compared to the thermal resistance value before the application (hereinafter referred to as “initial thermal resistance value”). The number of thermal cycles was measured as the thermal cycle life of this power module. Here, when cracks are generated and propagated in the joints of the first and second solder layers 14 and 15, the thermal resistance value is increased. The measurement of the thermal cycle life was carried out by measuring the thermal resistance value after every 500 cycles.

なお、熱抵抗値の測定は、冷却シンク部31の内部空間31bに水温50℃の冷却水を循環させて、冷却フィン31dの外表面を一定温度に保った状態で、ヒーターチップに100Wの電力を供給して発熱させる。このヒーターチップの温度が一定になった後に、そのヒーターチップの温度(Th)および冷却水の温度(50℃)により、熱抵抗値(HR)を、HR=(Th−50)/100(℃/W)から算出した。ここで、ヒーターチップ温度(Th)はあらかじめヒーターチップのTCR(Temperature Coefficient of Resistance)を測定しておき、発熱前後のヒーターチップの抵抗値の差(ΔR)を求めることによって、Th=ΔR/TCR+Tr(℃)から算出した(Trは室温)。   The measurement of the thermal resistance value is performed by circulating cooling water having a water temperature of 50 ° C. in the internal space 31b of the cooling sink 31 and maintaining the outer surface of the cooling fin 31d at a constant temperature with 100 W of power to the heater chip. To generate heat. After the temperature of the heater chip becomes constant, the thermal resistance value (HR) is determined as HR = (Th−50) / 100 (° C.) according to the temperature (Th) of the heater chip and the temperature of cooling water (50 ° C.). / W). Here, the heater chip temperature (Th) is obtained by measuring the TCR (Temperature Coefficient of Resistance) of the heater chip in advance and obtaining the difference (ΔR) in the resistance value of the heater chip before and after the heat generation, thereby obtaining Th = ΔR / TCR + Tr Calculated from (° C.) (Tr is room temperature).

従来例として、前記パワーモジュールと同じヒーターチップ、絶縁板11、回路板12、金属板13および冷却シンク部31を採用するとともに、金属板13と冷却シンク部31との間に、縦、横および厚さがそれぞれ70mm、70mmおよび3mmとされたCuMo合金からなる放熱板を配設した構成を採用した。なお、該従来例の構成は、まず、回路板12および金属板13と絶縁板11とをAl−Siろう箔を用いて真空ろう付けした後に、Pb50%Snはんだ材料により、ヒーターチップと回路板12とを接合するとともに、前記放熱板と金属板13とを接合した。さらに、厚さが約0.15mmとされたシリコーングリース層を介して、前記放熱板と冷却シンク部31とを接着させた。なお、前記第1実施例および第1比較例と全く同様にして、回路板12等の各表面にNiメッキ層も形成した。   As a conventional example, the same heater chip as the power module, the insulating plate 11, the circuit board 12, the metal plate 13 and the cooling sink part 31 are adopted, and the vertical, horizontal and horizontal between the metal plate 13 and the cooling sink part 31 are adopted. A configuration in which a heat sink made of a CuMo alloy having thicknesses of 70 mm, 70 mm, and 3 mm, respectively, was provided. The configuration of the conventional example is that the circuit board 12, the metal plate 13, and the insulating plate 11 are first vacuum brazed using an Al—Si brazing foil, and then the heater chip and the circuit board are made of Pb50% Sn solder material. 12 and the heat radiating plate and the metal plate 13 were joined. Further, the heat radiating plate and the cooling sink portion 31 were bonded through a silicone grease layer having a thickness of about 0.15 mm. Note that a Ni plating layer was also formed on each surface of the circuit board 12 and the like in exactly the same manner as in the first example and the first comparative example.

結果、従来例の初期熱抵抗値は0.72(℃/W)であるのに対し、第1実施例の初期熱抵抗値は0.28(℃/W)〜0.30(℃/W)であり、従来例と比べて半分より小さくできることが確認された。また、図2に示すように、前記第1比較例では、前記熱サイクル寿命が3000以下であるのに対し、第1実施例では3500より大きいことが確認された。
以上より、回路板12を形成するAl合金の純度が99.98%以上で、かつ金属板13を形成するAl合金の純度が98.00%以上99.90%以下とされたパワーモジュール10では、各構成要素12等同士の接合信頼性を低減させることなく、積層方向におけるトータル熱抵抗を低減させることができることが確認された。
As a result, the initial thermal resistance value of the conventional example is 0.72 (° C./W), whereas the initial thermal resistance value of the first embodiment is 0.28 (° C./W) to 0.30 (° C./W). It was confirmed that it can be smaller than half compared with the conventional example. Further, as shown in FIG. 2, it was confirmed that the thermal cycle life was 3000 or less in the first comparative example, but was greater than 3500 in the first example.
From the above, in the power module 10 in which the purity of the Al alloy forming the circuit board 12 is 99.98% or more and the purity of the Al alloy forming the metal plate 13 is 98.00% or more and 99.90% or less. It has been confirmed that the total thermal resistance in the stacking direction can be reduced without reducing the bonding reliability between the constituent elements 12 and the like.

