JP5031609B2 - 走査プローブ顕微鏡 - Google Patents

走査プローブ顕微鏡 Download PDF

Info

Publication number
JP5031609B2
JP5031609B2 JP2008031705A JP2008031705A JP5031609B2 JP 5031609 B2 JP5031609 B2 JP 5031609B2 JP 2008031705 A JP2008031705 A JP 2008031705A JP 2008031705 A JP2008031705 A JP 2008031705A JP 5031609 B2 JP5031609 B2 JP 5031609B2
Authority
JP
Japan
Prior art keywords
probe
sample
cantilever
signal
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008031705A
Other languages
English (en)
Other versions
JP2008281550A (ja
JP2008281550A5 (ja
Inventor
正浩 渡辺
修一 馬塲
俊彦 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008031705A priority Critical patent/JP5031609B2/ja
Priority to US12/099,176 priority patent/US7966867B2/en
Publication of JP2008281550A publication Critical patent/JP2008281550A/ja
Publication of JP2008281550A5 publication Critical patent/JP2008281550A5/ja
Application granted granted Critical
Publication of JP5031609B2 publication Critical patent/JP5031609B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

本発明は、急斜面や軟材料を含む試料でも正確な形状測定が可能な走査プローブ顕微鏡技術に関する。
微細立体形状の計測技術として走査プローブ顕微鏡(SPM:Scanning Probe Microscope)が知られている。これは先端のとがった探針を制御しながら、接触力を非常に小さな値に保ちながら試料を走査する技術で、原子オーダーの微細立体形状が計測できる技術として、広く用いられている。
一方、現在、LSIの微細パターン形成プロセスではCD−SEM(測長SEM)を用いた寸法管理を行っているが、パターンの微細化に伴い、下記の限界がきている。(1)測定精度の問題。今後主流になるとされる、45nmノードLSIのゲート幅は25nmであり、許容ばらつきを10%、測定精度をその20%とすると、必要とされる測定精度は0.5nmとなる。(2)プロファイル計測の要請。線幅の高精度制御のためにAPC(Advanced Process Control)化の必要性が高まっているが、このために、パターン線幅だけでなく、電気特性に大きく影響する断面形状の計測技術が必要とされている。(3)測定対象の問題。DUV(深紫外光)用レジスト、low−k(低誘電率)膜材料等、電子線耐性の弱い材質に対する測定ニーズが増大している。また、次世代の高密度光ディスクメモリのピットの計測に対しても、同様の測定精度、プロファイル計測の必要性、マスター作成のためのレジストパターンの計測といった、同様のニーズが考えられる。
上記の課題に対して、走査プローブ顕微鏡技術が有望と思われる。ただし、半導体のパターンは非常にアスペクト比が高い場合が多く、探針を走査するときに急斜面で探針の上下動作が追従できなかったり、探針が急斜面を滑ってしまって、測定される形状データが変形したりする課題がある。また、接触力によって測定対象物が変形を起こし、柔らかい材料と硬い材料でこの変形量が異なるため、表面の材質が場所によって異なるサンプルを測る時に、測定される形状に誤差が生じるという課題がある。
これに対して、特許文献1、および、特許文献2では、飛び飛びの測定点のみで探針を試料情報からの近づけて一定の接触力になったときに高さを測り、このあと探針を引き上げた状態で次の測定点に向かうことを繰り返して測定を行う走査方法が開示されており、この方法は探針を引きずらないために急斜面で探針の上下動作の追従が間に合わないために生じる誤差の問題はない。ただし、一定の接触力になるまで探針を試料に向かって駆動するために、この接触力は微小ではあるが、わずかな探針の滑りや試料の変形を引き起こしてしまい、測定される形状に誤差が生じるという課題は残っている。
特開2001−33373号公報 特開2004−132823号公報
上記説明したように、従来技術では高アスペクト比試料の急傾斜部での滑りや、やわらかい試料の変形による測定精度の劣化に課題があった。
本発明の目的は、上記課題を解決するために、探針の滑りや試料の変形のない状態で高精度な立体形状計測が可能な走査プローブ顕微鏡を提供することである。
本発明では、上記課題を解決するために、探針を先端にもつカンチレバーの保持部と試料を保持する試料台との相対的な位置を精密に制御可能な駆動機構と、カンチレバーの変形状態を計測することが可能なセンサをもち、試料の立体表面形状その他の表面分布を計測することが可能な走査プローブ顕微鏡において、探針と試料の相対距離を接近させていったときに探針と試料が触れることによってカンチレバーの変形状態を表す信号に現れる形状の変化を検出し、このときの探針の高さを記録することを、探針の水平方向位置を走査しながら試料上の各点で行うことにより、試料の表面形状を測定し、カンチレバーの変形状態を表す信号に現れる形状の変化の検出が信号処理によって遅れる時間を考慮して、探針が試料にほぼ接触力ゼロで触れた時点の探針の高さを測定することを可能とすることによって、微小な接触力によって引き起こされる探針の滑りや、試料の変形による誤差を抑えた高精度な走査プローブ顕微鏡による立体形状測定を実現した。
本発明によれば、軟脆材料や段差の急なパターンに対して、探針の滑りや、試料の変形による誤差を抑えた高精度な立体形状測定が実現できるという効果を奏する。
以下、本発明の実施の形態について、図面を参照して説明する。
図1は本発明にかかわる走査プローブ顕微鏡の構成を示す図である。X、Y、Z方向に駆動が可能な試料ステージ302上に試料501が載せられており、走査制御部201によって制御されている。この上には探針103があり、探針駆動部202からの制御により探針103を先端に形成したカンチレバー(片持ち梁)193を取り付けた探針移動機構252はX、Y、Z方向に駆動され、これによって走査プローブ顕微鏡のプローブ走査を行う。探針移動機構252は探針ホルダー101に取り付けられていて、探針ホルダー101は探針ホルダー上下機構253によって、鏡筒102に取り付けられており、探針ホルダー駆動部203からの制御によってZ方向に粗動駆動される。
探針移動機構252は微動機構であり、動作距離が大きくないために、探針の試料への接近は探針ホルダー上下機構253によって行う。あるいは、別の実施例として試料ステージ302側の駆動によって探針の試料への接近を行ってもいい。また、走査プローブ顕微鏡のXY方向のプローブ走査も試料ステージ302側の駆動によってもよい。さらに、XY走査時の時のZ方向の探針制御も試料ステージ302側の駆動によっても良い。Z方向の近接センサ204は探針の先端付近の高さを高感度で計測するためのセンサであり、これによって、探針の試料への接触を事前に検出して接近速度を制御することで、探針を試料にぶつけることなく高速な試料への接近を実現できる。近接センサ204は後述するように光を用いてもいいが、検出範囲が数十マイクロメートル以上あり、1マイクロメートル程度の感度で試料との距離を検出できるセンサであればほかのセンサを用いてもよい。たとえば、探針ホルダー101あるいはカンチレバー193と試料501との間に交流電圧をかけることによって、静電容量を測り、距離を検出する静電容量式センサや、探針ホルダー101と試料501との間に空気を流して圧力を検出するエアマイクロセンサを用いてもよい。