次に、金属板13の厚さおよび回路板12の厚さを前記範囲としたことによって、熱サイクルにより第1、第2はんだ層14、15に発生する応力を緩和できることについて、実験により検証した(以下、「第2検証実験」という)。   Next, it was verified by experiments that the stress generated in the first and second solder layers 14 and 15 can be relieved by the thermal cycle by setting the thickness of the metal plate 13 and the thickness of the circuit board 12 in the above ranges. (Hereinafter referred to as “second verification experiment”).

本実験に供するパワーモジュールとして、前記第1検証実験で採用したパワーモジュールにおいて、回路板12を純度99.99%のAl合金により形成するとともに、金属板13を純度99.50%のAl合金により形成し、回路板12および金属板13の厚さを、0.2mmから1.5mmまでの範囲で種々異ならせた49種類の構成を採用した。以下、回路板12の厚さ(a)が0.2mm以上0.8mm以下、金属板13の厚さ(b)が0.6mm以上1.5mm以下で、a/b≦1とされた構成を第2実施例といい、これ以外の構成を第2比較例という。   As a power module used in this experiment, in the power module adopted in the first verification experiment, the circuit board 12 is formed of an Al alloy having a purity of 99.99%, and the metal plate 13 is made of an Al alloy having a purity of 99.50%. 49 types of configurations were employed in which the thicknesses of the circuit board 12 and the metal plate 13 were varied in a range from 0.2 mm to 1.5 mm. Hereinafter, the thickness (a) of the circuit board 12 is 0.2 mm or more and 0.8 mm or less, the thickness (b) of the metal board 13 is 0.6 mm or more and 1.5 mm or less, and a / b ≦ 1. Is referred to as a second embodiment, and the other configuration is referred to as a second comparative example.

以上の各パワーモジュールにそれぞれ、前記第1検証実験と同様にして温度サイクルを付与し、熱サイクル寿命を測定した。
結果、第2実施例においても、前記第1実施例と同様に、初期熱抵抗値が0.28(℃/W)〜0.30(℃/W)であり、前記第1検証実験で示した従来例と比べて半分より小さくできることが確認された。また、図3に示すように、第2比較例では、前記熱サイクル寿命が3000以下であるのに対し、第2実施例では3500より大きいことが確認された。
以上より、回路板12の厚さ(a)が0.2mm以上0.8mm以下、金属板13の厚さ(b)が0.6mm以上1.5mm以下で、a/b≦1とされたパワーモジュール10では、各構成要素12等同士の接合信頼性を低減させることなく、積層方向におけるトータル熱抵抗を低減させることができることが確認された。
Each of the above power modules was given a temperature cycle in the same manner as in the first verification experiment, and the thermal cycle life was measured.
As a result, also in the second example, as in the first example, the initial thermal resistance value is 0.28 (° C./W) to 0.30 (° C./W), which is shown in the first verification experiment. It was confirmed that it can be smaller than half compared with the conventional example. Moreover, as shown in FIG. 3, in the 2nd comparative example, it was confirmed that the said heat cycle lifetime is 3000 or less, but in 2nd Example, it is larger than 3500.
From the above, the thickness (a) of the circuit board 12 is 0.2 mm to 0.8 mm, the thickness (b) of the metal board 13 is 0.6 mm to 1.5 mm, and a / b ≦ 1. In the power module 10, it was confirmed that the total thermal resistance in the stacking direction can be reduced without reducing the bonding reliability between the components 12 and the like.

次に、第2はんだ層15のヤング率、0.2%耐力、および引張強度がそれぞれ前記大きさとされたことにより、第2はんだ層15に亀裂が生ずること等を防止できることについての検証実験を実施した。   Next, a verification experiment is conducted on the fact that the second solder layer 15 can be prevented from cracking by setting the Young's modulus, 0.2% proof stress, and tensile strength of the second solder layer 15 to the above-described sizes. Carried out.