走査制御部201はカンチレバー193の接触力を検出する接触力検出センサ205、近接センサ204、探針ホルダー駆動部203、探針駆動部202、試料ステージ302を制御して探針の近接、試料の走査等を実現する。このとき、試料の走査時の信号をSPM像形成装置208に送ることによって、試料の表面形状像を得る。波形解析部261は後で詳しく述するように接触力検出センサ205の出力である接触力信号を解析して探針と試料との接触状態を検知し、走査制御部201と形状補正部262に送る。走査制御部201はこの信号を用いて探針駆動部202の制御および制御の切り替えを行い、形状補正部262は波形解析部261からの解析結果を受け取ってSPM像の補正データを算出してSPM像形成装置208に送り、SPM像の補正を行う。
探針ホルダー101に対物レンズを組み込んだ場合には、光学像センサ206で試料の光学像を得ることによるSPM測定エリアの同時観察、および、探針103の取り付け時の調整に用いることが出来る。装置全体の動作は全体制御装置250によって制御され、表示・入力装置251によって、操作者の指示を受けたり、光学像やSPM像を提示したりすることが出来る。
図2は光学系の一実施例を示す図である。光源111から出射した光はレンズ112で平行光に変えられてミラー113で反射され、探針ホルダー101の内部に形成された対物レンズに入射し、試料上501上に焦点を結ぶ。光源111に組み込む開口の形状によって、スポットあるいはスリットなど、任意の形状の像を形成できる。試料で反射した光は再び対物レンズを通り、ミラー114で反射され、結像レンズ115で検出器116上に像を結ぶ。像の位置は試料501の高さによって移動する。
移動量は試料への検出光110の入射角をθ、レンズ115による結像倍率をm、試料の高さをZとすると、2mZtanθとなるので、この移動量を計測すれば試料の高さZが検出できる。検出器116は像の位置が検出できればいいので、PSD(ポジションセンシティブデバイス)・分割型ホトダイオード・リニアイメージセンサなど何でもよい。また、上記説明は検出光110が対物レンズを通るという構成での説明であったが、検出光110が対物レンズの外部を通りもう一枚の図示されていないミラーで折り曲げられて、試料上に結像される構成も考えられる。このとき、レンズ112および115はそれぞれ光源111および検出器116を試料501と結像関係になるように調整される。この場合の検出器116上の像の移動量は2mZsinθとなる。近接センサ204はこの関係を用いて検出器116の出力を処理して試料高さを出力する。
以下、接触力検出センサ205について説明する。光源131から出た光はレンズ132とビームスプリッタ134を通り、さらにビームスプリッタ134を通って対物レンズを通過してカンチレバー193に照射される。ここで反射した光は同じ道を戻ってビームスプリッタ133を通過し、レンズ135を介して検出器136に照射される。レンズ135は対物レンズの射出瞳と検出器136が結像関係になるように構成され、これによってカンチレバー193の反射面の傾きに比例した位置変化が検出器136上の光に生起される。
これを136の位置に置いたPSD(ポジションセンシティブデバイス)・分割型ホトダイオード・リニアイメージセンサなどによって検出することによってカンチレバーの傾き(撓み)を検出することが可能になる。接触力検出センサ205は、PSD・分割型フォトダイオードを光検出器として使用している場合には、両端の出力の差を計算し、和で正規化することで、撓み量に変換する。リニアイメージセンサ使用の場合は、レーザスポットの位置をリニアイメージデータから計算することで撓み量に換算し出力する。撓み量はカンチレバーのばね定数によってカンチレバーと試料の間に働く探針の上下方向の接触力に換算できる。また、二次元型のPSD、イメージセンサ、4分割フォトダイオードを用いることにより、撓みと同時にねじれを検出することも可能になる。ねじれは探針と試料の間に働く横方向の力に換算される。本検出光130を試料観察系の光と分離するために光源131は単色のレーザとして、この光だけを通すようにレンズ135の前後に干渉フィルターを設けるのが望ましい。
別の方法として、撓み量自体を用いるのではなく、カンチレバーを振動させ、この振動状態(振幅・位相・周波数)の変化によってカンチレバーと試料の間に働く接触力を測定することも可能である。この加振はレバー193の根元に組み込んだ圧電素子、あるいは、探針駆動部202に組み込んだ圧電素子、あるいは、カンチレバー自体への強度変調されたレーザの照射などによっておこなう。
さらに効率を上げるためにビームスプリッタ134はダイクロイックミラーとしてもよい。また、ビームスプリッタ133を偏光ビームスプリッタとしてレーザ131の偏光方向を133によって反射されるS偏光とし、ビームスプリッタ133と134の間に1/4波長板(図示せず)を置くことによって、S偏光を円偏光に変換してカンチレバー193の反射面に当て、反射光を再び1/4波長板でP偏光に変えて偏光ビームスプリッタ133を透過させてもよい。
試料観察系は照明光源154より出射し、コンデンサレンズ153を通り、ビームスプリッタ155で反射し、ビームスプリッタ134を透過し、101内の対物レンズを通って試料501を照明する。試料の反射光は再び対物レンズを透過し、ビームスプリッタ134と155を透過して結像レンズ152で結像され、イメージセンサ151で検出され、光学像センサ206でデジタル画像データに変換される。
以上、図2を用いて説明したように、探針と試料観察系と試料高さセンサとカンチレバー接触力検出光学系を同軸で構成することにより、SPM計測位置の同時観察、カンチレバーの調整の容易化、高速な探針と試料との接近が可能になる。また、カンチレバー接触力検出光学系を同軸で構成したことによって、カンチレバー部の幅の小さい場合でも、検出光130を照射できるようになり、より軽くて共振周波数の高いカンチレバーを用いることによって、走査の高速化を可能とする。すべて対物レンズを通して検出するようにしたことにより、対物レンズをカンチレバーと近づけることが可能になり、高解像度の試料の光学観察が可能となる。また一方、作動距離の長い対物レンズを用いて、試料高さセンサとカンチレバー接触力センサの少なくとも一方を対物レンズと試料の間の隙間を通して斜めから光を投影・検出するオフアクシス構成とする実施例ももちろん考えられる。図2をもちいてこれについては後述する。
また、別の構成として、ひずみゲージのようなひずみの変化を反映する信号を得られるものをカンチレバー193に組み込んで、光学式接触力センサの替わりとして用いてもよい。また、さらに別の構成として、カンチレバー193にレーザを照射して反射した光と、参照レーザを干渉させて生じる信号からカンチレバー193の先端の位置あるいは振動状態を検出してもよい。
なお、本明細書では、試料501が探針103の下にあるという前提で説明しているが、試料501が探針103の上にあってもよく、この場合は本明細書の説明とZ軸の方向を反対向きとして読みかえれば同様に適用されるのはいうまでもない。また、上下方向がZ軸、水平方向がX、Y軸として説明しているが、図1、図2によって示される装置を一定の角度、たとえば90°寝かして構成することも可能であり、この場合には、XYZ座標系を装置を傾けた角度分だけ傾けて設定すれば、同様の説明が適用される。
図3は光学系の別の実施例を示す図である。光源111から出射した光はレンズ112で平行光に変えられてミラー113で反射され、ミラーでの反射を経てレンズ182に入射し、試料上501上に焦点を結ぶ。光源111に組み込む開口の形状によって、スポットあるいはスリットなど、任意の形状の像を形成できる。試料で反射した光はミラーでの反射を経てレンズ185を通り、結像レンズ115で検出器116上に像を結ぶ。像の位置は試料501の高さに応じて移動する。移動量は試料への検出光110の入射角をθ、レンズ115による結像倍率をm、試料の高さをZとすると、2mZsinθとなるので、この移動量を計測すれば試料の高さZが検出できる。検出器116は像の位置が検出できればいいので、PSD(ポジションセンシティブデバイス)・分割型ホトダイオード・リニアイメージセンサなど何でもよい。
以下、図3の実施例におけるカンチレバー193の接触力検出系について説明する。光源131から出た光はレンズ132を通り、ミラーでの反射を経て、カンチレバー193に照射される。ここで反射したミラーでの反射を経て検出器136に照射される。カンチレバー193の撓みは反射光の角度変化となり、これによってカンチレバーの反射面の傾きに比例した位置変化が検出器136上の光スポットに生起される。これを136の位置に置いたPSD(ポジションセンシティブデバイス)・分割型ホトダイオード・リニアイメージセンサなどによって検出することによって、カンチレバーの傾き(撓み)を検出することが可能になる。また、二次元型のPSD、イメージセンサ、4分割フォトダイオードを用いることにより、撓みと同時にねじれを検出することも可能になる。この撓みとねじれが探針と試料の間に働くそれぞれ垂直方向と水平方向の接触力に相当する。本検出光130を試料観察系の光と分離するために光源131は単色のレーザとして、この光だけを通すように検出器136の前に干渉フィルターを設けるのが望ましい。なお、109は試料観察系の対物レンズである。