本実験に供するパワーモジュールとして、前記第1検証実験で採用したパワーモジュールにおいて、回路板12を純度99.99%のAl合金により形成するとともに、金属板13を純度99.50%のAl合金により形成し、第2はんだ層15の材質を異ならせた10種類の構成を準備した。   As a power module used in this experiment, in the power module adopted in the first verification experiment, the circuit board 12 is formed of an Al alloy having a purity of 99.99%, and the metal plate 13 is made of an Al alloy having a purity of 99.50%. Ten types of configurations were prepared, in which the second solder layer 15 was made of different materials.

以上の各パワーモジュールにそれぞれ、前記第1検証実験と同様にして温度サイクルを付与し、熱サイクル寿命を測定した。
結果、図4に示す第3実施例においても、前記第1、第2実施例と同様に、初期熱抵抗値が0.28(℃/W)〜0.30(℃/W)であり、前記第1検証実験で示した従来例と比べて半分より小さくできることが確認された。また、図4に示すように、第3比較例では、前記熱サイクル寿命が3000以下であるのに対し、第3実施例では3500より大きく、前記従来例と同等に維持できることが確認された。
以上より、各構成要素12等同士の接合信頼性を低減させることなく、積層方向におけるトータル熱抵抗を低減させることができるパワーモジュールを提供することができることが確認された。
Each of the above power modules was given a temperature cycle in the same manner as in the first verification experiment, and the thermal cycle life was measured.
As a result, also in the third example shown in FIG. 4, the initial thermal resistance value is 0.28 (° C./W) to 0.30 (° C./W) as in the first and second examples. It was confirmed that it can be smaller than half compared with the conventional example shown in the first verification experiment. Further, as shown in FIG. 4, in the third comparative example, the thermal cycle life was 3000 or less, whereas in the third example, it was confirmed that it was larger than 3500 and could be maintained equivalent to the conventional example.
From the above, it has been confirmed that a power module capable of reducing the total thermal resistance in the stacking direction without reducing the bonding reliability between the constituent elements 12 and the like can be provided.

なお、本発明の技術的範囲は前記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、前記冷却シンク部31に、絶縁板11の熱膨張係数と冷却シンク部31の本体部31aの熱膨張係数との中間の熱膨張係数を有するCu等からなる応力緩衝部材を備えさせ、該応力緩衝部材を、金属板13と冷却シンク部31との間に配設するようにしてもよく、また、この応力緩衝部材に代えて、純度が99%以上の純Alからなるひずみ吸収部材を配設するようにしてもよい。   The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, the cooling sink part 31 is provided with a stress buffer member made of Cu or the like having a thermal expansion coefficient intermediate between the thermal expansion coefficient of the insulating plate 11 and the thermal expansion coefficient of the main body part 31a of the cooling sink part 31, A stress buffering member may be disposed between the metal plate 13 and the cooling sink 31. Instead of the stress buffering member, a strain absorbing member made of pure Al having a purity of 99% or more is used. It may be arranged.

さらに、前記実施形態では、冷却シンク部31の本体部31aの全体を、純Al若しくはAl合金により形成した構成を示したが、金属板13が設けられる表面側のみを純Al若しくはAl合金により形成した多層構造としてもよい。   Further, in the above embodiment, the entire body portion 31a of the cooling sink portion 31 is formed of pure Al or Al alloy. However, only the surface side on which the metal plate 13 is provided is formed of pure Al or Al alloy. A multilayer structure may be used.

各構成要素同士の接合信頼性を低減させることなく、積層方向におけるトータル熱抵抗を低減させることが可能になる絶縁回路基板および冷却シンク部付き絶縁回路基板を提供する。   Provided are an insulating circuit board and an insulating circuit board with a cooling sink that can reduce the total thermal resistance in the stacking direction without reducing the bonding reliability between the components.

この発明の一実施形態に係る絶縁回路基板を用いたパワーモジュールを示す全体図である。1 is an overall view showing a power module using an insulated circuit board according to an embodiment of the present invention. この発明の一実施形態に係る絶縁回路基板を用いたパワーモジュールの作用効果に係る第1検証試験の結果を示す図である。It is a figure which shows the result of the 1st verification test which concerns on the effect of the power module using the insulated circuit board concerning one Embodiment of this invention. この発明の一実施形態に係る絶縁回路基板を用いたパワーモジュールの作用効果に係る第2検証試験の結果を示す図である。It is a figure which shows the result of the 2nd verification test which concerns on the effect of the power module using the insulated circuit board concerning one Embodiment of this invention. この発明の一実施形態に係る絶縁回路基板を用いたパワーモジュールの作用効果に係る第3検証試験の結果を示す図である。It is a figure which shows the result of the 3rd verification test which concerns on the effect of the power module using the insulated circuit board concerning one Embodiment of this invention.