図4は高アスペクト比試料の高精度測定に適した走査モードにおける探針の軌跡を説明した図である。図5はこのときの信号の様子である。横軸を時間としている。上の波形はカンチレバー193の高さを示す信号で、探針移動機構252のZ軸圧電素子の印加電圧か、探針移動機構252に組み込まれたZ軸変位検出器(図8を用いて後述する198)の出力信号である。あるいは、別の実施例として試料ステージ側302のZ駆動機構を用いて試料と探針の距離を変化させてもよく、その場合には、試料ステージ302に対する高さ指令値あるいは、試料ステージ302に組み込まれた図示しない高さ検出器からの信号を用いることとなる。
下の波形は接触力検出センサ205の出力信号波形であり、下方向が探針103を試料501に押し付けている状態で、一点鎖線より上の方向が、探針103が試料501に吸着されている状態である。吸着はファンデルワールス力や大気中の水分の凝集による表面張力に起因する。ここで、接触力の正負の方向と吸引力・斥力との関係は信号の符号のとり方によって左右されるので、吸引力の働く方向を接触力の負と定義した場合には、接触力にかかわる数値の符合を全て反転し、接触力波形も上下反転して考えれば以下の議論がまったく同様に成立することは言うまでもない。
図5において、探針103は各測定点での測定のあといったん試料501から離間し、この状態で、次の測定点に移動し、再び、探針103と試料501を近づけて再度接触し、一定の接触状態に達した時点の探針移動機構252の高さを記録することで、試料の各点の高さを測定する。この測定方法では、探針を試料に対して引きずらずに離した状態で横移動するため、探針に横方向の力がかからず、また、探針の追従遅れを生じないため、急峻な傾斜部でも立体形状が正確に計測できるというメリットがある。
接触力信号は探針が試料に接しているときは、図5に示すように、一定の設定接触力になるようにカンチレバーの根元の高さが制御される(図5のA)。高さを計測したあと、次の点の測定にむけて探針をいったん退避させる、接触力信号は探針と試料の間に働く吸着力のため、いったんプラス方向になった(図5のB)あと、吸着から離脱するとカンチレバー193の残留振動が接触力信号に現れた(図5のC)あと、零点に戻る(図5のD)。図5のCの期間と並行して、探針103は水平方向に移動させられ次の測定点の上方に移動する。探針が再度接近を開始すると、探針と試料が接した瞬間に接触力検出センサの信号がふたたびマイナス方向に変化していき(図5のE)、設定接触力に一致するように探針移動機構252のZ高さが制御される(図5のE’)。
この方法は探針を引きずらないため、急斜面で探針の上下動作の追従が間に合わないために生じる誤差の問題はない。ただし、一定の接触力になるまで探針を試料に向かって駆動して接触させるために、この接触力は微小ではあるが、わずかな探針の滑りや試料の変形を引き起こす。これを図11によって説明する。図11(a)は急斜面で起こる誤差について示している。試料501の真の表面形状が実線510で示されている。この形状の表面高さを、探針103を上方からおろしていって測定する時に、図11(a)に示したように急斜面に探針の先端が接触すると、点線103’で示されたように探針が滑りを生じてしまう。結果として、意図した測定位置に対して水平方向に位置誤差を持った点の高さデータを測定することとなる。このため、測定される形状は510’のように真の形状510に対して膨らんだものとなる。
図11(b)は試料501の表面の材質がAとBの領域で異なっている場合を示したものである。AよりBのほうが柔らかい場合を例として示している。このように、探針103の試料501に対するわずかな接触力のために、512の点線で示したように試料501の表面はわずかに変形する。この変形量は領域AとBで異なっているために、測定された形状は510’に示すように真の表面の形状510に対してオフセットを持つだけでなく、材質の境界で段差が異なって測定されることとなる。
設定接触力は接触力センサ信号のノイズやドリフトなどの変動に対して余裕をもって設定しないと、変動によって信号のゼロ点が変動して設定接触力よりも下になった場合に、接近動作が正常におこなわれなくなる。このため、接触力は一定以上に小さくできないという問題があった。また、ゼロ点が変動すると接触力が変動してしまうため、上述の探針の滑りや試料の変形による誤差もゼロ点の時間的変動とともに変動してしまうという問題もあった。
本発明は接触力やその変動によって引き起こされる上記説明した誤差を本質的に起こさない探針走査制御方式にかかわるものである。探針と試料の間の接触力が本質的に0となる点で試料の高さを測ることによって、探針が試料に接触した直後で、滑りや試料の変形を引き押していない状態での高さを測ることが本発明の本質である。
ここで、図6を用いて、本発明における探針走査制御方式の実施例を説明する。また、図12は図6を補う探針と試料の接触前後の波形拡大図である。図5と同様に図6、図12でも横軸を時間としている。上の波形はカンチレバーの高さを示す信号で、下の波形は接触力検出センサ205の出力信号波形である。探針と試料が接触していない期間Dでは接触力検出センサ205の信号がほぼ水平な状態であり、このあと探針と試料が接触したあとの期間Eでは接触力が次第に増していって、接触力検出センサ205の信号が下方向に変化してゆく。すなわち、この境界では接触力信号の変化率が急に変わることとなる。
また、探針が試料に対して近づくと、ファンデルワールス力などの力によって探針が試料に引きつけられて試料側に探針が撓んで吸着される、スナップインと呼ばれる現象が起こることが多い。この場合には、接触力検出センサ205の出力には一旦接触と反対方向に図12のSに示すような角状の形状が現れる。接触力検出センサ205の出力に現れるこれらの特徴的な信号波形を波形解析部261で検出することによって、探針が試料に接触した瞬間を検出することが可能となる。具体的には、信号の傾きが大きく変化する点を検出すればいいが、このために接触力信号の時間に対する2次微分を計算してこれがある閾値を超えたことによって検出する。あるいは、別の実施例として、図12の平坦部Dのレベルb0を信号の移動平均や直線の当てはめによって求めておいて、このレベルに対して信号が一定値以上変化したことによって検出する。さらに具体的には信号の微分値や平坦部b0との差分を閾値と比較すれば良い。
なお、上記処理は信号のノイズを除去するためのフィルターなどと共に用いるのがより望ましい。また、別の方法として、傾きが大きく変化する点付近の平均的な形状を記憶しておき、これと入力信号とのパターンマッチングをおこなって、類似度の評価値が一定以上となった点あるいは類似度の評価値が極大値を示した点を持って探針と試料が接触した時刻t0を検出する。望ましくは、さらに正確に探針と試料が接触力0で接触した瞬間を検出するために、信号の平坦部Dと信号が交差する点を計算してt0(接触力ゼロ)の瞬間を検出する、この時刻t0におけるカンチレバー193のベース部の高さZ0を測定して、その点の試料の高さとして記録してやればよい。このあと、一定の接触力まで達した(A)後、探針を再び引き上げ(B)、次の点に移動して探針を再び接近させる(D)ことを繰り返すと。試料の高さプロファイルが得られる。
図8(a)を用いて上記のカンチレバー193のベース部の高さ検出のための構成について説明する。カンチレバー193の取り付け部197の高さは探針微動機構252に組み込まれたZ軸の圧電素子に対する印加電圧、あるいは、カンチレバー取り付け部197の高さを測定する変位検出器198によって検出することが可能である。あるいは、探針微動機構をボイスコイルモータで構成することも可能であるが、この場合はボイスコイルモータを駆動する電流値と微動機構の変位量は比例するので、ボイスコイルモータの駆動電流値によって高さを検出することも可能である。
ここで、実際には上記の接触力ゼロで探針と試料が接触した瞬間t0の検出は、波形解析部261で使用している信号のノイズを低減するためのフィルターや、微分処理、閾値処理、パターンマッチング処理、極大点検出処理などによって若干の遅れを生じる。このために、t0の時点より一定の遅れを生じて、図6、図12のt1の時点で接触が検知されることとなる。このt1の時点では探針がt0の時点での高さZ0よりも試料に近づいてしまって、高さがZ1となっている。接触力はゼロのレベルb0からずれを生じてb1となっている。このため、望ましくはこの接触検出の遅れの分を補正して探針と試料が接触力ゼロで接触した(t0)時点での高さZ0を得ることが望ましい。
このためには、波形解析部261の結果を受ける形状補正部262によって、たとえば以下のようにすればいい。探針と試料が接触力ゼロで接触した瞬間から探針接触検出までの遅れ(ΔT)が一定であり、探針と試料の距離は一定の速度で近づいていると仮定できる場合は、
補正高さZ0=カンチレバー取り付け部の高さ(t=t1)−接近速度・ΔT
によって探針と試料が実質的にゼロとなった瞬間の補正高さZ0が求められることとなる。
探針と試料との接近速度が一定でない場合には、
補正高さZ0=カンチレバー取り付け部の高さ(t=t1―ΔT)
によって探針と試料との接触力が実質的にゼロとなった瞬間の補正高さZ0が求められることとなる。
ただし、実際には接触検出遅れΔTは一定ではないことが多い、たとえば、上述の方法のうち、接触力信号の微分値を閾値と比較する方法では、下記のような現象が起こる。スナップインと呼ばれる現象が大きく起きる場合には、接触力検出センサ205の出力は一旦接触と反対方向に動いて、それから接触方向に変化して、スナップインの時点から吸着距離だけ探針が近づいた瞬間に、接触力がゼロとなる。図12のSに示すような角状に出っ張った形状が現れるため、接触力がプラスの状態からマイナスの傾きに転じる。このため、接触力がゼロになる前に、接触力信号の微分値が負の閾値を下回るため接触が検知される。
スナップインが生じない場合は、接触した瞬間以降初めて接触力信号がマイナス向けて変化を始めるため、微分処理や信号平滑化フィルターの遅れに起因して、接触を検知した時点では接触力がゼロとなる瞬間を過ぎてしまっている。また、たとえば、上述の接触力信号の平坦部b0との差分を閾値と比較する方法では、接触後の接触力の変化速度が変動すると接触検知の遅れ時間が変動する。一定速度で探針と試料の距離を近づけていった場合でも、試料表面の弾性率によって、接触力の変化速度は変動する。
つまり、図11(b)で既述のように、試料が柔らかいときには試料501の表面が探針103との接触力によって押し込まれるので、試料表面がカンチレバー193のばね定数に比べて非常に大きいときに比べて、接触力の変化速度は低下する。このため、接触力信号がゼロの状態から、接触力信号の平坦部b0との差分が閾値を通過するまでの時間おくれ(Δt)は長くなることとなる。
このΔTが変動する現象に対応するための更なる実施例としては、以下のように対応すればいい。常に直前の一定期間の接触力信号と探針高さ信号の信号値を波形解析部261に保持しておく。形状補正部262は接触を検知したら波形解析部261に前記保持された探針高さ信号を読み出して、接触力信号がゼロレベルb0から下向きに変わりだした直後のデータを探索する。このデータを先頭に少なくとも2点の接触力信号値データを用いて、このデータに直線を当てはめ、接触力信号がb0と交差する時刻を外挿によって求める。この時刻は高さ信号データのサンプル点とは通常は一致しないので、前後のサンプル点に置ける高さ信号データを少なくとも2点用いて、このデータから接触力信号がb0と交差する瞬間の高さ信号の値を内挿によって求めることができる。また、スナップインがおこって、図12のSで示したような接触力信号の突起が現れている場合は、接触力信号がb0と交差するので、交差する前の信号データも用いて、接触力信号がb0と交差した時刻を内挿によって求めることができる。
形状補正部262はこの結果をSPM像形成装置208に渡し、SPM像形成装置208は走査制御部201から受け取った探針駆動部202と試料ステージ252の駆動データと前記形状補正部262からの補正データを用いて、SPM像を生成し、全体制御装置250はこれを受け取って、表示装置251に表示する。
数式を用いてもう少し具体的に説明する。接触力がゼロになった瞬間をt0として、その直後の接触力信号サンプル点をtaとし、サンプル間隔をtsとすると、ta+ts・n(n=0…N)が、接触力がゼロになった瞬間以降のデータサンプル点となる。ta+ts・n(n=−1…M)が、接触力がゼロになった瞬間以前のデータサンプル点となる。時刻tにおける接触力信号をb(t)、高さ信号をz(t)とすると、b(ta+ts・n)を外挿あるいは内挿してb0と交わる時刻t0を求め、z(ta+ts・n)を内挿してz(t0)を求めればいい。
内装・外挿に用いるデータ点数はデータのノイズが大きい場合は多くとればよく、接触力ゼロで接触した瞬間付近のデータだけを用いたい場合は点数を少なくとればいい。例えば、接触力ゼロで接触した瞬間の直後の2点を用いる場合は、b(ta)、b(ta+ts)のデータを用いてb0と交わる点の時刻t0を、
t0=ta+ts・(b0−b(ta))/(b(ta+ts)−b(ta))
によって外挿して求める。接触力ゼロで接触した瞬間の前後の2点を用いる場合は、
b(ta−ts)、b(ta)のデータを用いてb0と交わる点の時刻t0を、
t0=ta+ts・(b0−b(ta))/(b(ta)−b(ta−ts))
によって内挿して求める。つぎに、このt0の値とt0の前後の高さ信号データz(ta−ts)、z(ta)を用いて、t0の瞬間の高さz0を
z0=z(ta)+(z(ta)−z(ta−ts))・(t0−ta)/ts
によって内挿して求める。
3点以上用いる場合には、データの組(ta+ts・n、b(ta+ts・n))に対して直線を当てはめ、その式をbf(t)=c・t+dとすると、bf(t)がb0と交わる点の時刻t0は、
t0=(b0−d)/c
によって求められ、t0における高さ信号は、データの組(ta+ts・n、z(ta+ts・n))に対して直線を当てはめ、その式をzf(t)=e・t+gとすると、時刻t0における高さz0は
z0=zf(t0)=e・t0+g
によって求めることができる。
以上のようにすることによって、探針の試料との接触によって急斜面で探針が滑ったり、柔らかい試料が変形したりする場合でも、探針と試料との接触力が実質的にゼロの状態における高さを測定することが可能となり、探針の滑りや試料の変形の影響を排した、高精度な試料立体形状計測が可能となる。
ここで、図6に示しているように、探針と試料の接近は探針と試料が接触した後も、探針と試料が一定の押し込み接触力に達して、定常状態になるまで接近を行って、このあと、探針と試料を引き離して次の測定点に移動している。更なる実施例として、押し込み接触力が一定となった時点の高さ信号を記録し、接触力がゼロの瞬間の高さデータとの差をとると以下のような有用な付加的情報が得られる。すなわち、上記高さデータの差は、探針と試料の接触後一定の接触力に達するまでの探針の押し込み距離であるので、探針―試料間の接触力による、探針の滑りあるいは試料の変形の大きさを示していることになる。この高さの値を各測定点ごとに記録すれば、試料の立体形状データとともに、表面の柔らかさの分布、あるいは、滑りの大きさの分布を示すデータが得られるという効果が得られる。
さらに、接触後の接触力の増加が、試料表面の弾性変形による場合は、高さ信号の増加とほぼ比例するのに対して、探針の斜面での滑りに起因する場合は、高さ信号と接触力信号の増加の関係が滑りの発生状況によって不安定に変動する。図13は図12で説明した接触力信号の形状の、(a)通常の場合と、(b)試料が柔らかい場合と(c)滑りが生じた場合の、上記説明した変化の様子を示した図である。以上説明した現象を利用して、弾性変形と滑りの影響を分離して測定することが可能となる。たとえば、信号と接触力信号の相関係数を計算することによって、弾性変形と滑りの影響を分離して測定することが可能となる。
次に、探針と試料の間に力が働いていないときのカンチレバーの形状が熱応力などによって撓む場合にも、さらに精度を向上して、試料の立体形状を測定することを可能とする実施例2について説明する。図8(b)は探針と試料の間に力が働いていないときのカンチレバー193の形状がカンチレバーに生じた熱応力などによって撓んだ状況を説明する図である。このようにカンチレバーがもともと撓んでいるとその分だけ探針先端の位置が変化するため、このような状態で試料の高さを測定するとその分だけ測定される試料形状に高さオフセットが生じる。このオフセットはカンチレバーに生じている熱応力等の状態によって時間的に変動するので、測定形状の誤差につながる。たとえば、図8(b)のように上向きに撓んだカンチレバー193で測定すると、試料に探針103が接触するまでに余分にカンチレバー取り付け部197を下げなくてはならないので、撓みの分だけ試料表面の高さ検出値が下方向にオフセットされる。
これに対応するために、以下に示す実施例2をおこなう。このような状況では、カンチレバー193に照射されたレーザ光110の光路が図8(b)のようにずれて検出器136上のスポット位置が移動し、検出器136の出力を接触力検出センサ205で処理して得られる接触力もこの移動量に比例して変化する。このため、接触力信号の変化量を撓みによる先端の位置の変化量で割った係数を光テコ感度と名づけると、