符号の説明Explanation of symbols

10 パワーモジュール
10a 冷却シンク部付き絶縁回路基板
11 絶縁板
12 回路板
13 金属板
14 第1はんだ層
15 第2はんだ層
20 絶縁回路基板
30 半導体チップ
31 冷却シンク部

DESCRIPTION OF SYMBOLS 10 Power module 10a Insulated circuit board with cooling sink part 11 Insulating board 12 Circuit board 13 Metal plate 14 1st solder layer 15 2nd solder layer 20 Insulated circuit board 30 Semiconductor chip 31 Cooling sink part

Claims (5)

絶縁板と、該絶縁板の一方の表面に接合された回路板と、前記絶縁板の他方の表面に接合された金属板とを備えた絶縁回路基板であって、
前記回路板の表面に第1はんだ層を介して半導体チップが接合されるとともに、前記金属板の、前記絶縁板に接合された表面と反対側の下面に第2はんだ層を介して冷却シンク部が接合される構成とされ、
前記回路板は、純度が99.98%以上のAl合金若しくは純Alにより形成され、前記金属板は、純度が99.00%以上99.90%以下のAl合金により形成されたことを特徴とする絶縁回路基板。
An insulating circuit board comprising: an insulating plate; a circuit plate bonded to one surface of the insulating plate; and a metal plate bonded to the other surface of the insulating plate,
A semiconductor chip is bonded to the surface of the circuit board via a first solder layer, and a cooling sink portion is connected to the lower surface of the metal plate opposite to the surface bonded to the insulating plate via a second solder layer. Is configured to be joined,
The circuit board is formed of an Al alloy having a purity of 99.98% or more or pure Al, and the metal plate is formed of an Al alloy having a purity of 99.00% or more and 99.90% or less. Insulated circuit board.
請求項1記載の絶縁回路基板において、
前記回路板の厚さ(a)は0.2mm以上0.8mm以下とされるとともに、前記金属板の厚さ(b)は0.6mm以上1.5mm以下とされ、かつa/b≦1であることを特徴とする絶縁回路基板。
The insulated circuit board according to claim 1,
The thickness (a) of the circuit board is 0.2 mm to 0.8 mm, the thickness (b) of the metal board is 0.6 mm to 1.5 mm, and a / b ≦ 1 An insulated circuit board characterized by the above.
請求項1または2に記載の絶縁回路基板と、前記冷却シンク部とが備えられ、
前記第2はんだ層は、Snを主成分とするはんだにより形成され、その厚さが0.05mm〜0.5mmとされていることを特徴とする冷却シンク部付き絶縁回路基板。
The insulated circuit board according to claim 1 or 2, and the cooling sink part,
The insulating circuit board with a cooling sink portion, wherein the second solder layer is made of solder containing Sn as a main component and has a thickness of 0.05 mm to 0.5 mm .
請求項3記載の冷却シンク部付き絶縁回路基板において、
前記第2はんだ層は、ヤング率が35GPa以上、0.2%耐力が30MPa以上、引張強度が40MPa以上とされていることを特徴とする冷却シンク部付き絶縁回路基板。
In the insulated circuit board with a cooling sink part according to claim 3,
The insulating circuit board with a cooling sink, wherein the second solder layer has a Young's modulus of 35 GPa or more, a 0.2% proof stress of 30 MPa or more, and a tensile strength of 40 MPa or more.
請求項4記載の冷却シンク部付き絶縁回路基板において、
前記第2はんだ層は、Sn85wt%以上、Ag0.5wt%以上、Cu0.1wt%以上である3元以上の多元系合金からなるはんだにより形成されたことを特徴とする冷却シンク部付き絶縁回路基板。

The insulated circuit board with a cooling sink part according to claim 4,
The insulating circuit board with a cooling sink portion, wherein the second solder layer is formed of a solder composed of a ternary or higher ternary alloy of Sn 85 wt% or more, Ag 0.5 wt% or more, and Cu 0.1 wt% or more. .