探針先端高さオフセット=非接触時レバー撓みによるb0オフセット/光テコ感度
によって、探針先端高さオフセットを見積もることが可能なので、このオフセットを波形解析部261によって測定し、形状補正部262はこれを受け取って各測定点ごとにこのオフセット分だけ、実施例1のようにして求めた探針−試料間の接触力がゼロの場合の試料表面高さデータに対して補正を行うと、試料非接触時のカンチレバーの熱応力などによる撓みに影響を減じた、正確な試料表面形状データを得ることが出来る。
上記オフセットを見積もる別の方法を、図9を用いて説明する。カンチレバー193の根元と先端にそれぞれレーザ光を照射する。レーザ191を参照光としてレーザ190の位相をレーザ干渉によって測定すると、測定された位相から得られた距離データはカンチレバー193の根元を基準にしたカンチレバー193の先端の相対高さを示すこととなる。この値を探針先端高さオフセットとして用いて同様に処理すれば、試料非接触時のカンチレバーの熱応力などによる撓みの影響を減じた、正確な試料表面形状データを得ることが出来る
さらに別の方法として図10に示すように、カンチレバー取り付け部197の高さを変位検出器198で測定して高さ信号z(t)を得るのではなく、探針103の位置のカンチレバー193の先端部に検出光190を照射し、レーザ干渉計の原理によって、この部分の高さを直接測定して高さ信号z(t)を求めてこれを試料高さ検出のために用いれば、試料非接触時のカンチレバーの熱応力などによる撓みの影響を受けない正確な測定が可能となる。
次に、さらに測定速度を速くし、また、試料および探針へのダメージをさらに低減することが可能な実施例について図7を用いて説明する。図6では、探針と試料の接近は探針と試料が接触した後も、探針と試料が一定の押し込み接触力に達して、定常状態になるまで力制御を行って、このあと、探針と試料を引き離して次の測定点に移動していた。これに対して本実施例3では、図7に示すように波形解析部261によって接触力信号がb1となった時点で接触を検知すると、走査制御部201はこれを受けとって、前記接触検知の直後に、探針と試料を離す方向に駆動を開始させる。これによって、探針の押し込みすぎによる試料および探針へのダメージを低減させ、また、次の測定点への移動を速く開始できることによって、測定速度を速めることが可能となる。
実施例1、2の説明では、探針103と試料501との水平方向の相対移動を止めた状態で探針と試料の接近と離間を行ない、探針を試料に対して引きずらずに離した状態で横移動することで、探針を試料上で引きずらないようにしていたが、実施例3では探針と試料の接触時間が短くなることによって、探針と試料との水平方向の相対移動を止めないで探針の接近を行っても、探針と試料の間の引きずりを小さく押さえることが可能となり、探針移動機構252あるいは試料ステージ302が水平方向の加減速を速やかに行えない場合にも、測定の高速化を実現することが可能となる。
次に図14、図15、図16を用いて探針と試料の接触をさらに高感度に検出する実施例4について説明する。実施例1において図1、図6を用いて説明したように探針103と試料501の接触を接触力検出センサ205の出力信号波形を解析して、接触の瞬間に現れる特徴的な信号変化に着目して、接触の瞬間を波形解析部201によって検出していた。ところが、探針103と試料501の状態によっては、接触力検出センサ205の出力信号にたいして図12のSに現れるような角状の信号変化が非常に小さい場合がある。また、平坦部Dのレベルb0に対して、接触力検出センサ205の出力信号が閾値以上変化することを検出する場合にも、平坦部Dのノイズレベルに対して、閾値を、余裕をもって設定しないと、探針103と試料501の接触を誤って検知する場合がある。このような場合に対応し、さらに接触力の検知感度を上げる方法の実施例4について図14、図15、図16を用いて説明する。
探針103が振動していた場合に探針103が試料501に接触すると、探針の振動が抑えられて急激に減衰する。これを捉える事で、接触の瞬間をさらに高感度に検出する。このために、図14の振動解析部291を図1の構成に付加する。振動解析部291では、接触力検出センサ205からの信号から振動成分を抽出し、この変化から接触の瞬間を検出し、波形解析部261に通知する。この後は実施例1と同様に、波形解析部261において、探針103と試料501接触力が実質的にゼロに近い状態における探針103の高さを補間によって求めることが出来る。
振動解析部291では探針駆動部202によるカンチレバー193および探針103の上下動に伴う残留振動や、熱揺らぎによる熱振動によって接触力信号に現れる信号の振幅をAM検波によって求めてこれが急激に減少する瞬間を検出すればいい。あるいは、振動解析部291から探針駆動部202にカンチレバー193の加振信号を加えて、これによってカンチレバー193および探針103に振動を励起し、励起した周波数に対応する接触力信号に現れる振動成分を、振動解析部291で検出し、この振幅あるいは位相成分の探針103と試料501の接触による変化を検出してもいい。
なお、加振信号はカンチレバー193の共振周波数に近い周波数にしてもいいし、非共振周波数を用いてもいい。加振信号を共振周波数に近い周波数にした場合は、振動の鋭さに相当するQ値に比例して検出感度を高められるという利点がある。その反面、振動の応答性は遅くなる。逆に、加振信号を非共振周波数にした場合は、振動の減衰が速いため振動検出の応答性がよくなると言う利点がある。
なお、以上の説明では探針駆動部202に加振信号を加えたが、探針移動機構252内のZ方向微動機構を加振してもいいし、探針移動機構252内にZ方向微動機構に加えて、独立した圧電素子による探針加振機構を設けてもよい。また、カンチレバー193に図示しない加熱用のレーザを照射して、このレーザ光の強度を加振信号によって変調することで、カンチレバー193に時間変化する熱誘起歪みを生起させ、これによってカンチレバー193に振動を引き起こしてもよい。また、カンチレバー193あるいは探針103に磁性体を用いるか、一部に磁性体を形成したものを用い、カンチレバー193近傍にもうけた図示しない電磁石を加振信号によって励磁し、これによってカンチレバー193を加振してもよい。
図15に、以上説明した動作における信号の様子を示す。実施例1のなかで図5を用いて説明した信号では、探針103と試料501の間の吸着力・吸引力が大きいため、接触力信号に対して探針−試料間の退避後に振動を示す成分が生起している(図5のC)。また、探針−試料間が接触する瞬間に探針103が試料501に吸引されたことを示す角上の信号が接触力信号に乗る(図5のDとEの間および図12のS)。これに対して、図15では吸着力・吸引力が小さい場合の図を示している。そのため、上記のような波形の特徴が接触力信号に現れていない。このような場合に設定接触力を下げていくと、実施例1〜3で説明したような方法を用いても、接触の瞬間を信頼性高く検知することが困難になる。
これに対して、図14を用いて説明した方法を用いると、図15の接触力信号のDの区間のように、カンチレバー193の振動に相当する交流信号が重畳する。この信号には、探針103が試料501に接触した瞬間に図15のDからEのような遷移がおこり、重畳した交流信号が減衰する。これを、RMS−DC(信号の二乗平均の平方根を直流信号のレベルに変換する)アンプや、励振周波数に合わせたロックインアンプなどによって、振幅信号に変換すると、図15の下段の振幅信号のように、探針103と試料501が接触していない期間(D)のみ、振幅信号が大きくなり、そのほかの部分では振幅信号が小さくなる。したがって、この振幅信号が小さくなった瞬間を捉えることで、安定に探針103と試料501の接触を検知できる。
図4に示すように探針103を引き上げて次の測定点に移動する時に、探針103が試料501のへの吸着から離脱していないと、移動時に探針103が試料501上を引きずることになり、測定精度の悪化や探針103の磨耗につながる。これを避けるため、探針103と試料501の距離を吸着に対して十分に引き離してもいいが、探針103あるいは試料501の上下動が大きくなり、測定時間が長くなるという課題がある。そのため、図15に示した振幅信号が大きくなる点を捉えて、探針103が試料501への吸着を離脱したと判断して、探針103と試料501の退避動作を終了して(すなわち測定点ごとにカンチレバー193の試料501の相対的な引き上げ量を決定して)、次の測定点に向かっての探針103の横方向の移動と上下方向の接近を行えば、測定をより高速に行うことが出来る。あるいは、図5に示した、接触力信号に現れる探針103と試料501の吸着力によるプラス方向への接触力信号の状態Cがゼロ点に戻る現象を、波形解析部261によって捉えて、次の測定点に向かっての横方向の移動と上下方向の接近を行っても、測定をより高速に行うことが出来る。
図16は、実施例1中で図12を用いてすでに説明した信号処理に対応する、カンチレバー193の振動による接触検出を用いた場合の信号である。このように接触力信号のDの区間にカンチレバー193の振動に相当する交流信号が現れている。この信号を振動解析部291によって解析して接触を高感度で検知した後の、波形解析部261と形状補正部262による処理は図12の説明と同様である。
また、カンチレバー193の上下方向の撓みに相当する接触力信号を用いる代わりに、別の構成として、カンチレバー193の捩れ方向の変形、すなわち、探針103の水平方向の回転に相当する摩擦力信号を用いて、この振動が探針103と試料501が接触することによって変化することを利用して接触の瞬間を検知してもよい。この様子を図16の一番下の段に示している。試料501の測定部位における傾斜が急な場合には、試料501から探針103が受ける力は水平方向の力の方が垂直方向の力に比べて感度が高くなるので、摩擦力信号に乗る振動成分の変化によって接触を検知したほうが、接触力信号に乗る振動成分の変化によって接触を検知するよりも、感度が高くなる場合がある。
あるいは、接触力信号による振動成分と摩擦力信号に乗る振動成分のいずれかの変化が閾値を超えたことによって安定に探針103と試料501の接触を検知してもいい。あるいは、たとえば、接触力信号による振動成分と摩擦力信号に乗る振動成分変化の両者の感度を適当に合わせた後に二乗和を取って、この二乗和の信号が閾値を横切ったことをもって、探針103と試料501の接触を検知してもいい。このようにすることで、試料501の測定部位における傾斜の大小にかかわらず、常に高感度で探針103と試料501の接触を検知することが出来る。
さらに、図4に示すように探針103を引き上げた後で次の測定点に移動する時に、試料501の側へ基部に探針103が接触した場合にも、上記説明した探針103と試料501の接触検出によって、これを高感度検知でき、この情報を用いて探針103を再度引きあげ、探針103を試料501上で引きずらないような測定動作を実現することも出来る。
さらに、実施例1〜4と組み合わせ、探針103の変形を補正してより高精度に試料501のプロファイルを測定することが可能な発明について説明する。図17に示すように、探針103が試料501の傾斜が急な箇所に接触するときに、実施例1〜4の方法で高感度に接触を検知しても、検知処理の遅れや誤差、制御系の応答遅れなどによってわずかに探針が103がすべることがある。
この場合、図17の左図のようにdxだけ探針103の先端が横に移動する。逆に、探針103を試料501の側壁に沿って降ろしていくと、探針103と試料501との間に働くファンデルワールス力や静電力などの吸引力によって探針103の先端が引き寄せられ、図17の右側の図のように、滑りと反対の方向にdxだけ移動する。この結果、本来測定するべき位置とはdxだけずれた位置における試料501の高さを測定することになるため、図17の測定プロファイルに示すように測定結果が歪む。これに対して、図18あるいは図19に示すように、波形解析部261によってdxを測定できることが出来るので、この分の測定データのx方向の誤差を形状補正部262で補正することが可能となる。
dxの測定は以下のようにおこなう、探針103の先端がdxだけ外力によって移動すると、探針103が探針の先端にかかる横方向の力によって撓み、さらに、カンチレバー193に対してトルクを発生し、カンチレバー193に捩れが生じる。カンチレバー193の捩れ量はカンチレバー193の捩れ剛性と探針103の撓み剛性の比によって左右されるが、カンチレバー193捩れ量dθは探針103先端の変位量dxに比例し、dθ=kdxの関係となる。捩れdθはカンチレバー193の背面に当てた光110の反射後の方向に2dθの変化を生じさせる。これに比例した光スポットの位置変化が検出器136上に生じる。カンチレバー193の捩れによる検出器136上のスポット位置の変化は、カンチレバー193の撓みによるスポット位置の変化と直交する方向に現れるため、検出器136を2次元のPSD(ポジションセンシティブデバイス)・4分割型ホトダイオード・エリアイメージセンサとして、この出力を接触力検出センサ205によって処理することで、上下方向の接触力に対応するカンチレバー193の撓みと同時に、カンチレバーの捩れを検出することが可能となる。
このカンチレバー193の捩れdθは波形解析部261において探針103の先端の変形による移動量dxに変換できる。このdxは図16の摩擦力信号上にも説明のために示した。dxは形状補正部262に渡され、探針103の先端の滑りや吸着による変形の影響を補正する。これによって、探針103の先端の滑りや吸着による変形の影響が小さく、より正確な試料501の形状をSPM像形成装置208に得ることが出来る。
さらに図19を用いてカンチレバー193の捩れを検出する別の方法を示す。カンチレバー上のA、B、Cの三箇所にレーザ変位計のスポットを照射する。一つ目の構成としては、図9のレーザ変位計において、Cを参照光191として、測定光190を2本にして、A、Bの2箇所に照射し、カンチレバーの根元Cを基準としたA、B夫々の高さを測定する。この高さを夫々ZA、ZBとあらわすと、(ZA+ZB)/2によって、カンチレバー193の撓みを検出でき、スポットA、Bの間隔をDとしたときに(ZA−ZB)/Dによって、カンチレバー193の捩れdθを検出することが出来る。
二つ目の構成としては、図10のレーザ変位計の測定光190を二本にして、A、Bの2箇所に照射し、探針ホルダー101の高さを基準にしたA、B夫々の高さを測定して、これをZA、ZBとあらわすと、(ZA+ZB)/2によって、カンチレバー193の先端の高さを検出でき、スポットA、Bの間隔をDとすると(ZA−ZB)/Dによって、カンチレバー193の捩れdθを検出することが出来る。
本発明によれば、急斜面や軟材料を含む試料でも正確な形状測定が可能な走査プローブ顕微鏡を提供でき、特に半導体のような急峻なパターンや柔らかい材料を含む試料や、生体試料のように柔らかい材料からなる試料に対して、立体形状を正確に測定することが可能となる。
走査プローブ顕微鏡の全体の構成を示す図である。 探針周りの一実施例の拡大図である。 光学系の別の実施例を示す図である。 探針の走査方法を示す図である。 従来の検出信号と探針の制御方法を示す図である。 本発明の実施例1の検出信号と探針の制御方法を示す図である。 本発明の実施例3の検出信号と探針の制御方法を示す図である。 本発明の実施例2における探針の熱応力などによる撓みの補正方法を示す図である。 本発明における探針の熱応力などによる撓みの補正方法を示す別の図である。 本発明における探針の熱応力などによる撓みの影響を受けない測定方法を示す図である。 本発明において解決しようとしている形状測定誤差の様子を示す図である。 図6の検出信号波形の探針と試料との接触の前後の拡大図である。 図12で説明した接触力信号の形状の、(a)通常の場合と、(b)試料が柔らかい場合と(c)滑りが生じた場合の、上記説明した変化の様子を示した図である。 本発明の実施例4による走査プローブ顕微鏡の全体の構成を示す図である。 本発明の実施例4による検出信号と探針の制御方法を示す実施例図である。 図15の検出信号波形の探針と試料との接触の前後の拡大図である。 本発明の実施例5において、解決しようとしている形状測定誤差の様子を示す図である。 本発明の実施例5のカンチレバーの捩れを検出する方法を示す図である。 本発明の実施例5のカンチレバーの捩れを検出する別の方法を示す図である。
符号の説明
101 探針ホルダー
102 鏡筒
103 探針
109 対物レンズ
111 光源
112 レンズ
113 ミラー
114 ミラー
115 レンズ
116 検出器
131 光源
132 レンズ
133 ビームスプリッタ
134 ビームスプリッタ
135 レンズ
136 検出器
154 照明光源
153 コンデンサレンズ
155 ビームスプリッタ
152 結像レンズ
151 イメージセンサ
182 レンズ
185 レンズ
193 カンチレバー
197 カンチレバー取り付け部
198 変位検出器
201 走査制御部
202 探針駆動部
203 探針ホルダー駆動部
204 近接センサ
205 接触力検出センサ
206 光学像センサ
208 SPM像形成装置
250 全体制御装置
251 入力・表示装置
252 探針移動機構
253 探針ホルダー上下機構
261 波形解析部
262 形状補正部
291 振動解析部
302 試料ステージ
501 試料
510 真の形状
510’ 測定された形状
511 水平位置誤差