JP2005268095A 2005-09-15 2005-09-15 Insulated circuit board and insulated circuit board with cooling sink Active JP5061442B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005268095A JP5061442B2 (en) 2005-09-15 2005-09-15 Insulated circuit board and insulated circuit board with cooling sink
EP06798058A EP1926142A1 (en) 2005-09-15 2006-09-15 Insulating circuit board and insulating circuit board provided with cooling sink section
KR1020077010834A KR20070118065A (en) 2005-09-15 2006-09-15 Insulating circuit board and insulating circuit board provided with cooling sink section
US11/720,658 US20090229864A1 (en) 2005-09-15 2006-09-15 Insulating circuit board and insulating circuit board having cooling sink
PCT/JP2006/318395 WO2007032486A1 (en) 2005-09-15 2006-09-15 Insulating circuit board and insulating circuit board provided with cooling sink section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005268095A JP5061442B2 (en) 2005-09-15 2005-09-15 Insulated circuit board and insulated circuit board with cooling sink

Publications (2)

Publication Number Publication Date
JP2007081202A JP2007081202A (en) 2007-03-29
JP5061442B2 true JP5061442B2 (en) 2012-10-31

Family

ID=37941166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005268095A Active JP5061442B2 (en) 2005-09-15 2005-09-15 Insulated circuit board and insulated circuit board with cooling sink

Country Status (1)

Country Link
JP (1) JP5061442B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101971329B (en) * 2008-03-17 2012-11-21 三菱综合材料株式会社 Substrate for power module with heat sink and method for producing the same, power module with heat sink, and substrate for power module
JP5479181B2 (en) * 2010-03-30 2014-04-23 株式会社豊田中央研究所 Insulating substrate and module having the insulating substrate
JP5771951B2 (en) * 2010-10-29 2015-09-02 三菱マテリアル株式会社 Power module substrate manufacturing method
JP2013229579A (en) * 2012-03-30 2013-11-07 Mitsubishi Materials Corp Substrate for power module, substrate for power module having heat sink, and power module
JP2014112732A (en) * 2012-03-30 2014-06-19 Mitsubishi Materials Corp Substrate for power module with heat sink and power module
JP6044097B2 (en) * 2012-03-30 2016-12-14 三菱マテリアル株式会社 Power module substrate with heat sink, power module substrate with cooler, and power module
JP5962147B2 (en) * 2012-03-30 2016-08-03 三菱マテリアル株式会社 Power module substrate with heat sink, power module substrate with cooler, and power module
JP6776953B2 (en) 2017-03-07 2020-10-28 三菱マテリアル株式会社 Board for power module with heat sink

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3152344B2 (en) * 1996-08-22 2001-04-03 三菱マテリアル株式会社 Ceramic circuit board
JP2002203942A (en) * 2000-12-28 2002-07-19 Fuji Electric Co Ltd Power semiconductor module
JP2003204020A (en) * 2002-01-04 2003-07-18 Mitsubishi Electric Corp Semiconductor device
JP4104429B2 (en) * 2002-11-07 2008-06-18 電気化学工業株式会社 Module structure and module using it

Also Published As

Publication number Publication date
JP2007081202A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP5061442B2 (en) Insulated circuit board and insulated circuit board with cooling sink
WO2007032486A1 (en) Insulating circuit board and insulating circuit board provided with cooling sink section
JP2007081200A (en) Insulated circuit board with cooling sink section
KR101215695B1 (en) Heat dissipation device and power module
JP4015023B2 (en) ELECTRONIC CIRCUIT MEMBER, ITS MANUFACTURING METHOD, AND ELECTRONIC COMPONENT
JP5128951B2 (en) Heat sink module and manufacturing method thereof
JP6199397B2 (en) Semiconductor device and manufacturing method thereof
JP6111764B2 (en) Power module substrate manufacturing method
JP6044097B2 (en) Power module substrate with heat sink, power module substrate with cooler, and power module
JP6409690B2 (en) Cooling module
JP5067187B2 (en) Power module substrate with heat sink and power module with heat sink
JP4893096B2 (en) Circuit board and semiconductor module using the same
JP4916737B2 (en) Cooler
JP2006100640A (en) Ceramic circuit board and power semiconductor module using same
JP5028947B2 (en) Power module laminated structure
JP2010098057A (en) Substrate for power module with heat sink, power module with heat sink and substrate for power module with buffer layer
JP2008147308A (en) Circuit board and semiconductor module having same
JP2005011922A (en) Double-sided copper clad substrate equipped with heat sink, and semiconductor device using it
JP2005332874A (en) Circuit board and semiconductor device employing it
JP4747284B2 (en) Insulated circuit board with cooling sink
JP2016167502A (en) Power module substrate with heat sink and power module
JP2010238965A (en) Substrate for power module, method for manufacturing substrate for power module, and power module
JP5648705B2 (en) Power module substrate with heat sink, power module with heat sink and power module substrate with buffer layer
JP6237058B2 (en) Power module substrate with copper plate and method for manufacturing power module substrate with copper plate
JP2004343035A (en) Heat radiating component, circuit board, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080527

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

R150 Certificate of patent or registration of utility model

Ref document number: 5061442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3