Claims (13)

  1. 探針を先端にもつカンチレバーの保持部と試料を保持する試料台との相対的な位置を精密に制御可能な駆動機構と、カンチレバーの変形状態を計測することが可能なセンサをもち、試料の立体表面形状その他の表面分布を計測することが可能な走査プローブ顕微鏡において、探針と試料の相対距離を接近させていったときに探針と試料が触れることによってカンチレバーの変形状態を表す信号に現れる形状の変化を検出し、このときの探針の高さを記録することを、探針の水平方向位置を走査しながら試料上の各点で行うことにより、試料の表面形状を測定し、
    カンチレバーの変形状態を表す信号に現れる形状の変化の検出が信号処理によって遅れる時間を考慮して、探針が試料にほぼ接触力ゼロで触れた時点の探針の高さを測定することを可能とすることを特徴とする走査プローブ顕微鏡。
  2. カンチレバーの変形状態を表す信号に現れる形状の変化を、信号の傾きが所定の値を越したことによって検出することを特徴とする、請求項1に記載の走査プローブ顕微鏡。
  3. カンチレバーの変形状態を表す信号に現れる形状の変化を、傾きの変化率、すなわち、曲率が所定の値を越したことによって検出することを特徴とする、請求項1に記載の走査プローブ顕微鏡。
  4. カンチレバーの変形状態を表す信号に現れる形状の変化を、基準値との偏差が所定の値を越したことによって検出することを特徴とする、請求項1に記載の走査プローブ顕微鏡。
  5. カンチレバーに試料への接触による力が加わっていないときの、接触による力以外の力に起因するカンチレバーの変形による探針先端のカンチレバー基部に対する相対的な位置変化量を、このときのカンチレバーの変形状態を表す信号から換算して求め、この探針先端のカンチレバー基部に対する相対的な位置変化量を用いて、カンチレバー基部の高さから測定された試料の表面の高さを補正することを特徴とする、請求項1ないしに記載の 走査プローブ顕微鏡。
  6. 探針が試料に触れたときの探針の高さを、探針先端の高さを直接測定することが可能な検出器を用いて測定することを特徴とする、請求項1ないしに記載の走査プローブ顕微鏡。
  7. 前記探針先端の高さを直接測定することが可能な検出器はレーザ光を先端部に照射して反射したレーザ光の参照光との干渉によって測定することを特徴とする、請求項に記載の走査プローブ顕微鏡。
  8. カンチレバーの変形状態を表す信号に現れる形状の変化を、信号に現れるカンチレバーの振動に対応する成分が変化することによって検出することを特徴とする、請求項1に記載の走査プローブ顕微鏡。
  9. 探針と試料を離間するときに、カンチレバーの変形状態を表す信号に現れるカンチレバーの振動に対応する成分が変化することによって、探針が試料より離れたことを検出し、これによってカンチレバーの試料に対する相対的な引き上げ量を決定することを特徴とする、請求項1ないしに記載の走査プローブ顕微鏡。
  10. 探針と試料が接していない状態で探針を次の測定点に移動する際に、カンチレバーの変形状態を表す信号に現れるカンチレバーの振動に対応する成分が変化することによって、意図しない探針と試料との接触を検知することを特徴とする、請求項1ないしに記載の走査プローブ顕微鏡。
  11. 上記カンチレバーの振動に対応する成分の変化は、探針先端が縦方向に運動する振動の振幅あるいは位相あるいは周波数の変化、横方向に運動する振動の振幅あるいは位相あるいは周波数の変化、のいずれか一方または双方の合成したものによることを特徴とする、請求項ないし10に記載の走査プローブ顕微鏡。
  12. 上記カンチレバーの振動を生起するための圧電素子、電磁石、レーザのいずれかを具備することを特徴とする、請求項ないし11に記載の走査プローブ顕微鏡。
  13. 探針の変形による水平方向の測定誤差を、カンチレバーの変形状態を示す信号のうち、カンチレバーの捩れを示す信号から推定し、この水平方向の測定誤差を補正することを特徴とする、請求項11ないし12に記載の走査プローブ顕微鏡。
JP2008031705A 2007-04-10 2008-02-13 走査プローブ顕微鏡 Expired - Fee Related JP5031609B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008031705A JP5031609B2 (ja) 2007-04-10 2008-02-13 走査プローブ顕微鏡
US12/099,176 US7966867B2 (en) 2007-04-10 2008-04-08 Scanning probe microscope

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007102972 2007-04-10
JP2007102972 2007-04-10
JP2008031705A JP5031609B2 (ja) 2007-04-10 2008-02-13 走査プローブ顕微鏡

Publications (3)

Publication Number Publication Date
JP2008281550A JP2008281550A (ja) 2008-11-20
JP2008281550A5 JP2008281550A5 (ja) 2010-10-21
JP5031609B2 true JP5031609B2 (ja) 2012-09-19

Family

ID=40142471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008031705A Expired - Fee Related JP5031609B2 (ja) 2007-04-10 2008-02-13 走査プローブ顕微鏡

Country Status (1)

Country Link
JP (1) JP5031609B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068905A2 (en) * 2009-12-01 2011-06-09 Bruker Nano, Inc. Method and apparatus of operating a scanning probe microscope
KR101255458B1 (ko) 2011-06-30 2013-04-17 한양대학교 산학협력단 주사 탐침 현미경을 이용하여 획득된 데이터 값들에 존재하는 왜곡의 검출 장치 및 방법
EP2913681A1 (en) * 2014-02-28 2015-09-02 Infinitesima Limited Probe system with multiple actuation locations
JP2017181135A (ja) * 2016-03-29 2017-10-05 株式会社日立ハイテクサイエンス 走査型プローブ顕微鏡及びそのプローブ接触検出方法
JP6885585B2 (ja) * 2017-03-28 2021-06-16 株式会社日立ハイテクサイエンス 走査型プローブ顕微鏡、及びその走査方法
JP6963338B2 (ja) * 2017-03-28 2021-11-05 株式会社日立ハイテクサイエンス 走査型プローブ顕微鏡
JP7190203B2 (ja) * 2021-01-25 2022-12-15 株式会社日立ハイテクサイエンス 走査型プローブ顕微鏡及びそのプローブ接触検出方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3078354B2 (ja) * 1991-06-18 2000-08-21 日立建機株式会社 走査型トンネル顕微鏡の測定方法
JP2001033373A (ja) * 1999-07-27 2001-02-09 Hitachi Constr Mach Co Ltd 走査型プローブ顕微鏡
JP4021298B2 (ja) * 2002-10-10 2007-12-12 エスアイアイ・ナノテクノロジー株式会社 サンプリング走査プローブ顕微鏡および走査方法
JP4502122B2 (ja) * 2004-11-26 2010-07-14 セイコーインスツル株式会社 走査型プローブ顕微鏡及び走査方法
JP2006329973A (ja) * 2005-04-28 2006-12-07 Hitachi Ltd 走査プローブ顕微鏡およびこれを用いた試料観察方法およびデバイス製造方法
JP2006337379A (ja) * 2006-08-01 2006-12-14 Hitachi Ltd 走査プローブ顕微鏡

Also Published As

Publication number Publication date
JP2008281550A (ja) 2008-11-20

Similar Documents

Publication Publication Date Title
US7966867B2 (en) Scanning probe microscope
JP5031609B2 (ja) 走査プローブ顕微鏡
JP2006329973A (ja) 走査プローブ顕微鏡およびこれを用いた試料観察方法およびデバイス製造方法
JP5580296B2 (ja) プローブ検出システム
US7562564B2 (en) Scanning probe microscope and sample observing method using this and semiconductor device production method
JP3925380B2 (ja) 走査プローブ顕微鏡
JP2008224412A (ja) 走査プローブ顕微鏡
WO2003067224A1 (en) Scanning probe microscope and specimen surface structure measuring method
JP2009525466A (ja) 可変密度走査関連出願の相互参照本出願は、2006年1月31日に出願された米国仮特許出願60/763,659の優先権を主張し、2006年11月28日に出願された、米国特許出願11/563,822(発明の名称「可変密度走査」)に関連しその優先権を主張するものであり、引用によりその全体を本明細書に包含する。
JP2003202284A (ja) 走査プローブ顕微鏡およびこれを用いた試料観察方法およびデバイス製造方法
US7509844B2 (en) Atomic force microscope technique for minimal tip damage
JP5410880B2 (ja) 摩擦力測定方法および摩擦力測定装置
US20230251284A1 (en) Automated optimization of afm light source positioning
Hu et al. High-speed atomic force microscopy and peak force tapping control
US9383388B2 (en) Automated atomic force microscope and the operation thereof
US7334459B2 (en) Atomic force microscope and corrector thereof and measuring method
US20070012095A1 (en) Scanning probe microscope
KR101587342B1 (ko) 검출기의 좌표보정이 가능한 탐침현미경, 검출기의 좌표보정방법, 탐침현미경 초기화 방법 및 기록매체
JP2007212470A (ja) 走査プローブ顕微鏡
JP2005308406A (ja) 走査型プローブ顕微鏡
JP2004069445A (ja) 走査型プローブ顕微鏡
US20100192267A1 (en) Scanning Probe Microscope with Independent Force Control and Displacement Measurements
JP7346778B2 (ja) 光学測定装置が装着された原子顕微鏡及びこれを利用して測定対象の表面の情報を得る方法
JP2006337379A (ja) 走査プローブ顕微鏡
US20140086033A1 (en) Method and apparatus for inspecting thermal assist type magnetic head device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120627

R150 Certificate of patent or registration of utility model

Ref document number: 5031609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees